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A q-analogue of a result of Carlitz, Scoville
and Vaughan via the homology of posets

Yifei Li

Abstract Let f(z) =
∑∞

n=0(−1)nzn/n!n!. In their 1975 paper, Carlitz, Scoville and
Vaughan provided a combinatorial interpretation of the coefficients in the power series
1/f(z) =

∑∞
n=0 ωnzn/n!n!. They proved that ωn counts the number of pairs of permutations

of the nth symmetric group Sn with no common ascent. This paper gives a combinatorial
interpretation of a natural q-analogue of ωn by studying the top homology of the Segre product
of the subspace lattice Bn(q) with itself. We also derive an equation that is analogous to a
well-known symmetric function identity:

∑n

i=0(−1)ieihn−i = 0, which then generalizes our
q-analogue to a symmetric group representation result.

1. Introduction
Consider the power series f(z) =

∑∞
n=0(−1)n zn

n!n! and define the numbers ω0, ω1,

ω2, . . . by 1
f(z) =

∑∞
n=0 ωn

zn

n!n! . It follows quickly from the definition that for n ⩾ 1,

(1)
n∑

k=0
(−1)k

(
n

k

)2
ωk = 0.

Given σ ∈ Sn, a permutation of [n] := {1, 2, . . . , n}, we call i ∈ [n− 1] an ascent of σ
if σ(i) < σ(i+ 1). Carlitz, Scoville and Vaughan proved the following result:

Theorem 1.1. (Carlitz, Scoville, and Vaughan [5]) The number ωk in equation (1) is
the number of pairs of permutations of Sk with no common ascent.

Two permutations have no common ascent if they do not rise at the same position
when written in one-line notation. For example, in one-line notation (12, 21), (21, 12),
(21, 21) are all the pairs of permutations of {1, 2} with no common ascent, so we
have ω2 = 3. Since the Bessel function J0(z) is essentially f(z2), Carlitz, Scoville and
Vaughan’s result provided a combinatorial interpretation of the coefficient ωk in the
reciprocal Bessel function.

In this paper, we will develop a q-analogue of Theorem 1.1. To that purpose,
recall that [n]q := qn−1 + qn−2 + · · · + 1 is the q-analogue of the natural number n
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and that
[

n
k

]
q

:= [n]q !
[k]q ![n−k]q ! is the q-analogue of the binomial coefficient

(
n
k

)
, where

[n]q! :=
∏n

i=1 [i]q. For a permutation σ ∈ Sn, the inversion statistic is defined by

inv(σ) :=| {(i, j) : 1 ⩽ i < j ⩽ n and σ(i) > σ(j)} | .

Theorem 1.2. Let Dn denote the set {(σ, τ) ∈ Sn × Sn | σ, τ have no common
ascent}, and let Wn(q) =

∑
(σ,τ)∈Dn

qinv(σ)+inv(τ). Then for n ⩾ 1,

(2)
n∑

i=0

[
n

i

]2

q

(−1)iWi(q) = 0.

Put F (z) =
∑∞

n=0(−1)n zn

[n]q ![n]q ! . The function F
(

( z
2(1−q) )2

)
is the q-Bessel func-

tion J (1)
0 (z; q). The q-Bessel functions were first introduced by F. H. Jackson in 1905

and can be found in later literature (see Gasper and Rahman [6]). It follows from
equation (2) that 1

F (z) =
∑∞

n=0 Wn(q) zn

[n]q ![n]q ! , giving the coefficients of the reciprocal
q-Bessel function a combinatorial meaning.

In Section 2, we will prove Theorem 1.2 by studying the top homology of the Segre
product of the subspace lattice Bn(q) with itself. From a poset homology perspective,
the coefficient Wn(q) is a signless Euler characteristic and counts the number of de-
creasing maximal chains of this Segre product poset. All definitions will be reviewed
in this section.

In Section 3, we define the product Frobenius characteristic map to serve as a
useful tool in studying representations of the product group Sn ×Sn. We then further
generalize our q-analogue to a symmetric group representation result in Section 4
(see Theorem 4.1) using the Whitney homology technique. This generalization is an
analogue of the well-known symmetric function identity:

∑n
i=0(−1)ieihn−i = 0.

Finally, in Section 5 we point out that an alternative proof of Theorem 1.1 can be
obtained by specializing our proof of Theorem 1.2 at q = 1.

2. The q-analogue of a result of Carlitz, Scoville, and Vaughan
We recall the definition of Bn(q), which is a q-analogue of the subset lattice Bn. Let q
be a prime power and Fq the finite field of q elements. Consider the n-dimensional
linear vector space Fn

q and its subspaces. Then Bn(q) is the lattice of those subspaces
ordered by inclusion. The poset Bn(q) is a geometric lattice, so every element is a
join of atoms ([10, Example 3.10.2]). The poset Bn(q) is graded with a rank function
ρ(W ) := the dimension of the subspace W , where a poset is said to be graded if it is
pure and bounded.

An edge labeling of a bounded poset P is a map λ : E(P ) → Λ, where E(P ) is
the set of covering relations x <· y of P and Λ is some poset. If P is a poset with
an edge labeling λ, then a maximal chain c = (0̂ <· x1 <· · · · <· xt <· 1̂) of P is
increasing if λ(0̂, x1) < λ(x1, x2) < · · · < λ(xt, 1̂). We call the chain c decreasing if
there is no i ∈ {1, 2, . . . , t} such that λ(xi−1, xi) < λ(xi, xi+1) in Λ. For a chain c, we
associate a word

λ(c) = λ(0̂, x1)λ(x1, x2) · · ·λ(xt, 1̂).
If λ(c1) lexicographically precedes λ(c2), we say that c1 lexicographically precedes c2
and we denote this by c1 <L c2.

Definition 2.1 (Björner and Wachs [2, Definition 2.1]). An edge labeling is called an
EL-labeling (edge lexicographical labeling) if for every interval [x, y] in P ,

(1) there is a unique increasing maximal chain c in [x, y], and
(2) c <L c′ for all other maximal chains c′ in [x, y].
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A bounded poset that admits an EL-labeling is said to be EL-shellable. We only
need to consider pure shellability in this paper since both Bn(q) and the Segre prod-
uct of Bn(q) with itself (see Definition 2.4) are pure and bounded. It is well known
that Bn(q) is EL-shellable (see [14, Exercise 3.4.7]) and a general edge-labeling for
semimodular lattices is given in [10]. Here we define a specific EL-labeling of Bn(q),
which will be used to prove our results. Let A be the set of all atoms of Bn(q). For a
subspace of Fn

q , X ∈ Bn(q), we define A(X) := {V ∈ A | V ⩽ X}. The following two
steps define an edge-labeling on the graded poset Bn(q).

1. For a 1-dimensional subspace V of Fn
q (an atom of Bn(q)), let v be a basis

element of V . We define a map f :A → [n], f(V ) = the index of the right-most non-zero
coordinate of v. For example, in B3(3), if V1 = span{⟨1, 0, 1⟩} and V2 = span{⟨2, 1, 0⟩},
f(V1) = 3 and f(V2) = 2.

2. In the case of B3(3), if X = span{⟨1, 0, 1⟩, ⟨2, 1, 0⟩}, then A(X) also contains
span{⟨0, 1, 1⟩} and span{⟨2, 2, 1⟩}. But any vector whose right-most non-zero coordi-
nate is the first coordinate will not be in X. So f(A(X)) = {2, 3} and | f(A(X)) |= 2.
For a k-dimensional subspace X of Fn

q , Gaussian elimination implies the existence of
a basis of X whose elements have distinct right-most non-zero coordinates and this in
turn implies that f(A(X)) has dim(X) elements. Let Y be an element of Bn(q) that
covers X, then dim(Y ) = dim(X) + 1. The set f(A(Y ))\f(A(X)) is a subset of [n]
and has exactly one element. This element will be the label of the edge (X, Y ).

Proposition 2.2. The edge labeling described above is an EL-labeling on the subspace
lattice Bn(q).

Proof. Edges in the same chain cannot take duplicate labels since Fn
q is n-

dimensional and any maximal chain must take all labels in {1, 2, . . . , n}. Let [X,Y ]
be a closed interval in Bn(q). All maximal chains of [X, Y ] will take labels
from the set f(A(Y ))\f(A(X)). Let a1 < a2 < · · · < al be all the elements
of f(A(Y ))\f(A(X)) arranged in increasing order. Given ai ∈ f(A(Y ))\f(A(X)),
there exists an atom Vi ∈ A(Y ) with f(Vi) = ai. Note that Vi is a 1-dimensional
subspace of Fn

q and the join of Vi and X is in [X,Y ]. We build a chain according to
the increasing order of ai’s, each time adjoining one 1-dimensional subspace. Then
the chain c = (X <· X ∨ V1 <· · · · <· X ∨ V1 ∨ V2 ∨ · · · ∨ Vl = Y ) is an increasing
maximal chain of [X,Y ].

For the uniqueness of the increasing maximal chain, it suffices to show the unique-
ness of the selection of X ∨ V1 since X and Y are arbitrary. Take V ′

1 ∈ A(Y ) with
f(V ′

1) = a1. We can find a basis vector v1 of V1 and a basis vector v′
1 of V ′

1 so that the
a1th coordinate of both vectors are 1. Then v1 − v′

1 ∈ Y and f(span{v1 − v′
1}) < a1.

Since a1 < a2 < · · · < al are all the elements of f(A(Y ))\f(A(X)), v1 − v′
1 must

be a vector in X. Then X ∨ V1 = X ∨ V ′
1 . Therefore X ∨ V1 is unique. At each step

of building the increasing maximal chain, there is a unique subspace that gives the
connecting edge the smallest label.

Labels of all other maximal chains of [X,Y ] are permutations of elements
in f(A(Y ))\f(A(X)), which are all lexicographically larger than the label of the
unique increasing chain c = (X <· X ∨ V1 <· · · · <· X ∨ V1 ∨ V2 ∨ · · · ∨ Vl = Y ).
Condition (2) of Definition 2.1 is also satisfied. □

Under this EL-labeling, to each maximal chain of the subspace lattice Bn(q), one
can assign a permutation σ of Sn. See Section 1 for the definition of the inversion
statistic inv(σ).

Lemma 2.3. The number of maximal chains of Bn(q) assigned label σ ∈ Sn is qinv(σ).

Algebraic Combinatorics, Vol. 6 #2 (2023) 459
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Proof. For each 1-dimensional subspace of Fn
q , we can pick a basis vector that has 1

on its right-most non-zero coordinate. Given σ ∈ Sn, for each i ∈ [n − 1], let invσ(i)
denote the number of j such that 1 ⩽ i < j ⩽ n and σ(j) < σ(i). The number of
ways to choose an atom W1 such that the edge (0,W1) takes label σ(1) is clearly
qσ(1)−1 = qinvσ(1) .

Let k ∈ [n], assume the chain 0 <· W1 <· ... <· Wk−1 has label σ(1)σ(2)...σ(k − 1).
We need to choose a Wk = Wk−1 ∨ Vk so that the edge (Wk−1,Wk) takes the label
σ(k) and Vk is an atom. Pick a basis vector for Vk, call it vk, that has 1 on the σ(k)th
coordinate and all 0’s after the σ(k)th coordinate. For all j such that 1 ⩽ k < j ⩽ n
and σ(j) < σ(k), Wk−1 contains no vector whose right-most non-zero coordinate is the
σ(j)th. Thus, any variation of the values on those σ(j)th coordinates of vk will result
in a different Wk. Then there are qinvσ(k) ways to choose a Wk. Therefore, the number
of maximal chains assigned label σ is

∏i=n
i=1 q

invσ(i) = q
∑i=n

i=1
invσ(i) = qinv(σ). □

Let us review a simplified definition of the Segre product poset. A general definition
can be found in [4].

Definition 2.4. Let P be a graded poset with a rank function ρ. Then the Segre
product poset of P with itself, denoted by P ◦P , is defined to be the induced subposet
of the product poset P×P consisting of the pairs (x, y) ∈ P×P such that ρ(x) = ρ(y).

Now consider the Segre product of Bn(q) with itself. Using the EL-labeling of Bn(q)
described right after Definition 2.1, the Segre product poset Bn(q) ◦ Bn(q) admits
the following edge labeling. Given two elements X = (X1, X2) and Y = (Y1, Y2)
in Bn(q) ◦ Bn(q) satisfying the covering relation X <· Y , we must have X1 <· Y1
and X2 <· Y2 in Bn(q). In the EL-labeling of Bn(q), suppose the edge connecting X1
and Y1 admits a label i and the edge connecting X2 and Y2 admits a label j, then the
edge connecting X and Y in Bn(q) ◦Bn(q) is labeled by (i, j).

Corollary 2.5. (of Proposition 2.2) The edge-labeling of Bn(q)◦Bn(q) defined above
is an EL-labeling.

Proof. Let [X,Y ] be any closed interval in Bn(q)◦Bn(q). The elements X = (X1, X2)
and Y = (Y1, Y2), where X1 ⩽ Y1 and X2 ⩽ Y2 in Bn(q). So [X1, Y1] and [X2, Y2]
are closed intervals in Bn(q). Since the labeling for Bn(q) is an EL-labeling, there is
a unique increasing maximal chain c1 in [X1, Y1] that lexicographically precedes all
other chains in the same interval. There is also a unique increasing maximal chain c2
in [X2, Y2]. Then the chain in [X,Y ] formed by pairing elements of c1 and c2 of
the same rank must be the unique increasing maximal chain in [X,Y ]. Any other
chain would have non-increasing labels in [X1, Y1] or [X2, Y2], hence is non-increasing
in [X,Y ]. This unique increasing maximal chain of [X,Y ] must also satisfy part (2)
of Definition 2.1 because c1 and c2 both satisfy this condition. □

The following theorem of Björner and Wachs connects the permutations in Sn with
the maximal chains of the Segre product poset Bn(q) ◦Bn(q). Let P̂ be the bounded
extension of P . That is, P̂ = P ∪ {0̂, 1̂} and 0̂ and 1̂ are attached even if P already
has a bottom or a top element.

Theorem 2.6. (Björner and Wachs [3, Theorem 4.1], see also Wachs [14, Theo-
rem 3.2.4]). Suppose P is a poset for which P̂ admits an EL-labeling. Then the order
complex of P has the homotopy type of a wedge of spheres, where the number of i-
spheres is the number of decreasing maximal (i+2)-chains of P̂ . The decreasing max-
imal (i+ 2)-chains, with 0̂ and 1̂ removed, form a basis for the cohomology H̃i(P ;Z).

Algebraic Combinatorics, Vol. 6 #2 (2023) 460
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(F2
2,F2

2)

(
span{⟨1, 0⟩},
span{⟨1, 0⟩}

) (
span{⟨1, 0⟩},
span{⟨0, 1⟩}

)
. . . . . .

(
span{⟨1, 1⟩},
span{⟨1, 1⟩}

)

(1, 1)
(1, 2)

(2, 2)

(2, 2)
(2, 1)

(1, 1)

(∅,∅)

Figure 1. An EL-labeling of B2(2) ◦B2(2)

Since P has the homotopy type of a wedge of spheres, H̃i(P ;Z) ∼= H̃i(P ;Z)
(Wachs [14, Theorem 1.5.1]). We will use H̃i(P ;Z), the reduced homology of the
order complex ∆(P ), instead of the cohomology group in this paper.

Example 2.7. Figure 1 is an EL-labeling of the Segre product poset B2(2)◦B2(2). The
left-most chain is increasing with label (12, 12). The decreasing (i.e. non-increasing)
chains have labels (12, 21), (21, 12), or (21, 21). We use Pn(q) to denote the proper part
of the Segre product poset, i.e. Pn(q) := Bn(q) ◦Bn(q) ∖ {0̂, 1̂}. Then the decreasing
chains of B2(2) ◦ B2(2) with the top and bottom elements removed form a basis
of H̃0(P2(2);Z).

Proposition 2.8. Let Wn(q) =
∑

(σ,τ)∈Dn
q(inv(σ)+inv(τ)), where Dn denotes the set

of pairs of permutations (σ, τ) ∈ Sn × Sn with no common ascent. Then Wn(q) equals
the total number of decreasing maximal chains of Pn(q) := Bn(q)◦Bn(q)∖{0̂, 1̂} with
respect to the labeling described above.

Proof. An edge label (i, j) ∈ [n] × [n] ⩽ (k, l) if and only if i ⩽ k and j ⩽ l. By
the definition of our labeling for Bn(q) ◦ Bn(q), there cannot be repeat edge labels
along any one chain. So a chain label is decreasing as long as the two components
of any two consecutive edge labels do not increase at the same time. Each maximal
chain labeling of Bn(q) ◦ Bn(q) corresponds to a pair of permutations of Sn. Then
labels of decreasing maximal chains are all pairs of permutations with no common
ascent. Given a pair of permutations (σ, τ), the number of maximal chains assigned
label (σ, τ) is qinv(σ) · qinv(τ) = q(inv(σ)+inv(τ)) by Lemma 2.3. Then the total number
of decreasing maximal chains of Pn(q) is

Wn(q) =
∑

(σ,τ)∈Dn

q(inv(σ)+inv(τ)).

□

Remark 2.9. The Segre product poset Bn(q) ◦ Bn(q) is the q-analogue of the Segre
product poset Bn ◦ Bn, agreeing with the formal definition of a q-analogue in
R. Simion’s paper [8]. She showed that the q-analogue of an EL-shellable poset is
also EL-shellable. The EL-labeling of Bn(q) ◦ Bn(q) we use in this paper provides
intuition and a combinatorial interpretation for Wn(q).

Björner and Welker proved that if two pure posets are Cohen-Macaulay, then their
Segre product is also Cohen-Macaulay (see [4, Theorem 1]). This result in particular
proves that the poset Bn(q)◦Bn(q) is Cohen-Macaulay because Bn(q) is. Corollary 2.5
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says that Bn(q) ◦ Bn(q) is shellable, which is a stronger property than the Cohen-
Macaulayness. Later in Section 4 we will use the fact that the Segre product poset
Bn ◦Bn is Cohen-Macaulay.

Proof of Theorem 1.2. The poset Pn(q) = Bn(q) ◦ Bn(q) ∖ {0̂, 1̂} is pure. By Theo-
rem 2.6, Pn(q) has the homotopy type of a wedge of (n−2)-spheres, and its decreasing
maximal (n−2)-chains form a basis of the reduced (n−2)-nd cohomology. Since Pn(q)
is graded and EL-shellable, all reduced homology groups other than the top one van-
ish (Björner [1]). In Proposition 2.8, we defined Wn(q) to be the total number of
decreasing maximal chains of Pn(q). Then using the Euler-Poincaré formula [14, The-
orem 1.2.8] and Philip Hall’s theorem (Stanley [10, Proposition 3.8.6]) we get
(3) µ

P̂n(q)(0̂, 1̂) = (−1)nWn(q) = χ̃(∆(Pn(q))),

where P̂n(q) = Bn(q) ◦Bn(q) denotes Pn(q) with 0̂ and 1̂ adjoined.
On the other hand, by the definition of the Möbius function,

µ(0̂, 1̂) = −
∑

0̂⩽x<1̂

µ(0̂, x).

Each x in Pn(q) is the product of two k-dimensional subspaces X1, X2 of Fn
q , for some

k with 0 ⩽ k < n. The intervals [0̂, X1] and [0̂, X2] are isomorphic to the poset Bk(q),
hence µ(0̂, x) is just µ

P̂k(q)(0̂, 1̂), where Pk(q) = Bk(q) ◦ Bk(q) ∖ {0̂, 1̂}. The number
of k-dimensional subspaces of Fn

q is
[

n
k

]
q

(Stanley [10, Proposition 1.7.2]). So the
number of distinct x = (X1, X2) where X1 and X2 are k-dimensional subspaces is[

n
k

]2
q
. Therefore we have

µ
P̂n(q)(0̂, 1̂) = −

n−1∑
i=0

[
n

i

]2

q

µ
P̂i(q)(0̂, 1̂) = −

n−1∑
i=0

[
n

i

]2

q

(−1)iWi(q).

Consequently,
n∑

i=0

[
n

i

]2

q

(−1)iWi(q) = 0.

By Proposition 2.8, Wi(q) =
∑

(σ,τ)∈Di
q(inv(σ)+inv(τ)) is the number of decreasing

maximal chains of Pi(q), where, as above, Di denotes the set of pairs of permutations
(σ, τ) ∈ Si × Si with no common ascent. □

Corollary 2.10. The Euler characteristic of the Segre product of the subspace lattice
Bn(q) ◦Bn(q) is (−1)nWn(q).

Proof. See equation (3) in the proof of Theorem 1.2. □

3. The product Frobenius characteristic map
The Frobenius characteristic map is often used to study representations of the sym-
metric group. Here we will define a product Frobenius characteristic map to help
understand representations of Sn ×Sn. Therefore, let us consider two sets of variables
x = (x1, x2, ...) and y = (y1, y2, ...). Following Sagan’s notations [7], Rn denotes the
space of class functions on Sn and R = ⊕nR

n. We will use Rm,n to denote the space
of class functions on Sm × Sn and let R2d = ⊕m,nR

m,n. Let Λn be the space of homo-
geneous degree n symmetric functions. Then Λ(x) = ⊕nΛn(x) and Λ(y) = ⊕nΛn(y)
denote the rings of symmetric functions in variables (x1, x2, ...) and (y1, y2, ...) respec-
tively. Given µ ⊢ n with µ = (1m12m2 . . . ), we write zµ =

∏i=n
i=1 i

mimi!.
Let us recall the definition of the usual characteristic map.
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Definition 3.1. The (Frobenius) characteristic map chn : Rn → Λn is defined by

chn(χ) =
∑
µ⊢n

z−1
µ χµpµ,

where χµ is the value of χ on the class µ and pµ is the power sum symmetric function.
Define ch := ⊕nchn.

Now we define a product characteristic map.

Definition 3.2. Let χ be a class function on Sm × Sn. The product Frobenius char-
acteristic map ch : R2d → Λ(x) ⊗ Λ(y) is defined as:

(4) ch(χ) =
∑

(µ,λ)⊢(m,n)

z−1
µ z−1

λ χ(µ,λ)pµ(x)pλ(y),

where χ(µ,λ) is the value of χ on the class (µ, λ) and pµ, pλ are power sum symmetric
functions. The class (µ, λ) is indexed by a partition µ ⊢ m and a partition λ ⊢ n that
tell us the cycle types of elements of Sm and Sn respectively.

Proposition 3.3. For a character f ⊗ g of Sm × Sn, where f is a character of Sm

and g a character of Sn, the product Frobenius characteristic ch(f ⊗ g) equals
ch(f)(x)ch(g)(y).

Proof. Equation (4) gives us

ch(f ⊗ g) =
∑

(µ,λ)⊢(m,n)

z−1
µ z−1

λ (f ⊗ g)(µ,λ)pµ(x)pλ(y).

For a conjugacy class (µ, λ) ⊢ (m,n), let σ ∈ Sm have cycle type µ and τ ∈ Sn have
cycle type λ. The character value

(f ⊗ g)(µ,λ) = (f ⊗ g)(σ, τ) = f(σ)g(τ) = fµgλ,

where the second equality is by [7, Theorem 1.11.2]. Then

ch(f ⊗ g) =
∑

(µ,λ)⊢(m,n)

z−1
µ z−1

λ fµgλpµ(x)pλ(y)

=
∑
µ⊢m

z−1
µ fµpµ(x)

∑
λ⊢n

z−1
λ gλpλ(y)

= ch(f)(x)ch(g)(y).
□

Because the product Frobenius characteristic map is an extension of the usual
(Frobenius) characteristic map, we keep the notation ch for product Frobenius char-
acteristic map even though ch was previously defined to be ⊕nchn in various literature
(Sagan [7], Stanley [9]). The meaning of ch will be clear in the given context.

Recall that the induction product f ◦ g is the induction of f ⊗ g from Sm × Sn

to Sm+n. A fundamental property of the usual characteristic map is the following:

Proposition 3.4. (Stanley [9, Proposition 7.18.2]) The Frobenius characteristic map
ch : R → Λ is a bijective ring homomorphism, i.e., ch is one-to-one and onto, and
satisfies

ch(f ◦ g) = ch(f)ch(g).

Remark 3.5. The product Frobenius characteristic on the tensor product of charac-
ters, ch(f ⊗ g) = ch(f)(x)ch(g)(y), is a symmetric function in Λm(x) ⊗ Λn(y), while
the usual Frobenius characteristic on the induction product of characters, ch(f ◦ g) =
ch(f)(x)ch(g)(x), is a symmetric function in Λm+n.
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We would like the product Frobenius characteristic map to be a homomorphism
as well. Given an Sk × Sl-module V with character ψ and an Sm × Sn-module W
with character ϕ, ψ ⊗ ϕ is the character of V ⊗ W , which is a representation of
(Sk × Sl) × (Sm × Sn). We want to produce a character of Sk+m × Sl+n.

Definition 3.6. For ψ and ϕ as given above, we define the induction product ψ◦ϕ to
be ψ ⊗ ϕ ↑Sk+m×Sl+n

(Sk×Sl)×(Sm×Sn). The induction product on characters extends to all class
functions on R2d by (bi)linearity.

Proposition 3.7. Let ψ be a class function on Sk × Sl, and ϕ a class function on
Sm × Sn. The product Frobenius characteristic map ch : R2d → Λ(x) ⊗ Λ(y) is a
bijective ring homomorphism, i.e., ch is one-to-one and onto, and satisfies

ch(ψ ◦ ϕ) = ch(ψ)ch(ϕ).

Before proving this proposition, we need to establish the following lemma:

Lemma 3.8. Given two groups A and B, and their subgroups F < A and G < B, if f
is the character of a representation of F and g is the character of a representation
of G, then

f ⊗ g ↑A×B
F ×G= f ↑A

F ⊗g ↑B
G .

Proof. Suppose F < A has coset representatives {s1, s2, ..., sq}, and G < B has
coset representatives {t1, t2, ..., tr}. Then {(si, tj) : i ∈ [q], j ∈ [r]} is a set of coset
representatives for F ×G < A×B. For (σ, τ) ∈ A×B,

f ⊗ g ↑A×B
F ×G ((σ, τ)) =

∑
i,j

f ⊗ g
(
(s−1

i , t−1
j )(σ, τ)(si, tj)

)
=

∑
i

f(s−1
i σsi)

∑
j

g(t−1
j τtj)

= f ↑A
F (σ)g ↑B

G (τ)
= f ↑A

F ⊗g ↑B
G ((σ, τ)).

For the second and fourth equalities, see [7, Theorem 1.11.2]. □

Proof of Proposition 3.7. The bijectiveness of the product Frobenius characteristic
map follows from the definition of ch and the fact that the power sums pµ(x)pλ(y)
form a Q-basis for Λ(x) ⊗ Λ(y). Next we will show that the map is a homomorphism.
Suppose ψ =

∑
i,j aijψ

(i)
k ⊗ ψ

(j)
l such that ψ(i)

k ’s and ψ(j)
l ’s are irreducible characters

of representations of Sk and Sl respectively. Similarly, ϕ =
∑

u,v buvϕ
(u)
m ⊗ ϕ

(v)
n . For

any σk ∈ Sk, σl ∈ Sl, τm ∈ Sm, and τn ∈ Sn, we have

ψ ⊗ ϕ
(
(σk, σl), (τm, τn)

)
=

( ∑
i,j

aijψ
(i)
k (σk)ψ(j)

l (σl)
)( ∑

u,v

buvϕ
(u)
m (τm)ϕ(v)

n (τn)
)

=
∑

i,j,u,v

aijbuvψ
(i)
k (σk)ϕ(u)

m (τm)ψ(j)
l (σl)ϕ(v)

n (τn)

=
∑

i,j,u,v

aijbuv(ψ(i)
k ⊗ ϕ(u)

m ) ⊗ (ψ(j)
l ⊗ ϕ(v)

n )(σk, τm, σl, τn).
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Thus, ψ ⊗ ϕ =
∑

i,j,u,v aijbuv(ψ(i)
k ⊗ ϕ

(u)
m ) ⊗ (ψ(j)

l ⊗ ϕ
(v)
n ). So,

ψ ◦ ϕ = ψ ⊗ ϕ ↑Sk+m×Sl+n

(Sk×Sl)×(Sm×Sn)

=
∑

i,j,u,v

aijbuv(ψ(i)
k ⊗ ϕ(u)

m ) ⊗ (ψ(j)
l ⊗ ϕ(v)

n ) ↑Sk+m×Sl+n

Sk×Sm×Sl×Sn

=
∑

i,j,u,v

aijbuv(ψ(i)
k ⊗ ϕ(u)

m ) ↑Sk+m

Sk×Sm
⊗(ψ(j)

l ⊗ ϕ(v)
n ) ↑Sl+n

Sl×Sn

=
∑

i,j,u,v

aijbuv(ψ(i)
k ◦ ϕ(u)

m ) ⊗ (ψ(j)
l ◦ ϕ(v)

n )

by Lemma 3.8. Now take the product Frobenius characteristic of both sides of the
above equation. For clarity, we keep track of variables x and y. By Proposition 3.3
and then Proposition 3.4 we get

ch(ψ ◦ ϕ)(x, y) =
∑

i,j,u,v

aijbuvch(ψ(i)
k ◦ ϕ(u)

m )(x)ch(ψ(j)
l ◦ ϕ(v)

n )(y)

=
∑

i,j,u,v

aijbuvch(ψ(i)
k )(x)ch(ϕ(u)

m )(x)ch(ψ(j)
l )(y)ch(ϕ(v)

n )(y)

=
∑
i,j

aijch(ψ(i)
k )(x)ch(ψ(j)

l )(y)
∑
u,v

buvch(ϕ(u)
m )(x)ch(ϕ(v)

n )(y)

= ch(ψ)(x, y)ch(ϕ)(x, y).

□

4. A symmetric function analogue
Using the product Frobenius characteristic map, we derive an equation that is anal-
ogous to a well-known symmetric function identity (see Stanley [9, equation (7.13)]):
for n ⩾ 1,

n∑
i=0

(−1)ieihn−i = 0.

The above identity contains the complete homogeneous symmetric function hn−i

and the elementary symmetric function ei, which is the Frobenius characteristic of
the representation of Si on the top homology of the subset lattice Bi. Our analogue,
equation (5), involves hn−i(x)hn−i(y) and the representation of Sn × Sn on the top
homology of the Segre product poset Bn ◦Bn. The product Sn × Sn acts on Bn ◦Bn

using the usual action of Sn on Bn in each component separately. For instance, given a
pair of permutations (123, 213) ∈ S3 × S3 written in one-line notation and an element
({1, 2}, {2, 3}) ∈ B3 ◦ B3, the first permutation 123 fixes the subset {1, 2} and the
second permutation 213 takes {2, 3} to {1, 3} by permuting the numbers in the subset.
In the proof of our analogue, we use the Whitney homology technique, which was
introduced by Sundaram [12] for pure posets and then generalized by Wachs [13] for
semipure posets.

Let Q be a poset with a bottom element 0̂ and G an automorphism group of Q. Sup-
pose Q is a Cohen-Macaulay G-poset, for each integer r, the r-th Whitney homology
of Q is defined as

WHr(Q) =
⊕

x∈Qr

H̃r−2(0̂, x),

where Qr := {x ∈ Q | rank(x) = r}.
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For the subset lattice Bn, let Pn be the proper part of the Segre product poset
Bn ◦ Bn. The action of Sn × Sn on Pn induces a representation on the reduced top
homology of Pn.

Theorem 4.1. Let ch(H̃n−2(Pn)) be the product Frobenius characteristic of this rep-
resentation. Then

(5)
n∑

i=0
(−1)ihn−i(x)hn−i(y)ch(H̃i−2(Pi)) = 0.

Proof. Let Q be Pn ∪ 0̂, which is Cohen-Macaulay. We consider the Whitney homol-
ogy of Q. From the work of Sundaram on Whitney homology (Sundaram [11, 12],
Wachs [14, Theorem 4.4.1]), we know that

H̃n−2(Pn) ∼=Sn×Sn

n−1⊕
r=0

(−1)n−1+rWHr(Q).

The action of Sn × Sn on Q induces a representation of Sn × Sn on the reduced
top homology of Q and its Whitney homology groups. An interval [0̂, x] is taken
to [0̂, (σ, τ)x] for (σ, τ) ∈ Sn ×Sn. Both H̃n−2(Pn) and WHr(Q) are Sn ×Sn-modules.
Let x be a rank r element of Q. The stabilizer of x is then the Young subgroup
(Sr ×Sn−r)×(Sr ×Sn−r). Viewing the Whitney homology groups as Sn ×Sn-modules,

WHr(Q) =
⊕

x∈Qr/(Sn×Sn)
H̃r−2(0̂, x) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r),

where Qr is the set of rank r elements in Q and Qr/(Sn × Sn) is a set of orbit
representatives in Qr (see Wachs [14, Lecture 4.4]). The action of Sn × Sn on Qr

is transitive. So the contribution of the r-th Whitney homology to H̃n−2(Pn) is the
induced representation H̃r−2(0̂, x) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r) for any x in Qr. The open
interval (0̂, x) is isomorphic to the poset Pr. We then have

WHr(Q) = H̃r−2(Pr) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r),

and

H̃n−2(Pn) ∼=Sn×Sn

n−1⊕
r=0

(−1)n−1+rH̃r−2(Pr) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r) .

Taking the product Frobenius characteristic of both sides of the above equation,
we get

(6) ch(H̃n−2(Pn)) =
n−1∑
r=0

(−1)n−1+rch
(
H̃r−2(Pr) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r)
)
.

Now let ψr be the character of the (Sr × Sr)-module H̃r−2(Pr). Write 1Sn−r×Sn−r

for the character of the trivial representation of Sn−r × Sn−r. When viewing H̃r−2(Pr)
as a (Sr ×Sn−r)×(Sr ×Sn−r)-module, its character equals ψr ⊗1Sn−r×Sn−r

(Sagan [7,
Theorem 1.11.2]). Then

H̃r−2(Pr) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r) = ψr ⊗ 1Sn−r×Sn−r
↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r)

= ψr ◦ 1Sn−r×Sn−r .

It follows from Proposition 3.7 that the product Frobenius characteristic

ch(ψr ◦ 1Sn−r×Sn−r ) = ch(ψr)ch(1Sn−r×Sn−r ).
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Thus, equation (6) becomes

ch(H̃n−2(Pn)) =
n−1∑
r=0

(−1)n−1+rch(H̃r−2(Pr))ch(1Sn−r×Sn−r
)

=
n−1∑
r=0

(−1)n−1+rch(H̃r−2(Pr))ch(1Sn−r
)(x)ch(1Sn−r

)(y).

(7)

It is known that the Frobenius characteristic of the trivial representation of Sn

is hn (Stanley [9]). Multiplying both sides of equation (7) by (−1)n−1, we get

(−1)n−1ch(H̃n−2(Pn)) =
n−1∑
r=0

(−1)rch(H̃r−2(Pr))hn−r(x)hn−r(y).

Finally, we conclude that
n∑

i=0
(−1)ihn−i(x)hn−i(y)ch(H̃i−2(Pi)) = 0.

□

Let ps : Λ → Q[q] be the stable principal specialization, that is, for a symmet-
ric function f(x1, x2, x3, . . . ), ps(f) is defined to be f(1, q, q2, ...). A summary of the
specializations of different bases for the symmetric functions can be found in Stan-
ley [9, Proposition 7.8.3]. Consider a symmetric function f in two sets of variables
(x1, x2, ...) and (y1, y2, ...). We take the stable principal specialization of f in each
set of variables, i.e. substitute (1, q, q2, ...) for both (x1, x2, ...) and (y1, y2, ...). The
product Frobenius characteristic of the Sn × Sn-modules H̃n−2(Pn) is a symmetric
function in two sets of variables. Then it is natural to ask what we can say about its
specialization.

Recall that Pn is the proper part of the Segre product of the subset lattice Bn with
itself. The product Frobenius characteristic of the Sn × Sn-module H̃n−2(Pn) has an
innate connection with the Euler characteristic of Bn(q)◦Bn(q). From Corollary 2.10,
Wn(q) is the signless Euler characteristic of Bn(q)◦Bn(q). The following theorem gives
us a connection between the stable principal specialization of ch(H̃n−2(Pn)) and the
Euler characteristic Wn(q).

Theorem 4.2. Let Wn(q) be the signless Euler characteristic of Bn(q) ◦Bn(q). For a
symmetric function f in two sets of variables x = (x1, x2, . . . ) and y = (y1, y2, . . . ),
the stable principal specialization ps(f) specializes both xi and yi to qi−1. Then

ps(ch(H̃n−2(Pn))) = Wn(q)
n∏

i=1
(1 − qi)2

,

where ch(V ) is the product Frobenius characteristic of V .

Proof. We will use induction. The base cases n = 2 and n = 3 can be verified by
hand. We can compute that

ps(ch(H̃0(P2))) = q2 + 2q
(1 − q)2(1 − q2)2 = W2(q)

(1 − q)2(1 − q2)2 ,

and

ps(ch(H̃1(P3))) = q6 + 4q5 + 6q4 + 6q3 + 2q2

(1 − q)2(1 − q2)2(1 − q3)2 = W3(q)
(1 − q)2(1 − q2)2(1 − q3)2 .
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Assume that the statement is true for Pi, i = 1, ..., n − 1. Now let us consider the
reduced top homology of Pn. Equation (5) gives us a way to express ch(H̃n−2(Pn)) in
terms of the product Frobenius characteristic of smaller posets. We get

(8) ch(H̃n−2(Pn)) =
n−1∑
i=0

(−1)n−1+ihn−i(x)hn−i(y)ch(H̃i−2(Pi)).

Then we take the stable principal specialization of both sides of equation (8).
We know from Stanley [9] that ps(hn) =

∏n
i=1

1
1−qi . It follows from our induction

hypothesis that

ps(ch(H̃n−2(Pn))) =
n−1∑
i=0

(−1)n−1+ips(ch(H̃i−2(Pi)))
n−i∏
j=1

1
(1 − qj)2

=
n−1∑
i=0

(−1)n−1+i Wi(q)∏i
k=1 (1 − qk)2

n−i∏
j=1

1
(1 − qj)2

= 1∏n
k=1 (1 − qk)2 ·

n−1∑
i=0

(−1)n−1+iWi(q)
∏n

j=i+1 (1 − qj)2∏n−i
j=1 (1 − qj)2

= 1∏n
k=1 (1 − qk)2 ·

n−1∑
i=0

(−1)n−1+iWi(q)
[
n

i

]2

q

.

Finally, using the identity involving the signless Euler characteristic Wn(q) given
in Theorem 1.2, we obtain

ps(ch(H̃n−2(Pn))) = Wn(q)∏n
j=1 (1 − qj)2 .

□

Theorem 4.1 was motivated by our initial findings regarding the q-analogue of
equation (1). Once we formulated the specialization of ch(H̃i−2(Pi)), the q-analogue
can be retrieved by taking the stable principal specialization of equation (5).

5. Alternative proof of the result of Carlitz–Scoville–Vaughan
Carlitz, Scoville and Vaughan’s result, Theorem 1.1, provides a combinatorial expla-
nation for the coefficients ωk in the reciprocal Bessel function. They showed that ωk

is the number of pairs of k-permutations with no common ascent. When letting q = 1
in our q-analogue (2), the subspaces of Fn

q become subsets of {1, 2, ..., n}. The value
Wn(1) =

∑
(σ,τ)∈Dn

1inv(σ)+inv(τ) simply counts the number of pairs of permutations
of [n] with no common ascent, i.e. ωn. The proof of Theorem 1.2 is then easily adapted
into an alternative proof of Carlitz, Scoville and Vaughan’s result (1). Carlitz, Scoville
and Vaughan’s proof in [5] includes general cases where occurrences of common ascent
are allowed. Our proof does not account for those general cases, but it gives a less
technical approach by utilizing Björner and Wachs’ work on shellability and poset
homology [3].
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