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Nate Harman & Christopher Ryba

Abstract Let n be a positive integer, and let ρn = (n, n−1, n−2, . . . , 1) be the “staircase” par-
tition of size N =

(
n+1

2

)
. The Saxl conjecture asserts that every irreducible representation Sλ

of the symmetric group SN appears as a subrepresentation of the tensor square Sρn ⊗ Sρn . In
this short note we give two proofs that every irreducible representation of SN appears in the
tensor cube Sρn ⊗ Sρn ⊗ Sρn .

1. Introduction
Let n, ρn, and N be as defined in the abstract. In 2012, Jan Saxl conjectured that
Sρn ⊗ Sρn contains every irreducible representation of SN as a subrepresentation.
This was motivated by a similar phenomenon for finite simple groups of Lie type [3].
Despite a great amount of effort, tensor products of symmetric group representations
are poorly understood from a combinatorial point of view. The Saxl conjecture serves
as one benchmark for results in this area. Progress has been made using a wide
variety of approaches, for example, using ideas from combinatorics [9, 6], modular
representation theory [1, 2], or probability [10, 7]. In this last paper mentioned, Luo
and Sellke proved a weaker version of the Saxl conjecture, namely that for n sufficiently
large, (Sρn)⊗4 contains every irreducible representation of SN as a subrepresentation.
Our main theorem is the following improvement:

Theorem 1.1. (Sρn)⊗3 contains all irreducible representations of SN .

We note that the results of Luo and Sellke extend to N not of the form
(

n+1
2

)
, while

ours rely on special properties of staircase partitions which do not seem to generalize.
We provide two proofs, the first using combinatorics, and the second using modular
representation theory.
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2. Proof using Combinatorics
For now, let N be an arbitrary positive integer, which we will specialize to

(
n+1

2
)

at
the end of this section. We use the following result of Luo and Sellke (although for
our final conclusion the prior result of Ikenmeyer [4] is sufficient).

Lemma 2.1 (Luo-Sellke [7, Appendix B]). Let µ, ν be partitions of size N such that µ
has distinct parts, and ν is greater than or equal to µ in the dominance order.
Then Sµ ⊗ Sµ contains Sν as a subrepresentation.

If µ = (µ1, µ2, . . . , µr) is a partition of N , let Mµ be the permutation representation
on cosets of the Young subgroup Sµ = Sµ1 × Sµ2 × · · · × Sµr of SN . Equivalently,
Mµ = IndSN

Sµ
(1), where 1 is the trivial representation.

Definition 2.2. Given a partition µ, let C(µ) be the partition obtained as follows.
Start off with the empty partition. For each i ⩾ 1, add i parts of size µi − µi+1 (if i
is greater than the length of µ, we define µi = 0).

Example 2.3. Suppose that µ = ρn is the staircase partition of size
(

n+1
2

)
. Then we

have µi − µi+1 = 1 for i = 1, 2, . . . , n. Thus C(µ) consists of the part 1 repeated
1 + 2 + · · · + n =

(
n+1

2
)

times.

Theorem 2.4. Let µ be any partition. Then Mµ ⊗ Sµ contains MC(µ) as a subrepre-
sentation.

Proof. It is convenient to take Frobenius characteristics to turn representations into
symmetric functions. The Frobenius characteristics of Mµ and Sµ are hµ and sµ

respectively. Their tensor product is described by the internal product of symmetric
functions, which admits the following description (see [8, §1.7, Example 23(c)]):

hµ ∗ sµ =
∑ ∏

i⩾1
sλ(i)/λ(i+1)

where the sum ranges over all nested families µ = λ(1) ⊃ λ(2) ⊃ · · · ⊃ ∅ of parti-
tions λ(i) for which |λ(i)| − |λ(i+1)| = µi.

Each summand is the Frobenius characteristic of a genuine (rather than virtual)
representation, so to show that MC(µ) is a subrepresentation of Mµ ⊗Sµ, it suffices to
show that one of the summands is equal to hC(µ). We do this by considering the term
where λ(i) is obtained from µ by removing the first (i − 1) rows (so λ

(i)
j = µj+i−1).

Then it is not difficult to see that the skew-diagram λ(i)/λ(i+1) consists of the disjoint
union of rows of lengths µi −µi+1, µi+1 −µi+2, . . .. We illustrate this with an example.

Suppose that µ = (10, 6, 4, 1). Then we have λ(1) = (10, 6, 4, 1), λ(2) = (6, 4, 1),
λ(3) = (4, 1), λ(4) = (1). In the following diagram, λ(1)/λ(2) is depicted in red, λ(2)/λ(3)

is depicted in orange, λ(3)/λ(4) is depicted in green, and λ(4) is depicted in blue:

In particular a horizontal row of size µ1 − µ2 = 4 appears once, a horizontal row
of size µ2 − µ3 = 2 appears twice, a horizontal row of size µ3 − µ4 = 3 appears three
times, and a horizontal row of size µ4 = 1 appears 4 times.

Algebraic Combinatorics, Vol. 6 #2 (2023) 508



A tensor-cube version of the Saxl conjecture

Since a skew-Schur function for a skew-diagram D is the product of the skew-Schur
functions associated to the connected components of D, and the skew Schur function
associated to a horizontal row of size r is s(r) = hr, we conclude that sλ(i)/λ(i+1) =
hµi−µi+1 · hµi+1−µi+2 · · · · . Thus∏

i

sλ(i)/λ(i+1) = hC(µ),

and so we have found the required summand. □

Corollary 2.5. Let µ be a partition of size N with distinct parts. Then for each λ
greater than or equal to C(µ) in the dominance order, Sµ ⊗ Sµ ⊗ Sµ contains Sλ as
a summand.

Proof. By Lemma 2.1 Sµ ⊗ Sµ contains Sν for every ν greater than or equal to µ
in the dominance order. In particular this means Sµ ⊗ Sµ contains a copy of every
irreducible constituent of Mµ. Therefore Sµ ⊗ Sµ ⊗ Sµ contains all of the irreducible
constituents of Mµ ⊗ Sµ, which by Theorem 2.4 includes all Sλ with λ greater than
or equal to C(µ) in the dominance order. □

First Proof of Theorem 1.1: By Corollary 2.5, Sρn ⊗ Sρn ⊗ Sρn contains Sλ for every
partition λ greater than or equal to C(ρn) = (1N ) (see Example 2.3). However, every
partition of N is greater than or equal to (1N ) in the dominance order. □

3. Proof using Modular Representation Theory
We will now give a second proof of the main theorem, this time following the approach
laid out in [1] to study the Saxl conjecture via the 2-modular representation theory
of symmetric groups. The proof itself will be quite short, but in the interest of self-
containment and readability we will first state the facts from modular representation
theory we will be using.

First we will recall some general facts about projective objects in the modular
representation theory of a finite group. These are all fairly standard results in modular
representation theory and can be found in many places, but as a standard reference
we will refer to [11].

Lemma 3.1 (See [11, Chapters 14 and 15]). Let G be a finite group, k = k̄ be an
algebraically closed field of characteristic p > 0, and let Repp(G) denote the category
of finite dimensional representations of G over k.

(1) The number of isomorphism classes of projective indecomposable objects in
Repp(G) is equal to the number of simple objects Repp(G), which is equal
to the number of conjugacy classes of elements of G with order prime to p.
Moreover, each simple object occurs uniquely as an irreducible quotient of a
projective indecomposable object.

(2) If P is a projective object of Repp(G), and V is any representation then P ⊗V
is again a projective object. Moreover if P is a fixed projective object, then
every indecomposable projective object P ′ arises as a direct summand in a
module of the form P ⊗ X where X is simple.

(3) If P is a projective object in Repp(G), then P lifts to characteristic zero –
more precisely P is isomorphic to P̃ ⊗O O/mO where O denotes the ring of
Witt vectors for k, m is the unique maximal ideal in O, and P̃ is projective
in the category of representations of G over O.

(4) Every ordinary irreducible representation of G over K = frac(O) occurs inside
P̃ ⊗O K for some projective indecomposable representation P̃ of G over O.
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Next we will recall some basic facts and notation specific to the modular represen-
tation theory of symmetric groups.

Lemma 3.2 (See [5, Chapter 6]).
(1) Simple objects in Repp(Sn) are indexed by p-regular partitions λ (that is,

partitions where there are at most p − 1 parts of any given size) and are
denoted by Dλ.

(2) Dλ appears with multiplicity one as a composition factor inside any reduction
mod p of the corresponding ordinary irreducible representation Sλ.

(3) If λ is a p-core (meaning all of the hook lengths of λ are relatively prime to p)
then the reduction of Sλ modulo p is simple and projective.

In the previous section we referred to partitions with distinct parts, and here we
will refer to 2-regular partitions. These are the same notion, but the former termi-
nology is more common in the combinatorics literature whereas the latter is more
common in the modular representation theory literature so we feel the inconsistency
in terminology is warranted.

Second Proof of Theorem 1.1: By Lemma 2.1 (or its predecessor in [4]) the tensor
square Sρn ⊗Sρn contains every Sλ with λ ⩾ ρn in the dominance order. In particular
this includes all 2-regular partitions λ. Therefore any reduction mod 2 of Sρn ⊗ Sρn

contains every irreducible 2-modular representation Dλ as a composition factor by
Lemma 3.2 part (2).

By Lemma 3.2 part (3), Sρn is projective in characteristic 2 since ρn is a 2-core.
So by Lemma 3.1 part (2) when we tensor with the third copy of Sρn it splits all
extensions and we see that Sρn ⊗ Sρn ⊗ Sρn contains a copy of Dλ ⊗ Sρn as a direct
summand for every 2-regular partition λ.

By part (2) of Lemma 3.1 this means that every projective indecomposable object
in Rep2(SN ) is a summand of Sρn ⊗ Sρn ⊗ Sρn , which lifting back to characteristic
zero implies every ordinary irreducible representation occurs in Sρn ⊗ Sρn ⊗ Sρn by
part (4) of Lemma 3.1. □

Remark 3.3. A 2-modular strengthened Saxl’s conjecture was made in [1] saying
that every projective indecomposable object in Rep2(SN ) should occur as a direct
summand of the Saxl square Sρn ⊗Sρn . We will note that this proof proves the tensor
cube version of this conjecture along the way.
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