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Abstract In this survey we discuss some of the significant contributions of Ian Goulden and
David Jackson in the areas of classical enumeration, symmetric functions, factorizations of
permutations, and algebraic foundations of quantum field theory. Through their groundbreaking
textbook, Combinatorial Enumeration, and their numerous research papers, both together and
with their many students, they have had an influence in areas of bioinformatics, mathematical
chemistry, algorithmic computer science, and theoretical physics. Here we review and set in
context highlights of their 40 years of collaborative work.

Separately—but most notably together—Ian Goulden and David Jackson (pic-
tured in Figure 2, Page 17) have made a major impact in the fields of algebraic and
combinatorial enumeration. Their contributions run the gamut from writing a ground-
breaking textbook and authoritative reference (Combinatorial Enumeration, Wiley,
1983 [45]), to co-founding with Chris Godsil a well-regarded journal (Journal of Alge-
braic Combinatorics, founded in 1992), to publishing over 50 research papers together
in their collaboration lasting over 40 years. They have also been invited speakers of
the main conference in the field of algebraic combinatorics Formal Power Series and
Algebraic Combinatorics (FPSAC) three times (Goulden in 1995, and Jackson in 1994
and 1996) [34]. Along the way they have supervised numerous graduate students and
mentored many more undergraduates and colleagues. This survey article explores
some of their key results.

David Jackson graduated from the University of Cambridge in 1970 with a Ph.D.
in mathematics. Within three years he had joined the Faculty of Mathematics at the
University of Waterloo, where he would spend the rest of his professorial career. Ian
Goulden was one of Jackson’s earliest Ph.D. students, graduating from the University
of Waterloo in 1979 with a Ph.D. in Statistics. Shortly thereafter Goulden began
his professional career in the Department of Combinatorics and Optimization at the
University of Waterloo.

All of their work spotlights a respect for rigour, a delight in tackling challenging
problems, and a drive to understand and explain complex ideas at the interface be-
tween algebra and combinatorics. It’s a challenging area—the practitioner must be
accomplished in two domains of mathematics—but it’s a rewarding one. Goulden and
Jackson set a high bar. Time and again they have set in motion (or thrown down the
gauntlet in) various areas of research. They are responsible for a number of exciting
conjectures, some of which we highlight throughout this survey.
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Their contributions can be divided into four main threads: classical enumeration,
symmetric functions, factorizations of permutations, and quantum field theory, and we
explore each of these chronologically and in turn. We have included papers that have
garnered significant citations, as determined by Web of Science, and we have focused
primarily on their joint work, or on work that involved their graduate students.

In addition to the work we discuss in this survey, we would like to briefly mention
two books. In 2000, David Jackson and Terry Visentin (Jackson’s former Ph.D. stu-
dent) wrote the book An Atlas of the Smaller Maps in Orientable and Nonorientable
Surfaces [87]. This self-contained volume includes background theory on maps as well
as applications, notably to the quadrangulation conjecture (see Section 3.4) and the
b-conjecture (see Section 3.7). Comprehensive lists of maps and hypermaps of various
types are given (hence the word “Atlas” in the title), along with associated tables.
The MathSciNet review [132] is by Bill Tutte, whose own contribution to the theory of
maps is well-recognized. In 2019, David Jackson and his former postdoc Iain Moffatt
wrote the book An Introduction to Quantum and Vassiliev Knot Invariants [83]. This
book has three parts: an introduction to combinatorial knot theory, the Reshetikhin-
Turaev construction of tangle invariants associated to ribbon Hopf algebras, and an
exposition to Vassiliev invariants. The MathSciNet review [20] of this book indicates
that the book does not require a deep knowledge of topology or more advanced topics
like tensor categories or 3-manifolds, making the topic more accessible.

This survey is organized as follows. Section 1 discusses the fundamental textbook
and early work of Goulden and Jackson. Section 2 focuses on their work in symmetric
functions. Section 3 explores some of their most important work, that on factoriza-
tions of permutations, including work on the Harer-Zagier formula, maps on surfaces,
Hurwitz numbers, the KP hierarchy, and the b-conjecture and matchings-Jack con-
jecture. Section 4 collects some of Jackson’s work towards an algebraic foundation for
quantum field theory.

1. Early work
“Let R be a ring with unity.” Thus begins the classic text Combinatorial Enumer-
ation [45], published originally in 1983. From the very first sentence we can see an
intimation of the goal of injecting rigour into the discipline. This continues for over
500 pages, where classical results from authors like MacMahon, Newcomb, and Cay-
ley appear alongside the state-of-the-art results, including, notably, results from their
own work on sequences, permutations and cluster decompositions; see, for example,
[75, 76, 77, 44, 78, 79]. Over 350 exercises are included, with complete solutions (which
always delights the student and researchers alike!).

The strength of the book is the seamless melding of the combinatorial objects
with the algebraic methods from formal power series that are used to describe and
manipulate them. Thus we have a full discussion of the Lagrange Inversion theorem,
with applications and examples, along with both ordinary and exponential generating
functions as applied to permutations, sequences, plane trees, rooted planar maps,
Ferrers diagrams, labeled trees, and more unusual objects such as Latin rectangles
and 0, 1 matrices. They provide a detailed program on the combinatorics of sequences,
including decomposition theorems based on various patterns within the sequence. The
book includes a study on the combinatorics of paths, both those specified by type
of step (e.g. up-diagonal, down-diagonal, horizontal) and those specified by height
(typically embedded in a lattice). This final chapter culminates with a q-analogue of
the Lagrange Inversion theorem, thus coming full circle.

Goulden and Jackson state in the preface: “The book is written not only for the
combinatorial theorist but also for the mathematician, the physicist, and the computer
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scientist, in whose fields problems of this type occur.” It has fulfilled its promise. A
glance through the over 1600 citations on Google Scholar reveals the book has been ref-
erenced in the context of software watermarking [111], ruin theory in economics [101],
Bose-Einstein condensation [6], as well, of course, in many areas of mathematics. In
1994, while leafing through preprints at the University of Canterbury, New Zealand,
one of the present authors (AMF) was pleased and astonished to discover Combi-
natorial Enumeration cited in the context of mathematical biology [125]. Their text
remains a classic reference and was re-issued as a Dover reprint in 2004 [53].

Much of their early generating function and sequence work has been subsumed by
the book, but to round out this section we single out some of their papers that laid
the groundwork for their later program on factorizations. Thus we have Jackson’s
papers [72] and [73], which will be discussed at length in Section 3, elaborating on the
idea of constraining the number of cycles in a permutation and counting the result.

We would also like to highlight in particular two of their papers that employ com-
binatorial bijections. One of their most cited papers [46] uses a bijection between
m-tuples of permutations and cacti, each with appropriate constraints. A cactus is a
generalization of a tree and is a connected graph made up of m-gons where every edge
lies on exactly one of the m-gons. In this paper Goulden and Jackson start by estab-
lishing a bijection between pairs of permutations in Sn whose product is the canonical
long cycle and subject to an external constraint on cycle numbers, and two-coloured
plane edge-rooted trees on n edges. This bijection preserves cycle distribution in the
permutations and colour distribution of vertices in the tree. The more general result
preserves similar statistics in the m-tuples of permutations and cacti, and is a beauti-
ful result. A later single author paper by Goulden [37] also uses a bijection involving
painted permutations (in which n − 1 elements—all but the last—are coloured either
red or blue) to provide a bijective proof of a specialization of result of Jackson [73],
namely that the number of ways of writing an n-cycle as a product of m transpo-
sitions is 1

n!
∑n−1

k=0(
(

n
2
)

− nk)m
(

n−1
k

)
(−1)k. These ideas will see their full fruition in

their work on transitive factorizations and Hurwitz numbers (see Section 3).

2. Symmetric Functions
In the mid 1990’s and beyond, Goulden and Jackson, both together and individ-
ually, have had an impact on symmetric function theory. Symmetric functions are
key objects in algebraic combinatorics, and are important for their connections to
representation theory as well as algebraic geometry. Symmetric functions form an al-
gebra, and the various bases for symmetric functions—Schur functions, power sum
symmetric functions, elementary symmetric functions, homogeneous symmetric func-
tions, and more—are classical objects of study, and some of the most fundamental
questions about them concern the positivity of writing the functions of one basis in
terms of another. These twin themes of positivity and coefficients appear repeatedly
in the work we consider in this section.

One of their most influential endeavours was a pair of papers on immanants. An
immanant of a matrix is a sum over product of matrix entries multiplied by an irre-
ducible character of the symmetric group. In symbols,∑

σ∈Sn

χλ(σ)a1,σ(1)a2,σ(2) . . . an,σ(n),

where λ is a partition of n, χλ(σ) is the irreducible character of the symmetric group,
indexed by λ and evaluated at σ, and A = (aij) is a matrix. The determinant (where
the character is the alternating sign character) and the permanent (where the char-
acter is 1 for all permutations) are both special cases of immanants. Goulden and
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Jackson derived a relationship between immanants and Schur functions [48], showing
how an immanant could be written as the Schur function with particular arguments.
They further made connections with this interpretation and early work of Littlewood
and McMahon. At the same time Goulden and Jackson studied immanants of Jacobi–
Trudi matrices [47], showing that if the associated partition was a border strip then
the immanant of the Jacobi–Trudi matrix had nonnegative coefficients. They further
conjectured that the nonnegativity held for all skew partitions. This conjecture was
proved by Curtis Greene [38] and further generalized by Haiman [65] using Kazhdan–
Lusztig theory, but the influence of the conjecture went beyond its proof. We can
trace a direct path from this conjecture to a paper of Stembridge and Stanley [124],
and on to the paper of Stanley [120] that defines the chromatic symmetric functions
and introduces what has become a celebrated e-positivity conjecture for a class of
chromatic symmetric functions. As explained in [120] this e-positivity conjecture had
its genesis in this domain.

In addition to the immanants work, Goulden and Jackson have another pair of
significant papers in symmetric function theory concerning connection coefficients
(see Section 3 of this survey for a definition of connection coefficients). In [50] they
study a relationship between connection coefficients and Jack symmetric functions
that culminates in the Matchings-Jack Conjecture, which is still open, although there
are many partial results. Full details, including reference for some of these partial
results, is found in Section 3.

The paper [49] contains a direct proof of a result of Macdonald that the connection
coefficients for a particular class of symmetric functions are the same as the connection
coefficients of the class algebra of the symmetric group, subject to a “top” constraint.
The key tool they use in their proof is the combinatorial construction from their
earlier paper [46], connecting cacti and factorizations, as well as Lagrange Inversion,
making this a perfect example of how algebraic combinatorics can be leveraged to
prove results in algebra. The methods and results from this paper feature in their
later work on transitive factorizations.

Individually Goulden has had an impact in symmetric function theory through
papers with various co-authors. Several of these papers concern the Schur function,
a symmetric function defined in terms of partitions. A partition λ = (λ1, λ2, . . . , λk)
is a non-increasing set of nonnegative integers, e.g. λ = (4, 4, 2, 1, 1). We can repre-
sent a partition pictorially by a Ferrers diagram F λ which is a left justified set of
boxes with λi boxes in the ith row indexed from top to bottom (using the ‘English’
convention), for 1 ⩽ i ⩽ n, e.g.

.

A semistandard tableau T of shape λ is a filling of a Ferrers diagram of shape λ with
positive integers such that the entries weakly increase in rows and strictly increase in
columns, e.g.

1 1 1 3
3 4 5 5
4 5
5
6

.
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T λ is the set of semistandard tableaux of shape λ. The Schur function is a sum of
weighted terms coming from weighted semistandard tableaux, i.e.

(1) sλ(x) =
∑

T ∈T λ

∏
(i,j)∈F λ

wgt(tij),

where tij is the entry in box (i, j) in row i and column j of T , and where wgt(tij)
is xk if tij = k.

Given a second partition µ, we can define a skew partition λ/µ with analogous
definitions for Ferrers diagrams, semistandard tableaux, and Schur functions, e.g. the
Ferrers diagram for λ/µ = (4, 4, 2, 1, 1)/(3, 1) looks like this:

,

and the skew Schur function is defined as
(2) sλ/µ(x) =

∑
T ∈T λ/µ

∏
(i,j)∈F λ/µ

wgt(tij).

The paper [38] with Curtis Greene establishes the general definition of factorial
symmetric functions which extends the Schur function definition in (1) and (2):

sλ/µ(x|a) =
∑

T ∈T λ/µ

∏
(i,j)∈F λ/µ

(xtij + atij+j−i)

using an arbitrary parameter a. Their discovery was simultaneous with that of Mac-
donald [102], but provides a different perspective on these functions. The paper [66]
with former Ph.D. student Angèle Hamel (Foley) defines the Hamel–Goulden identity,
a general framework for constructing determinantal identities of symmetric functions.
The Jacobi–Trudi, dual Jacobi–Trudi, and Giambelli identities are all special cases
of the Hamel–Goulden identity, and the identity has found use in different contexts,
e.g. [107, 115]. The paper [62] on Kerov’s character polynomials with former Ph.D.
student Amarpreet Rattan is a return to polynomials inspired by character theory and
it derives an explicit formula for various components of Kerov’s character polynomi-
als. In this context they also introduce what have become known as Goulden–Rattan
polynomials and they further conjecture positivity results for these polynomials. To
date the conjecture has not been proved (or disproved) but partial results have been
obtained, e.g. [104].

3. Factorizations of permutations
This section concerns the extensive work by Goulden and Jackson in regards to per-
mutation factorization problems, with a focus on the transitive factorization problem.
Here we let Sn be the symmetric group on n symbols, which can usually be assumed
to be [n] := {1, . . . , n}. We write β ⊢ n to indicate β is a partition of n. If α has mi

parts of size i, set aut(α) =
∏

i mi!. The length or number of parts of β is denoted
by l(β). By abuse of notation, given a permutation π, we denote by l(π) the number
of cycles of π. We denote by Cβ the conjugacy class of Sn of permutations with cycle
type β. We call the special class β = (n), the class of n-cycles in Sn, full cycles.
Permutation factorization problems involve finding the number of ways of writing a
permutation (the target) as a product of others (the factors), subject to constraints.
We discuss three different kinds of constraints here. The first two are local constraints
on each factor, while the third is a global constraint on all the factors.
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3.1. Factorizations of the long cycle. Two seminal papers of Jackson involve
constraining the number of cycles in a factor. For example, Jackson [72] shows that
in Spn, for a full cycle π and a positive number k, the number e

(p)
k (n) of ordered pairs

(σ, τ) such that π = στ , with σ having n cycles of size p and τ having k cycles, is
given in terms of Stirling numbers of the first and second kind, s(a, b) and S(a, b),
respectively:

(3) e
(p)
k (n) = 1

(1 + pn)pn+k

pn+1∑
m=n+k

pm

(
m

k

)
s(pn + 1, m)S(m − k, n).

In particular e
(p+1)
pn+1 (n) = 1

pn+1
((p+1)n

n

)
, which is a Fuss–Catalan number [122, A14].

This result was one of the first of many by Jackson and others in this area. Another
example is in [73], where Jackson proves the following remarkable formula: if γ(k, m; n)
is the number of ways of writing a fixed n-cycle as the product of two permutations
with k and m cycles, respectively, then

(4)
∑

k,m⩾1
γ(k, m; n)xkym = n!

∑
p,q⩾1

(
n − 1

p − 1, q − 1

)(
x

p

)(
y

q

)
,

where
(

x
k

)
:= x(x − 1) · · · (x − k + 1)/k!. Jackson in fact proves a more general formula

for factorizations of a n-cycle into any fixed number of factors, where each factor has
a specified number of cycles: if γ(m1, m2, . . . , mk; n) is the number of ways of writing
a fixed n-cycle as the product of k permutations with m1, . . . , mk cycles, respectively,
then

(5)
∑

k,m⩾1
γ(m1, . . . , mp; n)xm1

1 · · · xmk

k = (n!)k−1
∑

p1,...,pk

Mn
p1,...,pk

(
x1

p1

)
· · ·
(

xk

pk

)
,

where Mn
p1,...,pk

is the number of tuples (S1, . . . , Sn) of proper subsets of [k] such that
pj of the sets contain j. It is open to find a simple combinatorial proof of this result.
The tool used to prove these results is using fundamental results in group theory,
going back to work of Frobenius [35], to write this number of factorizations in terms
of irreducible characters of the symmetric group. See [117] for a bijective proof of the
case k = 2, and [3, 4] for a tour de force combinatorial proof for all k.

Jackson also gives the following exponential and ordinary generating functions for
the number t(n, k) of factorizations of a fixed n-cycle into k transpositions:∑

k⩾n−1
t(n, k)xk

k! = ex(n
2)

n! (1 − e−xn)n−1,(6)

∑
ℓ⩾n−1

t(n, ℓ)xℓ = nn−2xn−1
n−1∏
k=0

(
1 − xn

(
n − 1

2 − k

))−1
.(7)

The leading term of the generating functions is

(8) t(n, n − 1) = nn−2,

a result known to Hurwitz [69]. By Cayley’s formula, this number also counts the
number of trees with vertices {1, . . . , n}. A double counting proof of this result relat-
ing factorizations and trees was given by Dénes [22]. Bijective proofs were given by
Moszkowski [108], Goulden and Pepper [61] and Goulden and Yong [63].

These minimal transposition factorizations of the long cycle also have an important
poset interpretation by Biane [7] as maximal chains in the lattice of non-crossing
partitions.
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Remark 3.1. The bijection of Goulden and Yong was used by Feray and Kortchem-
ski [33] to study the trajectories of the elements in [n] viewed as finitely many points
on a line in a random typical minimal transposition factorization of the long cycle.
The same authors in [32] studied the shape of a random typical minimal transposi-
tion factorizations of the long cycle by viewing each transposition as a chord in the
unit disk. Even though the latter work did not use the Goulden–Yong bijection to
study the typical shape of minimal factorizations, subsequent work on this topic by
Thévenin [129] did use it.

These generating functions spurred generalizations to other groups. Since the sym-
metric group is a reflection group and transpositions are reflections, equations (6)
and (7) have been generalized to other groups. Chapuy–Stump [19] gave a uniform
generalization of (6) to complex reflection groups W by studying the number t(W, k)
of factorizations of a Coxeter element (an analogue of the n-cycle) into k reflections.
Their resulting generating function is

(9)
∑
k⩾0

t(W, k)xk

k! = exR

|W |
(1 − e−xh)n,

where n is the rank of the group W , R is the number of reflections, and h is the order
of a Coxeter element. The leading term of this generating function is n! · hn/|W |, a
known generalization of Cayley’s formula (8) for complex reflection groups (indeed,
the symmetric group W = SN has rank n = N − 1 and Coxeter number h = N and
so the formula gives NN−2 = t(N, N −1)). This generalized formula is due to Deligne
for the case of real reflection groups and to Bessis [5] for the other cases. The original
proof of (9) by Chapuy–Stump was case-by-case using a character theory approach.
Soon after, Michel [106] gave a uniform proof for Weyl groups by using the geometry
of Deligne–Lusztig varieties to combine characters and Douvropoulos [25] gave a dif-
ferent uniform proof for the complex reflection groups using Galois representations to
combine characters.

The ordinary generating function (7) has been generalized to the group GLn(Fq)
of n × n invertible matrices over the finite field Fq by Lewis–Reiner–Stanton [100],
also using the character theory approach. In this case, the analogue of the n-cycle is
a Singer cycle, the image of a generator of the (qn − 1)-cyclic group F×

qn embedded
in GLn(Fq). The leading term in this case is (qn − 1)n−1 counting the number of
factorizations of a fixed Singer cycle into n reflections (matrices that fix a hyperplane).
No combinatorial proof of this result is currently known.

Lastly, (5) has analogues in complex reflection groups in [99] and for GLn(Fq)
in [98].

3.2. Harer–Zagier formula. A related formula to (4), the celebrated formula of
Harer and Zagier [68], is given by

(10)
∑
k⩾1

ap,kxk = (2p − 1)!!
∑
k⩾1

(
p

k − 1

)(
x

k

)
,

where ap,k is the number of ways to write a fixed full cycle in S2p as the product
of a fixed point free involution and a permutation with k cycles(1). The original con-
text for the formula of Harer and Zagier was in finding the Euler characteristic of
certain moduli spaces. Naturally, their formula begged for a straightforward combina-
torial proof. Several mathematicians [71, 93, 94, 112], including Jackson [74], offered
alternative proofs of (10), but the first direct combinatorial proof was by Goulden

(1)Note that ap,k = e
(2)
k

(p) from (3).
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and Nica [60], related to an ingenious connection to the BEST theorem (see [121,
Thm. 5.6.2]) by Lass [97]. This theorem was incorporated into a bijection by Bernardi
[2] between unicellular maps with coloured vertices with exactly k colours and maps
with k vertices on an orientable surface and with a marked spanning tree. Soon after,
Chapuy [16] and Chapuy–Féray–Fusy [18] gave bijections proving recurrences for the
numbers ap,k related to a recurrence of Harer–Zagier for these numbers.

3.3. Factorizations and cacti formula. A second type of constraint is to specify
the conjugacy class from which factors may come. More precisely, the general problem
is for a permutation ρ and partitions β1, . . . , βk ⊢ n, to find the number of ordered
tuples (τ1, . . . τk) of permutations in Sn such that

(11)
a) ρ = τ1 · · · τk

b) τi ∈ Cβi , for i = 1, . . . , k

By symmetry, this number only depends on the conjugacy class α of ρ, so we denote
the number of tuples by cα

β1,...,βk
. The numbers cα

β1,...,βk
can be viewed as follows.

Let Kγ =
∑

σ∈Cγ
σ. Then {Kγ : γ ⊢ n} is basis for the centre of the group algebra of

the symmetric group on n symbols, and

(12) cα
β1,...,βk

= [Kα]Kβ1 · · · Kβk
,

where [A]B denotes the coefficient of A in B. The numbers cα
β1,...,βk

are called connec-
tion coefficients of Sn. With this algebraic interpretation of connection coefficients,
one can use the same character theory approach mentioned in Section 3.1 to express
them in terms of the irreducible characters of Sn. Often, however, these expressions
are intractable for the purposes of finding precise enumerative results, except in lim-
ited circumstances.

Early work on this topic is due to Walkup [135], who considers the case k = 2
in (12) and β1, β2 = (n) for arbitrary α; that is, he determines cα

(n),(n). Stanley [118]
used characters to solve the same problem but for arbitrary k and each βi = (n) and
also proved a conjecture found in [135]. As pointed out later by Stanley [123], Goulden
and Jackson would develop this character approach “much more extensively.”

Goulden and Jackson made significant discoveries here. For partitions γ, α, β ⊢ n,
elementary results on permutation products give that if the connection coefficient cγ

α,β

is non-zero, then l(α) + l(β) ⩽ n + l(γ). When γ, α and β satisfy this equation with
equality, we call the connection coefficients top.

Bédard and Goupil first determined c
(n)
α,β for top connection coefficients (so that

l(α) + l(β) = n + 1) with an inductive argument. Goulden and Jackson [46] substan-
tially generalized this result to the case c

(n)
β1,...,βk

, where the βi satisfy the generalized
top condition

∑k
i=1 l(βi) = (k − 1)n + 1:

c
(n)
β1,...,βk

= nk−1
k∏

i=1

(l(βi) − 1)!
aut(βi)

.

Their construction in general involves cacti and Lagrange Inversion. The k = 2 case
of their construction is especially simple and elegant as it involves plane trees. Later,
Goupil and Schaeffer [64] and Poulalhon and Schaeffer [114] found positive sum formu-
las, as opposed to the alternating formulas using characters, but with (exponentially)
many terms for all coefficients c

(n)
α,β and c

(n)
β1,...,βk

, respectively.
Goulden and Jackson [49] also show that the top coefficients appear as the structure

constants of certain symmetric functions (they credit unpublished notes of Macdon-
ald with this discovery, but supply the first direct proof). They also give a number
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of explicit enumerative results; for example, they give the number of minimal factor-
izations of a full n-cycle into (k + 1)-cycles; that is, in (12), we have α = (n) and
βi = (k+1, 1n−k−1). This is a generalization of the case k = 1 originally by Dénes [22].

Also in [49], they find the number of inequivalent factorizations of a full cycle into
(k + 1)-cycles: two factorizations are equivalent if one can be transformed into the
other by a sequence of swapping commuting cycles. This was done through the use of
the commutation monoid of Cartier and Foata [13].

3.4. Factorizations and Maps on surfaces. A rooted map is a graph embedded
on a (locally) orientable surface so that all the faces are homeomorphic to a disc,
with one vertex distinguished, called the root vertex, and one edge incident to the
root vertex distinguished, called the root edge. Important families of maps include
planar maps (e.g. see [116]), 3-face and 4-face regular maps called triangulations and
quadrangulations, respectively, bipartite maps, and constellations (e.g. see [96]). We
sketch two ways that permutation factorizations can be encoded with maps. These
constructions can be traced to Tutte [131].

• We decorate a rooted map with n edges by assigning labels from 1, 2, . . . , 2n
to the two ends of each edge with the restriction that end of the root edge
corresponding to the vertex has label 1. To such a decorated rooted map we
associate three permutations ν, ϵ, ϕ in S2n as follows: (i) the clockwise list of
ends of each vertex give the cycles of the vertex permutation ν, (ii) the pairs of
labels on each edge give the transpositions of the edge permutation ϵ (a fixed-
point-free involution), and (iii) the counterclockwise list of the second label on
each edge when traversing each face gives the cycles of the face permutation ϕ.
By construction we have ϵν = ϕ. See Figure 1(A).

• If the rooted map with n edges is bipartite then the vertices can be prop-
erly coloured by two colours, say black and white, and we assume the root is
coloured black. We assign the labels 1, 2, . . . , n to each of the edges with the
restriction that the root edge has label 1. To such decorated rooted bipartite
map we associate three permutations ν•, ν◦, ϕ in Sn as follows: (i) the clock-
wise list of edge labels incident to each black vertex give the cycles of the
•-vertex permutation ν•, (ii) the clockwise list of edge labels incident to each
white vertex give the cycles of the ◦-vertex permutation ν◦, (iii) the coun-
terclockwise list of the label on each edge • − ◦ when traversing each face
gives the cycles of the face permutation ϕ. Again, by construction we have
ν◦ν• = ϕ. See Figure 1(B).

The genus of the map can be read from the number of cycles of the associated triple
of permutations by Euler’s formula. The transitivity of ⟨ν, ϵ⟩ and ⟨ν•, ν◦⟩ on the labels
[2n] and [n], respectively, follows from the connectivity of the respective maps.

In the early 90s, David Jackson with his former Ph.D. student Terry Visentin [85,
86] studied rooted maps using this connection to factorizations of permutations and
the machinery of irreducible characters and the group algebra of the symmetric group.
With this approach they found in [85, Cor. 5.2] the following remarkable identity be-
tween rooted maps and quadrangulations. Let M(u, x, y, z) and Q(u, x, y, z) be the
generating series for rooted maps and rooted quadrangulations where the indeter-
minates u, x, y, z mark the genus, number of faces, vertices, and edges, respectively.
Then

(13) 2Q(u2, x, y, z) = M(4u2, y + u, y, xz2) + M(4u2, y − u, y, xz2).

In [84], Jackson, Visentin and the physicist Perry used this identity to prove a con-
jectured connection between two models in physics at the level of Feynman diagrams.
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Figure 1. (A) A rooted map corresponding to the vertex permu-
tation ν = (1 8 6 13)(2 9 4 14 11)(3 7 10 12)(5), the edge permutation
ϵ = (1 7)(2 14)(3 5)(4 13)(6 12)(8 11)(9 10), and the face permuta-
tion ϕ = ϵν = (1 11 14 8 12 5 3)(2 10 6 4)(7 9 13). (B) A rooted bi-
partite map corresponding to the permutations ν• = (1 5 3 2)(4),
ν◦ = (1 3 4)(2 5) with ϕ = ν◦ν• = (1 2 3 4 5). Both maps are em-
bedded in the torus.

Jackson and Visentin asked for a bijective proof of this result. This problem is known
as the Quadrangulation conjecture.
Conjecture 3.2 (Quadrangulation conjecture). There is an explicit bijection that
preserves genus and number of edges between the set of rooted quadrangulations and
rooted maps with certain decorations that proves (13).

The genus zero case of such a bijection is the medial bijection of Tutte [130]. Other
special cases towards finding such a bijection are due to Jackson and his former Ph.D.
student D.R.L. Brown [11].

3.5. Transitive factorizations into transpositions and Hurwitz numbers.
A third constraint that can be placed on factors is global. Referring to (11), we can
additionally require
(14) c) the factors τ1, . . . , τk generate a transitive subgroup of Sn.

A transitive factorization of ρ satisfies all three criteria of (11) and (14).
Let α = (α1, . . . , αl(α)) ⊢ n be a partition of n with l(α) parts and let ρ ∈ Cα.

An interesting case of the transitive factorization problem is when the factors are all
transpositions. We refer to enumerating such factorizations as Problem 1. It can be
shown that a transitive factorization of ρ requires at least n + l(α) − 2 transpositions;
parity considerations then dictate that the number of transitive factorizations of ρ is
nonzero only if the number of factors is n + l(α) − 2 + 2g for some g. We call g the
genus of a factorization, with the case g = 0 being referred to as minimal transitive
factorizations. By symmetry considerations, we see that the number of such factor-
izations of ρ is only dependent on its conjugacy class, and we let bg

α be the number of
transitive factorizations of ρ with n + l(α) − 2 + 2g factors. Remarkably, the numbers
bg

α are related to the number of topologically inequivalent n-sheeted branched covers
of genus g of the sphere, where the branching type is given by α at one specified point,
and the other branching points, totalling n+ l(α)−2+2g, are given by transpositions.
The numbers of such branched covers are known as the Hurwitz numbers of genus g
and type α and are denoted by Hg

α. The Hurwitz numbers and transitive factoriza-
tions into transpositions satisfy the relationship Hg

α = |Cα|
n! bg

α. Goulden and Jackson
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themselves have written a survey [56] of transitive factorizations of permutations, and
the extensive connections between these objects and geometry.

3.5.1. Single Hurwitz numbers. A remarkably simple formula exists for b0
α attributed

to Hurwitz:

(15) b0
α = nl(α)−3(n + l(α) − 2)!

l(α)∏
i=1

ααi
i

(αi − 1)! .

Hurwitz [69] gave a sketch of a proof by induction, reconstructed in detail by
Strehl [126]. Goulden and Jackson proved this formula through a join-cut analysis.
The analysis involves focusing on the effect of the last transposition τk = (i j) in a
product τ1 · · · τk on the product of the previous k−1 factors. Considering the product
ρ̂ = τ1 · · · τk−1:

• if i and j are in the same cycle of ρ̂, then they will be in separate cycles in
τ1 · · · τk (τk cuts a cycle of ρ̂); or

• if i and j are in different cycles of ρ̂, then they will be in the same cycle in
τ1 · · · τk (τk joins cycles of ρ̂).

To prove (15), a generating series for b0
α is constructed, and the join-cut analysis

is then used to show this generating series satisfies a partial differential equation
whose solution is unique. An ingenious use of Lagrange Inversion is then used to
show that the generating series for the numbers on the right hand side of (15) also
satisfy the differential equation; whence the equality in (15) follows. The details are
found in [51]. Goulden and Jackson later discovered that the formula in (15) was
known to Hurwitz [69]. Later, Bousquet-Mélou and Schaeffer [10] gave a bijective
construction using maps to show a generalization of (15) allowing factors that are not
transpositions. See also [30, 29] for another bijective approach to Hurwitz numbers.

Goulden and Jackson [52] and Vakil [133] also proved the following formula for b1
α,

conjectured by Goulden–Jackson–Vainshtein [57]:

b1
α = 1

24(n + m)!
(

m∏
i=1

ααi
i

(αi − 1)!

)(
nm − nm−1 −

m∑
i=2

(i − 2)! · ei(α) · nm−i

)
,

where ei(α) denotes the ith elementary symmetric function evaluated at α =
(α1, . . . , αm).

Lastly, there has been work to generalize Hurwitz numbers to other groups. Bini,
Goulden, and Jackson in [8] consider extensions to the hyperoctahedral group, and
recently in [113] and [26, 27], the authors look at generalizations in complex reflection
groups with different notions of transitivity.

3.5.2. Double Hurwitz numbers. Another important transitive factorization problem
of a ρ ∈ Cα is to require all but one factors to be transpositions, and the remaining
factor is from a specified conjugacy class Cβ . We refer to enumerating such factoriza-
tions as Problem 2. In this case it can be shown that the number of transpositions
required is l(α) + l(β) + 2g − 2, where again g is referred to as the genus of such
factorizations. We label the number of such factorizations of ρ by bg

α,β . The num-
bers bg

α,β are related to the double Hurwitz numbers Hg
α,β , which were introduced

by Okounkov [109] in his study of Gromov-Witten theory. These numbers count the
number of topologically inequivalent n-sheeted branched covers of genus g with two
specified branch points of type α and β and the other branching points are given by
transpositions. Several of these aspects of transitive factorizations of permutations
into transpositions are discussed in Goulden and Jackson’s own survey [56], including
their work with Vakil [58, 59] on the polynomiality and quasi-polynomiality of single
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and double Hurwitz numbers, respectively, using Ehrhart theory of polytopes (see also
[14, 15]). We discuss here an aspect not mentioned there connected to work of one of
the survey authors (AR).

3.5.3. Star factorizations. Let i ⩽ n be positive integers. Let Si be the set of trans-
positions in Sn containing the symbol i. Thus |Si| = n−1. Let α = (α1, . . . , αm) be a
partition of n and Cα be the associated conjugacy class in Sn. Consider the problem
of writing a permutation ρ ∈ Cα as the transitive product of transpositions in Si. We
call these products star factorizations and refer to enumerating such factorizations
as Problem 3. The set Si is intimately connected with the Jucys–Murphy elements,
famously used by Okounkov and Vershik [134] in their study of the representation
theory of the symmetric group. Like Problem 1 for the single Hurwitz numbers, the
number of transpositions needed for a transitive factorization of ρ into factors com-
ing from Si is n + l(α) + 2g − 2 for a nonnegative number g called the genus of the
factorization. A priori the number of factorizations of ρ of fixed length should de-
pend on the length of the cycle containing the symbol i in ρ as i is distinguished in
these factorizations; however, David Jackson’s former Ph.D. student John Irving and
Amarpreet Rattan discovered in [70] that number of such factorizations for g = 0 (the
minimal case) is

(16) (n + m − 2)!
n! · α1 · · · αm.

Note the symmetry in (16); that is, the cycle containing the symbol i in ρ plays
no special role in the formula. Subsequently, Goulden and Jackson showed that this
symmetry persists for g > 0; that is, the number of such factorizations in genus g > 0
is only dependent on the conjugacy class α of the target permutation ρ and not the
specific permutation itself. Accordingly, let ag

α be the number of such factorizations
of a fixed permutation in the conjugacy class Cα of genus g. Thus a0

α is given in (16),
while Goulden and Jackson [55] give a formula for ag

α for g > 0.
When the number of factorizations of a permutation ρ in a transitive factorization

problem is only dependent on the conjugacy class of ρ, we call the problem central.
Thus Problems 1 and 2, which pertain to the single and double Hurwitz numbers, re-
spectively, are obviously central through symmetry considerations, while Problem 3 is
central through the results in [70, 55]. Intriguingly, the methods in both [70, 55] show
the centrality of Problem 3 as corollaries of the full enumerative formulas for ag

α, and
they do not expose combinatorially why Problem 3 is central. Combinatorial construc-
tions showing the centrality of Problem 3 in the g = 0 case have been subsequently
found [127, 128], but the general case is still open.

Also in [55], Goulden and Jackson show a compact relationship between the num-
bers ag

α and the double Hurwitz numbers bg
α,β . For a partition α of n with m = l(α),

they show

(17) ag
α = 1

n!(2n − 1)n+m−3+2g
bg

α∪1n−1,(2n−1).

Here, when α is a partition of n, the partition α∪1n−1 is the partition of 2n−1 obtained
from α by inserting n − 1 parts of size 1. Thus (17) directly connects Problem 3 to
the obviously central Problem 2. Again, the proof by Goulden and Jackson for (17) is
to compare the final enumerative results of the numbers ag

α and the double Hurwitz
numbers rather than giving a combinatorial construction connecting the two. Goulden
and Jackson ask for a direct combinatorial explanation of (17), still open for all g ⩾ 0.
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3.5.4. Monotone Hurwitz numbers. We also discuss a variant of Hurwitz numbers that
was studied in a series of papers [39, 40, 41, 42, 43] by Ian Goulden, his former Ph.D.
student Mathieu Guay-Paquet, and his former postdoc Jonathan Novak.

A variation of the transitive factorization problem is to require the transposi-
tions τi = (ai bi) with ai < bi in the factorization to have the restriction that
b1 ⩽ b2 ⩽ · · · ⩽ bk. Such factorizations are called monotone and are related to
expansions of complete symmetric functions in the Jucys–Murphy elements [105].
These monotone factorizations have nice enumerative formulas. For instance, Daniele
Gewurz and Francesca Merola [36] showed that out of the b0

(n) = nn−2 factoriza-
tions of the long cycle in Sn into n transpositions, there are Catalan many 1

n+1
(2n

n

)
monotone factorizations. Thus, in general, referring to (11) and (14), for monotone
factorizations we additionally require

d) writing each factor τi = (ai, bi) with ai < bi, we have b1 ⩽ · · · ⩽ bk.

We refer to enumerating such factorizations as Problem 4 and denote by
−→
b g

α the
number of transitive monotone factorizations of ρ with n + l(α) − 2 + 2g factors.
In [39], the authors used a modified join-cut approach to prove the following formula
for genus zero monotone factorizations

−→
b 0

α = n! · (2n + 1)l(α)−3 ·
l(α)∏
j=1

(
2αj

αj

)
,

where (m)k = m(m + 1) · · · (m + k − 1), denotes a rising factorial. Note the striking
similarity between this formula and Hurwitz’s formula (15) for b0

α. See [1, Thm. 2.1]
for an elegant reciprocity relation between regular factorizations and monotone fac-
torizations; and see [9] for recent connections between monotone factorizations and
integrable hierarchies (see Section 3.6).

3.6. KP hierarchy. In [54], Goulden and Jackson brought to algebraic combi-
natorics a connection between integrable systems and factorizations/maps. The
Kadomtsev–Petriashvili (KP) hierarchy is an infinite list of partial differential equa-
tions for a function F = F (p1, p2, . . .) that generalizes the famous Korteweg–De Vries
(KdV) equations that model waves in shallow water. The first two equations of this
hierarchy are

F2,2 − F3,1 + 1
12F14 + 1

2(F12)2 = 0(18)

and

F3,2 − F4,1 + 1
6F2,13 + F1,1F2,1 = 0,(19)

where Frar ,...,1a1 := ∂ar+···+a1

∂par
r · · · ∂pa1

1
F .

Goulden and Jackson showed in [54] that the generating functions of transitive
factorizations are solutions of the KP hierarchy. Given partitions α and β of n ⩾ 1
and a1, a2, . . . ⩾ 0, let b

(a1,a2,...)
α,β be the number of ordered tuples (σ, γ, π1, π2, . . .) of

permutations on Sn such that

a) σγπ1π2 · · · = ι where ι is the identity,

b) σ ∈ Cα, γ ∈ Cβ , and n − l(πi) = ai for i = 1, . . . , k

c) the factors σ, γ, π1, . . . , πk generate a transitive subgroup of Sn.
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Note that this number generalizes the number of factorizations γ(a1, . . . , ap; n)
from (5) and the numbers bg

α, bg
α,β related to the single (double) Hurwitz numbers

mentioned in Section 3.5. For instance

bg
α = b

(1r,0,...)
α,1n for r = l(α) + n + 2g − 2.

There is a classical characterization of the exponential of solutions to the KP
hierarchy, called τ -functions: a function

∑
λ bλsλ(p1, p2, . . .), where bλ ∈ Q[u1, u2, . . .],

is a τ -function if and only if bλ satisfy the famous Plücker relations from the study
of the Grassmannian. This characterization combined with a result of Orlov and
Shcherbin [110], imply that certain linear combinations of Schur functions, involving
contents of Young diagrams, satisfy the KP hierarchy. Goulden and Jackson noticed
that since the generating functions of the numbers b

(a1,a2,...)
α,β of factorizations can be

written in terms of such Schur functions involving contents, then these generating
functions are also solutions to the KP hierarchy.

Theorem 3.3 (Goulden–Jackson [54]). The series

∑
|α|=|β|=n⩾1

a1,a2,...⩾0

1
n!b

(a1,a2,...)
α,β pαqβua1

1 ua2
2 · · · ,

is a solution of the KP hierarchy (in the variables p1, p2, . . .).

As applications of this result, they show that the KP hierarchy is satisfied by
the generating series for (i) double Hurwitz numbers (recovering a result of Ok-
ounkov [109]), (ii) the number of rooted maps on orientable surfaces, and (iii) the
number of triangulations in an orientable surface.

Soon after Carrell (a former Ph.D. student of Goulden) and Chapuy studied
in [12] the first equation (18) of the KP hierarchy applied to the number of fac-
torizations/maps to derive a new quadratic recurrence for the number of orientable
rooted maps of a given genus that dramatically improved the efficiency of counting
such maps (see [116, §5.5]).

This connection between integrality and enumeration of factorizations/maps con-
tinues to be a very active and rich avenue of research (see [28, 9]).

3.7. The b-conjecture and the matchings-Jack conjecture. Let sλ(x) and
pλ(x) denote the Schur and power sum symmetric functions indexed by λ in the
variables x = (x1, x2, . . .). The connection coefficients cγ

α,β of the symmetric group
defined in (12) appear in the following elegant identity of symmetric functions.

(20)
∑
n⩾1

tn
∑

α,β,γ⊢n

cγ
α,β

|Cγ |
n! pα(x)pβ(y)pγ(z), =

∑
λ

hooks(λ)sλ(x)sλ(y)sλ(z)t|λ|,

where the sum on the right-hand-side is over all partitions λ, and hooks(λ) =∏
(i,j)∈λ(λi + λ′

j − i − j + 1) is the product of the hook lengths of λ.
In [50], Goulden and Jackson started the study of a generalization of (20) in terms

of Jack symmetric functions J
(α)
λ (x). These symmetric functions specialize to Schur

functions for α = 1, to Zonal polynomials for α = 2 and are related to Macdonald poly-
nomials (see [119, 103]). Goulden and Jackson defined the rational functions cγ

α,β(b)
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as follows.

(21)
∑
n⩾1

tn
∑

α,β,γ⊢n

cγ
α,β(α − 1)

αl(γ)
|Cγ |
n! pα(x)pβ(y)pγ(z)

=
∑

λ

1
hooksα(λ) hooks′

α(λ)
Jα

λ (x)Jα
λ (y)Jα

λ (z)t|λ|,

where hooksα(λ) and hooks′
α(λ) are certain simple α-deformations of hooks(λ)

(see [119, Thm. 5.8]). Note that at b = α − 1 = 0 we recover the connection coeffi-
cients of the symmetric group cγ

α,β(0) = cγ
α,β . Goulden and Jackson in [50] have the

following polynomiality and integrality conjecture for cγ
α,β(b).

Conjecture 3.4 (Matchings-Jack conjecture). For all partitions λ, µ, ν ⊢ n the con-
nection coefficient cγ

α,β(b) is a polynomial in N[b]. Moreover, there is a statistic statγ

on certain matchings δ of 2n points such that

cγ
α,β(b) =

∑
δ

bstatγ (δ).

Goulden and Jackson also defined the rational functions hλ
µ,ν(b) as follows.∑

n⩾1
tn

∑
α,β,γ⊢n

hα
β,γ(b)pα(x)pβ(y)pγ(z) = (b + 1)t ∂

∂t
log Φ(x, y, z; t, b + 1),

where Φ(x, y, z; t, α) is the generating function in (21). Again, at b = α − 1 = 0
and β = α − 1 = 1 the quantity hλ

µ,ν(b) counts certain maps in orientable and
locally orientable surfaces. Goulden and Jackson in [50] have the following similar
polynomiality and integrality conjecture for hγ

α,β(b).

Conjecture 3.5 (b-conjecture). For all partitions λ, µ, ν ⊢ n the connection coef-
ficient hλ

µ,ν(b) is a polynomial in N[b]. Moreover, there is a statistic stat on locally
orientable maps such that

hλ
µ,ν(b) =

∑
M

bstat(M),

where the sum is over all rooted, bipartite locally orientable maps M with face dis-
tribution λ, black vertex distribution µ, and white vertex distribution ν. Moreover
stat(M) = 0 if and only if M is orientable.

These two conjectures are according to [17] “among the most remarkable open
problems in algebraic combinatorics” since for b ̸= {0, 1} there are very few tools to ap-
proach them. The conjecture is related to representation theory of Gelfand pairs [67],
random matrices, and algebraic geometry. Special cases of the conjecture have been
proved in [95] by M. A. La Croix, a former Ph.D. student of Goulden and Jackson,
and in [11, 90, 89]. Moreover, there has been important recent progress on these con-
jectures: polynomiality over Q[b] of both conjectures was proved by Féray–Dołęga
in [23, 24], the case z = (z, z, . . .) (i.e. keeping track of two sets of variables x and y)
was settled by Chapuy–Dołęga [17], and polynomiality over Z[b] for the first conjecture
was settled by Ben Dali [21] using the Farahat–Higman algebra [31].

4. Towards an algebraic foundation for quantum field theory
Over a series of three papers [91, 81, 82], following a program outlined in an earlier
preprint [80], David Jackson, together with collaborators Achim Kempf and Alejan-
dro Morales worked to give an algebraic foundation to quantum field theory. They
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extended this into practical algorithms for integration which fell out of the field theory
work in [92].

Quantum field theory is the quantum theory of particles interacting. The term
quantum field theory is used generically to refer to all such theories, while a specific
quantum field theory is determined by the particular particles and interactions being
considered. The standard model in fundamental particle physics is a specific quantum
field theory and is highly successful, giving some of the most precise calculations of
experimentally measured values anywhere in science and describing everything we
currently understand in high energy physics. However, quantum field theory suffers
from many problems in its mathematical foundation. In particular, quantum field
theories are often described in terms of a path integral, but the path integral needs
to be an integral over fields, and a satisfactory analytic definition remains a question
of active research.

Jackson, Kempf and Morales are setting the foundations for a different approach
using formal power series to give an algebraic foundation to quantum field theory.

Other researchers, including one of the survey authors Karen Yeats [136], work in
this direction. The work of Jackson, Kempf and Morales stands apart for its focus on
transforms and its intentional approach to the question of foundations for quantum
field theory.

They summarize the picture of quantum field theory as

(22) eiS[Φ] F ourier↔ Z[J ] log/exp↔ iW [J ] Legendre↔ iΓ[ϕ]

where S[Φ] is the action, Z[J ] is the path integral, which perturbatively can be in-
terpreted as a sum over all graphs, while iW [J ] is the sum over connected graphs
and iΓ[ϕ] is the sum over 1 particle irreducible graphs, that is, connected bridgeless
graphs.

The justification usually given for using these transforms is based on analytic con-
ditions such as convexity, but we know from the theory of algebraic enumeration that
the exponential map takes us from connected objects to potentially disconnected ob-
jects – this is the combinatorial exponential map – and it makes sense on any formal
power series with zero constant term. In a similar way, Jackson, Kempf and Morales
define combinatorial Legendre [81] and Fourier [82] transforms making all steps of (22)
combinatorial under appropriate hypotheses.

The proof of the combinatorial Legendre transform is essentially Euler’s formula
for trees 1 = V (g) − E(g) for a graph g, interpreted appropriately, and so the combi-
natorial Legendre transform is the “tree-of” operator on combinatorial objects. This
transform is also related to the Lagrange Inversion theorem. The combinatorial Fourier
transform in a similar way is the “graph-of” operator.

As a predecessor to the general work on the combinatorial Fourier transform, Jack-
son, Kempf and Morales took a formal power series look at the Dirac delta in [92].

In particular, for a sufficiently nice function g, the Dirac delta can be written
as δ(x) = 1√

2π
1

g(−i∂x) g̃(x), where g̃ is the Fourier transform of g. From this and similar
equations they gave new approaches to integrating by differentiating [92], which were
subsequently further developed by Kempf and collaborators [88] and used in computer
algebra systems for practical computations.

Together this collection of papers gives an algebraic and combinatorial founda-
tion to key transforms of quantum field theory and moves us towards a full formal
foundation for quantum field theory.
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Figure 2. Ian Goulden and David Jackson in May 2022. Photo by
Emma Watson.
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