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McKay trees

Avraham Aizenbud & Inna Entova-Aizenbud

Abstract Given a finite group G and its representation ρ, the corresponding McKay graph is
a graph Γ(G, ρ) whose vertices are the irreducible representations of G; the number of edges
between two vertices π, τ of Γ(G, ρ) is dim HomG(π ⊗ ρ, τ). The collection of all McKay graphs
for a given group G encodes, in a sense, its character table. Such graphs were also used by
McKay to provide a bijection between the finite subgroups of SU(2) and the affine Dynkin
diagrams of types A, D, E, the bijection given by considering the appropriate McKay graphs.

In this paper, we classify all (undirected) trees which are McKay graphs of finite groups and
describe the corresponding pairs (G, ρ); this classification turns out to be very concise.

Moreover, we give a partial classification of McKay graphs which are forests, and construct
some non-trivial examples of such forests.

1. Introduction
1.1. Definition of the McKay graph. For a finite group G and its complex
representation ρ, we consider the McKay graph Γ(G, ρ): its vertices are given by the
set Irr(G) of irreducible complex representations of G, and the number of edges Nπ,τ

between two vertices π, τ ∈ Irr(G) of Γ(G, ρ) is dim HomG(π ⊗ ρ, τ). In general, this
is a directed graph.

We will consider undirected graphs as a special case of directed graphs. If ρ is self-
dual then Nπ,τ = Nτ,π and the adjacency matrix of the graph Γ(G, ρ) is symmetric. In
this case we will consider the McKay graph as an undirected graph, with an undirected
edge corresponding to a pair of directed edges of opposite directions.

1.2. Main results. We work over the base field C. In this paper we consider McKay
graphs which are (undirected) forests: these are undirected graphs without closed
paths (in a path, no repetitions of edges are allowed). In particular, in such a graph
there is at most one edge between each 2 vertices, and no edges from a vertex to itself.

Theorem 1.1 (See Proposition 5.1, Theorem 5.2). Let G be a finite group and ρ its
representation.

Assume that the McKay graph Γ(G, ρ) is a forest. Then we have:
(1) ρ is irreducible and self-dual.
(2) Each of these components is isomorphic to one of the following:
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(a) An affine Dynkin diagram of type D̃n, n ⩾ 4.
(b) An affine Dynkin diagram of type Ẽn (for n = 6, 7, 8).
(c) A “hedgehog”: a tree with 4n leaves and one vertex connected to all of

these leaves(1), where n ⩾ 0.
Furthermore, if one of the components is a “hedgehog” with 4n leaves, n ̸= 1,
then all the remaining components are hedgehogs with the same number of
leaves, 4n.

Our second result concerns McKay graphs which are trees (i.e. connected forest
graphs):

Theorem 1.2 (See Theorem 4.1). Assume Γ(G, ρ) is a tree. Then the pair (G, ρ) is
isomorphic to one of the following pairs:

(1) G is a dihedral group of order divisible by 4, and ρ is the complexification of
its natural 2-dimensional real representation.

(2) G ⊂ SU(2) is a binary polyhedral group of type D or E and ρ is the natural
2-dimensional representation of G.

(3) G is an extra special group of order 21+2n for some n ⩾ 0, i.e. a central
extension of (Z/2Z)2n by Z/2Z. In that case, ρ is the unique irreducible rep-
resentation of G of dimension 2n.

Remark 1.3. The connected component of the McKay graph Γ(G, ρ) containing the
trivial representation is called the principal component of Γ(G, ρ) and it is itself a
McKay graph for the group G/ Ker(ρ) and its faithful representation ρ.

If Γ(G, ρ) is a forest, our second result describes the pair (G/ Ker(ρ), ρ) up to
isomorphism.

Finally, we construct some examples of McKay graphs which are forests with non-
isomorphic connected components. Constructing such forests where all the connected
components are isomorphic to a given tree from the list above is very easy: for n ⩾ 2,
let (G, ρ) be as in Theorem 1.2, and consider the McKay graph Γ(G × Z/nZ, ρ ⊠ 1);
this graph is the union of n copies of the tree Γ(G, ρ).

Constructing and classifying forests whose connected components have different
sizes seems to be a much more challenging problem. We give several examples of such
forests in Section 5.2.

1.3. Background and motivation. Let G be a finite group. Then one can re-
construct the isomorphism class of G from the monoidal category of representations
of G. Therefore, while classifying such monoidal categories is a central and interesting
problem, in full generality it is as complex as the problem of classifying finite groups.
A numerical shadow of the monoidal category of representations of G is the charac-
ter table of G. It is well-known that this shadow is not enough to reconstruct the
group G (for instance, the dihedral group Dih4 and the quaternion group Q8 have
the same character table). Yet even the question of describing all possible character
tables still looks very difficult in general. The McKay graph is a combinatorial way
to describe a piece of this character table. In fact, the data in the character table of a
group G is equivalent to the data of all the McKay graphs Γ(G, ρ) where ρ runs over
the irreducible representations of G and the labeling of the vertices in the graphs is
fixed. Another motivation to consider McKay graphs is the fact that they are spectral
analogues of the Cayley graphs.

So the starting point for this paper is the following:

(1)For n = 0, we obtain a graph with 2 vertices and an unoriented edge between them.
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Problem 1.4.
(1) Which (directed) graphs Γ are McKay graphs for some finite group G and

some representation ρ of G?
(2) Given a finite (directed) graph Γ which is a McKay graph, what are the dif-

ferent pairs (G, ρ) such that Γ = Γ(G, ρ)?

It is not clear whether any of these questions can be answered in full generality.
We do not expect a comprehensive answer to both of them, since this is equivalent
to describing all finite groups and their representations. However, we believe that
studying special cases of this problem is illuminating.

In the present paper, we give a partial answer to the first question in the case
when Γ is an (undirected) forest and answer both questions in the case when Γ is an
(undirected) tree.

1.4. Related works. In [4], McKay classified connected McKay graphs with spec-
tral radius 2; this leads to the ADE classification of the finite subgroups of SU(2),
and can be adapted to the classification of pairs (G, ρ) where ρ is a 2-dimensional
self-dual faithful representation of G (see Proposition 3.4). This result was preceded
by a classification of all connected simple graphs with spectral radius 2, due to Smith
(see [5]), which were shown to be affine Dynkin diagrams of type A, D or E.

1.5. Sketch of the proof.

1.5.1. The case of a tree graph. One of the main methods to study a McKay graph
Γ(G, ρ) is to observe that if we consider its adjacency matrix as an operator from the
linear span of Irr(G) to itself, then this operator can be realized as the multiplication
by χρ when we identify the linear span of Irr(G) with the space of class functions
on G.

Recall that a graph Γ is a tree if and only if the following holds:
(a) it is undirected,
(b) it is connected,
(c) the number of its vertices exceeds by 1 the number of its (undirected) edges.

If Γ = Γ(G, ρ) is a McKay graph, then the first condition is equivalent to the fact that
ρ is self-dual, and the second condition is equivalent to the fact that ρ is faithful. So
it is left to exploit the third condition. In order to do this, we prove (in Corollary 3.6)
the following formula for a general undirected McKay graph Γ = Γ(G, ρ):

(1) 2 |{undirected edges in Γ}| = tr(A2
Γ) =

∑
[x]∈G//G

χρ(x)2 =
∑

[x]∈G//G

dim EndC(x)
(
ρ ↓C(x)

)
,

Here
• AΓ is the adjacency matrix of the graph Γ.
• x ranges over (a set of representatives of) the conjugacy classes of G.
• C(x) denotes the centralizer of x.

We use this formula in order to deduce that if Γ is a forest then ρ is irreducible
and for any non-central x ∈ G, we have (see the proof of Proposition 5.1):

(2) dim(End(ρ ↓C(x))) = 2.

We finish the argument in the proof of Theorem 1.2 by considering the following
cases:

(a) C(x) is abelian for some x ∈ G. In this case it is easy to see that ρ is 2-
dimensional, so we can use McKay’s classification (see Section 1.4).
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(b) C(x) is non-abelian for any x ∈ G. In this case we prove that G is an ex-
tra special 2-group (i.e. a 2-group of unipotent depth 2 and center of order
2). Since such groups are classified (see [1, 3]), this completes the argument
behind the proof of Theorem 1.2.

1.5.2. The case of forests. We give below an overview of the main ingredients in the
proof of Theorem 1.1.

(a) Let N = Ker(ρ) and consider the action of G on Irr(N) induced by the
conjugation action of G on N . It is well-known that the set of connected
components of a McKay graph Γ(G, ρ) is naturally indexed by the set of G-
orbits Irr(N)//G. The indexing is obtained by restricting a representation
µ ∈ Γ(G, ρ) to N (see Lemma 2.17).

(b) Let τ ∈ Irr(N) and let T ∈ Irr(N)//G be the G-orbit of τ . Let ΓT (G, ρ) be
the connected component of Γ(G, ρ) corresponding to T . Then we have (see
Lemma 2.19):

(3)
∑

µ∈ΓT (G,ρ)

(dim µ)2 = |G/N ||T |(dim τ)2.

(c) Using Remark 1.3, we conclude that the principal component Γ1 is either
an affine Dynkin diagram of types D or E (in that case, dim(ρ) = 2), or a
hedgehog with 4n spines (in that case, dim(ρ) = 2n).

(d) If dim(ρ) = 2, we use Smith’s classification of graphs with spectral radius
2 (see [5]) to state that all the connected components will be affine Dynkin
diagrams of types D or E.

(e) If the principal component is a hedgehog, we use (3) to show that |T | = 1 for
any T ∈ Irr(N)//G, and conclude that all the connected components in this
case are isomorphic to the principal one.

We then give some examples of McKay graphs which are forests with non-
isomorphic connected components.

It would be interesting to understand which combinations of affine Dynkin diagrams
of types D̃, Ẽ may occur, and for which groups G the disjoint unions of hedgehogs
may appear.

In a follow-up paper, we plan to investigate this question further.

1.6. Structure of the paper. In Section 2 we give the required preliminaries on
groups and McKay graphs, including the definition of the extraspecial groups (see
Section 2.2) and the McKay correspondence between affine Dynkin diagrams and
finite subgroups of SU(2) (see Section 3.1). In Section 3 we prove some auxiliary
results, such as a criterion for a McKay graph to be connected bipartite and the
formula

∀k ⩾ 1, dim HomG(ρ⊗k,C[G]adj) = |{circuits of length k in Γ}| ,

which we use later on. In Section 4 we prove Theorem 1.2. In Section 5 we prove
Theorem 1.1 and construct some non-trivial examples of forests in Subsection 5.2.

2. Preliminaries and notation
The base field throughout the paper is C.
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2.1. Notation.

Notation 2.1. Let G be a finite group.
• We denote by 1G its unit element, by Z(G) its center, by G//G the set of

conjugacy classes of G, and by C(g) the centralizer of g ∈ G.
• We denote by Irr(G) the set of its irreducible representations and by 1 its

trivial representation.
• We denote by C[G]adj the conjugation representation of G on its group alge-

bra.
• For any representation ρ of G, we denote by χρ : G → C its character, where

χρ(g) := tr(ρ(g)). By abuse of notation, we use the same notation for the
corresponding function χρ : G//G → C.

• We say that a group G is p-torsion, where p is prime, if gp = 1G for each
g ∈ G.

• Given a subgroup H < G, a G-representation ρ and an H-representation τ ,
we denote by ρ ↓H the restriction of ρ to H and by τ ↑G

H the induction of τ
to G.

Notation 2.2. For n ⩾ 2, we will denote by Cn the cyclic group of order n. For prime
p, the elementary abelian group p-group C×k

p will sometimes be denoted Fk
p.

Notation 2.3. For n ⩾ 3, we will denote by Dihn the dihedral group of order 2n
(group of symmetries of the regular n-gon). We will also denote by Dih2 the group
C2 × C2 (considered as the group of symmetries of a digon).

Notation 2.4. Let Γ be a directed graph.
• We denote by X(Γ) the set of vertices of Γ.
• We denote by N(x) the multiset of neighbors of a vertex x in Γ: those are

y ∈ X(Γ) with an edge x → y in Γ (if there are several edges x → y, then y
appears with appropriate multiplicity in N(x).

• A loop is an edge connecting a vertex to itself).
• A graph Γ is called simply-laced if for each x, y ∈ X(Γ) it contains at most

one edge x → y.
• A walk in Γ is a sequence of edges (e0, . . . , es) such that the end of ei is the

beginning of ei+1 for each i < s (repetitions of edges are allowed!). A walk is
called a circuit if the end of es is the beginning of e0. A path is a walk without
repetitions of edges.

• Given a pair of edges in opposite directions (or a loop), we will usually draw
a single undirected edge instead. If all the edges in the graph are undirected,
we will say that this graph is undirected.

• We say that Γ is an undirected tree if Γ is undirected and when considered as
an undirected graph, it contains no circuits (in particular, it is simply-laced
and without loops!).

Notation 2.5. Given a graph Γ with vertex set X, we denote by AΓ the adjacency
matrix of this graph. That is, AΓ is an |X| × |X| matrix with integer coefficients
whose rows and columns are indexed by the set X. The (x, y) ∈ X × X entry of AΓ
is the number of edges in Γ from x to y. The matrix AΓ naturally defines a linear
endomorphism of the space of functions X → C, and we will identify AΓ with this
endomorphism.

Remark 2.6. A graph Γ is undirected if and only if AΓ is symmetric.

Algebraic Combinatorics, Vol. 6 #2 (2023) 517



A. Aizenbud & I. Entova-Aizenbud

2.2. Preliminaries on extra special groups. A special class of finite groups
which appear in this paper are extra special groups. For an introduction to extra
special groups, see [1] and the appendix of [3].

Definition 2.7. Let p be a prime number. A finite group G is called an extra special
p-group if Z(G) ∼= Cp and G/Z(G) ∼= (Cp)N = FN

p for some N ⩾ 0.

Example 2.8.
• There is just one extra special group of order p, up to isomorphism, which

is Cp.
• There are two examples of extra special p-groups of order p3: the Heisenberg

group Heis(p) given by upper-triangular 3 × 3 matrices over the field Fp with
1’s on the diagonal, and the semidirect product Cp2 ⋊Cp where Cp acts non-
trivially on Cp2 . These are non-isomorphic for p > 2.

• For p = 2 the above examples coincide: we have Heis(2) ∼= C4 ⋊ C2 ∼= Dih4.
Another (non-isomorphic) extra special group of order 8 is the quaternion
group Q8.

• Given a finite-dimensional vector space V over the field Fp, we can define
the generalized Heisenberg group Heis(V ) as follows: the underlying set is
V × V ∗ × Fp and the multiplication is given by

(⃗a, b⃗, c)(a⃗′, b⃗′, c′) = (⃗a + a⃗, b⃗ + b⃗′, c + c′ + b⃗′ · a⃗)

where − · − denotes the obvious pairing V ∗ × V → Fp. This group Heis(V ) is
an extra special p-group of order p1+2 dim V .

It turns out that such groups exist only if N is even, i.e. N = 2n for some n ⩾ 0;
moreover, for each power p1+2n (n ⩾ 1) there exist precisely two isomorphism classes
of extra special p-groups of order p1+2n.

For p > 2, any extra special p-group of order at least p3 is a central product of
several copies of the two groups of order p3 appearing in Example 2.8. If all of the n
factors appearing in the central product are isomorphic to Heis(p) then the obtained
group is generalized Heisenberg group Heis(Fn

p ) and it is p-torsion. If at least one of
the n factors is of the form Cp2 ⋊ Cp then we obtain another, non-isomorphic extra
special group of order p1+2n, but now having some elements of order p2.

For p = 2, a similar situation occurs: any extra special 2-group of order at least 8 is
a central product of several copies of Dih4 and Q8. If all of the n factors appearing in
the central product are isomorphic to Dih4 then the obtained group is the generalized
Heisenberg group Heis(Fn

2 ). If at least one of the n factors is of the form Q8 then we
obtain another, non-isomorphic extra special group of order 21+2n.

An extra special p-group G of order p1+2n has precisely p2n representations of
dimension 1 on which the center Z(G) acts trivially, and p − 1 representations of
dimension pn on which the center Z(G) acts by a non-trivial character.

2.3. Preliminaries on McKay graphs. The definitions and statements of this
subsection are taken from [4].

Definition 2.9 (McKay graph). Let G be a finite group, ρ a complex representation
of G. The McKay graph Γ(G, ρ) (sometimes called “McKay quiver”) for the pair (G, ρ)
has vertex set Irr(G); the number of edges µ → λ, where µ, λ ∈ Irr(G), is

dim HomG(µ ⊗ ρ, λ) = [µ ⊗ ρ : λ]G

where the latter denotes the multiplicity of λ in the G-representation µ ⊗ ρ.
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When drawing a McKay graph, we will usually mark by a ⋆ symbol the vertex
corresponding to the trivial representation. The other vertices are each marked by the
dimension of the corresponding irreducible representation.

Example 2.10.
(1) Let G = C2 and sgn be the non-trivial irreducible representation of C2 (“sign

representation”). Then Γ(C2, sgn) is an undirected loop-less graph on 2 ver-
tices:

⋆ 1

(2) Let G = Z/nZ and τ be its non-trivial irreducible representation. Then
Γ(Z/nZ, τ) is a directed cycle graph on n vertices, without double edges nor
loops.

(3) Let n ⩾ 1 and let G = Fn
2 = C×n

2 be the corresponding elementary abelian 2-
group. Let ρ =

⊕
0⩽s⩽n−1 1

⊠s⊠sgn⊠1⊠n−s−1. The McKay graph Γ(Fn
2 , ρ) is

then the n-dimensional cube {0, 1}n with undirected edges x y when-
ever x, y ∈ {0, 1}n differ by precisely one coordinate.

(4) Let G = S3 = Dih3 be the symmetric group on 3 letters. We denote its
irreducible representations by 1, sgn, ref where sgn is the 1-dimensional
sign representation and ref is the two-dimensional reflection representation
{(x1, x2, x3) ∈ C3,

∑
xi = 0}. The McKay graph Γ(S3, ref) is

⋆ 2

1

This is an undirected graph on 3 vertices, with a single loop.
(5) Consider the dihedral group Dih4 and let τ be its tautological 2-dimensional

(irreducible) representation. The McKay graph of (Dih4, τ) looks as follows:

⋆ 1

2

1 1

Here the vertex in the center corresponds to τ . This graph coincides with
the McKay graph for (Q8, µ) where Q8 is the quaternion group and µ is the
obvious 2-dimensional (irreducible) representation given by H ∼= C2. This
coincidence is not surprising, given that the character tables of Dih4, Q8
coincide.

Example 2.11. Consider an extra-special 2-group G of order 21+2n, n ⩾ 0 as described
in Section 2.2 (for n = 0, the corresponding extra special group is unique, and it is just
C2). Then G has 22n + 1 irreducible representations: 22n irreducible representations
of dimension 1 coming from G/Z(G) ∼= F2n

2 and one irreducible representation ρ of
dimension 2n. The McKay graph for (G, ρ) is an unoriented connected graph of th
following form: it has one vertex ρ with 4n unoriented edges coming out, and 4n

vertices connected only to ρ by a single unoriented edge. We will call such a graph a
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hedgehog with 4n spines. Below is an example for n = 2:

⋆ 1 1 1 1

1 1

1 2n 1

1 1

1 1 1 1 1

The following statement is well-known (see [4, Proposition 2]):

Lemma 2.12. Let ρ be a representation of the group G. Then Γ(G, ρ∗) is obtained from
Γ(G, ρ) by a reversal of arrows (i.e. AΓ(G,ρ∗) = AT

Γ(G,ρ)). In particular, ρ ∼= ρ∗ if and
only if Γ(G, ρ) is undirected (i.e. AΓ(G,ρ) is a symmetric matrix).

The spectrum of the adjacency matrix of a McKay graph has an explicit description,
see [4, Proposition 6], [2, Proposition 2.3], and [6]:

Proposition 2.13. The eigenvalues of AΓ(G,ρ) form the multiset
{χρ(g)|g ∈ G//G}.

A corresponding eigenvector for the eigenvalue χρ(g) is χ(g) : Irr(G) → C, µ 7→ χµ(g)
(a column of the character table).

Since χρ(g), g ∈ G is the sum of eigenvalues of ρ(g), all of which are roots of unity,
we have:

Corollary 2.14. The eigenvalue of AΓ(G,ρ) with the maximal absolute value (the
spectral radius of AΓ(G,ρ)) is χρ(1G) = dim ρ. A corresponding eigenvector is then

dim : Irr(G) → C, µ 7→ dim(µ).

The spectral radius of a real matrix A with non-negative entries has an important
property given by the Frobenius-Perron theorem: the corresponding eigenspace of A
contains a vector all of whose entries are non-negative.

In fact, if A is an “irreducible” matrix (one which cannot be presented as a block
matrix with non-trivial blocks), the spectral radius has multiplicity 1 as an eigenvalue
of A, and it is the only eigenvalue of A for which an eigenvector with positive entries
exists. For example, the adjacency matrix of a strongly connected graph Γ (one where
there is a directed walk from each vertex to any other vertex) is always irreducible,
and hence its spectral radius has multiplicity 1.

2.4. Shapes of McKay graphs. Let us give some basic examples of graphs which
can or cannot appear as McKay graphs Γ(G, ρ) for some G, ρ.

Example 2.15. (1) Given a group G and a representation ρ of G, the represen-
tation ρ is 1-dimensional if and only if the McKay graph Γ(G, ρ) is a disjoint
union of directed cycles (some of the cycles might consist of 1 vertex only,
with a single loop).
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Any disjoint union of directed cycles of equal size can appear as a McKay
graph: if we have k disjoint directed cycles of size n, this is the McKay graph
for (Z/nZ×G, τ⊠1) where τ is an irreducible representation of Z/nZ, and G is
any finite group with precisely k irreducible representations (e.g. G = Z/kZ).

(2) A McKay graph Γ(G, ρ) cannot be a directed tree or a disjoint union of such:
indeed, one cannot have “leaves” (i.e. vertices with only one edge coming in
or going out) in a directed McKay graph.

(3) Considering the opposite extreme situation, a complete (undirected, loop-less)
graph on n vertices - such a graph can be obtained as Γ(Z/nZ, ρ). Here ρ is
the representation of Z/nZ on Cn/Span{(1, . . . , 1)}, where Z/nZ acts on Cn

by shifting cyclically the coordinates.
(4) A complete graph on n vertices (n > 2) cannot be obtained as a McKay

graph Γ(G, ρ) if we require ρ ∈ Irr(G). This is due to the fact that in any
McKay graph Γ(G, ρ) with ρ ∈ Irr(G), the vertex 1 has only one neighbor:
the vertex ρ.

Yet a given a complete (undirected, loop-less) graph on n vertices, we can
always find a McKay graph Γ(G, ρ) containing our complete graph as a sub-
graph: for instance, take G = SN (the symmetric group) for N >> n and ρ
to be the reflection representation.

2.5. Connected components in McKay graphs. Given two vertices µ, λ in a
McKay graph, we can ask whether there is a directed walk from µ to λ, or whether
there is a walk from µ to λ if we forget about the directions of the edges in our
graph. Although for general graphs these relations do not coincide, it turns out that
in McKay graphs they do (see [2, Section 3]), so the notion of a connected component
in a McKay graph is intuitive; each such component is “strongly connected”.

Given a McKay graph Γ(G, ρ), the connected component Γ1 containing the vertex
1 is called the principal component.

The following statement is well-known, see for example [4, Proposition 1], [2, Propo-
sition 3.3]:

Lemma 2.16. Let ρ be a representation of the group G. Then ρ is faithful if and only
if Γ(G, ρ) is connected (that is, for any µ, λ ∈ Irr(G) there exists a walk from µ to λ
in Γ(G, ρ)).

In fact, given any representation ρ of G with kernel N = Ker(ρ), the principal
component Γ1 is isomorphic to Γ(G/N, ρ). The connected components of Γ(G, ρ)
correspond to blocks in the adjacency matrix AΓ(G,ρ); the number of such blocks is
then the multiplicity of the largest eigenvalue, implying the following lemma (see also
[2, Proposition 3.10, Lemma 4.1]):

Lemma 2.17.
(1) The number of connected components of Γ(G, ρ) is precisely the number of

G-conjugacy classes of N ; the latter equals the number of G-orbits in Irr(N)
(G acts on Irr(N) twisting the action of N on the representations).

In fact, there is a bijection

{ connected components of Γ(G, ρ)} −→ Irr(N)//G

given as follows: to every connected component Γ′ of Γ(G, ρ) corresponds a
unique G-orbit T ⊂ Irr(N) such that [µ ↓G

N : τ ] ̸= 0 for some µ ∈ X(ΓT ) ⊂
Irr(G) and some τ ∈ T ⊂ N .

(2) The group Ĝ of characters G → C× acts on the graph Γ(G, ρ) by tensoring
each vertex with the appropriate 1-dimensional representation.
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Corollary 2.18. Let Γ′ be a connected component of Γ(G, ρ) with a vertex µ such
that dim µ = 1. Then the graph Γ′ is isomorphic to the principal component Γ1.

In fact, we have the following useful identity:

Lemma 2.19. Let T ∈ Irr(N)//G and ΓT the corresponding connected component in
Γ(G, ρ). Let τ ∈ T . We have:∑

µ∈X(ΓT )

(dim µ)2 = |G/N | · (dim τ)2 · |T | .

Proof. Given µ ∈ Irr(G), the multiplicity [µ ↓G
N : τ ] does not depend on choice of

τ ∈ T by Clifford’s theorem, and [µ ↓G
N : τ ′] = 0 for all τ ′ /∈ T . Hence, we have:

dim µ = dim τ · |T | · [µ ↓G
N : τ ] for µ ∈ X(ΓT ). In other words,

[τ ↑G
N : µ] = [µ ↓G

N : τ ] = dim µ

dim τ · |T |
.

Consider τ ↑G
N ; by Lemma 2.17, all its irreducible direct summands are in X(ΓT ).

We have:

|G/N | · dim τ = dim(τ ↑G
N ) =

∑
µ∈X(ΓT )

[τ ↑G
N : µ] dim µ =

∑
µ∈X(ΓT )

(dim µ)2

dim τ · |T |

The required statement is proved.
□

3. Auxiliary results
3.1. McKay classification. In this paper, the term binary polyhedral group (de-
noted by appending B to the notation of the group) stands for a group G which is a
double cover of the polyhedral group of given type.

The polyhedral groups we consider are finite subgroups of SO(3,R): these the rota-
tional symmetry groups of the regular polyhedra, denoted by T (tetrahedral group),
O (octahedral group) and I (icosahedral group), as well as the dihedral groups Dihn,
n ⩾ 2. The latter are embedded naturally into SO(3,R) by considering them as
symmetries of “degenerate" polyhedra: polygons which lie in the plane XY of R3.

Example 3.1. The subgroup of SO(3,R) corresponding to Dih2 ∼= C2 × C2 consists

of matrices
[
±1 0
0 ±1

]
. These are precisely the rotations around the coordinate axes by

multiples of π radians.

Example 3.2. The binary dihedral group (also known as “dicyclic group”) BDihn

(n ⩾ 2) has presentation

⟨a, x|a2n = 1, x2 = an, x−1ax = a−1⟩.

It has center Z = {1, an} ∼= C2 and the quotient BDihn/Z is the dihedral group Dihn.
For n = 2, we have Dih2 ∼= C2 × C2 and we obtain an isomorphism BDih2 ∼= Q8 (the
quaternion group).

The following theorem is the most celebrated use of McKay graphs (see [4, Propo-
sition 4] and [6]):

Theorem 3.3 (McKay’s theorem). The following list describes all McKay graphs for
pairs (G, ρ) where G ⊂ SU(2) is a finite group and ρ is the respective 2-dimensional
representation of G.
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Affine Dynkin diagram Group G

Ãn, n ⩾ 0 cyclic
⋆

1 1 · · · 1 1

Z/(n + 1)Z

size: n + 1

D̃n , n ⩾ 4 binary dihedral
⋆ 1

2 · · · 2

1 1

BDihn−2

size: 4(n − 2)

Ẽ6 binary tetrahedral
⋆

2

1 2 3 2 1

BT

size: 24

Ẽ7 binary octahedral
2

⋆ 2 3 4 3 2 1
BO

size: 48

Ẽ8 binary icosahedral
3

⋆ 2 3 4 5 6 4 2
BI

size: 120

The proof of Theorem 3.3 relies on the classification of all finite undirected con-
nected simply-laced graphs Γ with spectral radius 2. The classification of such graphs
states that they must be affine Dynkin diagrams of types A, D or E, which was proved
by Smith in [5] (cf. [4, Proposition 4]).

Proposition 3.4. Let G be a finite group and ρ be its self-dual faithful representation
(so Γ(G, ρ) is connected and undirected). Assume dim ρ = 2.
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Then either G ⊂ SU(2) (hence G appears in the list of Theorem 3.3 and Γ(G, ρ)
is of the form above), or G = Dihn and ρ is the complexification of the tautological
2-dimensional representation of Dihn. In the latter case, Γ(G, ρ) is drawn below.

parity of n McKay graph for Dihn, tautological ρ, dim(ρ) = 2 number of vertices

n even

⋆ 1

2 · · · 2

1 1

n
2 + 3

n odd

⋆

2 · · · 2

1

n+3
2

Proof. Since ρ is self dual, it either has a symplectic G-invariant form (i.e. ρ is of
quaternionic type) or a symmetric G-invariant form (i.e. ρ is of real type). In the
former case, G ⊂ SL(2) ∩ U(2) = SU(2) and we are in the situation of Theorem 3.3.
In the latter case, the representation (ρ, V ) is of real type, the corresponding 2-
dimensional real representation (ρR, VR) satisfies: ρ ∼= C ⊗R ρR, where ρR is a faithful
2-dimensional representation of G over R. Hence G ⊂ Dihn for some n ⩾ 1. But in
that case G it either cyclic (and then we are again in the situation of Theorem 3.3)
or G is dihedral. This completes the proof of the proposition. □

3.2. McKay graphs and characters. Let Γ := Γ(G, ρ) be the McKay graph for
a finite group G and a representation ρ of G.

Lemma 3.5. Let k ⩾ 1. We have:

dim HomG(ρ⊗k,C[G]adj) =
∑

g∈G//G

χρ(g)k = tr(Ak
Γ) = |{circuits of length k in Γ}| .

Proof. The eigenvalues of the matrix AΓ are precisely χρ(g) for g ∈ G//G (see Propo-
sition 2.13), so the sum of eigenvalues of Ak

Γ is
∑

g∈G//G χρ(g)k, which proves the
middle equality. The right equality holds for any graph Γ and is obvious.

It remains to prove that dim HomG(ρ⊗k,C[G]adj) = tr(Ak
Γ). Indeed, we have:

dim HomG(ρ⊗k,C[G]adj) = dim HomG(ρ⊗k,
⊕

µ∈Irr(G)
µ∗ ⊗ µ)

=
∑

µ∈Irr(G)

dim HomG(ρ⊗k ⊗ µ, µ)

In the right hand side, each summand dim HomG(ρ⊗k ⊗µ, µ) is precisely the diagonal
entry in Ak

Γ corresponding to µ ∈ Irr(G), so∑
µ∈Irr(G)

dim HomG(ρ⊗k ⊗ µ, µ) = tr(Ak
Γ)

as required. □
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Corollary 3.6. Assume Γ is undirected and loop-less. Then

dim HomG(ρ⊗2,C[G]adj) =
∑

g∈G//G

χρ(g)2 = 2 |{undirected edges in Γ}| .

3.3. Bipartite McKay graphs.

Lemma 3.7. Let Γ be a bipartite graph with adjacency matrix AΓ. Then for each
eigenvalue λ of AΓ, −λ is also an eigenvalue of AΓ.

Proof. Let X(Γ) = X0 ⊔ X1 be the bipartition of the set of vertices, such that

∀i ∈ {1, 2}, ∀x, y ∈ Xi, x /∈ N(y).

Let f : X(Γ) → C be the eigenvector of AΓ with eigenvalue λ. Then

∀x ∈ X(Γ), λf(x) =
∑

y∈N(x)

f(y).

Now define a new function f̃ : X(Γ) → C by setting

∀i ∈ {1, 2}, ∀x ∈ Xi, f̃(x) := (−1)if(x).

Then for any x ∈ Xi, we have:

−λf̃(x) = −λ(−1)if(x) =
∑

y∈N(x)

(−1)i+1f(y) =
∑

y∈N(x)

f̃(y),

making f̃ an eigenvector of AΓ with eigenvalue −λ. □

Let Γ := Γ(G, ρ) be the McKay graph for a finite group G and a representation ρ
of G.

Lemma 3.8. Assume ρ is irreducible and faithful. Then the graph Γ = Γ(G, ρ) is
bipartite if and only if C2 ⊂ Z(G).

Proof. [⇐]: Assume C2 ⊂ Z(G), and let z ∈ C2 ⊂ Z(G), z ̸= 1G. Then the vertices in
Γ can be partitioned into two disjoint subsets, according to the eigenvalue by which
z acts on the given irreducible representation of G. Since ρ is faithful and irreducible,
ρ(z) = − Id. So clearly, there are no edges in Γ between vertices λ, µ ∈ Irr(G) such
that λ(z) = µ(z). Hence Γ is bipartite.

[⇒]: Assume Γ is bipartite. By Lemma 3.7, for each eigenvalue λ of AΓ, we also
have an eigenvalue −λ.

Next, the eigenvalues of AΓ are precisely χρ(g) by Proposition 2.13, so there exists
z ∈ G with

χρ(z) = −χρ(1G) = − dim ρ

Since z ∈ G has finite order, ρ(z) is a diagonalizable operator whose eigenvalues are
all roots of unity. We have tr(ρ(z)) = − dim ρ and hence ρ(z) = − Id. Faithfulness of
ρ now implies that z ∈ Z(G) and z2 = 1G. Hence C2 ⊂ Z(G) as required.

□

Lemma 3.9. Assume ρ is irreducible and faithful, and that ρ∗ ∼= ρ. Then Z(G) ⊂ C2.

Proof. By Schur’s lemma, ρ defines a character of the center

λ : Z(G) → C×, z 7→ λ(z),

where ρ(z) = λ(z) Id. Since ρ∗ ∼= ρ, we have: 1 ⊂ ρ ⊗ ρ∗ ∼= ρ⊗2 and on this space
z ∈ Z(G) acts by λ2(z) Id. So λ(z)2 = 1 and thus λ(z) = ±1. Now, since ρ is faithful,
the map λ : Z(G) → C is injective, hence Z(G) ⊂ C2. □
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Remark 3.10. These statements relate to the fact that the group of central characters
U := Hom(Z(G),C×) defines a universal grading on the tensor category Rep(G), and
thus means that Γ(G, ρ) is a |Z(G)|-partite graph for any ρ ∈ Rep(G). Furthermore,
if ρ is irreducible and ζρ ∈ U is the central character corresponding to ρ, every
closed walk in Γ(G, ρ) has length divisible by the order of ζρ in U , which implies the
statement of Lemma 3.9.

Recall that by Lemma 2.12, ρ∗ ∼= ρ if and only if Γ is undirected, and by
Lemma 2.16, ρ is faithful if and only if Γ is connected. Using Lemmas 3.8, 3.9, we
conclude:

Corollary 3.11. Assume ρ is irreducible and Γ = Γ(G, ρ) is an undirected and
connected graph. Then Γ is bipartite if and only if Z(G) = C2.

4. Trees
Theorem 4.1. Let Γ := Γ(G, ρ) be the McKay graph for a finite group G and a
representation ρ of G.

Assume Γ is an (undirected) tree.
Then ρ is a faithful irreducible representation of G, and one of the following con-

ditions is satisfied:
• dim ρ = 2, and the graph Γ is an affine Dynkin diagram as in Proposition 3.4;

in that case (G, ρ) belongs to the list appearing in Theorem 3.3, or G = Dih2n

and ρ is its natural 2-dimensional representation.
• G is an extra special 2-group of order 21+2n (n ⩾ 0), with ρ its unique ir-

reducible 2n-dimensional representation on which the center of G acts non-
trivially; in that case Γ is a “hedgehog” as in Example 2.11, whose number of
spines (leaves) is 4n.

Proof. First of all, since Γ is undirected and connected, we have, by Lemmas 2.16
and 2.12, that ρ is a self-dual, faithful representation of G. Next, the condition that
Γ is a tree implies that

|{undirected edges in Γ}| = |Irr(G)| − 1 = |G//G| − 1.

By Corollary 3.6 we have:

(4) dim HomG(ρ⊗2,C[G]adj) = tr(A⊗2
Γ ) = 2(|G//G| − 1).

Now,

C[G]adj =
⊕

[g]∈G//G

Span{g|g ∈ [g]} ∼=
⊕

[g]∈G//G

C[G/C(g)] ∼=
⊕

[g]∈G//G

C ↑G
C(g),

where C(g) is the centralizer of an element g in the conjugacy class [g] (the isomor-
phisms depend on the choices of representatives g ∈ [g], of course).

Thus we have:

2(|G//G| − 1) = dim HomG(ρ⊗2,C[G]adj) =
∑

[g]∈G//G

dim HomG(ρ⊗2,C ↑G
C(g))

=
∑

[g]∈G//G

dim HomC(g)
(
ρ⊗2 ↓C(g),1

)
=

∑
[g]∈G//G

dim EndC(g)(ρ ↓C(g))(5)

(the last equality follows from the fact that ρ is self-dual).
Let us compute dim EndC(g)(ρ ↓C(g)). This value is clearly at least 1, and we will

show that this is precisely 2 when g /∈ Z(G).
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Assume ρ is reducible as a G-representation. Hence it is reducible as a C(g)-
representation for each g ∈ G. This implies:

dim EndC(g)(ρ ↓C(g)) ⩾ 2

for all g ∈ G and so∑
[g]∈G//G

dim EndC(g)(ρ ↓C(g)) ⩾ 2 |G//G| > 2(|G//G| − 1)

which is a contradiction. Hence ρ is irreducible.
For g ∈ Z(G) we have: C(g) = G so clearly dim EndC(g)(ρ ↓C(g)) = 1 in that case.
Now let g ∈ G ∖ Z(G). The operator ρ(g) is an intertwining operator on the

C(g)-representation ρ ↓C(g) and hence acts by scalar on any simple C(g)-summand
of ρ ↓C(g). Note that ρ(g) cannot be a scalar endomorphism: indeed, if that were the
case, ρ(g) would commute with ρ(h) for any g ∈ G. Since ρ is faithful, this would
imply that g ∈ Z(G), contrary to our assumption on g.

Hence ρ(g) is not a scalar endomorphism, and so ρ ↓C(g) is not simple.
Hence we have: for any g ∈ G ∖ Z(G), dim EndC(g)(ρ ↓C(g)) ⩾ 2.
Next, by Corollary 3.11 we have: Z(G) = C2. So by Equation (5), we have:∑

[g]∈G//G, g /∈Z(G)

dim EndC(g)(ρ ↓C(g)) = 2(|G//G| − 2).

Notice that the left hand side has (|G//G| − 2) summands, so that the average
value of dim EndC(g)(ρ ↓C(g)) is 2. But since we showed that the minimal value is also
2, we conclude that dim EndC(g)(ρ ↓C(g)) = 2 for any g /∈ Z(G), i.e. the representation
ρ ↓C(g) has length 2.

If C(g) is abelian for some g /∈ Z(G), then ρ ↓C(g) is a direct sum of two 1-
dimensional representations and the statement of the theorem is proved. If G itself is
abelian, then dim ρ = 1 and Γ is tree only if G = C2, ρ = sgn; again, the statement
of the theorem is then proved.

Thus we will assume from now on that C(g) is not abelian for any g ∈ G.
Since dim EndC(g)(ρ ↓C(g)) = 2, for any g /∈ Z(G), ρ(g) is a diagonalizable en-

domorphism with precisely 2 distinct eigenvalues. Furthermore, since ρ ∼= ρ∗ as G-
representations, we have: for each eigenvalue z of ρ(g), its complex conjugate z̄ is also
an eigenvalue of ρ(g) with the same multiplicity.

So the set of eigenvalues of each ρ(g), g /∈ Z(G) is either {±1} or {z, z̄} where z is
a root of unity of order |G|, z ̸= ±1. Note that the second option can occur only if
dim ρ is even.

Assume that the eigenvalues of ρ(g) belong to {±1} for all g ∈ G. This implies
that each (non-trivial) element in G has order 2. In particular,

∀g, h ∈ G, ghg−1h−1 = ghgh = 1G ⇒ gh = hg

so G is abelian. But that contradicts our assumption.
So there exists g ∈ G such that g2 ̸= 1G, i.e. the eigenvalues of ρ(g) are z1 ̸= z2

(these are roots of unity, and z1 = z̄2 /∈ {±1}). Let Vzk
denote the eigenspace of

ρ(g) corresponding to the eigenvalue zk, k = 1, 2; then Vz1 ⊕ Vz2 is the entire space
underlying the representation ρ, and dim Vz1 = dim Vz2 .

Let h ∈ C(g). The operators ρ(h), ρ(g) commute so they are simultaneously di-
agonalizable (ρ(h) also having at most 2 distinct eigenvalues). We will say that h is
aligned with g if the restriction of ρ(h) to each of the subspaces Vzk

, k = 1, 2 is a
scalar endomorphism. The set of elements h ∈ C(g) aligned with g clearly forms an
abelian subgroup.
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Since we assumed that the group C(g) is itself not abelian, we can find h ∈ C(g)
which is not aligned with g. We have: h /∈ Z(G), so we denote by t1 ̸= t2 the distinct
eigenvalues of ρ(h). Since h is not aligned with g, the eigenvalues of ρ(gh) would
be {tjzk|k, j ∈ {1, 2}} or at least 3 of these products. Since ρ(gh) also has at most 2
distinct eigenvalues, this implies that in at least one of the pairs (t1z1, t2z2), (t1z2, t2z1)
the elements coincide. Without loss of generality, let us assume that t1z1 = t2z2 =
t̄1z̄1. So the eigenvalues of ρ(gh) are either {t1z1, t1z2} or {t1z1, t2z1}. Then

(t1z1)2 = t1z1t2z2 = |t1|2 |z1|2 = 1.

So t1z1 = ±1 (implying t1 = ±z2) and the eigenvalues of ρ(gh) must be ±1. Thus at
least one of the following equalities holds: z2

2 = ±t1z2 = ±1 or z2
1 = ±t2z1 = ±1, any

of which implies z1, z2 ∈ {±i}. So we see that for every g ∈ G, the eigenvalues of ρ(g)
are either {±i} or a subset of {±1}.

In particular, ρ(g)2 = ± Id for each g ∈ G, so G/Z(G) is a group whose elements
all square to identity. Hence G/Z(G) is of the form Fm

2 (an elementary abelian 2-
group). Since Z(G) = C2, we conclude that G is an extra special 2-group, m is even
and ρ is the unique irreducible representation of G of dimension greater than 1 (see
Example 2.11). This concludes the proof of the theorem.

□

5. Forests
In this section we investigate the case of an undirected forest graph, i.e. a disjoint
union of undirected trees.

5.1. Classification of McKay forests.

Proposition 5.1. Let Γ := Γ(G, ρ) be the McKay graph for a finite group G and an
representation ρ of G.

Assume Γ is an (undirected) forest. Then ρ is a irreducible, self-dual representation.

Proof. Let N := Ker(ρ) ◁ G and let K be the number of connected components of Γ.
By Lemma 2.17, we have: K is the number of G-conjugacy classes in N .

The principal component Γ1 = Γ(G/N, ρ) is a tree, so Theorem 4.1 shows that ρ is
a self-dual irreducible representation of G/N . Hence ρ possesses the same properties
when considered as a G-representation, which proves the first part of the statement.

□

Theorem 5.2. Let Γ := Γ(G, ρ) be the McKay graph for a finite group G and a
representation ρ of G. Let N := Ker(ρ).

Assume Γ is an undirected forest. Then we have:
(1) All the connected components of Γ are of one of the forms described in The-

orem 4.1.
(2) If one of the components is a hedgehog with 4n spines for n ̸= 1, then all

the components of Γ are of isomorphic to each other (in particular, they are
isomorphic hedgehogs).

Remark 5.3. For n = 1, the hedgehog with 4 spines is the affine Dynkin diagram D̃4.

Remark 5.4. In particular, if one of the components is an affine Dynkin diagram of
types D of E, the remaining components are also affine Dynkin diagrams of types D
or E.

They do not have to be isomorphic to each other, as we will show in the examples
of Section 5.2.
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However, the theorem above states that the size of the dihedral or binary polyhedral
group corresponding to the principal component (that is, G/N) will be divisible by
the sizes of the dihedral or binary polyhedral groups corresponding to other connected
components.

For instance, if the principal component is of type Ẽ6, then any connected compo-
nent in this graph is either of type Ẽ6 or of type D̃4.

For the proof, we need the following standard lemma:

Lemma 5.5. Given a tree Γ, if any two leaves have a common neighbor then Γ is a
hedgehog.

Proof of Theorem 5.2. The principal component Γ1 of Γ is a tree, and a McKay graph
in its own right: Γ1 = Γ(G/N, ρ). Hence it is isomorphic one of the graphs given by
Theorem 4.1.

Consider a connected component Γ′ of Γ corresponding to some T ∈ Irr(N)//G.
Let s be the dimension of any representative of T . By Lemma 2.19 we have:

(6) |T |s2 |G/N | =
∑

µ∈X(Γ′)

(dim µ)2.

We will now consider the different possibilities for Γ1.
Case when Γ1 is a “hedgehog” with 4n spines, n ⩾ 0: in that case, dim ρ = 2n

and |G/N | = 22n+1. The tree Γ′ is not a singleton, so for each leaf τ in Γ′, we have a
single vertex µ connected to it. Hence

dim µ = dim ρ · dim τ = 2n · dim τ.

Let a be the multiplicity of any representative of T in τ ↓N : then τ ↓N =
⊕

σ∈T σ⊕a

so dim τ = a|T |s. Hence

(dim τ)2 + (dim µ)2 = (dim τ)2(1 + 22n) = |T |2s2a2(1 + 22n) ⩽ |T |s2 |G/N |
= |T |s221+2n = |T |s22 · 22n.

Thus a2|T |⩽ 2·22n

1+22n < 2 and so a = |T | = 1, which implies dim τ = s, dim µ = 2n. So
we have:

(i) All leaves in Γ′ have dimension s.
(ii) Any vertex ν which is connected to a leaf has dimension 2ns.

This, together with Equation (6) implies that either there a unique such vertex ν,
or Γ′ is the tree with 2 vertices. In the former case, all the leaves in Γ′ are connected
to this vertex ν. Hence by Lemma 5.5, this implies that Γ′ is a hedgehog. It now
follows from (6) and from (i), (ii) that the hedgehog has precisely 4n spines, and it is
isomorphic to the principal component Γ1.

This shows that when G/N is an extra special 2-group, all the connected compo-
nents of Γ are isomorphic to each other.

Case when Γ1 is an affine Dynkin diagram of types D̃, Ẽ: in that case
dim ρ = 2. Recall that 2 is an eigenvalue of AΓ and there exists a corresponding
eigenvector with positive integer entries; this implies that each connected component
Γ′ of Γ is a tree with the following property: 2 is an eigenvalue of AΓ′ and there exists
a corresponding eigenvector with positive integer entries. Hence the spectral radius
of Γ′ is 2 and so by Smith’s classification [5] described in Section 3.1 we have: each
connected component of Γ is isomorphic to an affine Dynkin diagram of types D̃ or
Ẽ. In particular, it cannot be a hedgehog with 4n spines for n ̸= 1.

□
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5.2. Examples of forests with non-isomorphic connected components.
We will now construct examples where both G, H are either binary polyhedral or
dihedral groups. We will consider the tautological faithful 2-dimensional irreducible
representation ρ of G ⊂ SL2(C). So in our examples, both Γ(G, ρ) and Γ(H, ρ) will
be affine Dynkin diagrams of types D or E.

Example 5.6.
(1) Let n > 1. Let Dih4n be the group of symmetries of a regular 4n-gon. Then

Dih4n has a subgroup H of index 2 which is isomorphic to Dih2n (these are
the symmetries preserving a regular 2n-gon obtained by removing half of the
vertices).

Let ρ be the tautological 2-dimensional representation of Dih4n. Restricted
to H, this gives the tautological representation of Dih2n. We obtain a McKay
graph for the 2-dimensional representation of G′ = Dih4n ⋉ C3 coming from
ρ satisfying

Γ(G′, ρ) = Γ(Dih4n, ρ)
⊔

Γ(Dih2n, ρ ↓H).

Thus Γ(G′, ρ) is a disjoint union of 2 non-isomorphic trees D̃4n and D̃2n,
where one has 2n + 3 vertices and the other n + 3 vertices.

A similar construction is possible for the binary dihedral groups BDih2n

and BDihn.
(2) Let BT be the binary tetrahedral group. Consider the subgroup BDih2 ◁ BT.

Let ρ be the tautological 2-dimensional representation of BT ⊂ SU(2).
Then ρ ↓BDih2 is the 2-dimensional irreducible representation of BDih2 ∼= Q8.

The quotient BT/
BDih2

∼= C3 acts on the Klein 4-group F2
2 by group

automorphisms permuting transitively the order 2 elements; the action is
given by the embedding

BT/
BDih2

∼= C3 ↪→ GL3(F2) ∼= S3.

We obtain a McKay graph for the 2-dimensional representation of G′ =
BT ⋉ F2

2 coming from ρ:

Γ(G′, ρ) = Γ(BT, ρ)
⊔

Γ(Q8, ρ ↓Q8)

Thus Γ(G′, ρ) is a disjoint union of 2 non-isomorphic trees Ẽ6 and D̃4.
(3) Let BO be the binary octahedral group, and consider the subgroup BT◁BO.

Let ρ be the tautological 2-dimensional representation of BO ⊂ SU(2).
Then ρ ↓BT is the tautological 2-dimensional irreducible representation of BT.

We obtain a McKay graph for the 2-dimensional representation of G′ =
BO ⋉ C3 coming from ρ:

Γ(G′, ρ) = Γ(BO, ρ)
⊔

Γ(BT, ρ ↓BT)

Thus Γ(G′, ρ) is a disjoint union of 2 non-isomorphic trees Ẽ7 and Ẽ6.
(4) Let G = BO and and consider the subgroup BDih2 ◁ BO.

Let ρ be the tautological 2-dimensional representation of BO ⊂ SU(2).
Then ρ ↓BDih2 is the tautological 2-dimensional irreducible representation of
BDih2 ∼= Q8.

Then BO/
BDih2

∼= S3 acts on the Klein 4-group F2
2 by group automor-

phisms permuting transitively the order 2 elements; the action is given by the
isomorphism

BO/
BDih2

∼= S3
∼−→ GL3(F2).
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We obtain a McKay graph for the 2-dimensional representation of G′ =
BO ⋉ F2

2 coming from ρ:

Γ(G′, ρ) = Γ(BO, ρ)
⊔

Γ(Q8, ρ ↓Q8)

Thus Γ(G′, ρ) is a disjoint union of 2 non-isomorphic trees Ẽ7 and D̃4.
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