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Fusions of tensor powers of Johnson schemes

Sean Eberhard & Mikhail Muzychuk

Abstract This paper is a follow-up to [5], in which the first author studied primitive association
schemes lying between a tensor power T d

m of the trivial association scheme and the Hamming
scheme H(d, m). A question which arose naturally in that study was whether all primitive
fusions of T d

m lie between T d/e
me and H(d/e, me) for some e | d. This note answers this question

positively provided that m is large enough. We similarly classify primitive fusions of the dth
tensor power of a Johnson scheme on

(
m
k

)
points when m is large enough in terms of k and d.

1. Introduction
Association schemes are objects of central importance in algebraic combinatorics. For
an introduction to association schemes, the reader could refer to any of [4, 2, 13, 1, 5].

All our association schemes are symmetric. If X,Y are association schemes on a
common vertex set then we write X ⩽ Y if X refines Y as a partition. A fusion of an
association scheme is a coarsening which is again an association scheme. Notice that
some authors, for example [6], use an opposite order on the set of association schemes.
Our choice was motivated by keeping notation consistent with [1, 5]. Notice that with
this choice of ordering the inclusion X ⩽ Y implies a similar inclusion between the
automorphism groups Aut(X) ⩽ Aut(Y).

We denote the Hamming scheme of order md and rank d + 1 by H(d, m) and
the Johnson scheme of order

(
m
k

)
and rank k + 1 by J (m, k). The special case

H(1, m) ∼= J (m, 1) is the trivial scheme, denoted Tm. The dth tensor power of an
association scheme X is denoted Xd. The symmetrized dth tensor power of the John-
son scheme J (m, k) is called the Cameron scheme and denoted C(m, k, d).

In this paper we classify primitive fusions of J (m, k)d assuming m is sufficiently
large in terms of k and d.

Theorem 1.1. For any positive integers k, d there exists a constant m0(k, d) such
that any primitive fusion X of J (m, k)d with m ⩾ m0(k, d) belongs, up to permuting
coordinates, to one of the following intervals:

(1) J (m, k)d ⩽ X ⩽ C(m, k, d),
(2) T d/e

Me ⩽ X ⩽ H(d/e, Me) for some integer e | d where M =
(

m
k

)
.
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The special cases k = 1 and d = 1 are worth highlighting individually. In [9]
it was shown that H(d, m) has no nontrivial fusions for m > 4. The case k = 1 of
Theorem 1.1 more generally classifies primitive fusions of T d

m (for m sufficiently large).

Corollary 1.2. Let X be a primitive fusion of T d
m, where m ⩾ m0(1, d). Then, up to

permuting coordinates, T d/e
me ⩽ X ⩽ H(d/e, me) for some integer e | d.

In [10] it was shown that J (m, k) has no nontrivial fusions for m ⩾ 3k + 4. This
result was improved to m ⩾ 3k − 1 in [11]. The case k = 1 of Theorem 1.1 recovers
this result, except for the precise lower bound.

Corollary 1.3. Let X be a fusion of J (m, k), where m ⩾ m0(k, 1). Then either
X = J (m, k) or X is trivial.

Association schemes of the type appearing in the conclusion of Theorem 1.1 are
studied in [5], where they are called “Cameron sandwiches” and “Hamming sand-
wiches,” respectively. The main result of [5] is that there are infinite families of non-
schurian Hamming sandwiches.

Remark 1.4. Imprimitive fusions of J (m, k)d are not so easily classified. Certainly
one must allow arbitrary tensor products of the cases appearing in Theorem 1.1, but
there are still many others. For example, the imprimitive wreath product Tm ≀ Tm

(see [4, Section 3.4.1]) is an imprimitive fusion of T 2
m not fitting this description.

As an application we give an elementary classification of primitive groups contain-
ing (A(k)

m )d. Here A
(k)
m denotes the image of the alternating group Am in its permu-

tation action on k-sets, and below S
(k)
m is defined similarly.

The statement below is a special case of Cameron’s theorem [3, 7, 8], which more
generally classifies all large primitive permutation groups. However, while the proof
of Cameron’s theorem depends on the classification of finite simple groups, our proof
does not.

Corollary 1.5. Let G ⩽ Sn be a primitive permutation group containing (A(k)
m )d,

where n =
(

m
k

)d and m ⩾ m0(k, d). Then either

(1) (A(k)
m )d ⩽ G ⩽ S

(k)
m ≀ Sd or

(2) (AMe)d/e ⩽ G ⩽ SMe ≀ Sd/e for some integer e | d where M =
(

m
k

)
.

Proof. Let X be the orbital scheme of G. It follows from (A(k)
m )d ⩽ G that X is a fusion

of the orbital scheme of (A(k)
m )d, which coincides with J (m, k)d. Thus J (m, k)d ⩽ X

and, by Theorem 1.1, either J (m, k)d ⩽ X ⩽ C(m, k, d) or T d/e
Me ⩽ X ⩽ H(d/e, Me).

In the first case, X has a constituent graph equal to the Cameron graph C(m, k, d). In
the second case, X has a constituent graph equal to the Hamming graph H(d/e, Me)
(which is a special case of a Cameron graph). Applying [12, Theorem 8.2.1], either the
claimed conclusion holds or G is small: |G| ⩽ exp(c(log n)3). Since |G| ⩾ |(A(k)

m )d| =
m!d and n =

(
m
k

)d
⩽ mkd, we get d log m! ⩽ c(log n)3 ⩽ c(kd log m)3, in contradiction

to the hypothesis m ⩾ m0(k, d). □
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2. Notation
Let [0, k]d = {0, . . . , k}d. We use the following notation for vectors a, b, c ∈ [0, k]d:

a ⩽ b ⇐⇒ ai ⩽ bi for all i (in this case we say that b dominates a),
|a − b| = (|a1 − b1|, . . . , |ad − bd|),
min(a, b) = (min(a1, b1), . . . , min(ad, bd)),
max(a, b) = (max(a1, b1), . . . , max(ad, bd)),
a! = a1! · · · ad!,(

a

b

)
=

(
a1

b1

)
· · ·

(
ad

bd

)
,

wt(a) = a1 + · · · + ad,

supp(a) = {i : ai > 0},

[a] = {b ∈ [0, k]d : b ⩽ a},

(x)d = (x, . . . , x),
ei = (0, . . . , 0, 1, 0, . . . , 0).

We understand
(

a
b

)
to be zero unless (0)d ⩽ b ⩽ a. We call wt(a) the weight of a and

supp(a) the support of a.
If p is a polynomial in one variable we write deg(p) for its degree and λ(p) for its

leading term.

3. Proof
The structure constants of J (m, k) are given by

pa
b,c(m) =

∑
i

(
k − a

i

)(
a

k − b − i

)(
a

k − c − i

)(
m − k − a

b + c + i − k

)
(as in [5, 6]). Here 0 ⩽ a, b, c ⩽ k, and i can be restricted to the range

max(0, k − a − b, k − b − c, k − a − c) ⩽ i ⩽ min(k − a, k − b, k − c, m − a − b − c).

In the following we always assume m ⩾ 3k. Under this assumption we have pa
b,c(m) > 0

if and only if a, b, c satisfy the triangle inequalities [5, Lemma 4.1]. More precisely we
have the following.

Lemma 3.1. We have pa
b,c(m) > 0 if and only if |b − c| ⩽ a ⩽ b + c. Assuming

that 0 ⩽ b − c ⩽ a ⩽ b + c, the leading term of pa
b,c(m) is

λ(pa
b,c(m)) =

{(
a
b

)(
a
c

) 1
(b+c−a)! m

b+c−a : a ⩾ b,(
k−a
k−b

)(
a

b−c

) 1
c! m

c : a ⩽ b.

In particular, deg(pa
b,c(m)) ⩽ min(b, c), and equality holds if and only if a ⩽ max(b, c).

Now consider J (m, k)d. For a, b, c ∈ [0, k]d, let

pa
b,c(m) =

d∏
i=1

pai

bi,ci
(m).

These are the structure constants of J (m, k)d. The following lemma generalizes the
previous one.
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Lemma 3.2. Let a, b, c ∈ [0, k]d. Then pa
b,c(m) > 0 if and only if |b − c| ⩽ a ⩽ b + c

Moreover deg(pa
b,c(m)) ⩽ wt(min(b, c)), with equality if and only if a ⩽ max(b, c).

If deg(pa
b,c(m)) = wt(b) = wt(c) then a ⩽ b = c and the leading term of pa

b,c(m) is

λ(pa
b,c(m)) =

(
(k)d − a

(k)d − b

)
1
b!m

wt(b).

Proof. It follows from pa
b,c(m) =

∏d
i=1 pai

bici
(m) that pa

b,c(m) > 0 iff each triple ai, bi, ci

satisfies the triangle condition |bi − ci| ⩽ ai ⩽ bi + ci. In this case

deg(pa
b,c(m)) =

d∑
i=1

deg(pai

bi,ci
(m)) ⩽

d∑
i=1

min(bi, ci) = wt(min(b, c)).

Equality holds if and only if ai ⩽ max(bi, ci) for all i.
If deg(pa

b,c(m)) = wt(b) = wt(c) then wt(min(b, c)) = wt(b) = wt(c), which implies
b = c, and moreover we have seen that we must have a ⩽ b. Multiplying the leading
terms of pai

bi,ci
(m) given by the previous lemma, we get the claimed formula. □

Let X be a fusion of J (m, k)d. Since X is a coarsening of J (m, k)d there is a
partition S of [0, k]d such that X = {Rα : α ∈ S}, where

(u, v) ∈ Rα ⇐⇒ (|u1 ∖ v1|, . . . , |ud ∖ vd|) ∈ α.

In this situation we write X = J (m, k)S [5, Section 4]. For β, γ ∈ S and a ∈ [0, k]d
define

pa
β,γ(m) =

∑
b∈β,c∈γ

pa
b,c(m).

For X = J (m, k)S to be an association scheme, S must satisfy two conditions:
(1) {(0)d} ∈ S,
(2) pa

β,γ(m) = pa′

β,γ(m) for all α, β, γ ∈ S and a, a′ ∈ α.
We may denote the common value of pa

β,γ(m) (a ∈ α) by pα
β,γ(m); these are the

structure constants of X.
We call the sets α ∈ S the basic S-sets; their unions are called S-sets. For

nonempty S ⊆ [0, k]d let wt(S) = max{wt(b) | b ∈ S}. For α ∈ S let α∗ be the
set of a ∈ α of maximal weight. Let Dα =

⋃
a∈α∗ [a]. Note that α∗ ⊆ Dα.

For any α, β ⊆ [0, k]d and a ∈ [0, k]d the structure constant pa
α,β(m) is a real poly-

nomial in m the coefficients of which depend on α, β and a. For every pair of distinct
real polynomials f, g ∈ R[x] there exists a real number cf,g ∈ R such that f(x) ̸= g(x)
holds for all x > cf,g. Therefore, there exists a constant m0(k, d) such that, provided
m ⩾ m0(k, d), the following condition holds for all α, β ⊆ [0, k]d and a, b ∈ [0, k]d:

pa
α,β(m) = pb

α,β(m) =⇒ pa
α,β(m) = pb

α,β(m) as polynomials in m(1)
=⇒ λ(pa

α,β(m)) = λ(pb
α,β(m)).

In what follows we assume that m ⩾ m0(k, d) and hence pa
β,γ(m) = pa′

β,γ(m) only
if pa

β,γ(m) and pa′

β,γ(m) are equal as polynomials in m.

Proposition 3.3. Let β ∈ S be a basic S-set.
(1) Dβ is an S-set, and wt(Dβ ∖ β) < wt(β).
(2) For every basic set α ∈ S there is a constant Nβ

α such that∑
b:a⩽b∈β∗

(
(k)d − a

(k)d − b

)
= Nβ

α (a ∈ α).

(3) Every element of β is dominated by a unique element of β∗.
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(4) Either wt(β) = wt(Dβ ∖ β) + 1 or β∗ ⊆ {0, k}d.

Proof. Let w = wt(β) and D = Dβ . Then, since the polynomials pa
b,c(m) have positive

leading coefficient whenever they are nonzero, the degree of pa
β,β(m) is, by the previous

lemma,
deg(pa

β,β(m)) = max
b,c∈β

deg(pa
b,c(m)) ⩽ max

b,c∈β
wt(min(b, c)) ⩽ w,

with equality holding if and only if a ⩽ b = c ∈ β∗, i.e., if and only if a ∈ D.
Since pa

β,β(m) should depend only on the cell of S containing a, it follows that D is
an S-set. Since β is basic, β ⊆ D, and since β ⊇ β∗ we have wt(D ∖ β) < wt(β).

Moreover if a ∈ D then the leading term of pa
β,β is

λ(pa
β,β(m)) =

∑
b:a⩽b∈β∗

(
(k)d − a

(k)d − b

)
1
b!m

w,

and again this should depend only on the cell α containing a. Taking α = β and
a ∈ β∗, it follows that a! is a constant for a ∈ β∗. Hence (2) holds (if α is not
contained in D then Nβ

α = 0).
Next apply (2) with α = β. Taking a ∈ β∗ shows Nβ

β = 1, so (3) holds.
Finally let b ∈ β∗ and suppose a = b − ei ⩾ 0. If a ∈ β then we get(

k − bi + 1
k − bi

)
= Nβ

β = 1,

so bi = k. Hence either wt(b) = wt(β)+1 or bi ∈ {0, k} for all i, which implies (4). □

We can define a partial ordering on S by saying α ⪯ β if every a ∈ α is dominated
by some b ∈ β. By part (3) of the proposition, this is equivalent to Nβ

α > 0. It is
obvious that ⪯ is reflexive and transitive on S. To verify antisymmetry, note that if
α ⪯ β ⪯ α and a ∈ α∗ then there are b ∈ β and a′ ∈ α such that a ⩽ b ⩽ a′, which
by maximality of a implies a = b = a′ and hence α = β since S is a partition. We
say α ∈ S is minimal if it is minimal in (S∖ {(0)d}, ⪯).

Corollary 3.4. Let α ∈ S be a minimal basic set. Then Dα = α∪{(0)d}. Moreover,
the elements of α∗ have disjoint equal-sized supports, and we either have wt(α) = 1
or α∗ ⊆ {0, k}d.

Proof. Apply the proposition. Note that if β is a basic subset of Dα∖α then β ≺ α. By
minimality of α this implies β = {(0)d}. Hence Dα = α ∪{(0)d}. Next, for any a ∈ α∗

and i ∈ supp(a) we have ei ∈ Dα. By part (3) of Proposition 3.3, a is the unique
element of α∗ dominating ei. Therefore the elements of α∗ have disjoint supports. By
part (4), either wt(α) = 1 or α∗ ⊆ {0, k}d. If wt(α) = 1 then all a ∈ α∗ have singleton
support, and otherwise |supp(a)| = wt(a)/k = wt(α)/k for all a ∈ α∗. □

Until now X could be imprimitive. Now we specialize to the primitive case to com-
plete the proof of Theorem 1.1. Let α ∈ S be minimal. If X is primitive then Rα

must be connected, which implies that α∗ covers {1, . . . , d}. Hence α∗ is an equipar-
tition of {1, . . . , d}. Let w = wt(α). If w = 1 then α∗ must be the set of elements
of weight 1, so Rα is the Cameron graph. Since the Weisfeiler–Leman stabilization
of the Cameron graph is the Cameron scheme, we find X ⩽ C(m, k, d). If w > 1
then α∗ ⊆ {0, k}d. If the elements of α∗ have support size e then Rα is the Hamming
graph H(Me, d/e), so X ⩽ H(d/e, Me). To finish we must show T d/e

Me ⩽ X. For this it
suffices to prove that for every β ∈ S, the elements of β∗ are sums of elements of α∗

(and in particular β∗ ⊆ {0, k}d).
We apply Proposition 3.3(2) to α and β. Let i ∈ {1, . . . , d}. Taking a = ei, we find

that Nβ
α is at least the number of b ∈ β∗ such that bi > 0. On the other hand, taking a
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to be the unique element of α∗ dominating ei, since a ∈ {0, k}d we find that Nβ
α is

equal to the number of b ∈ β∗ such that a ⩽ b. Hence bi > 0 implies a ⩽ b. This
implies that b is the sum of those a ∈ α∗ such that a ⩽ b, as required.
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