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The category of finite strings

Henning Krause

Abstract We introduce the category of finite strings and study its basic properties. The cat-
egory is closely related to the augmented simplex category, and it models categories of linear
representations. Each lattice of non-crossing partitions arises naturally as a lattice of subobjects.

1. Introduction
Strings are considered to be one of the most basic combinatorial structures arising in
representation theory of associative algebras. In fact, many of the interactions with
neighbouring fields involve strings and their corresponding representations, which are
also known as string modules.

In this note we introduce a category of finite strings and establish some connec-
tions. First of all, we notice that the category of connected strings is equivalent to
the augmented simplex category ∆ (cf. [8, 17]), once the initial and terminal objects
in ∆ are identified. Then we show that the category of finite strings models categories
of linear representations. More precisely, we provide an equivalence between finite
strings and certain abelian categories (hereditary and uniserial length categories with
only finitely many simple objects and split over a fixed field, cf. [1]), where morphisms
between strings correspond to certain exact functors. In this context it is appropriate
to include cyclic strings which correspond to abelian categories of infinite representa-
tion type. This is somewhat parallel to the cyclic category of Connes and others [3, 4];
however we add new objects (cyclic strings) while the cyclic category keeps the objects
of ∆ and only morphisms are added.

Any morphism in the category of finite strings admits an epi-mono factorisation.
Thus it is of interest to study the subobjects of a given object, at least for any con-
nected string. We show for a linear n-string that the lattice of subobjects is isomorphic
to the lattice NC(n + 1) of non-crossing partitions [16], while the lattice NCB(n) of
type B non-crossing partitions [19] arises for a cyclic n-string.

The correspondence between strings and categories of linear representations iden-
tifies subobjects of strings with thick subcategories of abelian categories. In this way
we recover the beautiful classification of thick subcategories for quiver representations
of type A due to Ingalls and Thomas [13], and we add a classification for nilpotent
representations of cyclic quivers which seems to be new. The cyclic case can be used
to complete the classification of all thick subcategories for representations of any
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tame hereditary algebra, including the ones that are not generated by exceptional se-
quences, and therefore complementing the work in [11, 12, 13]. We point out that the
category of strings can be extended to include all Dynkin types, beyond the type A
in this work, and analogous to the categorification of non-crossing partitions for all
Dynkin types in [11].

Finally, let us mention the connection with some recent work which is concerned
with Iyama’s higher Auslander algebras of type A [14]. These algebras form a natural
generalisation of the hereditary algebras of type A arising in the present work. In [7]
the authors point out the simplicial structure of the representations for these higher
Auslander algebras, using some advanced categorical formalism. Wide subcategories
of representations generalise thick subcategories and these are studied for type A
higher Auslander algebras in [10].

Acknowledgements. It is a pleasure to thank Marc Stephan and Dieter Vossieck for
several useful comments on this work. In addition I wish to thank Christian Stump
for pointing me to the non-crossing partitions of type B. Also, I am grateful to an
anonymous referee for pointing out an inaccuracy in an earlier version.

2. Connected strings
In this work we introduce the category of finite strings. For any natural number n
the connected n-string is denoted by Σn. Each string comes equipped with its set of
(connected) substrings, together with a multiplication on the set of substrings given by
concatenation. The objects of the category are finite coproducts of connected strings,
and the morphisms are maps that preserve substrings and their multiplication.

A basic string is a pair s = (s′, s′′) of integers s′ ⩽ s′′. We write ℓ(s) = s′′ − s′ + 1
for the length of s and add a zero string ∗ satisfying ℓ(∗) = 0. Strings of length one
are called simple and we set si := (i, i), i ∈ Z. For a string s = (i, j) we call the simple
strings si, si+1, . . . , sj its composition factors.

A multiplication of basic strings is given by concatenation. For s, t set

st :=


(s′, t′′) for s = (s′, s′′), t = (t′, t′′), s′′ + 1 = t′,

t for s = ∗,
s for t = ∗,

and the product st is undefined otherwise. This multiplication is associative.
For n ∈ N = {0, 1, 2, . . .} the connected n-string is by definition the set of basic

strings
Σn := {s = (s′, s′′) | 0 ⩽ s′ ⩽ s′′ < n} ∪ {∗}.

A morphism ϕ : Σm → Σn is by definition a map such that for all s, t ∈ Σm
(1) ϕ(st) = ϕ(s)ϕ(t) and ϕ(∗) = ∗.

The string ∗ plays the role of a base point, and morphism are base point preserving.
Any morphism is determined by the images of the simple strings but it need not
preserve the length of basic strings.

We define standard morphisms as follows. Let n ⩾ 1. The morphism

δin : Σn−1 −→ Σn (0 ⩽ i ⩽ n)

is given by the unique injective map such that si−1 and si are not in its image. Note
that δ0

1 = δ1
1 . The morphism

σin : Σn −→ Σn−1 (0 ⩽ i < n)

is given by the unique surjective map that sends si to the zero string.
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The standard morphisms are analogues of the face and degeneracy maps for sim-
plices. In fact, they satisfy the following simplicial identities [17, VII.5].

Lemma 2.1. The standard morphisms satisfy the following identities:

(2)

δin+1 ◦ δjn = δj+1
n+1 ◦ δin i ⩽ j

σjn ◦ σin+1 = σin ◦ σ
j+1
n+1 i ⩽ j

σjn ◦ δin =


δin ◦ σj−1

n i < j

id i = j or i = j + 1
δi−1
n ◦ σjn i > j + 1

Proof. This is easily checked, for instance by tracing the images of the simple strings.
We have

(3) δin(sj) =


sj j < i− 1
(j − 1, j) j = i− 1
sj+1 j > i− 1

and σin(sj) =


sj j < i

∗ j = i

sj−1 j > i.

It remains to note that any morphism ϕ is determined by the images ϕ(sj). □

Small examples are easily computed. We have
Σ0 = {∗} Σ1 = {∗, (0, 0)} Σ0 = {∗, (0, 0), (1, 1), (0, 1)}.

Note that for any n ∈ N the maps δ0
n and δnn are special; they preserve the length of

basic strings since
δ0
n(sj) = sj+1 and δnn(sj) = sj (0 ⩽ j < n).

We denote by Σ the category of connected strings with objects given by the
strings Σn, n ∈ N.

Any morphism can be written in some canonical form. First observe that there is
a canonical epi-mono factorisation.

Lemma 2.2. Let ϕ : Σm → Σn be a morphisms. Let 0 ⩽ jv < · · · < j0 < m be the
indices j such that ϕ(sj) = ∗ and set ϕ′ = σjv

m−v ◦ · · · ◦ σ
j1
m−1 ◦ σj0

m . Then there is a
factorisation ϕ = ϕ′′ ◦ ϕ′ such that ϕ′′ is injective.

Proof. When ϕ(si) = ∗ for some simple string si, then ϕ(ssi) = ϕ(s) and ϕ(sit) = ϕ(t)
for all s, t ∈ Σm. This yields the factorisation ϕ = ϕ′′ ◦ϕ′. Given strings s, t such that
ϕ′′(s) = ϕ′′(t), an induction on their length shows that s = t. □

Lemma 2.3. Every morphism ϕ : Σm → Σn can be written uniquely as composite
(4) ϕ = δiun ◦ δ

iu−1
n−1 ◦ · · · ◦ δ

i0
n−u ◦ σ

jv

m−v ◦ · · · ◦ σ
j1
m−1 ◦ σj0

m

with 0 ⩽ i0 < · · · < iu ⩽ n, 0 ⩽ jv < · · · < j0 < m, and n− u = m− v.(1)

We call (4) the canonical decomposition of ϕ in Σ.

Proof. Let 0 ⩽ jv < · · · < j0 < m be the indices j such that ϕ(sj) = ∗. And
let 0 ⩽ i0 < · · · < iu ⩽ n be the indices such that for all (s′, s′′) ∈ Σn in the image
of ϕ we have s′, s′′ + 1 ̸∈ {i0, . . . , iu}. Then it is clear that ϕ satisfies (4). Conversely,
if ϕ is written as in (4), then the indices i0, · · · , iu and j0, · · · , jv are characterised as
above. □

Lemma 2.4. The category Σ is generated by the objects Σn, the morphisms δin, σjm,
plus the relations δ0

1 = δ1
1 and (2).

(1)We need to exclude δ0
1 as a factor and choose instead δ1

1 in order to achieve uniqueness.
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Proof. Let us denote by Σ′ the category generated by the objects Σn, the morphisms
δin, σjm, plus the relations δ0

1 = δ1
1 and (2). Since the relations are satisfied in Σ, there

is a unique functor Σ′ → Σ which induces the identity on the objects and on the
morphisms δin and σjm. Since every morphism in Σ is a composite of morphisms δin
and σjm, the induced map HomΣ′(Σm,Σn)→ HomΣ(Σm,Σn) is surjective for all m,n.
To show injectivity, choose ϕ, ψ in HomΣ′(Σm,Σn) with same image in Σ. Since the
relations δ0

1 = δ1
1 and (2) in Σ′ are satisfied, there are decompositions (4) in Σ′ for ϕ

and ψ. These decompositions coincide in Σ by Lemma 2.3, and therefore ϕ = ψ. □

Example 2.5. For any n ⩾ 3 we have the following pullback in Σ.

Σn Σn−1

Σn−1 Σn−2

σ0
n

σn−1
n σn−2

n−1
σ0

n−1

3. The simplicial category
Let ∆ denote the simplicial category, which is also known as augmented simplex cat-
egory (terminology and notation follows [17, §VII.5]). The objects are given by the
finite ordinals [n] = {0, 1, . . . , n − 1}, n ∈ N, and the morphisms ϕ : [m] → [n] are
given by maps satisfying ϕ(i) ⩽ ϕ(j) for all 0 ⩽ i ⩽ j < m. For n ⩾ 0 there is the
face map

δ̄in : [n] −→ [n+ 1] (0 ⩽ i ⩽ n)
(the unique injective map not taking the value i) and for n ⩾ 1 the degeneracy map

σ̄in : [n+ 1] −→ [n] (0 ⩽ i < n)
(the unique surjective map taking twice the value i) which are known to satisfy the
simplicial identities (2). In fact, the category ∆ is generated by the objects [n], the
morphisms δ̄in, σ̄jm, and the identities (2); see [8, §II.2] or [17, §VII.5].

We write ∆̄ = ∆[α−1] for the category which is obtained by formally inverting the
morphism α = δ̄0

0 . This amounts to identifying the initial and the terminal object
in ∆.

Proposition 3.1. The assignments

[n] 7→
{

Σ0 n = 0
Σn−1 n > 0,

δ̄in 7→ δin, δ̄0
0 7→ id, σ̄in 7→ σin

provide a functor p : ∆→ Σ which induces an equivalence ∆̄ ∼−→ Σ.

Proof. The functor p is well defined since it maps generators to generators and the sim-
plicial identities are satisfied in both categories. The functor p inverts δ̄0

0 and induces
therefore a functor ∆̄→ Σ, which yields a bijection between the isomorphism classes
of objects. Also for the morphisms we obtain bijections since the functor matches
generators and relations. Note that δ̄0

1 = δ̄1
1 in ∆̄ since δ̄0

0 is invertible. □

The functor p : ∆→ Σ admits two sections s0 and s1 that are given by
Σn 7→ [n+ 1], δin 7→ δ̄in, σin 7→ σ̄in,

except that si(δ0
1) = δ̄i1 = si(δ1

1) for i = 0, 1.
Let us summarise. We have for all n ⩾ 1 diagrams

Σn−1 Σn
δi

n

δi+1
n

σi
n (0 ⩽ i < n)
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satisfying the simplicial identities, but a difference from the usual simplex category
arises because of the extra identity δ0

1 = δ1
1 .

The equivalence in Proposition 3.1 can be explained in terms of linear representa-
tions of posets. We refer to Theorem 4.9 and the appendix for further details.

4. Representations
The category of finite strings models certain categories of linear representations. In
the following we specify the relevant class of abelian categories and the exact functors
between them.

Let P be a poset and k a field. A k-linear representation of P is by definition a
functor P → mod k into the category of finite dimensional k-spaces, where P is viewed
as a category (with objects the elements in P and a unique morphism x→ y if and only
if x ⩽ y). Morphisms between representations are the natural transformations, and
we denote by Rep(P, k) the category of all finite dimensional k-linear representations.

For a k-linear abelian category A over a field k we consider the following conditions.
(Ab1) A is connected, that is, A = A1 ×A2 implies A1 = 0 or A2 = 0.
(Ab2) A is a length category, that is, every object has a finite composition series,

and there are only finitely many isomorphism classes of simple objects.
(Ab3) A is hereditary, that is, Ext2 vanishes.
(Ab4) A is uniserial, that is, every indecomposable object has a unique composition

series.
(Ab5) A is split, that is, End(S) ∼= k for every simple object S.
(Ab6) A is of finite type, that is, there are only finitely many isomorphism classes of

indecomposable objects.

Lemma 4.1. Let A be a k-linear abelian category satisfying (Ab1)–(Ab6). Then there
is an equivalence A ∼−→ Rep([n]op, k), where n equals the number of isomorphism
classes of simple objects in A.

Proof. See for example the description of uniserial categories in [1]. □

From now on we fix a field k and set An := Rep([n]op, k) for n ∈ N. An object
M ∈ An is a diagram

M(n− 1) −→ · · · −→M(1) −→M(0)

of k-spaces. For any string s ∈ Σn we define a representation Ms ∈ An as follows. Set
M∗ = 0. For s = (s′, s′′) let Ms be the representation(2)

0 −→ · · · −→ 0 −→ k
1−−→ · · · 1−−→ k −→ 0 −→ · · · −→ 0

such that Ms(i) = k if and only if s′ ⩽ i ⩽ s′′. Set Mi := Msi
for 0 ⩽ i < n. Observe

that the composition length of Ms equals ℓ(s), and the composition factors of Ms

correspond bijectively to the composition factors of s.

Lemma 4.2. Let n ∈ N.
(1) The assignment s 7→ Ms induces a bijection between Σn ∖ {∗} and the iso-

morphism classes of indecomposable objects in An.
(2) For s, t, u ∈ Σn there is an exact sequence 0 → Ms → Mt → Mu → 0 if and

only if t = su.

Proof. Straightforward. □

(2)This is also known as string module in the terminology of [2].
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Next we specify the class of exact functors which arises naturally in our context.
For each exact functor F : A→ B between abelian categories we denote by KerF the
full subcategory of A given by the objects X ∈ A such that FX = 0. This is a Serre
subcategory and we denote by A/(KerF ) the corresponding quotient, cf. [9].

We say that an exact functor F : A → B between abelian categories admits a
homological factorisation if the induced functor A/A′ → B with A′ = KerF induces
for all objects X,Y ∈ A bijections

ExtiA/A′(X,Y ) −→ ExtiB(FX,FY ) (i ⩾ 0).

A full subcategory of an abelian category is thick if it is closed under direct sum-
mands and the two out of three property holds for any short exact sequence (that is,
if two terms belong to the subcategory, then also the third).

Lemma 4.3. An exact functor F : A→ B between hereditary abelian categories admits
a homological factorisation if and only if A/(KerF ) identifies with a thick subcategory
of B.

Proof. Set A′ = KerF and suppose F identifies A/A′ with a full subcategory B′ ⊆ B.
Clearly, B′ is closed under kernels and cokernels of morphisms since F is exact. The
subcategory B′ is extension closed if and only if the induced map Ext1

A/A′(X,Y ) →
Ext1

B(FX,FY ) is a bijection for all X,Y ∈ A. □

Not all exact functors admit a homological factorisation. A simple example is for
any field k the exact functor mod k → mod k given by X 7→ X ⊗k k2.

For m,n ∈ N we denote by Hom(Am,An) the set of k-linear exact functors Am →
An, up to natural isomorphism, that admit a homological factorisation. We define
natural maps

Hom(Am,An) αmn−−−−→ Hom(Σm,Σn) and Hom(Σm,Σn) βmn−−−−→ Hom(Am,An)

as follows.
Any morphism ϕ : [m] → [n] induces an exact functor ϕ∗ : An → Am via precom-

position. Let us set sin := (δ̄in−1)∗ for 0 ⩽ i < n.

Lemma 4.4. Let n ⩾ 1. There are canonical recollements of abelian categories

A1 An An−1 (0 ⩽ i < n)si
n

di
n

di+1
n

such that
Ker sin = addMi, Im din = Mi

⊥, Im di+1
n = ⊥Mi.

The functors sin, din, di+1
n are exact. Moreover, they send indecomposable objects to

indecomposable objects or to zero.

Proof. Let C = Ker sin denote the full subcategory of objects in An that are annihilated
by sin. It is clear that Mi is the unique simple object in C. Thus C equals the full
subcategory given by the finite direct sums of copies of Mi. Then the right adjoint
of the quotient functor An → An/C identifies An/C with C⊥, while the left adjoint
identifies An/C with ⊥C. Here, we consider the perpendicular categories defined with
respect to Hom and Ext1; cf. [9, §III.2]. This yields the descriptions of din and di+1

n .
The embedding of any perpendicular category into An is exact since Ext2 vanishes.
The functor sin annihilates Mi and sends all other indecomposables to indecomposable
objects. □
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For n ⩾ 1 we set

βn,n−1(σin) := sin and βn−1,n(δin) := din.

One checks that these functors satisfy the identities (2). Thus the assignment ex-
tends uniquely to maps βmn : Hom(Σm,Σn)→ Hom(Am,An) for all m,n ∈ N, using
Lemma 2.4.

Remark 4.5. We have din = (σ̄i−1
n−1)∗ for 0 < i < n. Thus d0

n and dnn are not obtained
from morphisms [n− 1]→ [n].

Lemma 4.6. Let m,n ∈ N. An exact functor F : Am → An that admits a homological
factorisation induces a morphism ϕ : Σm → Σn which is given by F (Ms) = Mϕ(s).

Proof. The functor F identifies Am/(KerF ) with a full subcategory of An. The canon-
ical functor Am → Am/(KerF ) can be written as composite of functors of the form
sip : Ap → Ap−1, which map indecomposables either to indecomposables or to zero.
Thus for any s ∈ Σm we have F (Ms) = Mt for some t ∈ Σn, using Lemma 4.2. This
yields a morphism ϕ : Σm → Σn by setting ϕ(s) = t. □

The above lemma provides maps αmn : Hom(Am,An) → Hom(Σm,Σn) satisfy-
ing αnn(id) = id and αmp(G ◦ F ) = αnp(G) ◦ αmn(F ) for any pair of composable
functors F,G.

Lemma 4.7. A k-linear equivalence An
∼−→ An is naturally isomorphic to the identity.

Proof. The category An is standard, that is, equivalent to the mesh category given
by its Auslander–Reiten quiver [20, §2.4]. Clearly, an equivalence induces the identity
on the Auslander–Reiten quiver and preserves the mesh ideal. From this the assertion
follows. □

Lemma 4.8. Let m,n ∈ N. Then βmn ◦ αmn = id and αmn ◦ βmn = id.

Proof. The identity αmn ◦ βmn = id is clear since this can be checked on the stan-
dard morphisms, thanks to Lemma 2.4. We consider only k-linear exact functors
F : Am → An that admit a homological factorisation. Such functors are determined,
up to natural isomorphism, by the values F (Ms) of the indecomposable objects; see
Lemma 4.7. Thus αmn is injective and βmn ◦ αmn = id follows. □

Combining the above lemmas yields a combinatorial description of the abelian
categories that are specified in Lemma 4.1.

Theorem 4.9. Let k be a field. The assignment Σn 7→ An provides an equivalence
between the category of connected strings and the category of k-linear abelian categories
satisfying (Ab1)–(Ab6) (with morphisms given by k-linear exact functors admitting a
homological factorisation).

We refer to the appendix for some further explanation of this result. In view of
Proposition 3.1 we have the following consequence.

Corollary 4.10. Let k be a field. The assignment [n] 7→ An−1 for n > 0 provides an
equivalence between the augmented simplex category ∆̄ (with the morphism [0] → [1]
inverted) and the category of k-linear abelian categories satisfying (Ab1)–(Ab6).

5. Finite coproducts
For a finite set of natural numbers nα ∈ N we define the coproduct

∐
α Σnα

of strings
by taking from the product of the underlying sets all elements s = (sα) such that
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sα ̸= ∗ for at most one index α (that is, the coproduct of the pointed sets Σnα
). For

s = (sα) and t = (tα) in
∐
α Σnα

set
st := (sαtα).

For each index α and 0 ⩽ i < nα we denote by sα,i the simple string s given by sα = si.
Each coproduct

∐
α Σnα

comes with canonical inclusions iα : Σnα
→

∐
α Σnα

and
projections pα :

∐
α Σnα

→ Σnα
satisfying pα ◦ iα = id.

Morphisms
∐
α Σmα

→
∐
β Σnβ

are by definition maps ϕ between the underlying
sets such that the composite pβ ◦ ϕ ◦ iα is a morphism Σmα

→ Σnβ
for all α, β.

Lemma 5.1. There are canonical isomorphisms of pointed sets

Hom
( ∐
α

Σmα
,
∐
β

Σnβ

)
∼−→

∏
α

Hom
(

Σmα
,
∐
β

Σnβ

)
∼←−

∏
α

∐
β

Hom(Σmα
,Σnβ

).

Proof. Isomorphisms of pointed sets are nothing but bijections, but it is important
to take (co)products of pointed sets. The first bijection is induced by the canonical
inclusions Σmα →

∐
α Σmα . The second bijection uses the fact that each morphism

Σmα
→

∐
β Σnβ

factors through the inclusion Σnβ
→

∐
β Σnβ

for one index β. □

We obtain the category of finite strings which has as objects the finite coproducts
of connected strings.(3)

6. Non-crossing partitions
We wish to describe the subobjects of Σn in the category of finite strings. This requires
some preparations.

Let S ⊆ Σn. We call S thick if ∗ ∈ S and for any pair s, t ∈ S of non-zero
strings we have st ∈ S, and moreover (s′, t′ − 1), (t′, s′′), (s′′ + 1, t′′) ∈ S provided
that s′ ⩽ t′ ⩽ s′′ ⩽ t′′. We denote by Thick(S) the smallest thick subset of Σn
containing S.

A set S ⊆ Σn of non-zero strings is called non-crossing provided that s, t ∈ S and
s′ ⩽ t′ ⩽ s′′ ⩽ t′′ implies s = t.

Lemma 6.1. The assignment S 7→ Thick(S) gives a bijection between the non-crossing
subsets and the thick subsets of Σn.

Proof. The inverse map takes a thick subset T ⊆ Σn to the unique non-crossing subset
S ⊆ T with Thick(S) = T . □

For non-crossing subsets S, S′ of Σn we set
S ⩽ S′ :⇐⇒ Thick(S) ⊆ Thick(S′).

This yields the structure of a poset. In fact, the non-crossing subsets form a lattice
since the thick subsets of Σn are closed under intersections. We denote this lattice by
NC(Σn).

Let n ∈ N. A partition P = (Pα) of [n] is given by pairwise disjoint non-empty
subsets Pα of [n] such that

⋃
α Pα = [n]. Each partition is determined by the corre-

sponding set of strings S(P ) ⊆ Σn−1, where by definition s = (s′, s′′) ∈ S(P ) if for
some α we have s′, s′′ ∈ Pα and i ̸∈ Pα for all s′ < i ⩽ s′′. This is clear since any
part Pα = {a1 < a2 < · · · < ar} is determined by the corresponding set of strings
Sα = {(a1, a2 − 1), . . . , (ar−1, ar − 1)}.

(3)We may consider the category Hom(Σop, Set∗) of functors Σop → Set∗ into the category
of pointed sets, which is the analogue of the category Hom(∆op, Set) of simplicial sets. Then the
category of finite strings identifies via the embedding X 7→ Hom(−, X)|Σ with the full subcategory
of finite coproducts of representable functors in Hom(Σop, Set∗).
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Call a subset S ⊆ Σn−1 of non-zero strings partitioning when for any s, t ∈ S we
have s′ = t′ if and only if s′′ = t′′. In that case there is a unique partition P = P (S)
such that S(P ) = S. This yields a bijective correspondence between partitions of [n]
and partitioning sets of strings in Σn−1.

A partition P is non-crossing provided given elements i < j < i′ < j′ with i, i′ in
the same part and j, j′ in the same part, then all elements belong to the same part.
The partitions of [n] are partially ordered via refinement, so P ⩽ P ′ if any part of P
is contained in a part of P ′. The non-crossing partitions then form a lattice which is
denoted by NC(n); cf. [16, 22].

Lemma 6.2. There is a lattice isomorphism NC(Σn−1) ∼−→ NC(n) which is given by
S 7→ P (S).

Proof. It is clear that S ⊆ Σn−1 is non-crossing if and only if P (S) is non-crossing.
Let S ⩽ S′. This means any s ∈ S can be written as s = s1s2 · · · sr with s1, . . . , sr
in S′. On the other hand, P ⩽ P ′ means that for any part Pα = {a1 < a2 < · · · < au}
of P and t = (ai, ai+1 − 1) ∈ S(P ), there is a part of P ′ containing ai, ai+1 and
therefore t = t1t2 · · · tr with t1, . . . , tr in S(P ′). Thus we have S ⩽ S′ if and only
if P (S) ⩽ P (S′). □

We say that two monomorphisms X1 ↣ X and X2 ↣ X are equivalent if there
exists an isomorphism X1 → X2 making the following diagram commutative.

X1 X2

X

An equivalence class of monomorphisms into X is called a subobject of X. Given
subobjects X1 ↣ X and X2 ↣ X, we write X1 ⩽ X2 if there is a morphism X1 → X2
making the above diagram commutative; this yields a partial order.

For a monomorphism ϕ : X → Σn in the category of finite strings we set
S(ϕ) := {ϕ(s) | s ∈ X simple}.

Lemma 6.3. Let S ⊆ Σn be non-crossing. Then there exists a monomorphism ϕ : X →
Σn such that S(ϕ) = S.

Proof. Consider the equivalence relation on S generated by s ∼ t when st ̸= ∗. This
yields a partition S =

⋃
α Sα and we set nα := cardSα. Using the fact that S is non-

crossing, there is a unique morphism ϕ :
∐
α Σnα → Σn which identifies the simple

strings sα,i with the elements in Sα. Thus S = S(ϕ). □

Lemma 6.4. A morphism ϕ : X → Σn is a monomorphism if and only if it is given by
an injective map.

Proof. Clearly, any injective map yields a monomorphism. Thus we suppose that ϕ is
a monomorphism and need to show that ϕ is given by an injective map.

Let X =
∐r
i=1 Σni

. The canonical decomposition of a morphism Σni
→ Σn from

Lemma 2.3 yields the case r = 1. For the general case we may assume that r = 2.
For each index i the restricted morphism ϕi : Σni

→ Σn is given by an injective map
by the first case. Then each subset Imϕi is thick, and Imϕ1 ∩ Imϕ2 = Thick(S)
for some non-crossing S ⊆ Σn. Let ψ : Y → Σn be the corresponding morphism
with S(ψ) = S which exists by Lemma 6.3. Clearly, ψ factors through each ϕi via a
morphism ψi : Y → Σni

. We obtain a diagram

Y X Σn
ψ1

ψ2

ϕ
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where both composites equal ψ. Thus ψ1 = ψ2 and therefore Imϕ1∩ Imϕ2 = {∗}. We
conclude that ϕ is given by an injective map. □

Lemma 6.5. Let ϕ : X → Σn be a monomorphism. Then the set S(ϕ) is non-crossing
and we have Thick(S(ϕ)) = Imϕ. Moreover, ϕ factors through a monomorphism
ϕ′ : X ′ → Σn if and only if S(ϕ) ⩽ S(ϕ′).

Proof. LetX =
∐r
i=1 Σni

andm ∈ N. The set S of simple strings in Σm is non-crossing
and we have Thick(S) = Σm. This property is preserved under a monomorphism
Σm → Σn and yields the case r = 1. The general case follows since the restrictions
ϕi : Σni

→ Σn satisfy Imϕi ∩ Imϕj = {∗} for i ̸= j, by Lemma 6.4.
For a monomorphism ϕ′ : X ′ → Σn we have

S(ϕ) ⩽ S(ϕ′) ⇐⇒ Thick(S(ϕ)) ⊆ Thick(S(ϕ′))
⇐⇒ Imϕ ⊆ Imϕ′

⇐⇒ ϕ factors through ϕ′. □

Theorem 6.6. Let n ∈ N. The subobjects of Σn in the category of finite strings form
a lattice canonically isomorphic to the lattice of non-crossing partitions NC(n + 1).
The isomorphism sends a monomorphism ϕ : X → Σn to P (S(ϕ)).

This result could be deduced from [11, 13], using the correspondence between
strings and representations from Theorem 4.9, which identifies thick subsets of Σn
with thick subcategories of An. We refer to [21, §4] for a detailed exposition. The
following is a direct proof.

Proof. The assignment ϕ 7→ P (S(ϕ)) gives a well defined map from the poset of
subobjects of Σn to NC(n + 1) by Lemmas 6.2 and 6.5. In fact, the map is injective
and ϕ factors through a monomorphism ϕ′ if and only if P (S(ϕ)) ⩽ P (S(ϕ′)). Thus
it remains to show surjectivity. Let P ∈ NC(n + 1) and set S = S(P ). Then there
is a morphism ϕ :

∐
α Σnα

→ Σn satisfying S = S(ϕ) by Lemma 6.3. Thus we have
that P = P (S(ϕ)). □

7. Cyclic strings
We enlarge the category of finite strings and add cyclic strings as follows. Let ΣZ
denote the set of all basic strings. There is a natural action of the group of integers
given by

∗z := ∗ and sz := (s′ + z, s′′ + z) for s = (s′, s′′), z ∈ Z.
For n > 0 the cyclic n-string is the set of orbits with respect to the action of the
subgroup (n) = nZ. Thus

Σ̃n := {s(n) | s ∈ ΣZ} where s(n) = {sni | i ∈ Z},
with multiplication given by

s(n)t(n) := u(n)

provided that there is a pair of integers i, j such that snitnj = u. We set Σ̃0 := {∗}.
A morphism ϕ : Σ̃m → Σ̃n is by definition a map satisfying (1). We define standard

morphisms which are given by their values on simple strings as in (3). Let n ⩾ 1.
Then the morphism

δ̃in : Σ̃n−1 −→ Σ̃n (0 ⩽ i < n)
is given by the injective map such that s(n)

i−1 and s
(n)
i are not in its image, and the

morphism
σ̃in : Σ̃n −→ Σ̃n−1 (0 ⩽ i < n)
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is given by the surjective map such that s(n)
i is sent to the zero string. The cyclic

permutation
τ in : Σ̃n −→ Σ̃n (0 ⩽ i < n)

is given by s(n) 7→ (si)(n).

Lemma 7.1. The standard morphisms satisfy the identities (2), and every morphism
ϕ : Σ̃m → Σ̃n admits a unique decomposition

ϕ = δiun ◦ δ
iu−1
n−1 ◦ · · · ◦ δ

i0
n−u ◦ σ

jv

m−v ◦ · · · ◦ σ
j1
m−1 ◦ σj0

m ◦ τkm
with 0 ⩽ i0 < · · · < iu < n, 0 ⩽ jv < · · · < j0 < m, 0 ⩽ k < m, and n− u = m− v.

Proof. Adapt the proof of Lemmas 2.1 and 2.3. The only difference arises from cyclic
permutations. □

Next we consider morphisms Σm → Σ̃n and Σ̃m → Σn, which are by definition
maps satisfying (1). Let n ⩾ 1. The standard morphism

εin : Σn−1 −→ Σ̃n (0 ⩽ i < n)

is given by the unique injective map such that s(n)
i is not in its image. We consider

the morphism

Σ̃n Σ̃n Σ̃n−1 · · · Σ̃1
τ−i

n σ̃n−1
n

σ̃n−2
n−1 σ̃1

2

and note that its kernel (that is, the set of elements sent to the zero string) equals
the image of εin.

Lemma 7.2. Let m,n ∈ N. Every morphism Σm → Σ̃n factors through εin for some
0 ⩽ i < n, and every morphism Σ̃m → Σn factors through Σ̃0 = Σ0.

Proof. First consider a morphism ϕ : Σm → Σ̃n. It is easily checked that the longest
string s(n) in the image of ϕ has length at most n−1, because the image of ϕ is finite.
Choose an index i such that the simple si does not arise as a composition factor of
s. It follows that ϕ factors through εin, since all composition factors of strings in the
image of ϕ are composition factors of s.

Now consider for ψ : Σ̃m → Σn its epi-mono factorisation ψ = ψ′′ ◦ ψ′. The image
is of the form Σ̃p for some p ⩽ m. Because ψ′′ is injective and Σ̃p is infinite for p > 0
we conclude that p = 0. □

Let us consider the category of all connected strings (linear and cyclic). The objects
are of the form Σn or Σ̃n with n ∈ N. As before, we add finite coproducts and obtain
the enlarged category of finite strings. The objects are of the form( ∐

α
Σmα

)
⨿

( ∐
β

Σ̃nβ

)
given by a finite set of natural numbers mα and nβ .

Let k be a field. For the quiver

n− 1 n− 2 · · · 1 0 (n ⩾ 1)

we denote by Ãn the category of all finite dimensional and nilpotent k-linear repre-
sentations. Then we have the following analogue of Lemma 4.1.

Lemma 7.3. Let k be a field and A a k-linear abelian category. Suppose that A satisfies
(Ab1)–(Ab5) but not (Ab6). Then there is an equivalence A ∼−→ Ãn, where n equals
the number of isomorphism classes of simple objects in A.
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Proof. See for example the description of uniserial categories in [1]. □

We continue with analogues of Lemmas 4.2 and 4.4. Let n ⩾ 1. The indecomposable
objects of Ãn are parameterised by the elements of Σ̃n ∖ {∗}. There are canonical
recollements of abelian categories

A1 Ãn Ãn−1 (0 ⩽ i < n)s̃i
n

d̃i
n

d̃i+1
n

(with d̃0
n = d̃nn) and composing them yields a recollement

An−1 Ãn Ã1.e0
n s̃1

2···s̃n−1
n

Furthermore, there are equivalences
tin : Ãn ∼−−→ Ãn (0 ⩽ i < n)

which are given by a cyclic permutation Sj 7→ Sj+i of the simple representations. We
obtain a correspondence between standard morphisms in Σ̃n and exact functors:

δ̃in ←→ d̃in σ̃in ←→ s̃in εin ←→ ein τ in ←→ tin (0 ⩽ i < n).
The following result generalises Theorem 4.9. As before, we consider k-linear

abelian categories together with k-linear exact functors, up to natural isomorphism,
that admit a homological factorisation.

Theorem 7.4. Let k be a field. The assignments Σn 7→ An and Σ̃n 7→ Ãn provide an
equivalence between the enlarged category of finite strings and the category of k-linear
abelian categories satisfying (Ab2)–(Ab5).

Proof. We adapt the proof of Theorem 4.9. Any k-linear abelian category satisfy-
ing (Ab2)–(Ab5) decomposes into a finite coproduct of connected abelian categories,
which are (up to an equivalence) of the form An or Ãn, respectively, by Lemmas 4.1
and 7.3. Thus we obtain a bijection between the isomorphism classes of objects.
It remains to consider the morphisms, and we may restrict ourselves to connected
categories. An exact functor F : A → B which admits a homological factorisation
sends indecomposable objects either to indecomposables or to zero; see Lemma 4.6.
This yields a morphism ϕ : ΣA → ΣB between the corresponding strings, given by
Mϕ(s) = F (Ms) for each s ∈ ΣA. The assignment F 7→ ϕ is injective since k-linear
exact functors which admit a homological factorisation are naturally isomorphic when
they coincide on indecomposable objects; see Lemma 4.7. The assignment is surjective,
by Lemmas 2.3 and 7.1, in combination with Lemma 7.2. □

8. Non-crossing partitions of type B

We wish to describe the subobjects of Σ̃n in the enlarged category of finite strings.
This description is parallel to that for Σn and involves the non-crossing partitions of
type B.

Let S ⊆ ΣZ. We call S thick if ∗ ∈ S and for any pair s, t ∈ S of non-zero
strings we have st ∈ S, and moreover (s′, t′ − 1), (t′, s′′), (s′′ + 1, t′′) ∈ S provided
that s′ ⩽ t′ ⩽ s′′ ⩽ t′′. We denote by Thick(S) the smallest thick subset of ΣZ
containing S.

A set S ⊆ ΣZ of non-zero strings is called non-crossing provided that s, t ∈ S and
s′ ⩽ t′ ⩽ s′′ ⩽ t′′ implies s = t.

For n > 0 consider the canonical projection p : ΣZ → Σ̃n. Then a subset S ⊆ Σ̃n
is thick if p−1(S) is thick, and S is non-crossing if p−1(S) is non-crossing. Note that
ℓ(s) ⩽ n for any s(n) when S is non-crossing.
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Lemma 8.1. The assignment S 7→ Thick(S) gives a bijection between the non-crossing
subsets and the thick subsets of Σ̃n.

Proof. The inverse map takes a thick subset T ⊆ Σ̃n to the unique non-crossing subset
S ⊆ T with Thick(S) = T . □

For non-crossing subsets S, S′ of Σ̃n we set
S ⩽ S′ :⇐⇒ Thick(S) ⊆ Thick(S′).

This yields the structure of a poset. In fact, the non-crossing subsets form a lattice
since the thick subsets of Σ̃n are closed under intersections. We denote this lattice
by NC(Σ̃n).

Let n ∈ N. We consider the set
[2n] = {0, 1, · · · , n− 1, 0̄, 1̄, · · · , n− 1},

where x̄ is identified with x+ n for 0 ⩽ x < n, and ¯̄x := x. For a partition P = (Pα)
of [2n] we require that Pα is a part of P for each α. Each partition is determined
by the corresponding set of strings S(P ) ⊆ Σ̃n, where by definition s(n) ∈ Σ̃n with
0 ⩽ s′ < n belongs to S(P ) if for some α we have s′, s′′ ∈ Pα and i ̸∈ Pα for all
s′ < i ⩽ s′′. The partitions of [2n] are partially ordered via refinement, and the
non-crossing partitions then form a lattice which is denoted by NCB(n); cf. [19, 22].

Lemma 8.2. There is a lattice isomorphism NC(Σ̃n) ∼−→ NCB(n) which is given by
S 7→ P (S).

Proof. Adapt the proof of Lemma 6.2. □

Remark 8.3. Let P = (Pα) be a non-crossing partition of [2n] and denote by S = (Sα)
the corresponding partition of S = S(P ). Then P has at most one part Pα satisfying
Pα = Pα. In fact, Pα = Pα holds if and only if Thick(Sα) is infinite.

As before, we write P (S) for the partition of [2n] corresponding to a non-crossing
set S ⊆ Σ̃n. For a monomorphism ϕ : X → Σ̃n in the category of finite strings we set

S(ϕ) := {ϕ(s) | s ∈ X simple}.

Theorem 8.4. Let n ∈ N. The subobjects of Σ̃n in the enlarged category of finite
strings form a lattice which is canonically isomorphic to the lattice of non-crossing
partitions NCB(n). The isomorphism sends a monomorphism ϕ : X → Σ̃n to P (S(ϕ)).

Proof. Adapt the proof of Theorem 6.6. □

9. Thick subcategories
Results about subobjects in categories of strings correspond to statements about thick
subcategories of abelian categories, because of the correspondence from Theorem 7.4.

Recall that a full subcategory of an abelian category is thick if it is closed under
direct summands and the two out of three property holds for any short exact sequence.

Lemma 9.1. Let k be a field and let A be a k-linear abelian category satisfying (Ab2)–
(Ab5). Then every thick subcategory of A satisfies again (Ab2)–(Ab5).

Proof. Let C ⊆ A be a thick subcategory. Then C is closed under images of morphisms
in C because A is hereditary. It follows that the category C is abelian and again
hereditary. Also, C is necessarily a length category. If X ∈ C is simple, then End(X)
is isomorphic to k[t]/(tp) for some p ⩾ 1, since X is indecomposable in A. Schur’s
lemma then implies p = 1. It remains to show that C is a uniserial category with
finitely many simple objects. We may assume that either A = An or A = Ãn for
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some n ∈ N. Then a representative set of simple objects in C identifies with a non-
crossing subset S in Σn or Σ̃n. The set S is finite since the length of any string in S
is bounded by n. Let Ms,Mt be simple objects in C corresponding to strings s, t ∈ S.
Then Ext1(Mt,Ms) ̸= 0 if and only if st ̸= ∗. It is clear that for each s ∈ S there is
at most one t ∈ S with st ̸= ∗, and dually there is at most one r ∈ S with rs ̸= ∗.
Then a criterion from [1] implies that C is uniserial. □

Now we can deduce classifications of thick subcategories from Theorems 6.6 and 8.4.
The first part is due to Ingalls and Thomas [13] and only included for completeness;
the second part seems to be new.

Corollary 9.2. Let k be a field and n ∈ N.
(1) There is a canonical isomorphism between the lattice of thick subcategories of

An and the lattice NC(n+ 1).
(2) There is a canonical isomorphism between the lattice of thick subcategories of

Ãn and the lattice NCB(n).

Proof. We apply Lemma 9.1. From the homological factorisation of an exact functor it
follows that each subobject of An or Ãn is given by the inclusion of a thick subcategory.
On the other hand, all thick subcategories arise in this way. Theorem 7.4 provides
the correspondence with subobjects of Σn and Σ̃n, respectively. Then the assertion
follows for An from Theorem 6.6 and for Ãn from Theorem 8.4. □

Remark 9.3. (1) The classification of thick subcategories for abelian categories of the
form An or Ãn given by a field and n ∈ N generalises to any connected hereditary and
uniserial length category with finitely many isomorphism classes of simple objects. The
proof is essentially the same, because indecomposable objects can be identified with
strings which encode their composition series. Then thick subcategories correspond
bijectively to non-crossing sets of strings.

(2) The category of regular modules over a tame hereditary algebra is an exam-
ple of an hereditary and uniserial length category [6]. For the module category of a
tame hereditary algebra one can show that any thick subcategory is contained in the
thick subcategory of regular modules, provided it is not generated by an exceptional
sequence [5]. This yields a classification of all thick subcategories, complementing the
work in [11, 12, 13].

(3) For an hereditary abelian category A, thick subcategories of the bounded de-
rived category Db(A) correspond bijectively to thick subcategories of A via

Db(A) ⊇ C 7−→ {H0(X) ∈ A | X ∈ C} ⊆ A,

see [15, Proposition 4.4.17].

Appendix A. Basic strings
The properties of basic strings and the connection with linear representations become
more transparent if we consider analogues of face and degeneracy maps for the poset
of integers. We view this poset as a category, and this means that morphisms Z→ Z
are viewed as functors. For i ∈ Z we define morphisms

δi : Z −→ Z, j 7→

{
j j < i

j + 1 j ⩾ i

and

σi : Z −→ Z, j 7→

{
j j ⩽ i

j − 1 j > i.
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These satisfy the simplicial identities (2). Moreover, they are related via adjunctions:
· · · ⊣ δi+1 ⊣ σi ⊣ δi ⊣ σi−1 ⊣ · · ·

Let k be a field. Then for each i ∈ Z precomposition with δi and σi yields exact
functors

Rep(Zop, k) Rep(Zop, k).
(δi)∗

(σi)∗

This assignment is contravariant and therefore reverses the directions of functors.
Thus the dual simplicial identities but the same adjunctions

· · · ⊣ (δi+1)∗ ⊣ (σi)∗ ⊣ (δi)∗ ⊣ (σi−1)∗ ⊣ · · ·
are satisfied.

For i ∈ Z let Si denote the simple representation concentrated in i, that is, Si(j) = 0
for all j ̸= i. Let n ∈ N. Then precomposition with the inclusion [n] → Z yields an
exact functor

Rep(Zop, k) −→ Rep([n]op, k) = An

which becomes an equivalence when restricted to the full subcategory of objects in
Rep(Zop, k) with composition factors in {S0, . . . , Sn−1}. Viewing this as an identifi-
cation, the functors (δi)∗ and (σi−1)∗ restrict to exact functors

An
(δi)∗

−−−−→ An−1 (0 ⩽ i < n)
and

An−1
(σi−1)∗

−−−−−−→ An (0 ⩽ i ⩽ n).
Recall that ΣZ denotes the set of basic strings. Then ΣZ ∖ {∗} identifies with the

indecomposable objects of finite length in Rep(Zop, k) via s 7→Ms, as in Lemma 4.2.
This identification yields maps ΣZ → ΣZ which are induced by (δi)∗ and (σi)∗, re-
spectively. Restricting these maps for any n ∈ N to the set Σn of basic strings with
composition factors in {s0, . . . , sn−1} gives

σin = (δi)∗|Σn
and δin = (σi−1)∗|Σn−1 .

Then the following elementary observation (reflecting a duality for the simplicial cat-
egory ∆, cf. [18, VIII.7]) explains the simplicial relations (and any further properties)
for δin : Σn−1 → Σn and σin : Σn → Σn−1.

Lemma A.1. Consider symbols (δi, σi) and (di, si) for some integers i ∈ Z. After
substituting δi 7→ si and σi 7→ di+1 and reversing the order of composition, the iden-
tities (2) hold for (di, si) if and only if they hold for (δi, σi).
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