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Abstract Let q be a prime power and define (n)q = 1 + q + q2 + · · · + qn−1, for a nonnegative
integer n. Let Bq(n) denote the set of all subspaces of Fn

q , the n-dimensional Fq-vector space
of all column vectors with n components.

Define a Bq(n) × Bq(n) complex matrix Mq(n) with entries given by

Mq(n)(X, Y ) =

1 if Y ⊆ X, dim(Y ) = dim(X) − 1,

qk if X ⊆ Y, dim(Y ) = k + 1, dim(X) = k,

0 otherwise.

We think of Mq(n) as a q-analog of the adjacency matrix of the n-cube. We show that the
eigenvalues of Mq(n) are

(n − k)q − (k)q with multiplicity
(n

k

)
q
, k = 0, 1, . . . , n,

and we write down an explicit canonical eigenbasis of Mq(n). We give a weighted count of the
number of rooted spanning trees in the q-analog of the n-cube.

1. Introduction
One aspect of algebraic combinatorics is the study of eigenvalues and eigenvectors
of certain matrices associated with posets and graphs. Among the most basic such
examples is the adjacency matrix of the n-cube, which has an elegant spectral theory
and arises in a variety of applications (see [2, 14]). This paper defines a q-analog of
this matrix, studies its spectral theory, and gives an application to weighted counting
of rooted spanning trees in the q-analog of the n-cube.

Let q be a prime power and define (n)q = 1 + q+ q2 + · · · + qn−1, for a nonnegative
integer n. Let Bq(n) denote the set of all subspaces of Fn

q , the n-dimensional Fq-vector
space of all column vectors with n components. The set of k-dimensional subspaces
in Bq(n) is denoted Bq(n, k) and its cardinality is the q-binomial coefficient

(
n
k

)
q
. The

Galois number

Gq(n) =
n∑

k=0

(
n

k

)
q
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is the total number of subspaces in Bq(n). The set Bq(n) has the structure of a graded
poset of rank n, under inclusion.

Recall the definition of the adjacency matrix M(n) of the n-cube: let B(n) denote
the set of all subsets of {1, 2, . . . , n}. The rows and columns of M(n) are indexed by
elements of B(n), with the entry in row S, column T equal to 1 if |(S∖T )∪(T∖S)| = 1
and equal to 0 otherwise. Define a Bq(n) ×Bq(n) complex matrix Mq(n) with entries
given by

Mq(n)(X,Y ) =


1 if Y ⊆ X,dim(Y ) = dim(X) − 1,
qk if X ⊆ Y,dim(Y ) = k + 1,dim(X) = k,

0 otherwise.
(1)

We think ofMq(n) as a q-analog of the adjacency matrix of the n-cube. Note thatM(n)
is symmetric, has entries in {0, 1}, and has all row sums equal to n. The significance of
the definition above for the q-analog comes from the fact that though Mq(n) lacks the
first two properties it does have all row sums equal. Indeed, let X ∈ Bq(n, k). Then the
number of subspaces covering X is (n− k)q and the number of subspaces covered by
X is (k)q and so the sum of the entries of row X of Mq(n) is qk(n−k)q +(k)q = (n)q.

A scaling (i.e., a diagonal similarity) of Mq(n) is symmetric. Let Dq(n) be
the Bq(n) × Bq(n) diagonal matrix with diagonal entry in row X, column X given

by
√
q(

k
2), where k = dim(X). Then for X ∈ Bq(n, k), Y ∈ Bq(n, r) the entry in

row X, column Y of Dq(n)Mq(n)Dq(n)−1 is given by√
q(

k
2)Mq(n)(X,Y )

√
q−(r

2)

=


√
q(

k
2) qk

√
q−(k+1

2 ) =
√
qk if X ⊆ Y and r = k + 1,√

q(
k
2)
√
q−(k−1

2 ) =
√
qr if Y ⊆ X and r = k − 1,

0 otherwise,

=
{√

qmin{dim(X),dim(Y )} if X ⊆ Y or Y ⊆ X, and | dim(X) − dim(Y )| = 1,
0 otherwise,

yielding a symmetric matrix. It follows that Mq(n) is diagonalizable and that its
eigenvalues are real. In fact they are integral and the (eigenvalue, multiplicity) pairs
of Mq(n) are a q-analog of those for M(n); the eigenvalues of M(n) are n − 2k =
(n− k) − (k) with multiplicity

(
n
k

)
, k = 0, 1, . . . , n (see [2, 14]).

Theorem 1.1. The eigenvalues of the matrix Mq(n) are

(n− k)q − (k)q with multiplicity
(
n

k

)
q

, k = 0, 1, . . . , n.

We give two proofs of Theorem 1.1 in this paper. The first proof, given in Sec-
tion 2, is based on two basic results of Terwilliger [16, 17, 19]. A result from [16] on
the existence of a symmetric Jordan basis with respect to the up operator, together
with formulas for the action of the up and down operators on this basis, reduces
Theorem 1.1 to showing that the eigenvalues of Kq(n), a certain (n + 1) × (n + 1)
tridiagonal matrix, are (n − k)q − (k)q, 0 ⩽ k ⩽ n. The matrix Kq(n) is a q-analog
of the famous tridiagonal matrix K(n) of Mark Kac [1, 8, 15] (both these matrices
are defined in Section 2). Now Kq(n) occurs in Terwilliger’s classification of Leonard
pairs ([17, 19]) and as such its eigenvalues/eigenvectors were known (see, for example,
Lemma 4.20 in [18]), completing the first proof of Theorem 1.1.
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Another natural problem is to write down eigenvectors of Mq(n). For X ∈ Bq(n)
with dim(X) = k define

π(X) = q(
k
2)

Pq(n) ,

where Pq(n) =
∏n−1

k=0(1 + qk). We have

∑
X∈Bq(n)

π(X) =
∑n

k=0 q
(k

2)(n
k

)
q

Pq(n) = 1

where the second equality follows by the q-binomial theorem (so π is a probability
vector on Bq(n)).

Define an inner product on the (complex) vector space of column vectors with
components indexed by Bq(n) as follows: given vectors u, v define

⟨u, v⟩π =
∑

X∈Bq(n)

u(X)v(X)π(X).(2)

Since Pq(n) is independent of k, the argument showing that Dq(n)Mq(n)Dq(n)−1 is
symmetric shows that Mq(n) is self-adjoint with respect to the inner product (2).

Recall that a classical result exhibits an explicit orthogonal eigenbasis of M(n)
(under the standard inner product), see [2, 14]. Up to scalars, this basis is canonical
in the sense that no choices are involved in writing it down. Moreover, the product
M(n)v, for v in the eigenbasis, can be evaluated easily, determining the eigenvalues
of M(n). In Section 4 we extend this method to Mq(n).

Theorem 1.2. There is an inductive procedure to write down a canonical eigenbasis
of Mq(n), orthogonal with respect to the inner product (2).

In the course of proving Theorem 1.2 we also evaluate the products Mq(n)v, for v
in the eigenbasis, thereby giving an alternate proof of Theorem 1.1.

Let us make a few informal remarks about the proof of Theorem 1.2. For the matrix
M(n) one writes down an orthogonal eigenbasis, directly and explicitly for each n. It
is not clear how to extend this direct approach to Mq(n). On the other hand, we can
inductively understand the eigenbasis of M(n) and then try to extend that approach
to Mq(n). Roughly speaking, M(n + 1) can be built using two copies of M(n) and
this allows us to write down an eigenbasis of M(n+ 1) given an eigenbasis of M(n).
The Goldman–Rota recurrence for the Galois numbers ([6, 9, 10])

Gq(n+ 1) = 2Gq(n) + (qn − 1)Gq(n− 1), n ⩾ 1, Gq(0) = 1, Gq(1) = 2,(3)
suggests the possibility of building Mq(n+ 1) from two copies of Mq(n) and (qn − 1)
copies of Mq(n − 1) and using this to write down an eigenbasis of Mq(n + 1) given
eigenbases of Mq(n) and Mq(n − 1). This is implemented in Section 4 using a linear
algebraic interpretation of the Goldman–Rota recurrence that was worked out in [13]
(and summarized in Section 3 of the present paper). The two copies ofMq(n) occurring
in Mq(n + 1) is along the same lines as the q = 1 case (although we need some
powers of q not visible in the q = 1 case, see (24) and cases (a), (b) in the proof of
Theorem 4.4). The extra feature here is the qn − 1 copies of Mq(n− 1) in Mq(n+ 1).
Here a central role is played by the characters of the additive abelian group Fn

q . There
is a copy of Mq(n−1) inside Mq(n+1) for every nontrivial irreducible character of Fn

q ,
so qn − 1 copies in all. These introductory remarks on Theorem 1.2 are continued at
the beginning of Section 4.

We originally arrived at the matrix Mq(n) through a reversible Markov chain with
state space Bq(n), transition matrix 1

(n)q
Mq(n), and stationary distribution π (see [5]).

Algebraic Combinatorics, Vol. 6 #3 (2023) 709
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Since the spectral theory of Mq(n), as a q-analog of the spectral theory of M(n), is of
independent interest we are presenting it separately in this paper. Another application
concerns weighted enumeration of rooted spanning trees in the q-analog of the n-cube.

Let us first recall the remarkable product formula (see Example 9.12 in [14]) for the
number of rooted spanning trees in the n-cube. Let C(n) denote the n-cube (i.e., the
Hasse diagram of the poset B(n) treated as a graph) and let F(n) denote the set of
all rooted spanning trees of C(n). The Laplacian eigenvalues of C(n) are well known
to be 2k, k = 0, 1, . . . , n with multiplicity

(
n
k

)
. It thus follows from the Matrix-Tree

theorem that the number of rooted spanning trees of C(n) is given by∑
F ∈F(n)

1 =
n∏

k=1
(2k)(

n
k).(4)

The q-analog Cq(n) of C(n) is defined to be the Hasse diagram of Bq(n) treated
as a graph (note that Mq(n) is not the adjacency matrix of the graph Cq(n)). The
eigenvalues of the Laplacian of Cq(n) are not known (note that Cq(n) is not regular)
but it was shown in [12] that the product of the nonzero eigenvalues of the Laplacian
is more tractable and led to a product formula for the number of spanning trees
of Cq(n), although the individual terms in this product are not explicitly given but
only as a positive combinatorial sum. Here we obtain an explicit q-analog of (4) by a
weighted count of the rooted spanning trees of Cq(n).

Let F ∈ Fq(n), the set of all rooted spanning trees of Cq(n). Orient every edge
of F by pointing it towards the root. Let e = (X,Y ) be an oriented edge of F . We
say e is spin up if dim(Y ) = dim(X) + 1 and is spin down if dim(Y ) = dim(X) − 1.
The weight of F is defined by

w(F ) =
∑

(X,Y )

dim(X),

where the sum is over all spin up oriented edges of F . In Section 5 we prove the follow-
ing generalization of (4) (the proof can be read at this point, assuming Theorem 1.1).

Theorem 1.3. We have∑
F ∈Fq(n)

qw(F ) =
n∏

k=1
((1 + qn−k)(k)q)(

n
k)

q .

2. Eigenvalues of Mq(n)
The spectral theory of Mq(n) goes hand in hand with that of a q-analog of the Kac
matrix. Recall that the Kac matrix is a (n+1)× (n+1) tridiagonal matrix K(n) with
diagonal (0, 0, . . . , 0), subdiagonal (1, 2, . . . , n) and superdiagonal (n, n− 1, . . . , 1):

K(n) =



0 n
1 0 n− 1

2 0 n− 2
. . . . . . . . .

n− 1 0 1
n 0


.

The eigenvalues of K(n) are n − 2k, k = 0, 1, . . . , n, and its eigenvectors have been
written down (see [1, 2, 3, 8, 15]).

We define the q-analog of the Kac matrix to be the (n+1)×(n+1) tridiagonal matrix
Kq(n) with diagonal (0, 0, . . . , 0), subdiagonal ((1)q, (2)q, . . . , (n)q) and superdiagonal
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((n)q, q(n− 1)q, . . . , q
n−1(1)q):

Kq(n) =



0 (n)q

(1)q 0 q(n− 1)q

(2)q 0 q2(n− 2)q

. . . . . . . . .
(n− 1)q 0 qn−1(1)q

(n)q 0


.

More formally, let us index the rows and columns of Kq(n) by the set {0, 1, 2, . . . , n}.
If c0, c1, . . . , cn denote column vectors in Fn+1

q with ci having a 1 in the component
indexed by i and 0’s elsewhere (and we set c−1 = cn+1 = 0) then, for 0 ⩽ k ⩽ n,
column k of Kq(n) is

(k + 1)q ck+1 + qk−1(n− k + 1)q ck−1.(5)

We now discuss the significance of Kq(n) for studying Mq(n). The proper frame-
work for studying this are the up (and down) operators on the poset of subspaces.

For a finite set S, we denote the complex vector space with S as basis by C[S]. We
denote by r the rank function (given by dimension) of the graded poset Bq(n). Then
we have (vector space direct sum)

C[Bq(n)] = C[Bq(n, 0)] ⊕ C[Bq(n, 1)] ⊕ · · · ⊕ C[Bq(n, n)].

An element v ∈ C[Bq(n)] is homogeneous if v ∈ C[Bq(n, i)] for some i, and if v ̸= 0,
we extend the notion of rank to nonzero homogeneous elements by writing r(v) = i.
For 0 ⩽ k ⩽ n, the kth up operator Un,k : C[Bq(n)] → C[Bq(n)] is defined, for
X ∈ Bq(n), by Un,k(X) = 0 if dim(X) ̸= k and Un,k(X) =

∑
Y Y , where the

sum is over all Y ∈ Bq(n) covering X, if dim(X) = k. Similarly we define the kth

down operator Dn,k : C[Bq(n)] → C[Bq(n)] (we have Un,n = Dn,0 = 0). Set Un =
Un,0 + Un,1 + · · · + Un,n and Dn = Dn,0 +Dn,1 + · · · +Dn,n, called, respectively, the
up and down operators on C[Bq(n)].

If we think of the elements of C[Bq(n)] as column vectors with components indexed
by the standard basis elements Bq(n) then Mq(n) is the matrix of the operator

Mq(n) = Un +
n∑

k=0
qk−1Dn,k

with respect to the basis Bq(n).
For 0 ⩽ k ⩽ n, define sk ∈ C[Bq(n, k)] by

sk =
∑

X∈Bq(n,k)

X,

and define Rq(n) to be the subspace of C[Bq(n)] spanned by s0, s1, . . . , sn. Ele-
ments of Rq(n) are called radial vectors. Clearly, Rq(n) is closed under Mq(n) and
dim(Rq(n)) = n+ 1. We have

Mq(n)(sk) = (k + 1)q sk+1 + qk−1(n− k + 1)q sk−1, 0 ⩽ k ⩽ n.

It follows from (5) that the matrix of Mq(n) : Rq(n) → Rq(n) with respect to the
basis {s0, . . . , sn} is Kq(n).

Thus, knowing the eigenvalues of Kq(n) would at least tell us some of the eigen-
values of Mq(n). The eigenvalues and eigenvectors of Kq(n) have been determined by
Terwilliger [18] (we shall not use the eigenvector information given in the result below
in this paper).

Algebraic Combinatorics, Vol. 6 #3 (2023) 711
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Theorem 2.1. (i) The eigenvalues of Kq(n) are

(n− k)q − (k)q, k = 0, 1, . . . , n.

(ii) For 0 ⩽ k ⩽ n, there is a right eigenvector of Kq(n) corresponding to the
eigenvalue (n− k)q − (k)q whose component i, 0 ⩽ i ⩽ n is given by

3ϕ2

(
q−i, q−k,−qk−n

0, q−n q, q

)
where the basic hypergeometric series notation is from [4].

Proof. This is Lemma 4.20 in [18] (replace b by q, d by n, and j by n − k). Part (i)
also follows from Theorem 2 in Johnson [7] (by taking a = z = 1 and h = k = 0). □

To show that there are no other eigenvalues of Mq(n) and that the eigenvalue mul-
tiplicities are as claimed in Theorem 1.1 we shall use another result of Terwilliger [16].

A symmetric chain in C[Bq(n)] is a sequence

s = (vk, . . . , vn−k), k ⩽ n/2,(6)

of nonzero homogeneous elements of C[Bq(n)] such that
• r(vi) = i for i = k, . . . , n− k.
• Un(vi) is a nonzero scalar multiple of vi+1, for i = k, . . . , n − k − 1 and
Un(vn−k) = 0.

• Dn(vi+1) is a nonzero scalar multiple of vi for i = k, . . . , n − k − 1 and
Dn(vk) = 0.

Note that the elements of the sequence s are linearly independent, being nonzero and
of different ranks. We say that s starts at rank k and ends at rank n − k. Note that
the subspace spanned by the elements of s is closed under Un, Dn and also Mq(n).

The following result was proved (in an equivalent form) by Terwilliger [16] (see
Item 5 of Theorem 3.3 on top of page 208). For a proof using Proctor’s sl(2,C)
technique [11] see Theorem 2.1 in [12] (where also the result is stated differently but
in an equivalent form to that given below).

Theorem 2.2. There exists a basis Tq(n) of C[Bq(n)] such that
(1) Tq(n) is a disjoint union of symmetric chains in C[Bq(n)].
(2) Let 0 ⩽ k ⩽ n/2 and let (vk, . . . , vn−k) be any symmetric chain in Tq(n)

starting at rank k and ending at rank n− k. Then

Un(vu) = qk(u+ 1 − k)q vu+1, k ⩽ u < n− k.

Dn(vu+1) = (n− k − u)q vu, k ⩽ u < n− k.

We now give the

Proof of Theorem 1.1. Observe the following.
(i) The number of symmetric chains in Tq(n) starting at rank k and ending at rank

n− k, for 0 ⩽ k ⩽ n/2, is
(

n
k

)
q

−
(

n
k−1
)

q
.

(ii) Let s = (vk, . . . , vn−k) be a symmetric chain in Tq(n) starting at rank k, where
0 ⩽ k ⩽ n/2. Then the subspace spanned by {vk, . . . , vn−k} is closed under Mq(n)
and, by Theorem 2.2, the matrix of Mq(n) with respect to the basis s is qkKq(n−2k).

(iii) By Theorem 2.1 the eigenvalues of qkKq(n− 2k) are

qk((n− 2k − i)q − (i)q), i = 0, 1, . . . , n− 2k
= ((n− i)q − (i)q), i = k, . . . , n− k.

Algebraic Combinatorics, Vol. 6 #3 (2023) 712
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(iv) It now follows from items (i), (ii), (iii) above that the eigenvalues of Mq(n)
are

(n− j)q − (j)q, j = 0, . . . , n,

with respective multiplicities
min{j,n−j}∑

i=0

(
n

i

)
q

−
(

n

i− 1

)
q

=
(
n

j

)
q

.

That completes the proof. □

3. A decomposition of C[Bq(n)]
In this and the next section we give proofs of Theorems 1.1 and 1.2 by inductively
writing down an eigenbasis for the operator Mq(n). This is based on a direct sum
decomposition of the vector space C[Bq(n)] that was given in the paper [13]. This
decomposition yields a linear algebraic interpretation of the Goldman–Rota recurrence
(see equations (13), (14), (16) and Remark 3.4) and is of independent interest. In [13]
it was used to inductively write down an explicit eigenbasis for the Bose–Mesner
algebra of the Grassmann scheme. Here we recall the relevant definitions and results
from [13]. All the omitted proofs may be found in Section 2 of [13].

We can write down the Goldman–Rota identity in terms of the q-binomial coeffi-
cients, (

n+ 1
k

)
q

=
(
n

k

)
q

+
(

n

k − 1

)
q

+ (qn − 1)
(
n− 1
k − 1

)
q

, n, k ⩾ 1,(7)

with
(0

k

)
q

= δ(0, k) and
(

n
0
)

q
= 1. Note that (3) follows by summing (7) over k.

We shall now give a linear algebraic interpretation to (3) and (7). Denote the
standard basis vectors of Fn

q by the column vectors e1, . . . , en. We identify Fk
q , for

k < n, with the subspace of Fn
q consisting of all vectors with the last n−k components

zero. So Bq(k) consists of all subspaces of Fn
q contained in the subspace spanned

by e1, . . . , ek.
Define Aq(n + 1) to be the collection of all subspaces in Bq(n + 1) not contained

in the hyperplane Fn
q , i.e.,

Aq(n+ 1) = Bq(n+ 1) −Bq(n) = {X ∈ Bq(n+ 1) : X ̸⊆ Fn
q }, n ⩾ 0.

For 1 ⩽ k ⩽ n+ 1, let Aq(n+ 1, k) denote the set of all subspaces in Aq(n+ 1) with
dimension k. We consider Aq(n+ 1) as an induced subposet of Bq(n+ 1).

We have a direct sum decomposition

C[Bq(n+ 1)] = C[Bq(n)] ⊕ C[Aq(n+ 1)].(8)

We shall now give a further decomposition of C[Aq(n+ 1)].
Let H(n + 1,Fq) denote the subgroup of GL(n + 1,Fq) consisting of all matrices

of the form  I

a1
·
·
an

0 · · · 0 1

 ,
where I is the n× n identity matrix.

Algebraic Combinatorics, Vol. 6 #3 (2023) 713
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The additive abelian group Fn
q is isomorphic to H(n+ 1,Fq) via the isomorphism

ϕ : Fn
q → H(n+ 1,Fq) given by

ϕ



a1
·
·
an


 →

 I

a1
·
·
an

0 · · · 0 1

 .
Let Iq(n) denote the set of all distinct irreducible characters (all of degree 1) of the

finite abelian group H(n+1,Fq) and let Nq(n) denote the set of all distinct nontrivial
irreducible characters of H(n+ 1,Fq).

There is a natural (left) permutation action of H(n + 1,Fq) on Aq(n + 1) and
Aq(n + 1, k). This permutation action induces representations of H(n + 1,Fq) on
C[Aq(n+ 1)] and C[Aq(n+ 1, k)].

For χ ∈ Iq(n), let W (χ) (respectively, W (χ, k)) denote the isotypical component
of C[Aq(n+ 1)] (respectively, C[Aq(n+ 1, k)]) corresponding to the irreducible repre-
sentation of H(n+ 1,Fq) with character χ. When χ is the trivial character we denote
W (χ) (respectively, W (χ, k)) by W (0) (respectively, W (0, k)). We have the following
decompositions, (note that W (χ, n+ 1), for χ ∈ Nq(n), is the zero module).

W (0) = W (0, 1) ⊕ · · · ⊕W (0, n+ 1),(9)
W (χ) = W (χ, 1) ⊕ · · · ⊕W (χ, n), χ ∈ Nq(n),(10)

C[Aq(n+ 1)] = W (0) ⊕
(
⊕χ∈Nq(n)W (χ)

)
.(11)

Now GL(n+1,Fq) acts on Bq(n+1) and C[Bq(n+1)] and the action of Un+1 commutes
with the action of GL(n + 1,Fq) (and hence with the action of H(n + 1,Fq)). Also,
C[Aq(n+ 1)] is clearly closed under Un+1. Thus

W (0), W (χ), χ ∈ Nq(n) are Un+1-closed.(12)
Define an equivalence relation ∼ on Aq(n + 1) by X ∼ Y iff X ∩ Fn

q = Y ∩ Fn
q .

Denote the equivalence class of X ∈ Aq(n + 1) by [X]. For a subspace X ∈ Bq(n),
define X̂ to be the subspace in Aq(n+ 1) spanned by X and en+1.

Lemma 3.1. Let X,Y ∈ Aq(n+ 1) and Z, T ∈ Bq(n). Then
(i) dim(X ∩ Fn

q ) = dimX − 1 and X̂ ∩ Fn
q ∈ [X].

(ii) Z ⩽ T iff Ẑ ⩽ T̂ .
(iii) Y covers X iff

(a) Y ∩ Fn
q covers X ∩ Fn

q and
(b) Y = Span ((Y ∩ Fn

q ) ∪ {v}) for any v ∈ X − Fn
q .

(iv) The number of subspaces Z ′ ∈ Aq(n + 1) with Z ′ ∩ Fn
q = Z is ql, where l =

n− dimZ. Thus, |[X]| = qn+1−k, where k = dimX.

For X ∈ Aq(n+ 1), let GX ⊆ H(n+ 1,Fq) denote the stabilizer of X.

Lemma 3.2. Let X,Y ∈ Aq(n+ 1). Then
(i) The orbit of X under the action of H(n+ 1,Fq) is [X].
(ii) Suppose Y covers X. Then the bipartite graph of the covering relations between
[Y ] and [X] is regular with degrees q (on the [Y ] side) and 1 (on the [X] side).
(iii) Suppose X ⊆ Y . Then GX ⊆ GY .

Consider C[Bq(n+ 1)]. For X ∈ Bq(n) define

θn(X) =
∑

Y

Y,
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where the sum is over all Y ∈ Aq(n+ 1) covering X. Equivalently, the sum is over all
Y ∈ Aq(n+ 1) with Y ∩ Fn

q = X, i.e., Y ∈ [X̂]. It follows from Lemma 3.2(i) that

θn : C[Bq(n)] → W (0)(13)

is a linear isomorphism.
Combining (8) and (11) we have the decomposition

C[Bq(n+ 1)] = (C[Bq(n)] ⊕W (0)) ⊕
(
⊕χ∈Nq(n)W (χ)

)
,(14)

where, by (12) and (13),

C[Bq(n)] ⊕W (0) is Un+1-closed.(15)

Let ψk (respectively, ψ) denote the character of the permutation representation
of H(n + 1,Fq) on C[Aq(n + 1, k)] (respectively, C[Aq(n + 1)]) corresponding to the
left action. Clearly ψ =

∑n+1
k=1 ψk. Below [, ] denotes character inner product and the

q-binomial coefficient
(

n
k

)
q

is taken to be zero when n or k is < 0.

Theorem 3.3. (i) Let χ ∈ Iq(n) be the trivial character. Then [χ, ψk] =
(

n
k−1
)

q
for

1 ⩽ k ⩽ n+ 1.
(ii) Let χ ∈ Nq(n). Then [χ, ψk] =

(
n−1
k−1
)

q
, 1 ⩽ k ⩽ n+ 1.

Remark 3.4. Using Theorem 3.3(ii) we see that

dim(W (χ)) =
n+1∑
k=1

(
n− 1
k − 1

)
q

= Gq(n− 1), χ ∈ Nq(n).(16)

Now, by taking dimensions on both sides of (14) and using (13), (16) we get the
Goldman–Rota identity (3). More generally, by restricting to dimension k on both
sides of (14), we get the identity (7).

For χ ∈ Iq(n), define the following element of the group algebra of H(n+ 1,Fq):

p(χ) =
∑

g

χ(g) g,

where the sum is over all g ∈ H(n+ 1,Fq). For 1 ⩽ k ⩽ n+ 1, the map

p(χ) : C[Aq(n+ 1, k)] → C[Aq(n+ 1, k)],(17)

given by v 7→
∑

g∈H(n+1,Fq) χ(g) gv, is a nonzero multiple of the H(n + 1,Fq)-linear
projection onto W (χ, k). Similarly for p(χ) : C[Aq(n+ 1)] → C[Aq(n+ 1)].

For future reference we record the following observation:

p(χ)(Ŷ ) and p(χ)(Ẑ) have disjoint supports, for Y ̸= Z ∈ Bq(n).(18)

Lemma 3.5. Let X ∈ Aq(n + 1) and χ ∈ Iq(n). Then p(χ)(X) = 0 iff χ : GX → C∗

is a nontrivial character of GX .

Theorem 3.6. (i) Let χ ∈ Iq(n), X, Y ∈ Aq(n + 1) with X = hY for some h ∈
H(n+ 1,Fq). Then

p(χ)(X) = χ(h−1) p(χ)(Y ).
(ii) Let χ ∈ Iq(n). Then {p(χ)(X̂) : X ∈ Bq(n, k − 1) with p(χ)(X̂) ̸= 0} is a basis
of W (χ, k), 1 ⩽ k ⩽ n+ 1.
(iii) Let χ ∈ Iq(n) and let X,Y ∈ Bq(n) with X covering Y .

p(χ)(X̂) ̸= 0 implies p(χ)(Ŷ ) ̸= 0.
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4. Eigenvectors of Mq(n)
We begin with a brief description of the contents of this section. In the initial part
(up to and including Corollary 4.3) we show that the decomposition of C[Bq(n+ 1)]
given in Section 3 is well adapted to an inductive approach to studying Mq(n). These
results are then used to prove Theorems 1.1 and 1.2 with Theorems 4.4 and 4.6. In
applications (see Section 1.9, in particular the upper bound lemma, in [2]) the lengths
of vectors in an orthogonal basis and the absolute value of the components of these
vectors play an important role. With this in view we collect, in Lemma 4.7, such
information about our orthogonal basis even though we have no immediate use for
this in our paper. Finally, we single out a special set of 2n eigenvectors of Mq(n) and
write down an explicit expression for them, see Lemma 4.8. These can be seen as the
q-analogs of the classical eigenvectors of M(n), written down in [2, 14]. Each of the
classical eigenvectors has support of size 2n (i.e., all the coordinates in the standard
basis are nonzero). Similarly, these 2n special eigenvectors of Mq(n) have support of
size Gq(n) (and these are the only eigenvectors with that property). At the end of
this section we pose a problem on radial eigenvectors of Mq(n). In the classical q = 1
case this problem has an elementary and well known solution.

Consider the decomposition

C[Bq(n+ 1)] = (C[Bq(n)] ⊕W (0)) ⊕
(
⊕χ∈Nq(n)W (χ)

)
.(19)

We claim that

C[Bq(n)] ⊕W (0) and W (χ), χ ∈ Nq(n) are Dn+1-closed.(20)

This can be seen as follows. Consider the standard inner product on C[Bq(n+1)] (i.e.,
declare Bq(n+ 1) to be an orthonormal basis), which is GL(n+ 1,Fq)-invariant (and
hence H(n+ 1,Fq)-invariant). It follows that W (0), W (χ), χ ∈ Nq(n) are orthogonal
and hence the decomposition (19) is orthogonal. Since Dn+1 is the adjoint of Un+1,
the claim now follows from (12) and (15).

Thus C[Bq(n)] ⊕W (0) and W (χ), χ ∈ Nq(n) are closed under Mq(n+ 1).
Let X ∈ Bq(n, k). By Lemma 3.1(iv) we see that θn(X) is a sum of qn−k subspaces

in Aq(n+ 1, k + 1). So we can express Dn+1,k+1(θn(X)) in the following form

Dn+1,k+1(θn(X)) = qn−kX + v,(21)

for some v ∈ C[Aq(n+ 1, k)]. A little reflection shows that v ∈ W (0). Defining

D
′

n+1,k+1(θn(X)) = v

gives a linear map

D
′

n+1,k+1 : W (0) → W (0), 0 ⩽ k ⩽ n,

that takes the vector θn(X) for X ∈ Bq(n, k) to the vector v above.
Define M′

q(n) : W (0) → W (0) by

M
′

q(n) = Un+1 +
n∑

k=0
qkD

′

n+1,k+1.

We have the following relations (the first of which follows from (21)):

Mq(n+ 1)(θn(v)) = qnv + M
′

q(n)(θn(v)), v ∈ C[Bq(n)],(22)
Mq(n+ 1)(v) = Mq(n)(v) + θn(v), v ∈ C[Bq(n)].(23)

We now write down the matrix of M′

q(n) with respect to the basis of W (0) given
by {θn(X) | X ∈ Bq(n)}.

Algebraic Combinatorics, Vol. 6 #3 (2023) 716



A q-analog of the adjacency matrix of the n-cube

It follows from Lemma 3.1(iii) and Lemma 3.2(ii) that

Un+1(θn(X)) =
∑

Y

q θn(Y ), X ∈ Bq(n),

where the sum is over all Y ∈ Bq(n) covering X. Similarly, it follows that

qkD
′

n+1,k+1(θn(Y )) =
∑
X

q
{
qk−1θn(X)

}
, Y ∈ Bq(n, k),

where the sum is over all X ∈ Bq(n) covered by Y .
Thus we see that

the matrix of M′

q(n) with respect to basis {θn(X) | X ∈ Bq(n)} is qMq(n).(24)

For a finite vector space X over Fq we denote by Bq(X) the set of all subspaces
of X and we denote by UX (respectively, DX) the up operator (respectively, down
operator) on C[Bq(X)].

Let χ ∈ Nq(n). By Theorem 3.3(ii) we have dim(W (χ, n)) = 1. It thus follows by
Theorem 3.6(ii) and (18) above that there is a unique element X(χ) ∈ Bq(n, n − 1)
such that p(χ)(X̂(χ)) ̸= 0. Moreover (see Section 2 in [13]),

Lemma 4.1. Let Y ∈ Bq(n, n− 1). Then

|{χ ∈ Nq(n) | X(χ) = Y }| = q − 1.

Let (V1, f1) be a pair consisting of a finite dimensional vector space V1 (over C)
and a linear operator f1 on V . Let (V2, f2) be another such pair. By an isomorphism
of pairs (V1, f1) and (V2, f2) we mean a linear isomorphism τ : V1 → V2 such that
τ(f1(v)) = f2(τ(v)), v ∈ V1.

Theorem 4.2. Let χ ∈ Nq(n) and X = X(χ). Define

λ(χ) : C[Bq(X)] → W (χ)

by Y 7→ q− dim(Y )p(χ)(Ŷ ), Y ∈ Bq(X).
Then
(i) λ(χ) is an isomorphism of pairs (C[Bq(X)], qUX) and (W (χ), Un+1).
(ii) λ(χ) is an isomorphism of pairs (C[Bq(X)], DX) and (W (χ), Dn+1).

Proof. By Theorem 3.6(iii) it follows that λ(χ)(Y ) ̸= 0 for all Y ∈ Bq(X). By (16)
the dimensions of C[Bq(X)] and W (χ) are the same. Thus, it follows from (18) that
λ(χ) is a vector space isomorphism.

(i) Let Y ∈ Bq(X) with dim(Y ) = k.
We have (below the sum is over all Z covering Y in Bq(X))

λ(χ)(qUX(Y )) = qλ(χ)
(∑

Z

Z

)
= q−k

∑
Z

p(χ)(Ẑ).

Before calculating Un+1λ(χ)(Y ) we make the following observation. Thanks to
Lemma 3.1(ii), every element covering Ŷ is of the form Ẑ, for some Z covering Y
in Bq(n). Suppose Z ∈ Bq(n) − Bq(X). Since dim(W (χ)) = Gq(n − 1), it follows by
parts (ii) and (iii) of Theorem 3.6 and (18) that p(χ)(Ẑ) = 0.

We now calculate Un+1λ(χ)(Y ). In the second step below we have used the fact
that Un+1 is H(n + 1,Fq)-linear and in the third step, using the observation in the
paragraph above, we may restrict the sum to all Z covering Y in Bq(X).
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We have

Un+1(λ(χ)(Y )) = Un+1

(
q−kp(χ)(Ŷ )

)
= q−kp(χ)(Un+1(Ŷ ))
= q−k

∑
Z

p(χ)(Ẑ).

(ii) Let Y ∈ Bq(X) with dim(Y ) = k.
We have (below the sum is over all Z covered by Y in Bq(X))

λ(χ)(DX(Y )) = λ(χ)
(∑

Z

Z

)
= q−k+1

∑
Z

p(χ)(Ẑ).

Before calculating Dn+1λ(χ)(Y ) we make two observations:
(a) Let Y cover Z, Z ∈ Bq(X). Then, by Lemma 3.2(ii), there are q subspaces

in [Ẑ] which are covered by Ŷ . Let Z1 ∈ [Ẑ] with Ŷ covering Z1. Then, there exists
g ∈ H(n + 1,Fq) with gẐ = Z1. It follows by Lemma 3.1(iii) that gŶ = Ŷ . Thus,
from Lemma 3.5 we have χ(g) = 1.

(b) Let Ŷ cover Z, where Z ∈ Bq(n). Then Z = Y and p(χ)(Z) = 0, since χ is
nontrivial and every element of H(n+ 1,Fq) fixes Z.

Now we compute (using Lemma 3.2(ii), Theorem 3.6(i), and (a), (b) above)

Dn+1(λ(χ)(Y )) = q−k
{
Dn+1

(
p(χ)(Ŷ )

)}
= q−kp(χ)(Dn+1(Ŷ ))
= q−k+1

∑
Z

p(χ)(Ẑ).

where the sum is over all Z ∈ Bq(X) covered by Y . □

Before proceeding further we introduce some notation. Let X ∈ Bq(n, n− 1). The
pairs (C[Bq(X)], UX) and (C[Bq(n − 1)], Un−1) are clearly isomorphic with many
possible isomorphisms. We now define a canonical isomorphism, based on the concept
of a matrix in Schubert normal form.

A n× k matrix M over Fq is in Schubert normal form (or, column reduced echelon
form) provided
(i) Every column is nonzero.
(ii) The last nonzero entry in every column is a 1. Let the last nonzero entry in
column j occur in row rj .
(iii) We have r1 < r2 < · · · < rk and the submatrix of M formed by the
rows r1, r2, . . . , rk is the k × k identity matrix. We call {r1, . . . , rk} the pivotal
indices of M .

It is well known that every k dimensional subspace of Fn
q is the column space of a

unique n × k matrix in Schubert normal form. Given X ∈ Bq(n, k), define P (X) ⊆
{1, 2, . . . , n} to be the pivotal indices of the n × k matrix in Schubert normal form
with column space X. It is easy to see that P (X) can also be defined as follows

P (X) = {j ∈ {1, 2, . . . , n} : X ∩ Fj
q ∈ Aq(j)}.

Let X ∈ Bq(n, n − 1) and let M(X) be the n × (n − 1) matrix in Schubert
normal form with column space X. The map τ(X) : Fn−1

q → X defined by ej 7→
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column j of M(X) is clearly a linear isomorphism and this isomorphism gives rise to
an isomorphism

µ(X) : C[Bq(n− 1)] → C[Bq(X)]
of pairs (C[Bq(n − 1)], Un−1) and (C[Bq(X)], UX) (and also of (C[Bq(n − 1)], Dn−1)
and (C[Bq(X)], DX)) given by µ(X)(Y ) = τ(X)(Y ), Y ∈ Bq(n − 1). It now follows
from Theorem 4.2 that

Corollary 4.3. Let χ ∈ Nq(n) and X = X(χ). Then the composition λ(χ)µ(X) is
an isomorphism of pairs (C[Bq(n− 1)], qMq(n− 1)) and (W (χ),Mq(n+ 1)).

We shall now prove Theorems 1.1 and 1.2 by inductively writing down eigenvectors
of Mq(n). We shall need an indexing set for the eigenvectors. Given the fact that the
eigenvalue multiplicities are the q-binomial coefficients it might appear that the set
of subspaces Bq(n) may be used as an indexing set. We do not know of any natural
way to index the eigenvectors of Mq(n) by Bq(n) (unlike the q = 1 case, where the
eigenvectors of M(n) may be naturally indexed by B(n)). A more useful indexing set,
defined below, for the eigenvectors of Mq(n) is suggested by the decomposition (19).

For n ⩾ 0, inductively define a set Eq(n) consisting of sequences as follows (here ()
denotes the empty sequence):

Eq(0) = {()},
Eq(1) = {(0), (1)},
Eq(n) = {(α1, . . . , αt) | (α1, . . . αt−1) ∈ Eq(n− 1), αt ∈ {0, 1}}

∪{(α1, . . . , αt) | (α1, . . . αt−1) ∈ Eq(n− 2), αt ∈ Nq(n− 1)}, n ⩾ 2.

Given α ∈ Eq(n), let N(α) denote the number of nonzero entries in the sequence α
(note that a nonzero entry is either 1 or an element of Nq(m) for some m). Set

Eq(n, k) = {α ∈ Eq(n) | N(α) = k},
eq(n, k) = |Eq(n, k)|.

It is easy to see that

eq(n+ 1, k) = eq(n, k) + eq(n, k − 1) + (qn − 1)eq(n− 1, k − 1), n, k ⩾ 1,(25)

with eq(0, k) = δ(0, k) and eq(n, 0) = 1, the same recurrence (with the same initial
conditions) as (7), Thus eq(n, k) =

(
n
k

)
q

and |Eq(n)| = |Bq(n)|.
The following result implies Theorem 1.1 and the first part of Theorem 1.2.

Theorem 4.4. For each α ∈ Eq(n) we define a vector vα ∈ C[Bq(n)] such that
(i) Mq(n)(vα) = ((n− k)q − (k)q)vα, where k = N(α).
(ii) {vα | α ∈ Eq(n)} is a basis of C[Bq(n)].

Proof. The proof is by induction on n, the cases n = 0, 1 being clear by taking ({0}
denotes the zero subspace)

v() = {0}, v(0) = {0} + Fq, v(1) = {0} − Fq.

Let n ⩾ 1 and consider α = (α1, . . . , αt) ∈ Eq(n + 1). Set β = (α1, . . . , αt−1) and
k = N(β). We have three cases:

(a) αt = 0: We have vβ ∈ C[Bq(n)]. Define

vα = qkvβ + θn(vβ) ∈ C[Bq(n)] ⊕W (0).(26)

(b) αt = 1: We have vβ ∈ C[Bq(n)]. Define

vα = qn−kvβ − θn(vβ) ∈ C[Bq(n)] ⊕W (0).(27)
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(c) αt = χ, χ ∈ Nq(n): We have vβ ∈ C[Bq(n− 1)]. Set X = X(χ) and define

vα = λ(χ)µ(X)(vβ) ∈ W (χ).(28)

Let us now check assertions (i) and (ii) in the statement of the theorem, beginning
with (i). We have three cases.

(a) αt = 0: By the induction hypothesis and (24) we have

Mq(n)(vβ) = ((n− k)q − (k)q)(vβ), M
′

q(n)(θn(vβ)) = q((n− k)q − (k)q)(θn(vβ)).

We have, by (22) and (23),

Mq(n+ 1)(vα) = Mq(n+ 1)(qkvβ + θn(vβ))
= qkMq(n+ 1)(vβ) + Mq(n+ 1)(θn(vβ))
= qk(Mq(n)(vβ) + θn(vβ)) + qnvβ + M

′

q(n)(θn(vβ))
= (qn−k + (n− k)q − (k)q)qkvβ + (qk + q((n− k)q − (k)q))θn(vβ)
= ((n+ 1 − k)q − (k)q)(qkvβ + θn(vβ)).

(b) αt = 1: By the induction hypothesis and (24) we have

Mq(n)(vβ) = ((n− k)q − (k)q)(vβ), M
′

q(n)(θn(vβ)) = q((n− k)q − (k)q)(θn(vβ)).

We have, by (22) and (23),

Mq(n+ 1)(vα)
= Mq(n+ 1)(qn−kvβ − θn(vβ))
= qn−kMq(n+ 1)(vβ) − Mq(n+ 1)(θn(vβ))
= qn−k(Mq(n)(vβ) + θn(vβ)) − qnvβ − M

′

q(n)(θn(vβ))
= (−qk + (n− k)q − (k)q)qn−kvβ − (−qn−k + q((n− k)q − (k)q))θn(vβ)
= ((n+ 1 − (k + 1))q − (k + 1)q)(qn−kvβ − θn(vβ)).

(c) αt = χ, χ ∈ Nq(n): Set X = X(χ). It follows from Corollary 4.3 that

Mq(n+ 1)(vα) = q((n− 1 − k)q − (k)q)vα

= ((n+ 1 − (k + 1))q − (k + 1)q)vα.

Assertion (ii) follows from the induction hypothesis using the decomposition (19),
the isomorphism (13) and observing that the determinant of the 2 × 2 matrix[

qk 1
qn−k −1

]
is nonzero. □

We denote the basis given in part (ii) of Theorem 4.4 by Bq(n). Note that (up
to scalars) this basis is canonical in the sense that we have not made any choices
anywhere.

Remark 4.5. Note that equations (26), (27), (28) give an inductive procedure to write
down Bq(n+ 1) given Bq(n) and Bq(n− 1).

The following result completes the proof of Theorem 1.2.

Theorem 4.6. The basis Bq(n) of C[Bq(n)] is orthogonal with respect to the inner
product (2).
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Proof. The proof is by induction on n, the cases n = 0, 1 being clear.
Let n ⩾ 1. We consider two cases:
(i) Let β = (β1, . . . , βt−1) ∈ Eq(n). Set k = N(β) and

α = (β1, . . . , βt−1, 0), α′ = (β1, . . . , βt−1, 1).
Given a vectors u, v ∈ C[Bq(n)], we shall write ⟨u, v⟩n for the inner product (2)

calculated in C[Bq(n)] and ⟨u, v⟩n+1 for the inner product calculated in C[Bq(n+1)].
We have, for X ∈ Bq(n, k),

⟨X, X⟩n = q(
k
2)

Pq(n) , ⟨X, X⟩n+1 = q(
k
2)

Pq(n+1) = 1
1+qn ⟨X, X⟩n,

⟨θn(X), θn(X)⟩n+1 = q(
k+1

2 )
Pq(n+1) q

n−k = qn

1+qn ⟨X, X⟩n.

It follows that
⟨v, v⟩n+1 = 1

1+qn ⟨v, v⟩n, ⟨θn(v), θn(v)⟩n+1 = qn

1+qn ⟨v, v⟩n, v ∈ C[Bq(n)].(29)

Note that the scalar factors on the right hand side are uniform across all vectors and
do not depend on k. Thus, since C[Bq(n)] and W (0) are orthogonal in C[Bq(n+ 1)],
it follows by the induction hypothesis that {vβ , θn(vβ) |β ∈ Eq(n)} is an orthogonal
basis of C[Bq(n)] ⊕W (0).

We have
vα = qkvβ + θn(vβ), vα′ = qn−kvβ − θn(vβ).(30)

Since vβ is orthogonal to θn(vβ) we have, using (29),
⟨vα, vα′⟩n+1 = qn⟨vβ , vβ⟩n+1 − ⟨θn(vβ), θn(vβ)⟩n+1

= qn

1 + qn
⟨vβ , vβ⟩n − qn

1 + qn
⟨vβ , vβ⟩n

= 0.
From the isomorphism θn we now see that

{vα, vα′ | β ∈ En(q)}
is an orthogonal basis of C[Bq(n)] ⊕W (0).

(ii) Let β = (β1, . . . , βt−1) ∈ Eq(n−1) and let χ ∈ Nq(n). Set α = (β1, . . . , βt−1, χ) ∈
Eq(n+ 1) and X = X(χ), where X ∈ Bq(n, n− 1). We have vα = λ(χ)µ(X)(vβ).

Let Y ∈ Bq(X) with dim(Y ) = k. We have

⟨Y, Y ⟩n−1 = q(
k
2)

Pq(n− 1) .

Now observe the following: p(χ)(Ŷ ) is a linear combination of the elements of the
orbit [Ŷ ], whose cardinality is qn−k. The number of elements g ∈ H(n + 1,Fq) with
g · Ŷ = Ŷ is qk and by Lemma 3.5 each such g satisfies χ(g) = 1. So, for Z ∈ [Ŷ ], if
g1 · Ŷ = g2 · Ŷ = Z then χ(g1) = χ(g2). Thus we have

⟨λ(χ)(Y ), λ(χ)(Y )⟩n+1 = q−2k q(
k+1

2 )
Pq(n+1) q

2kqn−k = qn

(1+qn−1)(1+qn) ⟨Y, Y ⟩n−1.

It follows that
⟨λ(χ)µ(X)(v), λ(χ)µ(X)(v)⟩n+1 = qn

(1+qn−1)(1+qn) ⟨v, v⟩n−1, v ∈ C[Bq(n− 1)].(31)

From the isomorphism λ(χ)µ(X) we now see that
{vα | β ∈ Eq(n− 1)}

is an orthogonal basis of W (χ).
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That completes the proof. □

The following result collects information about the length of the vectors vα, for
α ∈ Eq(n), under the inner product (2) and the absolute values of their standard
coordinates vα(Y ), Y ∈ Bq(n) (i.e., vα =

∑
Y vα(Y )Y ). Given X ∈ Aq(n + 1) we

denote X ∩ Fn
q by Xr. For α ∈ Eq(n), we denote by α ∈ Eq(n) the sequence obtained

by interchanging the 0’s and 1’s in α.

Lemma 4.7. (a) Let β = (β1, . . . , βt−1) ∈ Eq(n) with N(β) = k. We have
(i) If α = (β1, . . . , βt−1, 0) then, for Y ∈ Bq(n+ 1),

vα(Y ) =
{
qkvβ(Y ) if Y ∈ Bq(n),
vβ(Y r) if Y ∈ Aq(n+ 1).

⟨vα, vα⟩n+1 = qn + q2k

1 + qn
⟨vβ , vβ⟩n.

(ii) If α = (β1, . . . , βt−1, 1) then, for Y ∈ Bq(n+ 1),

vα(Y ) =
{
qn−kvβ(X) if Y ∈ Bq(n),
−vβ(Y r) if Y ∈ Aq(n+ 1).

⟨vα, vα⟩n+1 = qn + q2(n−k)

1 + qn
⟨vβ , vβ⟩n.

(b) Let β = (β1, . . . , βt−1) ∈ Eq(n− 1) and let χ ∈ Nq(n). We have
If α = (β1, . . . , βt−1, χ) ∈ Eq(n+ 1) and X = X(χ), where X ∈ Bq(n, n− 1) then,

for Y ∈ Bq(n+ 1),

|vα(Y )| =


0 if Y ∈ Bq(n),
|vβ(Y r)| if Y ∈ Aq(n+ 1) and Y r ⊆ X,

0 if Y ∈ Aq(n+ 1) and Y r ̸⊆ X.

⟨vα, vα⟩n+1 = qn

(1 + qn−1)(1 + qn) ⟨vβ , vβ⟩n−1.

(c) For Y ∈ Bq(n) and α ∈ Eq(n) we have

|vα(Y )| = |vα(Y )|, ⟨vα, vα⟩n+1 = ⟨vα, vα⟩n+1.

Proof. Parts (a)(i) and (a)(ii) follow from (29) and (30).
Now consider part (b). The formula for ⟨vα, vα⟩ follows from (31)) and the formula

for |vα(Y )| follows from the observation in the proof of case (ii) in Theorem 4.6.
Part (c) follows easily by induction from parts (a) and (b) on observing thatN(α) =

n−N(α). □

We now single out a special set of 2n eigenvectors of Mq(n), a q-analog of the
classical eigenvectors of M(n). Define

Zq(n) = {(α1, . . . , αn) ∈ Eq(n) : αi ∈ {0, 1} for all i}.

Given α = (α1, . . . , αn) ∈ Zq(n) and i ∈ {1, 2, . . . , n}, define

d(α, i) = |{j < i : αj ̸= αi}|.

Note that, if N(α) = k then
∑n

i=1 d(α, i) = k(n− k). Set S(α) = {i : αi = 1}.
Given α = (α1, . . . , αn) ∈ Zq(n) and X ∈ Bq(n) set d(α,X) =

∑
i d(α, i), where

the sum is over all i ∈ {1, 2, . . . , n} ∖ P (X).
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Lemma 4.8. For α ∈ Zq(n) we have

vα =
∑

X∈Bq(n)

(−1)|S(α)∩P (X)| qd(α,X) X.

In particular, vα({0}) = qk(n−k) and vα(Fn
q ) = (−1)k, where k = N(α).

Remark 4.9. Note that, when q = 1, these are precisely the classical eigenvectors
of M(n).

Proof. By induction on n, the cases n = 0, 1 being clear. Let n ⩾ 1 and consider
α = (α1, . . . , αn+1) ∈ Zq(n + 1). Set β = (α1, . . . , αn) and consider X ∈ Bq(n + 1).
We have the following cases:

(i) n+ 1 ̸∈ P (X): We have X = X ∩ Fn
q . From the inductive hypothesis and from

cases (a), (b) in the proof of Theorem 4.4 we have

vα(X) = qd(α,n+1) vβ(X)
= (−1)|S(β)∩P (X)| qd(α,n+1) qd(β,X)

= (−1)|S(α)∩P (X)| qd(α,X).

(ii) n+ 1 ∈ P (X) and αn+1 = 1: We have

vα(X) = −vβ(Xr)
= −(−1)|S(β)∩P (Xr)| qd(β,Xr)

= (−1)|S(α)∩P (X)| qd(α,X).

(iii) n+ 1 ∈ P (X) and αn+1 = 0: Similar to case (ii). □

It is not difficult to see, inductively, that the only eigenvectors in Bq(n) that have
support of size Gq(n) are of the form vα, α ∈ Zq(n). We now relate the space of
radial vectors to the span of the 2n special vectors defined above.

Theorem 4.10. The space of radial vectors Rq(n) is contained in the subspace spanned
by {vα : α ∈ Zq(n)}.

Proof. By induction on n, the cases n = 0, 1 being clear. Let n ⩾ 1. By induction
hypothesis and the isomorphism (13) we see that

Rq(n) ⊆ Span({vβ : β ∈ Zq(n)}),
Rq(n+ 1) ⊆ Span({vβ : β ∈ Zq(n)}) ⊕ Span ({θn(vβ) : β ∈ Zq(n)}),

and the right hand side of the second of these containments is precisely equal to
Span({vα : α ∈ Zq(n+ 1)}). □

We are thus led to the following question.

Question 4.11. For 0 ⩽ k ⩽ n, there is a unique radial vector (up to scalars) that is
an eigenvector of Mq(n) with eigenvalue (n − k)q − (k)q. How can one express this
vector as a linear combination of the vectors {vα : α ∈ Zq(n), N(α) = k}?

The n-cube case has a well known solution: the radial eigenvector is the sum of the
vectors in the (classical) eigenbasis with the same eigenvalue.
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5. Weighted count of rooted spanning trees in Cq(n)
We now give the proof of the weighted count of rooted spanning trees in Cq(n). We
use the definitions of Chapter 10 of [14].

Proof of Theorem 1.3. Form the directed loopless multigraph D with Bq(n) as the
vertex set and the following directed edges: for every edge (X,Y ) in Cq(n) such that
dim(Y ) = dim(X) + 1 create qdim(X) directed edges from X to Y in D and one
directed edge from Y to X in D.

Now observe the following:
(i) The outdegree of a vertex X in D is qdim(X)(n− dim(X))q + (dim(X))q = (n)q.

Thus the matrix L(D) (the directed analog of the Laplacian) is given by
L(D) = (n)qI −Mq(n).

(ii) There is an obvious root preserving onto map from the rooted oriented spanning
subtrees of D to the rooted spanning trees in Fq(n), where the inverse image of
F ∈ Fq(n) has cardinality qw(F ).

(iii) By Theorem 1.1, the eigenvalues of L(D) are
(n)q − ((n− k)q − (k)q) = (1 + qn−k)(k)q, k = 0, 1, . . . , n

with multiplicity
(

n
k

)
q
.

It follows from Theorem 10.4 in [14] (this is Tutte’s directed analog of the Matrix-
Tree theorem) and item (ii) above that the weighted count of rooted spanning trees
in Fq(n) is the product of the nonzero eigenvalues of L(D) and this agrees with the
statement of the Theorem by item (iii) above. □
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