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On Schützenberger modules of the cactus
group

Jongmin Lim & Oded Yacobi

Abstract The cactus group acts on the set of standard Young tableaux of a given shape by
(partial) Schützenberger involutions. It is natural to extend this action to the corresponding
Specht module by identifying standard Young tableaux with the Kazhdan–Lusztig basis. We
term these representations of the cactus group “Schützenberger modules”, denoted Sλ

Sch, and
in this paper we investigate their decomposition into irreducible components. We prove that
when λ is a hook shape, the cactus group action on Sλ

Sch factors through Sn−1 and the resulting
multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and
Kirillov and Chmutov, Glick, and Pylyavskyy.

1. Introduction
1.1. Background. Let g be a reductive complex Lie algebra. In Kashiwara’s theory
of g-crystals, the cactus group plays a role analogous to that of the braid group in
representations of the quantum group Uq(g). Indeed just as the n-strand braid group
acts on n-fold tensor products of representations of Uq(g) (resulting in a braided
category), the cactus group Cn acts on n-fold tensor products of crystals (resulting in
a coboundary category) [9]. And just as the type g braid group acts on any integrable
representation of Uq(g), the type g cactus group acts on any g-crystal [7]. This latter
“internal” action is our focus.

Before describing our results, we highlight the appearance of the internal cactus
group action in several recent theorems.

Losev constructed an action of the cactus group on the Weyl group of g, and showed
that it interacts nicely with Kazhdan–Lusztig cells [14]. For g = sln, this recovers the
external action of the cactus group corresponding to the zero weight space of the
n-fold tensor product of the standard representation.

Losev constructs his action by showing that certain wall-crossing functors are per-
verse equivalences in the sense of Chuang and Rouquier [2]. This was recently extended
in work of Halacheva, Losev, Licata and the second author [8]. We show that for any
categorical representation of Uq(g), the Rickard complexes corresponding to the half-
twist are perverse equivalences. From this we obtain the internal cactus group action
on any integrable representation. In [5, 6] Gossow and the second author explain how
to recover this cactus group action in type A directly from the representation without
appealing to categorical techniques.

In a different direction, Halacheva, Kamnitzer, Rybnikov and Weekes study the
action of Gaudin algebras on tensor product multiplicity spaces [7]. Their main tool
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is a crystal structure on eigenvectors for shift of argument subalgebras, which are a
family of commutative algebras acting on irreducible g representations. In particular
they show that the internal action of the cactus group controls the monodromy of
these eigenvectors.

In this paper we initiate a study of representations of the cactus group which arise
as permutation modules from the internal action on crystals. We’ll now describe our
work in detail.

1.2. Our work. We specialise to the case of g = sln. The corresponding cactus
group Cn is an infinite group generated by cJ , for subintervals J ⊂ [1, n], subject to
the relations in Definition 2.1. It is isomorphic to the orbifold fundamental group of
the real locus of the wonderful compactification of hreg/Sn, where hreg is the regular
locus in the reflection representation of the symmetric group Sn [3].

Let λ be a partition of n. The cactus group Cn acts on SYT(λ), the set of standard
Young tableaux of shape λ, where the generator cJ acts by a partial Schützenberger
involution. Letting Sλ denote the Specht module of Sn, it is natural to view the Cn-
action on SYT(λ) as an action on the Kazhdan–Lusztig basis of Sλ. We thus obtain
a Cn-action on Sλ, which we term the “Schützenberger module,” and denote SλSch.

Our main problem, which to our knowledge has not been studied, is the following:

Question 1.1. Determine the irreducible constituents of SλSch.

An obvious obstruction to solving this problem is that we do not have a classi-
fication of the finite dimensional irreducible representation of Cn (it is of wild rep-
resentation type). Nevertheless, there are naturally occurring families of irreducible
representations of Cn obtained by inflation from symmetric groups.

Indeed, there is a natural homomorphism Cn → Sn, and this can be generalised to
a surjective map πk : Cn → Sk, for 1 ≤ k ≤ n (cf. Lemma 2.2). For λ ⊢ k we let Sλπk

be the irreducible Cn-module on Sλ obtained via pullback by πk.
Our main theorem solves Question 1.1 in the case when λ is a hook partition. To

λ = (a, 1b) a hook partition, we associate a composition of n−1 given by rλ = (a−1, b).

Theorem 1.2. Let λ ⊢ n be a hook partition. We have an isomorphism of Cn-modules
(1) SλSch

∼=
⊕

µ ⊢ n−1
KµrλS

µ
πn−1

where Kµrλ are the Kostka numbers, unless λ = (2, 1).

Note that in the outlying case, S(2,1)
Sch is simply the two-dimensional module with

basis elements interchanged by c[1,3] (c[1,2] and c[2,3] act trivially).
Our main tools for proving the theorem come from work of Berenstein and Kir-

illov [13] and Chmutov, Glick, and Pylyavskyy [1]. The former define a group of
symmetries of Gelfand–Tsetlin patterns (i.e. semistandard Young tableaux), which
the latter show is a quotient of the cactus group. These results allow us to show
that in the case of a hook shape, the Cn-action on SλSch factors through Sn−1, and to
identify resulting permutation module.

2. Background
2.1. Young tableaux. In this section we briefly recall the basic combinatorics of
Young tableaux. For more details see [16]. Let n ≥ 1. A partition of n, written λ ⊢ n,
is a weakly decreasing sequence of nonnegative integers that sum to n:

λ = (λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0,
∑
i

λi = n.
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If we drop the weakly decreasing condition, we get the notion of a composition of n.
We use Young diagrams to represent partitions and compositions. A Young dia-

gram for a composition µ is a finite collection of cells, arranged in left-justified rows,
where the i-th row length is the i-th entry of µ.

Let λ ⊢ n. A Young tableau of shape λ is a filling of the corresponding Young
diagram with positive integers. For example, here is a Young diagram and tableau of
shape λ = (5, 3, 2):

1 2 7 4 6
3 1 8
2 9

The Young tableau is semistandard (respectively standard) if the entries are weakly
increasing (respectively strictly increasing) along rows, and strictly increasing down
columns. The content of a tableau T of shape λ is the composition of n, µ(T ) =
(µ1, µ2, . . .), where µi is the number of i’s appearing in T .

Given λ ⊢ n and m ≥ 1, we let SSYT(λ,m) denote the set of semistandard Young
tableaux of shape λ and cells filled in with numbers 1, . . . ,m. We let SYT(λ) denote
the set of standard Young tableaux of shape λ and cells filled in with the num-
bers 1, . . . , n.

The Kostka number Kλµ is defined equivalently as: the number of T ∈
SSYT(λ, n) of shape λ and content µ, the dimension of the µ weight space in the
irreducible representation of gln of highest weight λ, or as the multiplicity of Sλ in
the permutation module Mµ (Equation (2)).

Given partitions µ, λ we write µ ⊆ λ if µi ≤ λi for every i. Let λ, µ be two partitions
such that µ ⊆ λ. The skew-diagram of shape λ/µ is given by removing the boxes of µ
in λ. A skew tableau is a labelling of these boxes with positive integers. Here is a
skew diagram and tableau of shape λ/µ for λ = (5, 5, 3) and µ = (3, 2):

3 1
2 1 3

3 1 1

Similar to above, semistandard tableaux on skew shapes are skew-tableaux with
weakly increasing labels along the rows and strictly increasing labels down the
columns. Standard tableaux on skew shapes are semistandard tableaux whose entries
strictly increase along the rows.

Let µ be a composition of n. Let T, T ′ be two diagrams of shape µ with en-
tries 1, . . . , n. We write T ∼ T ′ if T and T ′ are row-equivalent, i.e. they have the
same entries in each row. An equivalence class for this relation is a µ-tabloid. We
let Tab(µ) be the set of µ-tabloids. A tabloid can be pictured in a manner similar to
tableau. For example, here is a (3, 4)-tabloid:

1 2 3
4 5 6 7

representing the equivalence class of the diagram with entries 1, 2, 3 in the first row
and 4, 5, 6, 7 in the second.

Set [a, b] = {a, a+ 1, . . . , b}. Given a tableau T we let T |[a,b] be the tableau obtain
by deleting all cells with entries not in [a, b].

2.2. The symmetric group. Let n ≥ 1. Let Sn denote the symmetric group
on {1, 2, . . . , n}. Let si ∈ Sn denote the simple transposition swapping i and

Algebraic Combinatorics, Vol. 6 #3 (2023) 775



Jongmin Lim & Oded Yacobi

i + 1. Finite dimensional irreducible complex representations of Sn are indexed
by partitions λ of n. The irreducible representation corresponding to λ ⊢ n is the
Specht module Sλ. For instance, S(n) is the trivial representation, S1n is the sign
representation, and S(n−1,1) is the standard representation.

The Specht module Sλ has a remarkable basis indexed by SYT(λ) called the
Kazhdan–Lusztig basis, which we denote {bT | T ∈ SYT(λ)}. To construct this
basis one needs to pass to the Iwahori–Hecke algebra Hn(q) associated to Sn. Kazhdan
and Lusztig constructed a canonical basis of the Hecke algebra, which gives rise also
to bases of its cell modules. In type A, these cell modules are the irreducible Specht
modules and the specialisation q 7→ 1 leads to the basis {bT }. For more details, see
e.g. [4, 12, 15].

Given a composition µ of n, let Sµ ⊆ Sn be the corresponding parabolic subgroup.
Let Mµ denote the induced module IndSn

Sµ
(C) from the trivial representation. The

module Mµ has a basis indexed by the set of row tabloids Tab(µ), where the action
is given by permutation of entries. Kostka numbers encode the decomposition of Mµ

into Specht modules:
(2) Mµ ∼=

⊕
λ

KλµS
λ.

2.3. The cactus group. Given an interval J = [a, b] ⊆ [1, n], let SJ ⊆ Sn be the
subgroup of permutations which fix i /∈ J . In the notation of the previous section, SJ
is the parabolic subgroup Sµ, where µ = (1a−1, b− a+ 1, 1n−b). Let wJ ∈ SJ be the
longest element, that is wJ “flips” the interval [a, b] via a+ i 7→ b− i for 0 ≤ i ≤ b−a.

Definition 2.1. Let n ≥ 2 be an integer. The cactus group Cn is generated by
`

n
2
˘

generators cJ , indexed by the intervals J ∈ {[a, b] | 1 ≤ a < b ≤ n}, subject to
the following relations: c2

J = 1, cJcK = cKcJ if J ∩ K = ∅ and, cJcK = cwJ (K)cJ
if K ⊆ J .

The cactus group is an infinite group, which has its origins in (a) the study of
symmetry groups of universal covers of blow-ups of projective hyperplane arrange-
ments [3], and (b) the study of commutators in the category of crystals for a semisim-
ple Lie algebra [9].

Note that there is also a slightly different presentation of the cactus group that
is often used, where generators are indexed by subdiagrams of the Dynkin diagram
of a semisimple Lie algebra g [7]. The cactus group defined above corresponds to
type An−1.

Symmetric groups are naturally quotients of the cactus group. Indeed, we have a
map πn : Cn → Sn, cJ 7→ wJ , which is a surjective group homomorphism since the
defining relations of Cn are satisfied also by the elements wJ ∈ Sn. This map can be
generalised as follows

Lemma 2.2. For any 1 ≤ k ≤ n the assignment:

c[a,b] 7→

{
w[a,b−n+k] if n− k < b− a,

1 otherwise,
defines a surjective group homomorphism πk : Cn → Sk.

Proof. The third defining relation of Cn is only non-obvious relation to check. Sup-
pose we have intervals K = [a, b] ⊆ J ⊆ I. We need to show that πk(cJ)πk(cK) =
πk(cwJ (K))πk(cJ).

If n − k ≥ b − a then πk(cK) = πk(cwJ (K)) = 1 so the equation holds. Otherwise,
we have that n − k < b − a. Let K ′ = [a, b − n + k]. Then a quick calculation shows
that wJ(K)′ = wJ′(K ′), which proves the desired relation. □
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By inflation we obtain irreducible representations of Cn on Sλ, for λ ⊢ k and
1 ≤ k ≤ n, which we denote Sλπk

.

Remark 2.3. It is possible to generalise the maps above further. Given nonnegative
numbers i, j such that i + j < n, we have a map π(i,j) : Cn → S[1+i,n−j] ∼= Sn−i−j
given by

c[a,b] 7→

{
w[a+i,b−j] if i+ j < b− a,

1 otherwise,

It is straightforward to check that this satisfies the defining relations of Cn. We re-
cover πk defined in Lemma 2.2 as π(0,n−k).

2.4. Operations on Young tableaux. In order to construct the Schützenberger
modules, we need to first recall some operations on Young tableaux. For more details
see [16].

2.4.1. Jeu De Taquin. The Jeu de Taquin is a map jdt taking a semistan-
dard skew tableau to a rectified semistandard tableau, which we recall now.
Let T ∈ SSYT(λ/µ, n). Call a removable box of µ a movable box of T . Then jdt(T )
is defined as follows:

(1) Choose a movable box of T . Move this box with the following rules:
(a) If it is adjacent to a box to its east and south, let them be i and j

respectively.
i

j

If i < j, then swap with i

i

j

Otherwise, swap with j

j i

(b) If it is adjacent to exactly one box to its east or south, swap it with that
box.

(c) Repeat this process until it is not adjacent to any boxes to its east or
south.

(2) Repeat this process with another movable box until there are no movable
boxes left.

For example,

jdt

¨

˚

˚

˝

1 2 2
2 4 4 5

2 3

˛

‹

‹

‚

=
1 2 2 2 5
2 4 4
3

The rectification of a skew semistandard tableau via jdt is independent of the choice
of the removable boxes at each iteration.
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2.4.2. Promotion. The promotion operation is a map ∂ : SSYT(λ, n) → SSYT(λ, n)
defined as follows.

(1) Turn every box labelled 1 to a dummy box.
(2) Apply jdt to the dummy boxes.
(3) Reduce every non-dummy box’s label by 1.
(4) Relabel the dummy boxes to n

1 1 2 3
2 2 3
4 4
5

−→

2 3
2 2 3
4 4
5

−→

2 2 2 3
3 4
4
5

−→

1 1 1 2
2 3 5
3 5
4

2.4.3. Schützenberger Involution. The Schützenberger Involution is the map
ξ : SSYT(λ, n) → SSYT(λ, n) defined by

ξ = ∂1 ◦ ∂2 ◦ · · · ◦ ∂n
Where ∂k(T )|[1,k]:= ∂

`

T |[1,k]
˘

, while leaving T |[k+1,n] constant.

1 1 2 3
2 2 3
4 4
5

∂5−−−−→

1 1 1 2
2 3 5
3 5
4

∂4−−−−→

1 1 4 4
2 2 5
3 5
4

∂3−−−−→

1 1 4 4
2 3 5
3 5
4

The Schützenberger involution can be shown to be an involution. Moreover T and
ξ(T ) are of the same shape, and if µ(T ) = (µ1, . . . , µn) then µ(ξ(T )) = (µn, . . . , µ1).

Definition 2.4. Let λ ⊢ n. For k = 2, 3, · · · , n, define the partial Schützenberger
involution

ξ[1,k] : SSYT(λ, n) → SSYT(λ, n)
to be the Schützenberger involution on T |[1,k] (where the relabelling is i 7→ k + 1 − i),
while leaving T |[k+1,n] constant. Let ξ[a,b] = ξ[1,b] ◦ ξ[1,b−a+1] ◦ ξ[1,b] for 1 ≤ a < b ≤ n.

Proposition 2.5 ([13]). The operators ξ[a,b] satisfy the following relations:

(1) If 1 ≤ i < j < j + 1 < k < l ≤ n, then ξ[i,j]ξ[k,l] = ξ[k,l]ξ[i,j].
(2) For 1 ≤ i ≤ k < l ≤ j ≤ n, we have ξ[i,j]ξ[k,l]ξ[i,j] = ξ[i+j−l,i+j−k].

Define a map φ : Cn → Aut(SYT(λ)) by cJ 7→ ξJ for an interval J ⊆ [1, n].

Proposition 2.6 ([7]). The cactus group Cn acts on the set SSYT(λ, n) via φ, and
SYT(λ) is an invariant subset.

Proof. First, we have
ξ2

[1,b] = 1
as we have established that the Schützenberger involution is an involution. Then we
have in general

ξ2
[a,b] = ξ[1,b]ξ

2
[1,b−a+1]ξ[1,b] = 1,

and the last two relations follow from Proposition 2.5. This shows that Cn acts on
SSYT(λ, n).

Note that µ(T ) = (1, 1, . . . , 1) if and only if T ∈ SYT(λ). Since µ(ξ(T )) =
(1, 1, . . . , 1) as well, we have ξ(T ) ∈ SYT(λ). Thus ξ[1,k](T ) ∈ SYT(λ) and the claim
follows. □
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Remark 2.7. The set SSYT(λ, n) naturally carries a sln-crystal structure, isomorphic
to the crystal of the irreducible representation of sln of highest weight λ [10]. The
subset SYT(λ) is the weight zero elements of the crystal. The Cn-action described in
the above proposition coincides with the internal cactus group action on this crystal.
For more details see [7], where the internal cactus group action is constructed for any
semisimple Lie algebra.

3. The Schützenberger modules
3.1. Definition and preliminary results. Let λ ⊢ n. Recall the Kazhdan–
Lusztig basis {bT | T ∈ SYT(λ)} of Sλ. We define a Cn action on Sλ using (partial)
Schützenberger involutions:

cJ · bT = bξJ (T ).

We term the resulting representation the Schützenberger module of Cn, and denote
it by (ρλ, SλSch).

Let vλ =
∑
T∈SYT(λ) bT and define the Cn-module V λ by the decomposition SλSch =

Cvλ ⊕ V λ. We begin with some preliminary observations about V λ.

Proposition 3.1. Let n ≥ 3 and set λ = (n − 1, 1). Then V λ is an irreducible Cn-
module.

Proof. It suffices to show that φ : Cn → Aut(SYT(λ)) is surjective. We proceed by
induction on n. The base case n = 3 is trivial. Define Tk to be the standard tableau
with the box k+1 in the second row. Then SYT(λ) = {T1, . . . , Tn−1}.

Consider the restriction of φ : Cn → Aut(SYT(λ)) to Cn−1 ⊂ Cn, where we regard
Cn−1 as the subgroup generated by {c[a,b] | 1 ≤ a < b ≤ n−1}. Notice that the image
of Cn−1 does not change the position of the n box. Thus, φ(Cn−1) fixes Tn−1.

On the other hand, if µ = (n − 2, 1), we have a bijection between SYT(µ) and
SYT(λ) \ {Tn−1} given by appending the box n to the end of the first row for
each T ∈ SYT(µ). This bijection commutes with the φ(Cn−1) action as φ(Cn−1)
disregards n . By the induction hypothesis,

φ(Cn−1) ∼= Aut(SYT(µ)) ∼= {σ ∈ Aut(SYT(λ)) | σ(Tn−1) = Tn−1}.
As φ(Cn) is generated by φ(Cn−1) and φ(c[1,n]),

φ(Cn) ∼= ⟨{σ ∈ Aut(SYT(λ)) | σ(Tn−1) = Tn−1}, φ(c[1,n])⟩ ∼= Aut(SYT(λ))

as c[1,n](Tn−1) ̸= Tn−1. (Applying the first promotion step shows that the n box is
in the first row for c[1,n](Tn−1). In fact, c[1,n](Tn−1) = T1.) □

In general, V λ is not irreducible. Indeed, let δ : SYT(λ) → SYT(λ′) be the dual
map, where the tableau is reflected by the diagonal from northwest to southeast. Here,
λ′ is the dual shape of λ.

1 2 3 4
5 6
7

δ−−−−→

1 5 7
2 6
3
4

The maps jdt and δ commute on standard Young tableaux (but not in general). It
follows that δ commutes with the promotion map, and hence the Schützenberger
involution. Thus δ commutes with the Cn action on standard Young tableaux.
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We therefore obtain an isomorphism δ : SλSch → Sλ
′

Sch. In particular, for a self-
dual shape λ = λ′, we have a non-trivial automorphism δ : SλSch → SλSch. As δ is an
involution, we have an eigenspace decomposition SλSch = Sλ+ ⊕ Sλ− corresponding to
the eigenvalues ±1 of δ:

Sλ+ = span{bT + bδ(T ) | T ∈ SYT(λ)}
Sλ− = span{bT − bδ(T ) | T ∈ SYT(λ)}

Notice that vλ ∈ Sλ+, and hence there is a submodule Wλ such that Sλ+ = Cvλ ⊕Wλ.
Thus

SλSch = Cvλ ⊕Wλ ⊕ Sλ−,

and hence V λ = Wλ ⊕ Sλ−. Consequently V λ is not irreducible for self-dual λ.
Theorem 1.2 generalises Proposition 3.1 to arbitrary hook-shaped partitions.

3.2. The Berenstein–Kirillov group. In order to undertake a more detailed
study of Schützenberger modules we will utilise Gelfand–Tsetlin patterns and their
symmetries, as developed by Berenstein and Kirillov.

Let n ∈ N and λ ⊢ n. A Gelfand–Tsetlin pattern with n rows and top row λ
is a triangular arrangement of nonnegative integers {λi,j}1≤i≤j≤n such that λi,j+1 ≥
λi,j ≥ λi+1,j+1 and the top row is λ. Denote the set of such patterns as GTP(λ, n).

»

—

—

—

—

—

–

λ1,n λ2,n λ3,n · · · λn,n
λ1,n−1 λ2,n−1 · · · λn−1,n−1

λ1,n−2 · · · λn−2,n−2
. . . ...

λ1,1

fi

ffi

ffi

ffi

ffi

ffi

fl

Define a map Φ : SSYT(λ, n) → GTP(λ, n) as follows. Let T ∈ SSYT(λ, n). For
1 ≤ k ≤ n, as T is semistandard, T |[1,k] cannot have more than k rows. Let the
shape of T |[1,k] be (λ1,k, λ2,k, · · · , λk,k). As the notation suggests, set Φ(T ) equal to
T = {λi,j}1≤i≤j≤n. The following is immediate:

Proposition 3.2. Φ : SSYT(λ, n) → GTP(λ, n) is a bijection.

Berenstein and Kirillov defined operators acting on GTP(λ, n) as follows. Let T =
{λi,j}1≤i≤j≤n ∈ GTP(λ, n). Define τk : GTP(λ, n) → GTP(λ, n) for 1 ≤ k ≤ n − 1
by τk(T ) = {rλi,j}1≤i≤j≤n, where

ai,j := min(λi,j+1, λi−1,j−1)
bi,j := max(λi,j−1, λi+1,j+1)
rλi,j := λi,j (j ̸= k)
rλi,k := ai,k + bi,k − λi,k

For the edge cases we let a1,j = λ1,j+1 and bj,j = λj+1,j+1.

Proposition 3.3. [13] The operators τ1, τ2, · · · , τn−1 satisfy the following relations.

τ2
k = 1 1 ≤ k ≤ n− 1

τkτl = τlτk |k − l|≥ 2
(τ1τ2)6 = 1
(τ1qk)4 = 1 k ≥ 3

where qk := (τ1)(τ2τ1)(τ3τ2τ1) · · · (τkτk−1 · · · τ1).
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It is conjectured by Berenstein and Kirillov that these generate all relations among
the operators τ1, τ2, . . . , τn−1.

Definition 3.4. The Berenstein–Kirillov group BKn is the group generated
by t1, t2, . . . , tn−1 with relations as in Proposition 3.3.

By transport of structure via Φ, we have an action of BKn on SSYT(λ, n). Fol-
lowing [1], we will describe this explicitly. Let T ∈ SSYT(λ, n). Recall that T |[k,k+1]
is a disjoint union of rectangles and strips of the form

k k · · · k

k+1 k+1 · · · k+1
or k k · · · k k+1 k+1 · · · k+1

We say a strip is of type (a, b) if it contains a many k -boxes and b many k+1-boxes.
Define rτk : SSYT(λ, n) → SSYT(λ, n) such that rτk(T ) acts on T |[k,k+1] by replac-

ing each strip of type (a, b) with a strip of type (b, a), and leaving the rectangles
unchanged:

k k k k+1 k+1 k+1

k k+1 k+1 k+1

k k k

k+1 k+1 k+1

rτk−−−−−→

k k k k k k+1

k k+1 k+1 k+1

k k k+1

k k+1 k+1

In the example above, strips of type (0, 1), (1, 0), (1, 1), (1, 3) were swapped with strips
of type (1, 0), (0, 1), (1, 1), (3, 1).

We define rτk(T ) to be the tableau obtained by replacing T |[k,k+1] with rτk(T |[k,k+1]),
and leaving the other boxes unchanged.

Lemma 3.5. Let T ∈ SSYT(λ, n) and Φ(T ) = T = {λi,j}1≤i≤j≤n ∈ GTP(λ, n). Recall

ai,k = min(λi,k+1, λi−1,k−1) bi,k = max(λi+1,k+1, λi,k−1)

Then the strip of T |[k,k+1] in row i is of type (λi,k − bi,k, ai,k − λi,k) starting at
column bi,k + 1.

Proof. Recall that λi,k corresponds to the number of boxes in row i of T labelled
from 1, 2, · · · , k.
Assume there is no rectangles with its first row in row i. This means that every
box above k+1 in the i + 1-th row has a label less than or equal to k − 1. This is
precisely when λi+1,k+1 ≤ λi,k−1, and in this case, the strip indeed starts at column
bi,k + 1 = λi,k−1 + 1. On the other hand, if there is such a rectangle, then we have
λi+1,k+1 > λi,k−1. This rectangle ends at column bi,k = λi+1,k+1, hence the strip
starts at column bi,k + 1 after it as claimed.

k k · · ·
k+1 · · ·

k k · · ·
k+1 k+1 · · ·

k k · · ·
k+1 k+1 k+1 · · ·

λi+1,k+1 < λi,k−1 λi+1,k+1 = λi,k−1 λi+1,k+1 > λi,k−1

The proof for ai,k is similar. The strip is indeed of type (λi,k − bi,k, ai,k − λi,k) as the
boxes labelled k in row i span columns bi,k + 1 to λi,k by the correspondence given
by Φ. □

Proposition 3.6. For T ∈ SSYT(λ, n) we have that tk · T = rτk(T ).

Proof. It suffices to show that Φrτk = τkΦ. Notice that rτk does not affect the shape
of T |[1,j] for all 1 ≤ j ≤ n and j ̸= k. Furthermore, in T , each strip in row i spans
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column bi,k + 1 to column ai,k and is of type (λi,k − bi,k, ai,k − λi,k). Thus in rτk(T ),
this strip is replaced by a strip of type (ai,k − λi,k, λi,k − bi,k).

Let T = Φ(T ) and set τk(T ) = {rλi,j}1≤i≤j≤n. Let

rai,k = min(rλi,k+1, rλi−1,k−1) rbi,k = max(rλi+1,k+1, rλi,k−1)
Recall that τk is an operation on GTP(λ, n) which affects only the k-th row, hence

λi,j = rλi,j for all j ̸= k. Thus, rai,k = ai,k as follows:

rai,k = min(rλi,k+1, rλi−1,k−1)
= min(λi,k+1, λi−1,k−1) = ai,k

Similarly, we have rbi,k = bi,k. Thus the strip at row i for Φ−1(τk(T )) also starts
and ends at the same column, but is of type (rλi,k − bi,k, ai,k − rλi,k). However, as
rλi,k = ai,k + bi,k − λi,k,

(rλi,k − bi,k, ai,k − rλi,k) = (ai,k − λi,k, λi,k − bi,k)
Thus rτk(T ) = Φ−1(τk(T )). □

This proposition implies that for standard Young tableaux, the action of BKn is
particularly easy to describe:

Corollary 3.7. Let T ∈ SYT(λ) for λ ⊢ n. Then tk swaps the two boxes k and k+1

if they are not adjacent, otherwise tk · T = T .

Proof. As T is standard, T |[k,k+1] consists of two boxes, which can be non-adjacent,
horizontally adjacent, or vertically adjacent:

k

k+1
k k+1

k

k+1

The non-adjacent case is essentially two disjoint strips of type (1, 0) and (0, 1) each.
Thus rτk swaps the two boxes. The vertically adjacent case has no strips, while the
horizontally adjacent case is of type (1, 1), which stays constant under rτk. □

Consider the elements pk, qk ∈ BKn defined by
pk := tktk−1 · · · t1 qk = p1p2 · · · pk

Although we will not use the following theorem of Berenstein and Kirillov, we include
a (new) proof since it provides important context for what follows.

Theorem 3.8 ([13, Section 2]). The action of pk and qk on SYT(λ, n) are equiv-
alent to ∂k+1 and c[1,k+1], the promotion and Schützenberger involution operations
on T |[1,k+1].

Proof. Let T ∈ SSYT(λ). We first prove that pk = ∂k+1 by induction on k.

For the base case, ∂2 and t1 act by identity on 1 2 and
1
2

. Thus, ∂2 = t1 = p1.

For the inductive case, notice that the jdt step of ∂k and ∂k+1 are identical until the
dummy box becomes adjacent to the k+1 box.

Case 1: If the dummy box is never adjacent to k+1 in the jdt step of ∂k,
Then the jdt step of ∂k and ∂k+1 are identical, and they only differ in the relabelling
step. For ∂k, the dummy box is labelled as k, and the k+1 box is kept constant, while
every other box’s label is reduced by 1. On the other hand, for ∂k+1, the dummy box
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is labelled as k + 1, while every other box, including k+1 , has its label reduced by 1.

Furthermore, in both cases, k and k+1 are not adjacent due to our assumption.

Thus, tk acts by swapping k and k+1 on ∂k(T ) and we have tk∂k(T ) = ∂k+1(T ).

Case 2: If the dummy box comes adjacent to k+1 in the jdt step of ∂k,
Then the jdt step of ∂k+1 must have an extra step of swapping the dummy box with
k+1 . Then after the relabelling steps of ∂k and ∂k+1, we have ∂k(T ) = ∂k+1(T ).

Furthermore, by assumption, we have k and k+1 adjacent, thus tk acts by identity
on ∂k(T ).

Thus we have overall tk◦∂k = ∂k+1. So by induction, ∂k+1 = tk◦∂k = tk◦pk−1 = pk.
Then we have by definition

c[1,k+1] = ξk = ∂1∂2 · · · ∂k = p1p2 · · · pk = qk

and the result follows. □

We now recall a theorem of Chmutov, Glick, and Pylyavskyy, which identifies the
Berenstein–Kirillov group with a quotient of the cactus group.

Definition 3.9. The reduced cactus group C0
n is the quotient of Cn by the relations

cici+1ci = ci+1cici+1(C3)

where ci = c[i,i+1] for 1 ≤ i ≤ n− 1.

Remark 3.10. Since ci = c[1,i+2]c2c[1,i+2] and ci+1 = c[1,i+2]c1c[1,i+2] the relations
defining the reduced cactus group are conjugates of a single relation, that is, C0

n =
Cn/⟨(c[1,2]c[2,3])3⟩.

The following is the main result of [1].

Theorem 3.11. There is a group isomorphism χ : C0
n → BKn given by

c[1,i] 7→ qi−1 2 ≤ i ≤ n.

Corollary 3.12. Let λ ⊢ n. The action of Cn on SYT(λ) factors through C0
n.

Proof. Let x = (c[1,2]c[2,3])3 ∈ Cn. Notice that x is a non-identity element. Using
c[1,2]c[2,3] = c[1,2]c[1,3]c[1,2]c[1,3] we have

x = (c[1,2]c[2,3])3 = (c[1,2]c[1,3])6.

By Theorem 3.8, the action of x is equivalent to the action of y = (t1(t1t2t1))6 ∈ BKn.
However,

y = (t1(t1t2t1))6 = (t2t1)6 = 1

It follows that x acts by identity on SYT(λ), and the action of Cn on SYT(λ) factors
through the projection map π : Cn → C0

n. □

Remark 3.13. The corollary is a special case of a more general result of Kashi-
wara [11]*Theorem 7.2.2, which implies that the internal cactus group action on any
normal g-crystal factors over the reduced cactus group of type g (see also [7]*Remark
5.21).
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3.3. The case of a hook shape. In this section we will prove our main result,
which describes the Schützenberger modules in the case when λ is a hook shape, i.e.
λ = (m, 1, . . . , 1) for some m and some number of 1s. For this we make crucial use of
the connection between the cactus group and the Berenstein–Kirillov group explained
in Theorem 3.11.

Recall that BKn = ⟨t1, t2, · · · , tn−1⟩ acts on SYT(λ) for λ ⊢ n. This gives rise to a
representation

ψ : BKn → GL(SλSch).
Recall that tk acts by swapping k and k+1 if they are not adjacent, and otherwise

does nothing. As 1 and 2 are always adjacent for standard tableaux, t1 always
acts by identity, and thus ψ(t1) = 1.

The remaining generators ψ(t2), · · · , ψ(tn−1) satisfy the relations of BKn. In par-
ticular,

ψ(tk)2 = 1 and ψ(tk)ψ(tl) = ψ(tl)ψ(tk) |k − l|≥ 2
Assume for the purposes of discussion that for k ≥ 2, we have

(ψ(tk)ψ(tk+1))3 = 1(⋆)
This would give a surjective group homomorphism

η : Sn−1 → im(ψ) sk 7→ ψ(tk+1)
Since BKn

∼= C0
n (Theorem 3.11), and the action of Cn on SYT(λ) factors through

C0
n (Corollary 3.12), this will allow us to use the representation theory of Sn−1 to

study SλSch. The following lemma describes when this approach is feasible.

Lemma 3.14. Let λ ⊢ n. Then relation (⋆) holds for all T ∈ SYT(λ) if and only if
λ = (2, 2) or λ is a hook shape.

Proof. As tk and tk+1 act on T ∈ SYT(λ) depending on how k , k+1 , and k+2 are
adjacent, we consider the ways the three boxes can be adjacent.

Case 1: If the three boxes are all non-adjacent, (⋆) is true. For example:

k

k+1

k+2

tk+1−−−→
k

k+2

k+1

tk−→
k+1

k+2

k

tk+1−−−→
k+2

k+1

k

tk−→
k+2

k

k+1

tk+1−−−→
k+1

k

k+2

tk−→
k

k+1

k+2

Case 2: If two boxes are adjacent and one is not adjacent to either, then (⋆) is true.
For example:

k

k+1 k+2

tk+1−−−→
k

k+1 k+2

tk−→
k+1

k k+2

tk+1−−−→
k+2

k k+1

tk−→
k+2

k k+1

tk+1−−−→
k+1

k k+2

tk−→
k

k+1 k+2

Case 3: If all three are adjacent in a single row or single column, then (⋆) is true. In
this case, k and k+1 are always adjacent, so tk always acts by identity. The

same is true for k+1 and k+2 , so tk+1 also always acts by identity.
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Case 4: If all three are adjacent in the following shape, then (⋆) is not true.

k k+1

k+2

In this case, k and k+1 are always adjacent while k+1 and k+2 are always

not adjacent. Thus tk acts by identity while tk+1 acts by swapping k+1 and

k+2 . Hence for T ∈ SYT(λ) with this formation,

(ψ(tk)ψ(tk+1))3(T ) = ψ(tk+1)3(T ) = ψ(tk+1)(T ) ̸= T

Hence if λ is a shape that does not allow the Case 4 configuration for k ≥ 2 (since we
ignore ψ(t1)), then (⋆) will hold true. This is exactly when λ = (2, 2) or λ is a hook
shape. □

Remark 3.15. In general for all shapes λ, we have (ψ(tk)ψ(tk+1))6 = 1. To see that
we do not necessarily have (ψ(tk)ψ(tk+1))3 = 1, consider λ = (3, 2) and the following
tableau

T =
1 3 4
2 5

A quick calculation shows:

(t3t4)3(T ) =
1 3 5
2 4

Theorem 3.16. For a hook shape λ not of the form (n), (1n) or (2, 1), we have that
the map η : Sn−1 → im(ψ) is an isomorphism.

Proof. We have already shown that η is surjective. Notice that for n ≥ 4, im(ψ)
has two distinct non-identity elements, namely ψ(t2) and ψ(t3). These are nontrivial
because there is a T ∈ SYT(λ) such that

T |[1,4] =
1 2 4
3

or
1 3
2
4

and indeed T, ψ(t2)(T ), ψ(t3)(T ) are all distinct.
Assume for contradiction ker η ̸= {1}. If n ̸= 5, the only other normal subgroups

of Sn−1 are An−1, the alternating group, and Sn−1. In either case, we will have that
[Sn−1 : ker η] ≤ 2, hence

|Sn−1/ker η|≤ 2 < 3 ≤ |im(ψ)|
which gives a contradiction. Thus the kernel must be the trivial group for n ̸= 5.

For n = 5, the only possible hook shapes are (4, 1), (3, 1, 1), (2, 1, 1, 1). For the
(4, 1) case, using the notation from the proof of Proposition 3.1, we have that ti
interchanges Ti−1 and Ti for i = 2, 3, 4. Thus im(ψ) is isomorphic the subgroup of
GL4(C) generated by the simple transposition matrices, which is clearly isomorphic
to S4. The (2, 1, 1, 1) case is dual to the (4, 1) case.

Let us examine the case for λ = (3, 1, 1). There are six tableaux in SYT(λ).

T1 =
1 2 3
4
5

T2 =
1 2 4
3
5

T3 =
1 2 5
3
4
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T4 =
1 4 5
2
3

T5 =
1 3 5
2
4

T6 =
1 3 4
2
5

Hence we can view x ∈ im(ψ) as elements in S6 acting on the subscript: xTk = Tx(k).
Then we have:

ψ(t2) = (2 6)(3 5) ψ(t3) = (1 2)(4 5) ψ(t4) = (2 3)(5 6)

The subgroup generated by these elements has more than six elements. Since every
nontrivial normal subgroup of S4 has index at most 6 ([S4 : K4] = 6 where K4 is the
Klein four group), we conclude as above that the map is indeed injective. □

Corollary 3.17. Let λ ⊢ n be a hook partition not of the form (n), (1n) or (2, 1).
Then the representation SλSch factors over Sn−1 as follows:

Cn GL(SλSch)

Sn−1

ρλ

πn−1 η

Proof. Recall we have projection map π : Cn → C0
n and isomorphism χ : C0

n → BKn.
By Theorem 3.11 and Corollary 3.12 we have the diagram:

Cn GL(SλSch)

BKn

ρλ

χ◦π ψ

By Theorem 3.16, if we can extend this diagram with a map from BKn to Sn−1,
obtaining the desired result. □

Definition 3.18. Let λ ⊢ n be a hook shape. The boxes in the first row (excluding the
first box) are the arm of λ, and the boxes in the first column (excluding the first box)
are the leg of λ. We let rλ = (a, b) be the two-part composition of n− 1 formed by the
arm and leg of λ.

In the example below, λ = (5, 1, 1) has arm length 4 and leg length 2 and rλ = (4, 2).

Proposition 3.19. Let λ ⊢ n be a hook shape. Then the Sn−1 representation (η, SλSch)
is isomorphic to the permutation module M rλ.

Proof. Set rλ = (a, b). We have shown that SλSch
∼= Sλ

′

Sch by the dual map, so we can
assume without loss of generality that a ≥ b.

Since SλSch and M rλ are both permutation modules of Sn−1, it suffices to prove that
there exists a bijection between the standard bases of each module that commutes
with the action of Sn−1.
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Define the operation Fold given by the following illustration:

1 x1 x2 · · · xa
y1

y2...
yb

Fold−−−−−−→
x1 x2 x3 · · · xa
y1 y2 · · · yb

Notice that we lose the hinge, i.e. 1 , so the entries in Fold(T ) are now
from {2, 3, · · · , n}. Thus we subtract 1 from each label, and in this way define
a map F : SYT(λ) → Tab(rλ) given by F = (−1) ◦ Fold.

1 2 3 4 5
6
7
8

2 3 4 5
6 7 8

1 2 3 4
5 6 7

Fold −1

F

We first show that F : SYT(λ) → Tab(rλ) is a bijection. Let Z = {2, 3, · · · , a+b+1}.
Any X ⊆ Z of cardinality a uniquely determines T (X) ∈ SYT(λ), where X is the
set of numbers in the arm of T . Similarly for Z ′ = {1, 2, · · · , a + b} any X ′ ⊆ Z ′ of
cardinality a determines P (X ′) ∈ Tab(rλ), where X ′ is the set of numbers in the first
row. The bijection is then F : T (X) 7→ P (X − 1).

Next we show that F commutes with Sn−1. Recall that si ∈ Sn−1 acts via ti+1 ∈
BKn on SYT(λ), which swaps i+1 and i+2 if the two boxes are not adjacent in the
tableau, and if they are it acts by the identity.

Notice that for i ≥ 1, i+1 and i+2 , are adjacent in T ∈ SYT(λ) if and only if i

and i+1 are in the same row in F (T ) ∈ Tab(rλ). Thus, si acts on T trivially if and
only if it acts trivially on F (T ). Otherwise, the boxes swap. In T , the boxes swap from
the arm to the leg and vice versa. In F (T ), the boxes swap rows. Since the arm maps
to the first row and the leg maps to the second row, this shows that F commutes with
every transposition. □

We are now ready to prove our main result.

Proof of Theorem 1.2. In the setting of the theorem, λ is a hook partition not equal
to (2, 1). Consider first the case when λ is not of the form (n), (1n). By the above
proposition and Equation (2), there is an isomorphism of Sn−1-modules

SλSch
∼=

⊕
µ ⊢ n−1

KµrλS
µ.

By Corollary 3.17 this implies the isomorphism of Equation (1).
The remaining cases are easily dealt with by direct computation. If λ = (n) or

λ = (1n) the Kostka number Kµrλ is zero unless µ = (n− 1), in which case it is equal
to 1. Thus both sides of (1) are isomorphic to the trivial Cn-module. □
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