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Equivariant log-concavity of graph
matchings

Shiyue Li

Abstract For any graph, we show that the graded permutation representation of the graph
automorphism group given by matchings is strongly equivariantly log-concave. The proof gives
a family of equivariant injections inspired by a combinatorial map of Krattenthaler and reduces
to the equivariant hard Lefschetz theorem.

1. Introduction
Let G be a graph. A matching on G is a set of pairwise nonadjacent edges. Let Mk be
the set of matchings on G with k edges. It is well-known that the sequence of graph
matching numbers is log-concave. That is, for positive integers k ⩽ ℓ,

|Mk−1||Mℓ+1| ⩽ |Mk||Mℓ|,
The first proofs in [7, Theorem 4.2] and [12] show that the generating polynomial of the
graph matching sequence

∑
|Mk|xk has only real roots, which implies log-concavity.

Later, in [8], Krattenthaler gave a combinatorial proof of this result. However, as we
shall see in Example 2.3, this combinatorial approach breaks the graph symmetry.

It is interesting to ask whether the graph matching sequence exhibits log-concavity
that respects the graph symmetry. The notion of (strongly) equivariant log-concavity
arises when one considers log-concavity with respect to the symmetry of the underly-
ing objects. It was introduced by Gedeon, Proudfoot and Young [2, Section 5] in the
context of the equivariant Kazhdan–Lusztig polynomial of a matroid. It is recently
used to study other log-concave sequences in combinatorics, geometry and topology
that involve group actions (see [3, 4, 9, 13]).

We now recall precise definitions.

Definition 1.1 ([2, Section 5]). Let H be a group.
(1) A graded H-representation

V • =
⊕
k=0

Vk

is H-equivariantly log-concave if for all i ⩾ 1, there exists an H-
equivariant injection

Vi−1 ⊗ Vi+1 ↪→ Vi ⊗ Vi.
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(2) A graded H-representation

V • =
⊕
k=0

Vk

is strongly H-equivariantly log-concave if for all positive integers k ⩽ ℓ,
there exists an H-equivariant injection

Vk−1 ⊗ Vℓ+1 ↪→ Vk ⊗ Vℓ.

Here, by an H-equivariant map, we mean the following: suppose two objects X
and Y each afford an action by a group H. If a map φ : X → Y satisfies that

h · φ(x) = φ(h · x)

for all h in H and x in X, then φ is H-equivariant.
In the case of graph matchings, the graded Aut(G)-representation is the graded

permutation representation of Aut(G) over any field F of characteristic 0

V •
G :=

⊕
k

SpanF{xM | M ∈ Mk}.

The aim of this paper is to prove the following theorem.

Theorem 1.2. The graded permutation representation V •
G of Aut(G) given by match-

ings on G is strongly Aut(G)-equivariantly log-concave.

To prove this, we first construct an Aut(G)-equivariant map from Vk−1 ⊗ Vℓ+1 to
Vk ⊗ Vℓ, and then decompose the tensor products Vk−1 ⊗ Vℓ+1 and Vk ⊗ Vℓ into direct
sums with the following properties:
(1) The direct sum decomposition of Vk−1 ⊗ Vℓ−1 is given by a partition on

Mk−1 × Mℓ+1.
(2) The direct sum decomposition of Vk⊗Vℓ is given by a similar partition on Mk×Mℓ.
(3) On each direct summand V (P ) ⊂ Vk−1 ⊗ Vℓ+1 associated with a part P , the

map Φk,ℓ is a hard Lefschetz operator into the direct summand V (P ′) ⊂ Vk ⊗ Vℓ

determined by P . Injectivity follows from the hard Lefschetz theorem.
Note that taking dimensions of V •

G immediately recovers the nonequivariant log-
concavity of graph matching numbers.

As a corollary, if G is the graph of n disjoint edges, then we obtain an Sn-equivariant
categorification of the log-concavity of the binomial coefficients.

Corollary 1.3. Given an integer n ⩾ 1, the graded permutation representation of
Sn given by all k-subsets of [n]

V • =
⊕
k

SpanF{xS | S ⊆ [n], |S| = k}

is Sn-equivariantly log-concave.

Remark 1.4. We situate both the object V •
G and the techniques in the present work

in a slightly broader context. The assignment to each graph G of a graded Aut(G)-
representation V •

G is also a representation of the graph minor category G (see [10]).
It consists of graphs as objects, and compositions of edge deletions, contractions and
automorphisms as morphisms. For each graph G, one can also take the simplicial
complex of matchings M(G) on G and study its homology H(M(G)) (see [11]). One
connection is that, the differentials that define the homology H(M(G)) also equip
V •
G with a natural family of differentials that respects the graph minor morphisms. It

would be very interesting to see further interactions between V •
G and other represen-

tations of the category G.

Algebraic Combinatorics, Vol. 6 #3 (2023) 616



Equivariant log-concavity of graph matchings

2. Proof of Theorem 1.2
Let k ⩽ ℓ be positive integers less than the maximum matching size on G, and let
Mk,ℓ = Mk × Mℓ.

2.1. Construction. Our strategy is to assign a subset of Mk,ℓ to each pair (M, M ′)
in Mk−1,ℓ+1. The procedure goes as follows:

(a) Color M with blue and M ′ with pink, then each edge has 0, 1, or 2 colors.
If we consider only the set of edges with exactly 1 color, then we obtain a
subgraph GM,M ′ . That is, GM,M ′ is the symmetric difference of M and M ′.

(b) Since M, M ′ are matchings, each vertex in GM,M ′ cannot have degree > 2.
That is, any connected component in GM,M ′ is one of the two types:
(i) a chain; or
(ii) a cycle with even number of edges.
Let CM,M ′ denote the set of chains in GM,M ′ with odd length. By definition,
any chain in CM,M ′ must start and end with the same color. If a chain starts
and ends with blue (respectively, pink) edges, we call it a blue (respectively,
pink) chain. We write

BM,M ′ := {blue chains in CM,M ′},

PM,M ′ := {pink chains in CM,M ′}.

(c) Choose any pink chain in PM,M ′ . If we swap the edge colors (blue to pink,
pink to blue), then we obtain an additional blue chain, and the number of
blue (respectively, pink) edges in GM,M ′ increases (respectively, decreases) by
1. Therefore, if we record all the blue (respectively, pink) edges in this new
edge-colored graph, we obtain a pair (N, N ′) in Mk,ℓ.

(d) Do (c) for all pink chains in PM,M ′ . By construction, the resulting pairs are
all distinct. Therefore, we obtain a subset of Mk,ℓ and denote it as NM,M ′ .

We highlight some numerical facts. Before (c), the contributions of blue and pink
edges in GM,M ′ from every type of components are as follows.

(i) An even chain or cycle contributes the same number of blue and pink edges.
(ii) A blue chain contributes 1 more blue edge than pink edges.
(iii) A pink chain contributes 1 more pink edge than blue edges.

If an edge is not in GM,M ′ , then it must have no color or be both blue and pink.
Therefore we have that

|PM,M ′ | − |BM,M ′ | = (ℓ + 1) − (k − 1) = k − ℓ + 2 ⩾ 2.

The positivity of this difference ensures that there exists a pink chain on which to
perform (c). This, together with the fact that |BM,M ′ | + |PM,M ′ | = |CM,M ′ |, implies
that

|BM,M ′ | ⩽ |CM,M ′ |
2 − 1.

After (d), we have |NM,M ′ | = |PM,M ′ | ⩾ 2 + |BM,M ′ | ⩾ 2 by construction.

Example 2.1. Let (M, M ′) a pair in M1,3 in the 6-cycle graph G as shown. The
construction above maps the pair (M, M ′) to the set NM,M ′ = {(N1, N ′

1), (N2, N ′
2)}

in M2,2 (Fig. 1).

Now we define the linear map Φk,ℓ : Vk−1 ⊗ Vℓ+1 → Vk ⊗ Vℓ by

xM ⊗ xM ′ 7→ 1
|NM,M ′ |

∑
(N,N ′)

xN ⊗ xN ′ ,

where (N, N ′) ranges over all pairs in NM,M ′ and extend linearly.
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M M ′

N1 N ′
1

N2 N ′
2

Figure 1

2.2. Proof of equivariance. This section is devoted to show that Φk,ℓ is Aut(G)-
equivariant. That is, for any σ in Aut(G) and (M, M ′) in Mk−1,ℓ+1,

Φk,ℓ(σ · (xM ⊗ xM ′)) = σ · Φk,ℓ(xM ⊗ xM ′).
The left hand side is

Φk,ℓ(σ · (xM ⊗ xM ′)) = Φk,ℓ(xσ(M) ⊗ xσ(M ′)) = 1
|Nσ(M),σ(M ′)|

∑
(N,N ′)

xN ⊗ xN ′ ,

where (N, N ′) ranges over all pairs in Nσ(M),σ(M ′).
The right hand side is

σ · Φk,ℓ(xM ⊗ xM ′) = σ ·
(

1
|NM,M ′ |

∑
(N,N ′)

xN ⊗ xN ′

)
= 1

|NM,M ′ |
∑

(N,N ′)

xσ(N) ⊗ xσ(N ′),

where (N, N ′) ranges over all pairs in NM,M ′ .
Crucially, producing the set NM,M ′ and performing σ on the pair (M, M ′) are

commutative. In other words, the set equality
Nσ(M),σ(M ′) = σ(NM,M ′) = {(σ(N), σ(N ′)) : (N, N ′) ∈ NM,M ′}

holds. Moreover, by virtue of σ being a graph automorphism, the numerical equality
1

|NM,M ′ |
= 1

|Nσ(M),σ(M ′)|
holds. These two identities imply that the two sides in the desired equation coincide.

2.3. Proof of injectivity. This section is devoted to show that Φk,ℓ is injective. As
stated in the introduction, we do so by decomposing the tensor products Vk−1 ⊗ Vℓ+1
and Vk ⊗ Vℓ into direct sums with the following properties:
(1) The direct sum decomposition of Vk−1 ⊗ Vℓ−1 is given by a partition on

Mk−1 × Mℓ+1.
(2) The direct sum decomposition of Vk⊗Vℓ is given by a similar partition on Mk×Mℓ.
(3) On each direct summand V (P ) ⊂ Vk−1 ⊗ Vℓ+1 associated with a part P , the Φk,ℓ

is a hard Lefschetz operator into the direct summand V (P ′) ⊂ Vk ⊗Vℓ determined
by P . Injectivity follows from the hard Lefschetz theorem.

First, we create a partition Πk−1,ℓ+1 on Mk−1,ℓ+1 by giving an equivalence relation:
any two pairs (M1, M2) and (M ′

1, M ′
2) in Mk−1,ℓ+1 are equivalent if they form the same

subgraph and yield the same coloring outside of odd chains with 1-colored edges. More
precisely,
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(i) M1 ∪ M ′
1 = M2 ∪ M ′

2;
(ii) M1 = M2, M ′

1 = M ′
2 outside of CM1,M ′

1
. Note that, CM1,M ′

1
= CM2,M ′

2
by (i).

The restriction thus makes sense.
Any part P of the partition Πk−1,ℓ+1 has the following properties: for any (M1, M ′

1)
and (M2, M ′

2) in P ,
(1) the sets of chains CM1,M ′

1
and CM2,M ′

2
are equal as subgraphs; and

(2) the cardinalities of the blue chains are equal, i.e.

|BM1,M ′
1
| = |BM2,M ′

2
|.

Indeed, (1) follows from the definition of P , and (2) follows for numerical reasons:

|BM1,M ′
1
| + |PM1,M ′

1
| = |CM1,M ′

1
| = |CM2,M ′

2
| = |BM2,M ′

2
| + |PM2,M ′

2
|

and
|PM1,M ′

1
| − |BM1,M ′

1
| = (ℓ + 1) − (k − 1) = |PM2,M ′

2
| − |BM2,M ′

2
|.

Thus we have that
|BM1,M ′

1
| = |BM2,M ′

2
|.

Therefore, we set CP := CM,M ′ and |BP | := |BM,M ′ | for any (M, M ′) in P .
Now, consider the following vector space for any part P in Πk−1,ℓ+1

Vk−1,ℓ+1(P ) := SpanF{xM ⊗ xM | (M, M ′) ∈ P}.

We now realize Vk−1,ℓ+1(P ) as a categorification of the |BP |th level of the Boolean
lattice on CP . Consider the map

βP : P →
(
CP

|BP |

)
, (M, M ′) 7→ BM,M ′ .

It is well-defined by the construction of BM,M ′ in step (b) of Section 2.1. It is surjective:
for each subset of edges with size |BP | of CP , one can color the present subset as blue
chains and reverse the last step in (c). It is injective: if two pairs (M1, M ′

1) and
(M2, M ′

2) in P give the same set of blue chains, then the fact

BM1,M ′
1

⊔ PM2,M ′
2

= CP = BM2,M ′
2

⊔ PM2,M ′
2

implies that PM1,M ′
1

= PM2,M ′
2
. This further means M1 = M2, M ′

1 = M ′
2 on CP , and

moreover (M1, M ′
1) = (M2, M ′

2). Therefore, βP is a bijection.
Next, we consider the vector space

VCP ,|BP | := SpanF

{
yB | B ∈

(
CP

|BP |

)}
,

and define
βP : Vk−1,ℓ+1(P ) → VCP ,|BP |, xM ⊗ xM ′ 7→ yBM,M′ .

It is an isomorphism of vector spaces, because βP is a bijection on the bases.
Then, we do the same procedure for Mk,ℓ. If we create a partition Πk,ℓ on Mk,ℓ in

the same way, then the set
P ′ =

⋃
(M,M ′)∈P

NM,M ′

for P in Πk−1,ℓ+1 is also a part in Πk,ℓ. Indeed, we need to show that P ′ satisfies the
following properties.

(1) Elements in P ′ are pairwise equivalent. Indeed, since the procedure (d) does
not change edges outside of CM,M ′ , any (N1, N ′

1) and (N2, N ′
2) in P ′ must

satisfy that N1 ∪ N ′
1 = N2 ∪ N ′

2 and N1 = N2, N ′
1 = N ′

2 outside of CM,M ′ .
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(2) Any pair that is equivalent to a member in P ′ must also belong to P . That
is, if a pair (M, M ′) in Mk,ℓ is equivalent to a pair (N, N ′) in P ′, then there
exists (M, M ′) in P such that

(M, M ′) ∈ NM,M ′ .

Indeed, such (M, M ′) can be constructed by reversing the procedure (c) using
any pink chain in PM,M ′ .

We define the map βP ′ and βP ′ similar to those for P . Note that, by construction,
|BP ′ | = |BP | + 1 and CP ′ = CP .

Finally, for each P in Πk−1,ℓ+1, define the linear map

LP : VCP ,|BP | → VCP ′ ,|BP |+1, yB 7→ 1
|CP | − |BP |

∑
B⊆B′∈( CP

|BP |+1)
yB′ .

Crucially, LP is the hard Lefschetz operator on the graded vector space spanned by
all subsets of CP , where the grading is given by cardinality. It is injective for degrees
|BP | ⩽ |CP |/2 − 1. This operator and its injectivity on the lower half graded pieces
have been studied in various contexts. We invite the reader to see proofs of various
flavors: [14], [15, The hard Lefschetz theorem], [5, Proposition 7], [6], [16, Theorem
4.7] and [1, Theorem 1.1(3)].

By construction, the following diagram commutes:

Vk−1,ℓ+1(P ) VCP ,|BP |

Vk,ℓ(P ′) VCP ′ ,|BP |+1.

βP

∼=

Φk,ℓ LP

βP ′

∼=

Therefore, Φk,ℓ is injective from Vk−1,ℓ+1(P ) to Vk,ℓ(P ′).
Note that by construction,

Vk−1 ⊗ Vℓ+1 =
⊕

P ∈Πk−1,ℓ+1

Vk−1,ℓ+1(P ) ∼=
⊕

P ∈Πk−1,ℓ+1

VCP ,|BP |.

Then the last sentence of the previous paragraph implies that Φk,ℓ is injective on
Vk−1 ⊗ Vℓ+1.

Remark 2.2. Our construction was inspired by Krattenthaler’s combinatorial proof
of the nonequivariant log-concavity of graph matchings in [8]. His proof constructs an
injective set map

fk,ℓ : Mk−1,ℓ+1 → Mk,ℓ.

This injective map depends on a vertex order on the graph to select only one pink
chain to convert into a blue chain; for one concrete example, see [17, Section 2.2].
In general, this set map is not Aut(G)-equivariant. See the following example. Our
approach fixes where the map fk,ℓ breaks the graph symmetry. Interestingly, this fix
also reduces the proof of the injectivity to the hard Lefschetz theorem, as mentioned
before.

Example 2.3. Let (M, M ′) be a pair in M1,3 in the 6-cycle vertex-ordered graph
G as shown. When converting a pink chain to a blue chain, we choose the pink
chain containing the minimum vertex. (We invite the reader to check that this is
indeed the injective map given in [17, Algorithm 14, Section 2.2].) Together with
the automorphism ρ given by the clockwise 2π/6 rotation, this pair is a witness of
nonequivariance of f = fk,ℓ, i.e.

ρ(f(M)), ρ(f(M ′)) ̸= f(ρ(M)), f(ρ(M ′)).
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Figure 2

3. A weighted equivariant promotion
Thanks to the injections, we also obtain an Aut(G)-equivariant promotion of the
following theorem.

Theorem 3.1 ([8, Theorem 2]). Fix a graph G, the kth weighted matching number of
G is a polynomial

Mk(G, x) :=
∑

M∈Mk

∏
e∈M

xe ∈ F [xe]e∈E(G).

Then for positive integers k ⩽ ℓ less than the maximum matching size, the polynomial

Mk(G, x)Mℓ(G, x) − Mk−1(G, x)Mℓ+1(G, x)

has nonnegative coefficients.

The polynomial ring in variables {xe}e∈E(G) is naturally a graded Aut(G)-
representation. The Aut(G)-equivariant promotion of the theorem above can be
described as follows. For positive integers k ⩽ ℓ, define

ιk,ℓ : Vk ⊗ Vℓ → F [xe]e∈E(G), xM ⊗ xM ′ 7→

(∏
e∈M

xe

)( ∏
e′∈M ′

xe′

)
.

By definition, ιk,ℓ is Aut(G)-equivariant. The following theorem immediately follows
from construction. Note that the weighting in the definition of Φk,ℓ is necessary for
the commutativity.

Theorem 3.2. For any graph G and positive integers k ⩽ ℓ, the following diagram of
Aut(G)-equivariant maps commutes:

Vk−1 ⊗ Vℓ+1 F [xe]e∈E(G)

Vk ⊗ Vℓ

ιk−1,ℓ+1

Φk,ℓ
ιk,ℓ

.
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