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Tropical positivity and determinantal
varieties

Marie-Charlotte Brandenburg, Georg Loho & Rainer Sinn

Abstract We initiate the study of positive-tropical generators as positive analogues of the
concept of tropical bases. Applying this to the tropicalization of determinantal varieties, we de-
velop criteria for characterizing their positive part. We focus on the study of low-rank matrices,
in particular matrices of rank 2 and 3. Moreover, in the case of square-matrices of corank 1, we
fully classify the signed tropicalization of the determinantal variety, even beyond the positive
part.

1. Introduction
Tropicalization is a modern and powerful tool for understanding algebraic varieties
via a polyhedral “shadow”, to which combinatorial tools can be applied (for instance
to solve enumerative problems). We are particularly interested in identifying the trop-
icalization of semi-algebraic subsets of algebraic varieties as a subset of the tropical-
ization of the whole (complex) variety. Specifically, we care about the positive part
of an algebraic variety, which arises in various applications from combinatorial opti-
mization [13] to physics [27, 2] and statistics [19]. The tropicalizations of the positive
parts of many classical varieties have been studied before. In this work, we focus on
determinantal varieties inspired by applications to optimization.

A finite generating set of the vanishing ideal of a given variety (in other words, an
algebraic description) can be tropicalized to define a polyhedral complex known as a
tropical prevariety. If this happens to coincide with the tropicalization of the variety
itself, the generating set is called a tropical basis. We coin the notion of positive-tropical
generators as an analog of this property for the positive part. For determinantal vari-
eties, all cases where the appropriate minors form a tropical basis have been classified
in a series of works [9, 6, 24]. We take the first steps towards a characterization when
they are also positive-tropical generators.

This question has been studied before for other varieties: [27, 2] showed that the
3-term Plücker relations form a set of positive-tropical generators of the tropical
Grassmannian (even though they are, in general, not a tropical basis). The main
result of [5] implies that the tropicalizations of the incidence Plücker relations form a
set of positive-tropical generators of the tropical complete flag variety. For the tropical
Pfaffian, [23, Corollary 4.5] implies that the polynomials defining the tropical Pfaffian
prevariety, when restricting to a certain (Gröbner) cone, form a set of positive-tropical
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generators of the restriction of the tropical Pfaffian to this cone. In the context of
cluster varieties, the proof of [15, Proposition 4.1] implies that the generators of the
cluster variety form a positive-tropical generating set (although it is unknown whether
they form a tropical basis).

The notions of positivity differ in tropical geometry, e.g. distinguishing between
positive solutions over the complex Puisseux series and positive solutions that are
fully real. We therefore also introduce the notion of really positive-tropical generators,
which cut out the fully real, positive part. Inspired by Viro’s patchworking [29, 30] –
a combinatorial tool to construct real algebraic curves with prescribed topology – we
extend this idea of positive generators to arbitrary sign patterns, introducing the no-
tion of (really) signed-tropical generators. Generating sets for signed tropicalizations
have been studied in [28] under the name “real tropical bases”. Really signed-tropical
generators turn out to allow for more flexibility and may exist even if real tropical
bases do not.

Our main results are combinatorial criteria for the (signed) tropicalization of deter-
minantal varieties, i.e. the set of matrices of bounded rank [20]. This variety is closely
related to the Grassmannian. For this study, we introduce the triangle criterion, which
is our main tool for identifying positivity. This criterion is purely combinatorial, and
relies on the graph structure of the Birkhoff polytope. As a special case, we consider
the determinantal varieties of low rank matrices, i.e. matrices of rank 2 and 3.

In rank 2, the (3×3)-minors form a tropical basis [9] and they are positive-tropical
generators by Theorem 5.3. The points of the tropical variety (of matrices of Kapranov
rank at most 2) are matrices, whose column span is contained in a tropical line and
the columns can be interpreted as marked points on this line. This is how Develin, and
Markwig and Yu associate a bicolored phylogenetic tree to such a matrix [8, 18]. We
show that this tree determines the positivity of the tropical matrix: The (tropical)
matrix lies in the tropicalization of the positive part if and only if the associated
tree is a caterpillar tree (Corollary 5.6). This relies on the fact, that the nonnegative
rank is equal to the rank for a real matrix of rank 2 (with nonnegative entries) and
a result from [1], showing that the positive part consists precisely of those matrices
with Barvinok rank 2 (Theorem 5.2). The construction of bicolored phylogenetic trees
realizes the tropical determinantal variety combinatorially as a subfan of the tropical
Grassmannian [18]. In the spirit of [18], we establish a bijection on the level of the
corresponding matrices and tropical Plücker vectors, highlighting that this bijection
is induced by a simple coordinate projection (Theorem 5.18).

In rank 3, the (4 × 4)-minors are in general not a tropical basis and we do not
know if they are positive-tropical generators. For the combinatorial criterion, we thus
only obtain a necessary condition for positivity – or, in other words, a combinatorial
certificate of non-positivity (Theorem 6.3), which we call Starship Criterion. In this
case, the column span of a matrix in the tropicalization of the determinantal vari-
ety is contained in a tropical plane. By [14], a tropical plane is uniquely determined
by its tree arrangement (namely the trees obtained by intersecting the plane with
the hyperplanes at infinity). However, we show that the bicolored tree arrangement
that we can derive from a tropical matrix (of Kapranov rank at most 3) does not
contain sufficient information to determine positivity: the main issue is that some
of the marked points (coming from the columns of the matrix) can be on bounded
faces of the tropical plane, whereas the tree arrangement is unable to capture this
information (Example 6.7). However, if the tropical matrix is positive, then the re-
sulting arrangement of bicolored phylogenetic trees solely consists of caterpillar trees
(Theorem 6.6).
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In corank 1, we show that the characterization of positivity for the determinantal
hypersurface extends nicely to the other orthants (Proposition 3.17). This heavily
relies on the fact that in this case the tropical prevariety coincides with the tropical
variety.

Our paper is structured as follows: In Section 2 we discuss the different notions of
positivity in tropical geometry and generators of positivity. We extend this in Sec-
tion 2.3 to arbitrary orthants and we introduce tropical determinantal varieties in
Section 2.4. Section 3 covers determinantal hypersurfaces, whose Newton polytope is
the Birkhoff polytope. In this section, we begin the combinatorial translation of pos-
itivity by introducing cartoons, which leads to the triangle criterion in terms of car-
toons, followed by its geometric version. We extend this to all orthants in Section 3.4.
In Section 4, we explain how one can describe maximal cones of the determinantal
prevariety by unions of perfect matchings, and obtain the triangle criterion in terms
of bipartite graphs. In Section 5, we consider the special case of rank 2, and describe
a bijection between a subfan of the Grassmannian and the tropical determinantal
variety. In Section 6, we consider the rank 3 case. We obtain the starship criterion for
positivity and consider bicolored tree arrangements.

2. Positivity in tropical geometry
In this section, we describe different notions of positivity that can be found in the
literature. Based on the differences in these notions, we introduce (really) positive-
tropical generating sets, which characterize the (real) positive part of a tropical variety.
We then generalize this to (really) signed-tropical generating sets, which describe
the signed tropicalization of a variety with respect to a fixed orthant, and discuss
the differences between these notions. Finally, we introduce tropical determinantal
varieties, the main protagonists in this article.

2.1. Notions of positivity. Let C =
⋃∞

n=1 C((t1/n)) and R =
⋃∞

n=1 R((t1/n))
be the fields of Puisseux series over C and R, respectively. We denote by
lc(x(t)) the leading coefficient of a Puisseux series x(t), i.e. the coefficient of
the term of lowest exponent, and the leading term by lt(x(t)). The degree
map val(x(t)) returns the degree of the leading term, and we consider the
valuation map val (x1(t), . . . , xn(t)) = (val(x1(t)), . . . , val(xn(t))). We define
C+ = {x(t) ∈ C | lc(x(t)) ∈ R>0} and R+ = {x(t) ∈ R | lc(x(t)) ∈ R>0},
which are both convex cones. (Note that this notation differs e.g. from [26].)

We write T for the tropical semiring (T, ⊕, ⊙) = (R ∪ {∞}, min, +). Let
I ⊆ C[x1, . . . , xn] be an ideal. The tropicalization trop(V (I)) of the variety
V (I) ⊆ Cn is the closure of the set {val(z) | z ∈ V (I) ∩ (C∗)n} ⊆ (R ∪ {∞})n.
We consider trop(V (I)) as a polyhedral complex, in which w, w′ are contained in
the relative interior of the same face if inw(I) = inw′(I). We define the positive part
of trop(V (I)) to be trop+C(V (I)) = trop(V (I) ∩ Cn

+) and the really positive part to
be trop+R(V (I)) = trop(V (I) ∩ Rn

+). Similarly, a point w ∈ trop(V (I)) is positive
(respectively really positive) if it is contained in the positive part (respectively the
really positive part). For any set B of generators of an ideal I we have

trop(V (I)) ⊆
⋂

f∈B

trop(V (f)),

and so also

(1) trop+C(V (I)) ⊆
⋂

f∈B

trop+C(V (f)).
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We reserve the notation trop+(V (I)) for the case when trop+C (V (I)) =
trop+R(V (I)) holds, so that there can be no confusion about the notion of pos-
itivity. The positive part of a tropical variety was characterized by Speyer and
Williams as follows:

Proposition 2.1 ([26, Proposition 2.2]). A point w lies in trop+C(V (I)) if and only
if the initial ideal of I with respect to w does not contain any (non-zero) polynomial
whose (non-zero) coefficients all have the same sign, i.e. if and only if

inw(I) ∩ R>0[x1, . . . , xn] = ∅.

This proposition implies that the positive part is closed. There is an equivalent
definition of positivity in terms of the tropicalizations of the polynomials in the
vanishing ideal of the variety (for ideals in R[x1, . . . , xn]). Let f =

∑
e∈E+ fexe −∑

e∈E− fexe ∈ R[x1, . . . , xn] be a polynomial such that fe ∈ R+ for all e ∈ E+ ∪E−,
where (E+, E−) is a partition of the support of the polynomial f . (More generally,
this definition can be made for polynomials f ∈ C[x1, . . . , xn] as long as the coeffi-
cients are either in C+ or −C+.) The combinatorially positive part Trop+(f) of the
tropical hypersurface trop(V (f)) is the set of all points w ∈ trop(V (f)) such that the
minimum of {⟨w, e⟩ + val(fe) | e ∈ E+ ∪ E−} is achieved at some e ∈ E+ and at some
e ∈ E−. In [25], this definition is made for polynomials f ∈ R[x1, . . . , xn], in which
case val(fe) = 0 for all e ∈ E+ ∪ E−.

Corollary 2.2. For hypersurfaces the positive part coincides with the combinatorially
positive part, i.e. Trop+(f) = trop+C(V (f)) for any polynomial f ∈ R[x1, . . . , xn] (or
more generally f ∈ C[x1, . . . , xn] such that its coefficients are in C+ ∪ (−C+)).

Proof. By definition, w ∈ Trop+(f) if and only if the minimum of the set
{⟨w, e⟩ + val(fe) | e ∈ E+ ∪ E−} is achieved at some e+ ∈ E+ and at some
e− ∈ E−. Equivalently, the initial form inw(f) contains the terms fe+xe+ − fe−xe− ,
i.e. inw(⟨f⟩) ∩ R>0[x1, . . . , xn] = ∅. By Proposition 2.1, this is equivalent to
w ∈ trop+C(V (f)). □

Let F be a set of polynomials and P =
⋂

f∈F trop(V (f)) a tropical prevariety. The
combinatorially positive part of P with respect to F is Trop+(P) =

⋂
f∈F Trop+(f).

If P = trop(V (I)) is also a tropical variety, then trop+C(V (I)) =
⋂

f∈I Trop+(V (f)).
In this sense, the notions of positivity and combinatorial positivity agree for tropical
varieties.

2.2. Generators of positivity. We make the following definitions.

Definition 2.3. Let F ⊆ R[x1, . . . , xn] be a finite set of polynomials. Then F is a
set of positive-tropical generators (or is a positive-tropical generating set) if

trop(V (I) ∩ Cn
+) =

⋂
f∈F

trop(V (f) ∩ Cn
+).

It is a set of really positive-tropical generators if
trop(V (I) ∩ Rn

+) =
⋂

f∈F
trop(V (f) ∩ Rn

+).

We note that a set of positive-tropical generators is conceptually different from a
tropical basis. However, under some circumstances a tropical basis is guaranteed to
be a set of positive-tropical generators.

Theorem 2.4. If trop(V (f)) is a tropical hypersurface, then f is a positive-tropical
generator and a really positive-tropical generator for any f ∈ R[x1, . . . , xn].
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Proof. This follows directly from the definition of (really) positive-tropical generators.
□

Theorem 2.5. For a binomial ideal, every tropical basis containing a reduced Gröbner
basis (with respect to any ordering) forms a set of positive-tropical generators.

Proof. Let I be a binomial ideal with tropical basis B. By assumption, B contains a
reduced Gröbner basis G. This Gröbner basis G consists solely of binomials by [11,
Proposition 1.1]. Let w ∈ trop(V (I)). Then inw(I) = ⟨inw(f) | f ∈ G⟩ does not
contain a monomial and so inw(f) = f . Thus, I = inw(I) and G is a reduced
Gröbner basis of inw(I). Now, Proposition 2.1 together with [3, Lemma 5.6] implies
that w ∈ trop+C(V (I)) if and only if inw(I) ∩ R⩾0[x1, . . . , xn] = ⟨ 0 ⟩ if and only if
G ∩ R⩾0[x1, . . . , xn] = ∅. Therefore, w ∈ trop+C(V (I)) =

⋂
f∈I trop+C(V (f)) if and

only if w ∈
⋂

f∈G trop+C(V (f)). Note that⋂
f∈I

trop+C(V (f)) ⊆
⋂

f∈B

trop+C(V (f)) ⊆
⋂

f∈G

trop+C(V (f)),

and so w ∈ trop+C(V (I)) if and only if w ∈
⋂

f∈B trop+C(V (f)). □

Example 2.6 (The totally positive tropical Grassmannian). Positive-tropical gener-
ators have been studied in the case of the tropical Grassmannian. More precisely, it
was shown that the 3-term Plücker relations are not a tropical basis, but they are
indeed a positive-tropical generating set [27, 2]. It is also known that the positive part
and the really positive part agree [26]. Hence, the 3-term Plücker relations also form
a really positive-tropical generating set.

If the positive part and the really positive part of a tropical variety coincide, then
every set of positive-tropical generators is also a set of really positive-tropical gener-
ators, because

trop+C V (I) =
⋂

f∈F
trop+C(V (f))

= ⊆

trop+R V (I) ⊆
⋂

f∈F
trop+R(V (f)).

Remark 2.7. In [28] the notion of a real tropical basis was introduced. This is a finite
generating set, which cuts out the signed tropicalization of the real part of the variety.
In particular, a real tropical basis is always a set of really positive-tropical generators.
We elaborate on this further in Remark 2.12.

For our notion of positive-tropical generators, Example 2.6 and Table 1 indicate
that tropical bases and positive-tropical generators are distinct concepts of similar
flavor. This motivates the following question.

Question 2.8. Is there a tropical variety where a tropical basis is not a set of positive-
tropical generators?

In particular, we raise this question for tropical determinantal varieties, which will
be the main object of study in the following sections. Given Table 1, does this already
fail for the minors?

2.3. Signed-tropical generators. We devote the remainder of this section to
discuss how a description of a tropical hypersurface trop(V (f)) for one orthant (the
positive orthant) can be extended to all orthants by “flipping signs”. This goes back to
the idea of Viro’s patchworking [30]. It is crucial that for a hypersurface, the notions
of positivity and combinatorial positivity coincide (cf. Corollary 2.2). More precisely,
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let f =
∑

α cαxα be a polynomial in n variables x = (x1, . . . , xn) and s ∈ {−1, 1}n a
sign vector. Analogously to the notions introduced in Section 2.1 we define

Cs = {(ξ1(t), . . . , ξn(t)) ∈ Cn | lc(ξi) ∈ R and sgn(lc(ξi)) = si ∀i ∈ [n]}

and trops(V (f)) = trop(V (f) ∩ Cs). We consider the modified polynomial fs =∑
α sαcαxα. By construction, for a point ξ = (s1ξ1, . . . , snξn), ξi ∈ C+ one obtains

f(ξ) =
∑

α

cαξα =
∑

α

sαcα(ξ1, . . . , ξn)α = fs(ξ1, . . . , ξn).

In other words, ξ ∈ V (f) ∩ Cs if and only if (ξ1, . . . , ξn) ∈ V (fs) ∩ C+
n and hence

trops(V (f)) = trop+C(V (fs)).

We can extend this idea to make the following definitions.

Definition 2.9. Let V (I) ⊆ Cn be a variety and F ⊆ R[x1, . . . xn] be a finite set of
polynomials. Let s ∈ {−1, 1}n be a fixed sign vector. The set F is a set of signed-
tropical generators of trop(V (I)) with respect to s if

trop(V (I) ∩ Cs) =
⋂

f∈F
trop(V (f) ∩ Cs) =

⋂
f∈F

trops(V (f)).

The finite set F ⊆ R[x1, . . . xn] is a set of really signed-tropical generators of
trop(V (I)) with respect to s if

trop(V (I) ∩ Rs) =
⋂

f∈F
trop(V (f) ∩ Rs).

Proposition 2.10. If trop(V (f)) is a tropical hypersurface, then f is a (re-
ally) signed-tropical generator for trops(V (f) with respect to every sign vector
s ∈ {−1, 1}n for any polynomial f ∈ R[x1, . . . , xn]. Furthermore, if f =

∑
α cαxα,

then trops(V (f)) = trop+C(V (fs)), where fs =
∑

α sαcαxα.

Proof. The first part of the statement follows directly from the definition of (really)
signed-tropical generators. The second part is implied by the discussion above. □

Let P denote the tropical prevariety P =
⋂

f∈F trop(V (f)) with finite generating
set F . Note that, similarly to the positive part, also for the more general signed part
we have

trop(V (I) ∩ Cs) ⊆
⋂

f∈F
trops(V (f)) ⊆ P.

In this sense, one can interpret the “signed-tropical prevariety”
⋂

f∈F trops(V (f)) as a
combinatorial approximation of the signed tropicalization trop(V (I)∩Cs). Thus, when
considering signed tropicalizations, a finite set F that is a signed-tropical generating
set with respect to every sign pattern s ∈ {−1, 1}n simultaneously might be a useful
tool for understanding the different orthants trop(V (I) ∩ Cs) in a combinatorial fash-
ion. Note that a set of positive-tropical generators is not necessarily a signed-tropical
generating set for other orthants, as illustrated in the following example.

Example 2.11 (Positive generators do not generate all orthants). Consider the tropi-
calization of the linear space L that is the row span of M with Plücker vector p given
by

M =
(

1 0 −1 1
0 1 −1 −2

)
,

12 13 14 23 24 34
p = ( 1 −1 −2 1 −1 3 ).
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A tropical basis of trop(L) is given by the polynomials

f1 = p12x3 − p13x2 + p23x1 = x3 + x2 + x1 = 0
f2 = p13x4 − p14x3 + p34x1 = −x4 + 2x3 + 3x1 = 0
f3 = p12x4 − p14x2 + p24x1 = x4 + 2x2 − x1 = 0
f4 = p23x4 − p24x3 + p34x2 = x4 + x3 + 3x2 = 0

according to [17, Lemma 4.3.16], and trop+C(L) ⊆
⋂4

i=1 trop+C(V (fi)). Note that
trop+C(V (f1)) = ∅, so trop+C(L) = ∅ and {f1} is a positive-tropical generating
set. Let s = (−1, 1, 1, 1). Then trops(L) ⊆

⋂4
i=1 trops(V (fi)). Since fs

3 has only
positive coefficients, it follows that trops(V (f3)) = ∅, and so trops(L) = ∅. However,
trops(V (f1)) is non-empty, so {f1} is not a signed-tropical generating set with respect
to s.

Remark 2.12. As mentioned in Remark 2.7, a real tropical basis [28] cuts out a
signed version of the tropicalization of the real part of the variety. By definition, a
real tropical basis is a set of really signed-tropical generators with respect to every sign
pattern s ∈ {−1, 1}n simultaneously. We note however, that the converse is not true.
For example, there are hypersurfaces for which there exists no real tropical basis [28,
Example 3.15]. On the other hand, by Proposition 2.10 the defining polynomial of a
hypersurface is always a really signed-tropical generator for every orthant.

2.4. Determinantal varieties. We set the stage for the following sections by in-
troducing the determinantal varieties we will consider. Let Ir ⊆ C[xij | (i, j) ∈ [d]×[n]]
be the ideal generated by all (r +1)×(r +1)-minors of a symbolic (d×n)-matrix. The
determinantal variety V (Ir) ⊆ Cd×n consists of all (d × n)-matrices of rank at most r.
As in the case of the Grassmannian [25], also for the tropicalization of determinantal
varieties the positive part and the really positive part coincide. The proof of the next
statement is deferred to Appendix B.1.

Proposition 2.13. Let A ∈ Cd×n be a matrix such that the leading coefficient of every
entry Aij ∈ C is real. Then there exists a matrix B ∈ Rd×n of real Puisseux series
that has the same rank as A and the Puisseux series in every entry has the same
leading term as in A, meaning that lt(Aij) = lt(Bij) holds for all (i, j) ∈ [d] × [n].

Corollary 2.14. The positive and the really positive part of the tropicalization of the
variety V (Ir) ⊆ Cd×n of (d × n)-matrices of rank at most r coincide:

trop+C (V (Ir)) = trop+R(V (Ir)).

In particular, every set of positive-tropical generators for the ideal Ir of (r+1)×(r+1)-
minors is a set of really positive-tropical generators. □

We denote by T r
d,n the tropicalization of the determinantal variety of (d × n)-

matrices of rank at most r. Since the minors of a matrix are polynomials with constant
coefficients, the tropical determinantal variety T r

d,n is a polyhedral fan, and its positive
part is a closed subfan. By Corollary 2.14 the positive part is independent of the choice
between C and R, hence we denote it by trop+(V (Ir)) = (T r

d,n)+. While the ideal Ir

is generated by the (r +1)× (r +1)-minors, this does not necessarily carry over to the
tropical variety T r

d,n. Indeed, in a sequence of works, it has been characterized when
they actually form a tropical basis.

Theorem 2.15 ([9, 6, 24]). The (r × r)-minors of a (d × n)-matrix of variables form
a tropical basis of the ideal Ir−1 if and only if r ⩽ 3, or r = min{d, n}, or else r = 4
and min{d, n} ⩽ 6.
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d = 3 d = 4 d = 5 d = 6 d = 7

r = 2 YES
Thm. 2.4 and 5.3

YES
Thm. 5.3

YES
Thm. 5.3

YES
Thm. 5.3

YES
Thm. 5.3

r = 3 YES
Thm. 2.4 ? ? ?

r = 4 YES
Thm. 2.4 ? ?

r = 5 YES
Thm. 2.4 ?

r = 6 YES
Thm. 2.4

Table 1. When do the (r+1)×(r+1)-minors form a set of positive-
tropical generators, i.e. when is (T r

d,n)+ = (P r
d,n)+ for d ⩽ n? A cell

is colored in gray if the set of minors forms a tropical basis according
to Theorem 2.15.

It is thus worthwhile to define the tropical determinantal prevariety
P r

d,n =
⋂

f is a
((r+1)×(r+1))-minor

trop(V (f)) =
⋂

I⊆( [d]
r+1)

J⊆( [n]
r+1)

trop(V (f IJ)).

and the positive tropical determinantal prevariety
(2) (P r

d,n)+ =
⋂

f is a
((r+1)×(r+1))-minor

trop+C(V (f)) =
⋂

I⊆( [d]
r+1)

J⊆( [n]
r+1)

trop+C(V (f IJ)),

where f IJ denotes the polynomial corresponding to the minor given by the rows in-
dexed by I and columns indexed by J . As mentioned above, we have T r

d,n ⊆ P r
d,n and

(T r
d,n)+ ⊆ (P r

d,n)+. We emphasize again, that the notion of positivity for prevarieties
is purely combinatorial, and the inclusion of a positive tropical variety and the corre-
sponding positive tropical prevariety may be strict. We can interpret the matrices in
the above sets in terms of the different notions of ranks for tropical matrices.

Definition 2.16 (Tropical notions of rank). Let A ∈ Rd×n be a tropical ma-
trix and M ⊆ Rr×r a submatrix. The submatrix M is tropically singular if the
minimum in the evaluation of the tropical determinant

⊕
σ∈Sr

(⊙r
i=1 Miσ(i)

)
=

minσ∈Sr

(∑r
i=1 Miσ(i)

)
is attained at least twice. The tropical rank of A is the largest

integer r such that A has a tropically non-singular submatrix. The Kapranov rank
of A is the smallest integer r such that there exists a matrix Ã ∈ Cd×n of rank r such
that A = val(Ã). The Barvinok rank of A is the smallest integer r for which A can
be written as the tropical sum of r rank-1 matrices. A (d × n)-matrix has (tropical)
rank 1 if it is the tropical matrix product of a (d × 1)-matrix and a (1 × n)-matrix.

It was shown in [9] that
(3) tropical rank of A ⩽ Kapranov rank of A ⩽ Barvinok rank of A

and that indeed all of these inequalities can be strict. In the light of these notions of
rank, we can view the tropical determinantal variety T r

d,n and prevariety P r
d,n as sets

as
T r

d,n = {A ∈ Rd×n | A has Kapranov rank ⩽ r} ,

P r
d,n = {A ∈ Rd×n | A has tropical rank ⩽ r} .
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Note that the first inequality in (3) also implies the inclusion T r
d,n ⊆ P r

d,n. We now
describe the geometric interpretations of these notions. Throughout this article, it will
be enough to consider tropical linear spaces that arise as tropicalizations of classical
linear spaces. The tropical projective torus is TP = T/(R ⊙ (1, . . . , 1)), i.e. modulo
tropical scalar multiplication. The following is a well-known fact in tropical geometry.
We provide a proof in Appendix B.1 for completeness.

Proposition 2.17. Let A ∈ T r
d,n. Then the columns of A are n points in TPd−1 lying

on a tropical linear space of dimension at most r − 1.

3. Determinantal hypersurfaces
In this section, we seek to understand the positive part of the tropicalization of sin-
gular quadratic matrices. By definition of the Kapranov rank, the set T n−1

n,n is formed
by all tropical (n × n)-matrices of Kapranov rank at most n − 1. Let A ∈ Tn×n be
such a matrix. We can interpret the columns of A as a point configuration of n la-
beled points on a tropical hyperplane in the tropical projective torus TPn−1. In this
section, we characterize the positive point configurations, those given by matrices A
in the positive part (T n−1

n,n )+ of the tropical variety. We say that a cone (or a point)
is positive if it lies in the positive part.

3.1. Edges of the Birkhoff polytope. We begin by investigating the maximal
cones of (T n−1

n,n )+ in the tropical hypersurface T n−1
n,n = trop(V (det)), where we abbre-

viate

(4) det =
∑

σ∈Sn

(
sgn(σ)

n∏
i=1

xiσ(i)

)
.

This entails that T n−1
n,n is the codim 1-skeleton of the normal fan of the Newton

polytope of the polynomial det. It is the well-known Birkhoff polytope Bn (also called
perfect matching polytope or assignment polytope) whose vertices are the (n × n)-
permutation matrices. The sum of all entries in a row or a column of a matrix in Bn

is 1. Therefore, T n−1
n,n has a lineality space spanned by the vectors

(5)
n∑

i=1
Eij for j ∈ [n] and

n∑
j=1

Eij for i ∈ [n],

Figure 1. The Schlegel diagram of the Birkhoff polytope B3 ⊆
R3×3, i.e. the 4-dimensional polytope that is the convex hull of all
(3 × 3)-permutation matrices.
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where Eij denotes the standard basis matrix in Rn×n. For notational convenience we
identify a permutation σ ∈ Sn with the permutation matrix that represents it.

Two vertices of Bn (corresponding to permutations σ, π ∈ Sn) are connected by an
edge if and only if σπ−1 is a cycle [4]. A maximal cone C ⊆ T n−1

n,n is the normal cone
of an edge conv(σ, π) of Bn for σ, π ∈ Sn (such that σπ−1 is a cycle). For a weight
vector w in the interior int(C) of the cone, the initial ideal inw(I) of I = ⟨det⟩ is gen-
erated by the binomial inw(det) = sgn(σ)

∏n
i=1 xiσ(i) + sgn(π)

∏n
i=1 xiπ(i). Applying

Proposition 2.1 to this polynomial yields a characterization of positive maximal cones
of T n−1

n,n .

Proposition 3.1. Let C ⊆ T n−1
n,n be a maximal cone which is dual to an edge

conv(σ, π) of the Birkhoff polytope Bn. Then C is positive if and only if sgn(σ) ̸=
sgn(π). □

Example 3.2. For n = 3 the Birkhoff polytope B3 is shown in Figure 1. In this
case, the graph of B3 is the complete graph. Figure 2a shows a coloring of the edges
of B3 with green edges corresponding to positive maximal cones of T 2

3,3 and red edges
corresponding to non-positive maximal cones. The set of red edges has two connected
components inducing a partition of the vertices of B3 into even permutations and odd
permutations, i.e. the alternating group A3 and its complement S3 ∖ A3. The green
edges form the cut (An, Sn ∖ An) between these components.
Remark 3.3. Proposition 3.1 fully characterizes the positivity of all cones of T n−1

n,n .
Let C be a (low-dimensional) positive cone of T n−1

n,n and A ∈ relint(C). The initial
form inA(det) has terms of mixed signs. Since every monomial of the initial form cor-
responds to a vertex of Bn, and the edge graph of the face FC dual to C is connected,
this implies that there is an edge of FC whose vertices correspond to monomials
(i.e. permutations) of different signs. This edge is dual to a positive maximal cone
of T n−1

n,n containing C.
3.2. Triangle criterion for positivity. In this section, we identify the positive
part of the tropical determinantal hypersurface T n−1

n,n . We make use of Proposition 3.1

(a)

☆ ☆
••_

☒ ar

tag
•

☆☆

☒
ad
☆

E.

(b)

Figure 2. Left: The graph of B3 with edges colored according to
the positivity of their dual cones in T 2

3,3, as described in Example 3.2.
The edges of the two triangles (12), (13), (23) and id, (123), (132) are
red, all remaining edges are green.
Right: The coloring of the graph of B3 induced by the sign pat-
tern s as described in Example 3.18. The edges of the two triangles
id, (12), (13) and (23), (123), (132) are red, all remaining edges are
green.
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(a) Positive configuration. (b) Non-positive configuration.

Figure 3. The possible cartoons of maximal cones in T 2
3,3.

to obtain the triangle criterion. It turns out that this works well for n = 3, 4 but there
are examples for n ⩾ 5 where this fails. Remark 3.3 implies that it suffices to consider
maximal cones of T n−1

n,n . The triangle criterion assigns a cartoon to each such maximal
cone. We seek to determine the positivity of this cone from the respective cartoon.
First, we give the construction of the cartoon and give the triangle criterion for de-
tecting positivity for n = 3, 4. Afterwards, we describe its geometric interpretation in
terms of tropical point configurations, and show that the triangle criterion does not
hold for n ⩾ 5.

Construction 3.4 (Cartoons of maximal cones). Let C ⊆ T n−1
n,n be a maximal cone.

Then C is dual to an edge conv(σ, π) of the Birkhoff polytope Bn, whose vertices corre-
spond to permutations in Sn. Let Kn denote the complete graph on nodes {v1, . . . , vn}.
To obtain the cartoon of C we decorate the complete graph with n points placed on
edges and nodes of Kn as follows: for each j ∈ [n], decorate the edge vσ−1(j)vπ−1(j)
of Kn with a marking if σ−1(j) ̸= π−1(j). If σ−1(j) = π−1(j), then decorate the
vertex vσ−1(j).

Example 3.5 (Cartoons of maximal cones). Consider the cone C = cone(E13, E23,
E31, E32) ⊆ T 2

3,3. It is dual to the edge conv(σ, π), where σ = (1, 2) is a transposition
and π = id. The cartoon is a decorated K3, with two markings on the edge v1v2 and
a marking placed at the node v3. A cartoon of this type is shown in Figure 3a.

Proposition 3.6 (Triangle criterion for cartoons). Let n = 3, 4 and C ⊆ T n−1
n,n be

a maximal cone. C is positive if and only if its cartoon does not contain a marked
triangle. A triangle is marked if every edge has at least one marking in its interior,
and the markings of vertices are allowed to be moved to adjacent vertices.

Proof. The cone C is dual to an edge conv(σ, π). Two permutations form an edge
of Bn if and only if σπ−1 is a cycle. By Proposition 3.1 the cone C is positive if and
only if σπ−1 is a cycle of even length. So σ−1(j) = π−1(j) if and only if j is a fixed
point of the cycle σπ−1. By Construction 3.4 we decorate each node vσ−1(j) where j

is a fixed point of σπ−1 and we decorate the edges (vσ−1(i), vπ−1(i)) where i is not a
fixed point. Therefore, up to symmetry, it is enough to consider the potential cycle
lengths to determine the configurations.

Figure 3 shows all possible cartoons for n = 3, up to permutation of the nodes of the
graph. More precisely, Figure 3a shows the cartoon for when σπ−1 is a transposition
and Figure 3b shows the cartoon for when σπ−1 is a 3-cycle. The possible cartoons
for n = 4 are shown in Figure 4: Figure 4a shows the cartoon for when σπ−1 is a
transposition, Figure 4b the cartoon of a 3-cycle, and Figure 4c the cartoon of a 4-
cycle. Summarizing, the configurations depicted in Figure 3a, Figure 4a and Figure 4c
are positive, while Figure 3b and Figure 4b are negative. □

Example 3.7 (Triangle criterion fails for n ⩾ 5). Let C ⊆ T 4
5,5 be the maximal cone

that is dual to the edge conv(σ, π) of B5, where σ = (4, 5) is a transposition and
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(a) Positive configuration. (b) Non-positive configuration. (c) Positive configuration.

Figure 4. The possible cartoons of maximal cones in T 3
4,4.

π = id. Then, modulo the lineality space of T 4
5,5, every matrix A ∈ C satisfies the

zero pattern 
0

0
0

0 0
0 0

 ,

i.e. Aij = 0 whenever σ(i) = j or π(i) = j, and all other entries of A are nonnegative.
The cone C has 18 rays, corresponding to the blank spaces in the zero pattern above.
By Proposition 3.1 this cone is positive. However, the cartoon of C, as shown in
Figure 5, contains a triangle in which each node is decorated with a marking. This
example can be generalized to any n ⩾ 5.

Figure 5. The diagram of the cone in Example 3.7.

3.3. Geometric triangle criterion. As described in Proposition 2.17, the
columns of A ∈ T n−1

n,n can be viewed as n points in TPn−1 lying on a common tropical
linear space of dimension n−2. We now show how the cartoons describe the geometry
of these point configurations. But first, we describe two different important kinds of
cones. The Birkhoff polytope Bn ⊆ Rn×n has vertices corresponding to permutations
in Sn. Modulo lineality space of the normal fan of Bn, an edge conv(σ, π) has normal
cone

(6) C = cone(Eij | i, j ∈ [n], σ(i) ̸= j, π(i) ̸= j).

The standard simplex ∆n−1 ⊆ Rn is the convex hull of the unit vectors e1, . . . , en.
Modulo lineality space of the normal fan of ∆n−1, an edge conv(ek, el), k, l ∈ [n] has
normal cone

(7) Wkl = cone(ei | i ∈ [n], i ̸= k, i ̸= l).

Up to translation, there is a unique tropical hyperplane H of dimension n − 2 in
TPn−1. This hyperplane can be viewed as the codimension-1 skeleton of the normal
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Figure 6. The point configuration from Example 3.8.

fan of ∆n−1. Equivalently, the tropical hyperplane H = Hc is the set of points

(8) Hc = {x ∈ TPd−1 | the minimum of xi + ci, i ∈ [n] is attained at least twice}
and the point −(c1, . . . , cd) is the apex of H. We call a cone Wkl of dimension n − 2
a wing of H.

Example 3.8 (A tropical point configuration). Let C be the cone from Example 3.5
and consider the matrix

A =

0 0 2
0 0 1
3 1 0

 ∈ int(C).

The point configuration in TP2 is displayed in Figure 6 (in the chart where the last
coordinate is 0). The points lie on the common hyperplane with apex (1, 1, 0). The
first two columns lie on the wing W1,2 = cone(e3). The third column lies on the wing
W2,3 = cone(e1).

The lineality space of T n−1
n,n is spanned by the vectors in (5) (in Section 3.1).

We describe the more general lineality space of T r
d,n in more detail in Appendix A.

However, we exploit one main property here.

Lemma 3.9. Let C ⊆ T n−1
n,n be a cone and A ∈ C. There exists a matrix A′ ∈ T n−1

n,n

such that A ∼ A′ modulo lineality space of T n−1
n,n and A′

ij ⩾ 0 for all i, j ∈ [n].
Furthermore, the columns of A′ are points on the tropical hyperplane H0 with apex at
the origin. If C is a maximal cone dual to the edge conv(σ, π) of Bn, then A′

ij = 0
if j ∈ {σ(i), π(i)}.

Proof. Let A ∈ C. Then by (6) there is a matrix A′ ∈ C such that A ∼ A′ modulo
lineality space of T n−1

n,n , and A′
ij ⩾ 0 for all i, j ∈ [n] such that j ̸∈ {σ(i), π(i)} and

A′
ij = 0 otherwise. For each column j ∈ [n] this means that the minimum value is 0,

and (8) implies that the columns of A lie on the tropical hyperplane H0. □

Example 3.10. Consider the matrix from Example 3.8. We first subtract the apex
c = (1, 1, 0) of the tropical line from every column of the matrix. Then we add
mj(1, . . . , 1)t to every column, where mj is the minimum entry of the jth column.
This yields 0 0 2

0 0 1
3 1 0

 ∼

−1 −1 1
−1 −1 0
3 1 0

 ∼

0 0 1
0 0 0
4 2 0

 .

Lemma 3.11. Let C be a maximal cone of T n−1
n,n and conv(σ, π) be the dual edge of the

Birkhoff polytope Bn. Let A ∈ C and let H be a tropical hyperplane containing the
columns of A. If the edge vσ−1(j)vπ−1(j) is decorated in the cartoon of C, then the j-th
column Aj of A lies on the wing Wσ−1(j),π−1(j) of H. If the node vσ−1(j) is decorated
in the cartoon, then the column Aj lies on the wing Wk,σ−1(j) for some k ∈ [n].
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Proof. By Lemma 3.9 we can assume that Aij = 0 for all i, j ∈ [n] such that j ∈
{σ(i), π(i)}, and Aij ⩾ 0 otherwise, and that H = H0 is the tropical hyperplane
with apex at the origin. Equivalently, Aij = 0 if i ∈ {σ−1(j), π−1(j)}. In particular
Aσ−1(j)j = Aπ−1(j)j = 0. The cartoon of C has a decorated edge vσ−1(j)vπ−1(j) if and
only if σ−1(j) ̸= π−1(j). If σ−1(j) ̸= π−1(j), then the column Aj is contained in the
wing Wσ−1(j)π−1(j) = cone(ei | i ̸= σ−1(j), i ̸= π−1(j)). The cartoon has a decorated
node vσ−1(j) if and only if σ−1(j) = π−1(j), and the column Aj may lie on any wing
not containing the ray in direction eσ−1(j). □

Construction 3.12 (Cartoons of matrices). Let C ⊆ T n−1
n,n be a maximal cone with

dual edge conv(σ, π) and A ∈ int(C). Let H be a tropical hyperplane containing the
columns of A. To obtain the cartoon of A with respect to H, we decorate the bound-
ary complex of the (n − 1)-dimensional simplex ∆n−1 with n points placed on faces
of ∆n−1. More precisely, for each j ∈ [n], decorate the face F of ∆n with a marking
if the column Aj lies in the interior of the cone of H that is dual to the face F .

Lemma 3.13. Let C ⊆ T n−1
n,n be a maximal cone. Let A ∈ C and H be a tropical

hyperplane such that each column of A lies in the interior of a wing of H. Then
the cartoon of A with respect to H can be obtained from the cartoon of C by sliding
markings from nodes of Kn to incident edges.

Proof. By assumption, each column lies in the interior of a wing of H, so the cartoon
of A with respect to H has only markings on edges of ∆n−1. If the cartoon of C
has a marked edge vσ−1(j)vπ−1(j), then Lemma 3.11 implies that the column Aj lies
on the wing Wσ−1(j),π−1(j) of H, and so the column Aj marks the same edge in the
cartoon of A with respect to H. If the cartoon of C has a marked node vσ−1(j), then
Lemma 3.11 implies that the column Aj lies on some wing Wk,σ−1(j), k ∈ [n] of H,
and so the column Aj marks the edge with vertices vk and vσ−1(j) in the cartoon of A
with respect to H. □

Theorem 3.14 (Geometric triangle criterion). Let n = 3, 4 and C ⊆ T n−1
n,n be a

maximal cone. Let A ∈ C and H be a tropical hyperplane such that each column of A
lies in the interior of a wing of H. Then the cartoon of A with respect to H has
markings only on edges of ∆n−1, and C is positive if and only if the cartoon of A
with respect to H does not contain a marked triangle.

Proof. By Proposition 3.6 (Triangle criterion for cartoons), C is positive if and only if
the cartoon of C does not contain a marked triangle, i.e. a triangle with three distinct
markings, where each edge contains at least one marking in its interior, or on an
incident vertex. Lemma 3.13 implies that the cartoon of A with respect to H can be
obtained from the cartoon of C by sliding the markings from nodes to edges. Hence,
the set of marked triangles of the cartoon of A with respect to H is a subset of the
marked triangles of the cartoon of C. It thus remains to show that if the cartoon
of C contains a marked triangle, then so does the cartoon of A with respect to to H.
For n = 3, there is a unique such configuration (Figure 3b) and all markings of the
cartoon of C are already on edges. For n = 4, there is also a unique such configuration
(Figure 4b), and the markings of the marked triangle are on edges. Hence, this is also
a marked triangle in the cartoon of A with respect to H. □

Example 3.15 (Geometric triangle criterion fails for n ⩾ 5). Consider the (positive)
cone from Example 3.7. The cartoon of cone C, which is depicted in Figure 5, has a
marked triangle. However, sliding the markings from nodes to edges yields the cartoon
in Figure 7, which does not have a marked triangle. This example can be generalized
to any n ⩾ 5.
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Figure 7. The cartoon from Example 3.15.

3.4. Extension to all orthants. In this section, we want to exploit the obser-
vation made in Section 2.3 in order to understand the signed tropicalizations of the
variety T n−1

n,n with respect to sign patterns beyond the positive orthant. Hence, we fix
a sign matrix s ∈ {−1, 1}(n×n). Recall from Proposition 3.1 that a maximal cone of
T n−1

n,n = trop(V (det)) is positive if and only if the permutation σπ−1 for the corre-
sponding edge conv(σ, π) is an even cycle. Therefore, we can interpret the partition
of the maximal cones in positive and non-positive cones as a coloring of the edges of
the graph Gn of the Birkhoff polytope Bn. We color the edges dual to positive cones
in green (“positive edges”), and the remaining ones in red (“non-positive edges”).

The Newton polytopes of det and dets agree. Hence, for each sign pattern s we
obtain a 2-coloring of the edges of Gn, corresponding to the (non-)positivity of the
maximal cones of trop(V (dets)). Then, the green edges correspond to maximal cones
of trops(V (det)), i.e. the tropicalization of (n × n)-matrices of rank n − 1 in Cs.
We begin by investigating the 2-coloring for s = (1)ij , i.e. the coloring given by
trop+C(V (det)).

Lemma 3.16. The 2-coloring of Gn given by trop+C(V (det)) has exactly 2 connected
components formed by red edges. The vertices in one component correspond to the
alternating group An ⊆ Sn, the even permutations of Sn. The vertices in the other
component correspond to the odd permutations Sn ∖ An. Furthermore, the induced
subgraphs on An and Sn ∖An only have red edges and the green edges are exactly the
edges in the cut (An, Sn ∖ An).

Proof. We identify the vertices in Gn with the permutations in Sn so that the edge
set is given by the pairs

{
(σ, π) | σπ−1 is a cycle

}
. Let σ ∈ An, and c ∈ An be a

3-cycle, and consider π = σc. Then π ∈ An, and so π is a neighbor of σ in Gn. The
permutations σ and π have equal sign, so by Proposition 3.1 the edge (σ, π) is colored
in red. Since the alternating group An is generated by 3-cycles, it follows that all
permutations π ∈ An are contained in one red connected component. All remaining
vertices are in Sn ∖ An. Note that if τ is a transposition, then Sn ∖ An = τAn, and
that all edges inside τAn are red. Finally, permutations in τAn have negative sign, so
all edges between An and τAn are green. □

Proposition 3.17. Let s ∈ {−1, 1}(n×n). The 2-coloring of Gn induced by
trops(V (det)) has 2 red connected components, which partition the vertices into
2 parts. Equivalently, the green edges are the edges of a cut.

Proof. By the discussion above, we are interested in the coloring of the graph Gn

given by the positive cones of trop+C(V (dets)). If s = (1)ij , then the claim holds by
Lemma 3.16. Fix (k, ℓ) ∈ [n] × [n]. We show that if the claim holds for a fixed sign
pattern s ∈ {−1, 1}(n×n), then it also holds for the sign pattern s′, where s′

kℓ = −skℓ

and and sij = s′
ij for all other entries. That is, we show that the property is preserved
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under flipping the sign of the (k, ℓ)th entry. Let (A, B) be the partition of vertices of
the coloring induced by dets. Note that

dets =
∑

σ∈Sn

(
sgn(σ)

n∏
i=1

siσ(i)xiσ(i)

)
,

so an edge (σ, π) is red if and only if

sgn(σ)
n∏

i=1
siσ(i) = sgn(π)

n∏
i=1

siπ(i).

Flipping the sign at (k, ℓ) thus switches the color of all edges conv(σ, π) where there
exists an i′ ∈ [n] such that (i′, σ(i′)) = (k, ℓ) and (i, π(i)) ̸= (k, ℓ) for all i ∈ [n] (or
if there exists an i′′ ∈ [n] such that (i′′, π(i′′)) = (k, ℓ) and (i, σ(i)) ̸= (k, ℓ) for all
i ∈ [n]). Equivalently, flipping the sign at (k, ℓ) switches the color of all edges where
σ(k) = ℓ and π(k) ̸= ℓ (or σ(k) ̸= ℓ and π(k) = ℓ). Hence, we partition A into
A= = {σ ∈ A | σ(k) = ℓ}, A̸= = A ∖ A= and similarly B = B= ⊔ B ̸=. We then flip
the colors of all edges between (A=, A̸=), (A=, B ̸=), (B=, A̸=), (B=, B ̸=), as shown
in Figure 8. The resulting graph has red components A= ⊔ B ̸= and A ̸= ⊔ B=. □

Example 3.18. We consider the signed tropicalization trops(V (det)) for s ∈
{−1, 1}(3×3) such that s11 = −1 and sij = 1 for all remaining i, j ∈ [3]. In the
words of the proof of Proposition 3.17 this amounts to flipping the sign of s11 from
the initial sign pattern s′ = (1)ij consisting only of ones. The coloring of the graph
B3 induced by s′ is described in Example 3.2 and displayed in Figure 2a. Following
the proof of Proposition 3.17 to obtain the coloring corresponding to s, we flip the
colors of those edges conv(σ, π) such that σ(1) = 1 and π(1) ̸= 1. The permutations
with σ(1) = 1 are id and (23). Therefore, we flip the color of conv(σ, π) = (id, (12))
from green (as in Figure 2a) to red. Similarly, we flip the colors of all edges incident
to the vertices id and (23), except the color of the edge conv(id, (23)). This procedure
results in the coloring shown in Figure 2b.

The statement of Proposition 3.17 implies that the elements in the set {trops(f) |
s ∈ {−1, 1}(n×n)} correspond to certain cuts in the graph Gn.

Question 3.19. Is there a group theoretical interpretation of the 2n2 partitions given
by the cuts for every sign pattern?

B=

A=

B ̸=

A ̸=

B=

A=

B ̸=

A ̸=

Figure 8. Auxiliary graphs for the 2-coloring for sign patterns s
(left) and s′ (right) after the sign flip of a single entry. Within the
sets A=, A̸=, B=, B ̸= all edges are red. The color of the edge between
two parts in the auxiliary graph represents the color of all edges in Gn

between the parts. Green edges are dashed.
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4. Determinantal prevarieties and bipartite graphs
Let det be the polynomial representing the determinant of a (n × n)-matrix. Recall
from Section 3.1 that trop(V (det)) is the codimension-1 skeleton of the normal fan
of the Birkhoff polytope Bn. In [22] the faces of Bn are identified with face graphs,
which are unions of perfect matchings on the bipartite graph on vertices [n] ⊔ [n].

Construction 4.1 (Face graphs [22]). Let C ⊆ trop(V (det)) = T n−1
n,n be a cone

in the tropical hypersurface, and let Λ ⊆ Sn such that conv(Λ) is the face of Bn

dual to C. We associate the bipartite graph Γ(C) on vertices V (Γ(C)) = R ⊔ G,
R = {r1, . . . , rn}, G = {g1, . . . , gn} and edges

E(Γ(C)) = {rigj | σ(i) = j for some σ ∈ Λ}.

This extends to a labeling of the entire normal fan of Bn, where the label of the
normal cone of a vertex σ is a perfect matching with edges (ri, gσ(i)), i ∈ [n]. The
label of a cone dual to a face F is the union of all labels of normal cones of vertices
contained in F . Thus, such a label is a union of perfect matchings.

Proposition 4.2 (Triangle criterion for bipartite graphs). Let C ⊆ T n−1
n,n be a max-

imal cone. Then Γ(C) consists of a cycle of length 2l, and a perfect matching of the
remaining 2(n − l) vertices. C is positive if and only if l is even.

Proof. Let C be a maximal cone and conv(σ, π) be the edge of Bn dual to C. The bi-
partite graph Γ(C) is a union of 2 perfect matchings, corresponding to σ and π.
Since these permutations form an edge on Bn, we have that σπ−1 is a cycle of
length l. Label i1, . . . il ∈ [n] such that σπ−1(ik) = ik+1 (and il+1 = i1). Equivalently,
π−1(ik) = σ−1(ik+1) for all k ∈ [ℓ]. For all other elements i′ ∈ [n] holds σ(i′) = π(i′).
Thus, Γ(C) consists of isolated edges (ri′ , gσ(i′)) (forming a perfect matching) and a
cycle
(gi1 , rπ−1(i1)), (rσ−1(i2), gi2 ), (gi2 , rπ−1(i2)), . . . , (rσ−1(il), gil ), (gil , rπ−1(il)), (rσ−1(il+1), gi1 ).

Therefore, Γ(C) consists of a cycle of length 2l and isolated edges. By Proposition 3.1,
the cone C is positive if and only if sgn(σπ−1) = −1, and equivalently the length l of
the cycle σπ−1 is even. □

We extend the idea of face graphs as labels of cones of T r
r+1,r+1 = P r

r+1,r+1 to
(d×n)-matrices. For this, we range over all possible choices of (r +1)-subsets from [d]
and [n] (corresponding to minors) and look at the Birkhoff polytopes of the cor-
responding minors. This yields a label Γ(C) of cones in the tropical determinantal
prevariety P r

d,n.

Definition 4.3. Let I = {i1, . . . , ir+1} ∈
( [d]

r+1
)
, J = {j1, . . . , jr+1} ∈

( [n]
r+1
)

where
ik < ik+1, jk < jk+1, and let σ ∈ Sr+1 be a permutation σ : [r + 1] → [r + 1]. In the
following, sets I and J are always of this form. We define the embedded permutation
to be the map

σIJ : I −→ J

ik 7−→ jσ(k).

The embedded Birkhoff polytope BIJ
r+1 ⊆ Rd×n is the convex hull of the permutation

matrices of the embedded permutations σIJ , σ ∈ Sr+1, where in this embedding, for
each (i, j) ̸∈ I × J we set the ij-th entry of each matrix in BIJ

r+1 to zero.

Recall from Section 2.4 that T r
d,n ⊆ P r

d,n =
⋂

f∈Ir
trop(V (f)), where f ∈ Ir ranges

over all (r + 1) × (r + 1)-minors of a (d × n)-matrix. More precisely, the ideal Ir is
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Figure 9. The label Γ(C) of the cone in Example 4.6 (left) and the
bipartite complement Γ(C)c (right).

generated by polynomials

f IJ =
∑

σ∈Sr+1

sgn(σ)
r+1∏
k=1

xikjσ(k) =
∑

σ∈Sr+1

sgn(σ)
r+1∏
k=1

xikσIJ (ik).

Thus, a cone CIJ ⊆ trop(V (f IJ)) can be seen as cone in the normal fan of BIJ
r+1.

Construction 4.4 (Labels of cones in P r
d,n). Let C ⊆ P r

d,n be a cone in the tropical
determinantal prevariety. Then for each I, J there exists a unique inclusion-minimal
cone CIJ ∈ trop(V (f IJ)) such that C =

⋂
I,J CIJ . Let Λ(I, J) ⊆ {σIJ | σ ∈ Sr+1}

such that conv(Λ(I, J)) is the face of BIJ
r+1 dual to CIJ . Let R = {r1, . . . , rd} and

G = {g1, . . . , gn}. R corresponds to row indices of matrices in P r
d,n, and G corresponds

to column indices. To C we associate the bipartite graph Γ(C) on vertices V (Γ(C)) =
R ⊔ G and edges

E(Γ(C)) =
⋃
I,J

{
rik

gjl
| σIJ(ik) = jl for some σIJ ∈ Λ(I, J), l, k ∈ [r + 1]

}
.

Definition 4.5. Let Γ be a bipartite graph on vertices V (Γ) = R ⊔ G. The bipartite
complement Γc is the bipartite graph on vertices V (Γ) = V (Γc) and edges

E(Γc) = {rigj | ri ∈ R, gj ∈ G, rigj ̸∈ E(Γ)}.

Example 4.6 (Label of a cone in T 2
3,4). Let d = 3, n = 4 and r = 2. Consider the cone

C ⊆ P 2
3,4 = T 2

3,4 with rays
C = cone(E11, E22, E33, E34).

Then C =
⋂

I,J CIJ , where I = [3] and for J1 = {1, 2, 3}, J2 = {1, 2, 4} the cone CIJ

is dual to the edge conv((1, 2, 3)IJ , (1, 3, 2)IJ) of BIJ
3 , while for J3 = {1, 3, 4}, J4 =

{2, 3, 4} the cone CIJ is dual to the edge conv((1, 2, 3)IJ , (1, 3)IJ). Thus, the label
Γ(C) is the bipartite complement of the graph with edges r1g1, r2g2, r3g3 and r3g4,
as shown in Figure 9.

Theorem 4.7. If C ⊆ P r
d,n is a cone, then each induced subgraph on vertices I ⊆( [d]

r+1
)
, J ⊆

( [n]
r+1
)

contains a subgraph consisting of a cycle of length 2l, where l =
l(I, J) ∈ N, and a perfect matching of the remaining 2(r + 1 − l) vertices. If C is
positive, then for each I, J the length of the cycle l = l(I, J) is even.

Proof. Let C be a cone. Then there exist unique inclusion-minimal cones CIJ ⊆
trop(V (f IJ)) such that C =

⋂
I,J CIJ , and Γ(C) is the union of the labels Γ(CIJ).

If C is positive, then so is CIJ for each I, J . By Proposition 4.2, every subgraph H
on vertices V (H) = I ⊔ J ⊆ R ⊔ G, |I| = |J | = r + 1 contains a subgraph consisting of
a cycle of length 2l, and a perfect matching of the remaining vertices. If C is positive,
then l = l(I, J) is even by Proposition 4.2. □

We note that the converse of the statement above is not true. In fact, for most
cones C that are not maximal (including non-positive cones), the label Γ(C) is the
complete bipartite graph Kn,d. We close this section with a property of the label Γ(C).
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Proposition 4.8. Let C ⊆ P r
d,n be a cone and Γ(C) the label on vertices V (Γ(C)) =

R ⊔ G. Each vertex v ∈ R has degree at least n − r, and every vertex g ∈ G has degree
at least d − r.

Proof. By Theorem 4.7, each subgraph of Γ(C) of size (r + 1) + (r + 1) contains a
union of perfect matchings. Let v1 ∈ R and assume for contradiction that deg(v1) ⩽
|G| − (r + 1) = n − (r + 1). Then there are nodes g1, . . . , gr+1 ∈ G that are not
adjacent to v1. Hence, for any v2, . . . , vr+1 ∈ R, the vertex v1 is isolated in the induced
subgraph H on vertices {v1, . . . , vr+1} ⊔ {g1, . . . gr+1}. However, by Theorem 4.7, the
graph H does not contain an isolated vertex, which yields the desired contradiction.
An analogous argument implies that deg(g) ⩾ |R| − r = d − r for all g ∈ G. □

We illustrate the difference between the applicability of the triangle criteria for
cartoons (Proposition 3.6) and for bipartite graphs (Proposition 4.2). Indeed, for
maximal cones of T n−1

n,n the description via cartoons and bipartite graphs are equiva-
lent, as the proof of Proposition 4.2 suggests. For arbitrary choices of d and n, there is
single bipartite graph describing a cone C ⊆ P r

d,n as given in Construction 4.4. We can
describe C by a collection of cartoons as follows: for each I ∈

( [d]
r+1
)
, J ∈

( [n]
r+1
)
, detect

all maximal cones CIJ ⊆ trop(V (f IJ)) such that C ⊆ CIJ and consider their car-
toons. This describes the cone C by a collection of at least

(
d

r+1
)(

n
r+1
)

cartoons. Each
of the cartoons can be obtained from the graph Γ(CIJ) and Γ(C) as the union over
all these graphs. Therefore, the label Γ(C) contains strictly less information than the
collection of cartoons. Still, Theorem 4.7 gives a criterion to detect (combinatorial)
non-positivity.

Example 4.9 (Detecting non-positivity from Γ(C)). Let r = 2, d = 4, n = 3, and
consider the matrix

A =


k1 0 0
0 k2 0
0 0 1 + k3
0 0 1

 ∈ T 2
4,3, k1, k2, k3 > 0.

Let C be the maximal cone C ⊆ T 2
4,3 containing A ∈ int(C), and let J = [3]. For each

I ∈
(4

3
)

there is a unique maximal cone CIJ containing C. Their cartoons are displayed
in Figure 10 (left). The cone C is positive if and only if for each I (and J) there exists
a positive cone CIJ ⊇ C. C is not positive, which can be seen from the cartoons in
Figure 10 by the Triangle criterion for cartoons (Proposition 3.6). The label Γ(C) can
be seen in Figure 10 (right). The subgraph H on vertices {r1, r2, r3}⊔{g1, g2, g3} does
not contain a cycle of length 2l, l even. Hence, Theorem 4.7 also implies that C is not
positive. For r = 2, we present a full characterization of labels of maximal cones in
terms of positivity in Theorem 5.12.

5. Rank 2
In this section, we consider the tropicalization of the matrices of rank at most 2, that
means the tropical determinantal variety T 2

d,n of tropical matrices of (Kapranov) rank
at most 2. It was shown in [9] that the notions of tropical rank and Kapranov rank
agree for rank 2.

5.1. Positivity and Barvinok rank. Ardila showed in [1] that a tropical matrix
of tropical rank 2 is positive if and only if it has Barvinok rank 2. The proof reveals
a crucial connection between the positivity of tropical matrices and the nonnegative
rank of matrices with ordinary rank 2. We begin by reviewing different characteriza-
tions of the Barvinok rank.
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Figure 10. The cartoons of the maximal cones CIJ in Example 4.9
(left) and the label Γ(C) (right). The edges outside the subgraph H
are dashed.

Proposition 5.1 ([9, Proposition 2.1]). For a tropical matrix A ∈ Rd×n, the following
are equivalent:

(i) A has Barvinok rank at most r.
(ii) The columns of A lie in the tropical convex hull of r points in TPd−1.
(iii) There are matrices X ∈ Rd×r, Y ∈ Rr×d such that A = X ⊙ Y .

Here, X⊙Y denotes the tropical matrix multiplication, i.e. (X⊙Y )ij =
⊕r

k=1 Xik⊙
Ykj = min{Xik + Ykj | k ∈ [r]}. The equivalence of (i) and (iii) leads to the argument
in [1], which we give for completeness.

Theorem 5.2 ([1]). The positive part of the tropical determinantal variety T 2
d,n coin-

cides with the set of matrices of Barvinok rank 2.

Proof. Consider the map f : Rd×2 ×R2×n → Rd×n, (X, Y ) 7→ XY . The image of this
map is the determinantal variety V (I2) ⊆ Rd×n, i.e. the set of matrices of rank at
most 2. We can write f as a polynomial map

f = (f11, . . . , fdn) : R2d+2n → Rdn where fij(X, Y ) = Xi1Y1j + Xi2Y2j .

Each fij has only positive coefficients, i.e. f is positive. By replacing + with min and
· with + in the definition of f , we obtain its tropicalization

trop(f) = g : Rd×2 × R2×n → Rd×n, (X, Y ) 7→ X ⊙ Y .

It follows from [21, Theorem 2] that since f is positive, we have Im(g) ⊆
trop+(V (I2)) = (T 2

d,n)+. Furthermore, if f(R2d+2n
>0 ) = Im(f) ∩ Rd×n

>0 , then
Im(g) = (T 2

d,n)+. Indeed, this holds since every positive (d × n)-matrix of rank 2 can
be written as the product of a positive (d×2)-matrix and a positive (2×n)-matrix [7,
Theorem 4.1]. Finally, note that Im(g) is precisely the set of matrices of Barvinok
rank 2 by Proposition 5.1. □

Consider the columns of A ∈ T 2
d,n as the coordinates of n points in TPd−1. Proposi-

tion 2.17 implies that these are n points lying on a common tropical line L in TPd−1.
A tropical line in TPd−1 is a pure, connected 1-dimensional polyhedral complex not
containing any cycles. This complex consists of d unbounded rays in direction of the
standard basis e1, e2, . . . , ed−1, ed

∼= −(e1 + · · ·+ed−1). It has k ⩽ d−3 vertices, which
are connected by k − 1 bounded edges. It was shown in [25] that tropical lines are in
bijection with phylogenetic trees on d leaves, and the space of tropical lines in TPd−1

is the tropical Grassmannian trop (Gr(2, d)). We describe the tropical Grassmannian
in more detail in Section 5.4. On the other hand, the tropical convex hull of the n
columns of A is a 1-dimensional polyhedral complex that only consists of bounded
line segments. This complex has two different kinds of vertices, called tropical vertices
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(which is a subset of the n columns of A) and pseudovertices. As a set, the tropi-
cal convex hull is strictly contained in the tropical line L. A detailed exposition on
tropical convex hulls can be found e.g. in [10] and [16, Chapter 6].

Proposition 5.1 and Theorem 5.2 together characterize the possible “positive” point
configurations of n points on a tropical line: Such a tropical point configuration is
positive if and only if its tropical convex hull has (at most) 2 tropical vertices. This
means that the columns lie on a tropical line segment, which is a concatenation of
classical line segments [10, Proposition 3]. Based on this connection with the Barvinok
rank, we obtain a stronger result about the representation by (3 × 3)-minors.

Theorem 5.3. The (3 × 3)-minors form a set of positive-tropical generators
for (T 2

d,n)+.

Proof. By Theorem 5.2 and (1) (in Section 2.1), we have that

{A ∈ Rd×n | A has Barvinok rank ⩽ 2} = (T 2
d,n)+ ⊆

⋂
f is a

(3×3)-minor

trop+C(V (f)).

It thus remains to show the reverse inclusion. Let A ∈ trop+C(V (f)) for every
(3 × 3)-minor f . Let I = {i1, i2, i3} ⊆ [d], J = {j1, j2, j3} ⊆ [d] and

f IJ(xi1j1 , xi1j2 , xi1j3 , xi2j1 , xi2j2 , xi2j3 , xi3j1 , xi3j2 , xi3j3) =
∑

σ∈S3

sgn(σ)
3∏

k=1
xikjσ(k) .

Then A is a (d × n)-matrix such that A = val(ÃIJ) for some ÃIJ ∈ (C+)d×n and

f IJ(ÃIJ
i1j1

, ÃIJ
i1j2

, ÃIJ
i1j3

, ÃIJ
i2j1

, ÃIJ
i2j2

, ÃIJ
i2j3

, ÃIJ
i3j1

, ÃIJ
i3j2

, ÃIJ
i3j3

) = 0.

Recall that A ∈ (P 2
d,n)+ ⊆ P 2

d,n = T 2
d,n by (2) (in Section 2.4) and Theorem 2.15,

and so A (and each submatrix) has Kapranov rank ⩽ 2. Hence, the columns of A lie
on a tropical line L, and the convex hull of its columns is a 1-dimensional polyhedral
complex supported by L. We want to show that A has Barvinok rank ⩽ 2, i.e. that the
tropical convex hull of the columns of A has at most 2 tropical vertices. Let M be the
(3×n)-submatrix of A with rows i1, i2, i3 ∈ [d]. We view the columns of M as n points
in TP2 and consider the tropical convex hull of these points as polyhedral complex of
ordinary line segments. First, we show that the tropical convex hull of the n columns
of M does not contain a pseudovertex that is incident to more than 2 edges. Assume for
contradiction that there is such a pseudovertex p incident to 3 line segments l1, l2, l3.
Then there must be 3 columns j1, j2, j3 of M whose tropical convex hull contains p
and the three line segments l1, l2, l3. Consider the (3 × 3)-submatrix N with rows
I = {i1, i2, i3} and columns J = {j1, j2, j3}. Note that N is the valuation of the
submatrix Ñ ∈ (C+)3×3 of the matrix ÃIJ . By assumption, the matrix Ñ is positive
and has rank ⩽ 2. Thus, N has Kapranov rank ⩽ 2, i.e. N ∈ (T 2

3,3)+. Therefore,
Theorem 3.14 (Geometric triangle criterion) implies that the tropical convex hull of
columns of N cannot contain a pseudovertex incident to 3 line segments. Hence, M
does not contain such a subconfiguration. We have thus shown that A does not contain
a (3×n)-submatrix where the convex hull of the columns contain a pseudovertex that
is incident to (at least) 3 line segments. Note that the tropical convex hull of the
columns of a matrix equals the tropical convex hull of its rows. We can thus apply
the same argument to At to obtain that A also does not contain a (3 × d)-submatrix
with this property either.

We now show the same statement for the matrix A. Assume for contradiction that
the convex hull of the n columns in TPd−1 contains a pseudovertex p of that is incident
to line segments l1, l2, l3. Then again there must be 3 columns j1, j2, j3 of A such that
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Figure 11. The construction of the bicolored phylogenetic tree for
the matrix from Example 3.8. In the figure on the right, the green
leaves are at the top and the red leaves at the bottom.

their tropical convex hull contains p and l1, l2, l3. However, these columns form a
(3 × d)-submatrix of A, which yields a contradiction to the argument above. □

5.2. Bicolored phylogenetic trees. It was shown in [8, 18] that T 2
d,n is a

shellable complex of dimension d + n − 4. Furthermore, it admits a triangulation
by the space of bicolored phylogenetic trees BPTd,n. That is, BPTd,n is a simplicial
fan, whose cones are in correspondence with the combinatorial types of bicolored
phylogenetic trees. The identification of matrices in T 2

d,n with bicolored trees is as
follows:

Construction 5.4 (Bicolored phylogenetic trees [18]). Let A1, . . . , An be tropically
collinear points in TPd−1 and L be a tropical line through these points. The tropical
convex hull tconv(A1, . . . , An) is a connected 1-dimensional polyhedral complex sup-
ported on a subset of L. First, for each j ∈ [n] attach a green leaf with label j at
the point Aj. Note that the line L has an unbounded ray in each coordinate direction
e1, . . . , ed. Shorten such an unbounded ray in direction ei to obtain a red leaf with
label i. This procedure results in a tree on d red and n green leaves. We refer to these
color classes as R (for “red” or “rows of A”) and G (for “green”, corresponds to
columns of A). An example of this construction is shown in Figure 11.

Definition 5.5. The removal of an internal edge splits the tree into two connected
components, where each component contains leaves of both colors. These partitions
(S, ([d] ⊔ [n]) ∖ S) are the bicolored splits of the tree. A bicolored split is elementary
if one of the two parts has only 2 elements. An internal edge of a bicolored tree is an
edge between two vertices that are not leaves. A vertex of a bicolored tree is an internal
vertex if it is adjacent to at least 2 internal edges. A tree is a caterpillar tree if every
vertex is incident to at most two internal edges. A tree is maximal if it is contained
in the interior of a maximal cone of BPTd,n. Equivalently, a tree is maximal if it has
d + n − 3 internal edges.

We remark that the rays of a cone in BPTd,n correspond to precisely to the bicolored
splits of the trees in the cone. More precisely, the matrices in a ray correspond to a tree
with one internal edge, separating the leaves S and ([d]⊔[n])∖S. We refer to a bicolored
phylogenetic tree as positive if it can be obtained by applying Construction 5.4 to a
positive matrix A ∈ (T 2

d,n)+. The geometric interpretation of (positive) matrices of
Barvinok rank 2 implies the following for bicolored trees:
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Figure 12. The trees P and P ′ from Lemma 5.8.

Corollary 5.6. A bicolored phylogenetic tree is positive if and only if it is a cater-
pillar tree.

Proof. Let P be a bicolored phylogenetic tree. Then the tree corresponds to a cone
in the triangulation BPTd,n of T 2

d,n in which for every matrix A Construction 5.4
yields P . Note that, by construction, the set of bounded edges of P coincides with
the tropical convex hull of the columns of A. By Theorem 5.2, A is positive if and
only if A has Barvinok rank 2, i.e. the tropical convex hull of the columns of A is the
concatenation of ordinary line segments (Proposition 5.1). Equivalently, the tropical
convex hull (and the resulting phylogenetic tree) does not contain a vertex that is
incident to 3 internal edges or more. □

Remark 5.7. Every positive cone of T 2
d,n is contained in a positive maximal cone,

as every (non-maximal) caterpillar tree can be obtained by contracting internal
edges of a maximal caterpillar tree, and maximal trees correspond to maximal cones
(cf. Appendix A).

We present one result regarding the triangulation, that will be useful for charac-
terizing the positive labels of cones of T 2

d,n in terms of bipartite graphs. This proof
uses the balancing condition of tropical lines. A first introduction to tropical lines
was given in Section 5.1, describing a tropical line as a pure, embedded 1-dimensional
polyhedral complex. Let v be a vertex of this polyhedral complex. The balancing
condition describes that the slopes of all edges incident to v sum to the zero vector.

Lemma 5.8. Let C ⊆ T 2
d,n be a maximal cone of the tropical determinantal variety and

CP ⊆ BPTd,n be a maximal cone of its triangulation, the space of bicolored phyloge-
netic trees. Then all matrices in the interior of CP correspond to a maximal bicolored
phylogenetic tree P with fixed combinatorial type (as depicted in Figure 12 on the
left). Let S be the set of splits of P . If S contains the splits

({r1, g1, r2}, (R ⊔ G) ∖ {r1, g1, r2}) and Sr1,g1 = ({r1, g1}, (R ⊔ G) ∖ {r1, g1})

then C also contains the maximal cone CP ′ ⊆ BPTd,n, where all matrices correspond to
trees P ′ of fixed combinatorial type, and the set of splits of P ′ is S ′ = S∖Sr1,g1 ∪Sr2,g1 ,
where Sr2,g1 = ({r2, g1}, (R ⊔ G) ∖ {r2, g1}) (Figure 12 on the right).

The proof of this lemma can be found in Appendix B.2. The roles of R and G
can be exchanged in this statement. Thus, if d, n ⩾ 3, then every maximal bicolored
caterpillar tree has exactly 2 such pairs of splits. This implies the following result on
the number of triangulating cones for positive cones in T 2

d,n.

Corollary 5.9. Let C ⊆ T 2
d,n be a maximal cone. Then the triangulation of C by the

space of bicolored phylogenetic trees subdivides C into at least 4 parts.
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Figure 13. The possible complements Γ(C)c of positive labels
(without isolated vertices).

5.3. Positivity and bipartite graphs. We now describe the labels of P 2
d,n = T 2

d,n,
which were introduced in Section 4. In particular, we show that for r = 2, even though
different cones might have the same label, the labels detect positivity, i.e. when a cone
lies in (P 2

d,n)+. Recall from Theorem 5.3 that (P 2
d,n)+ = (T 2

d,n)+, so this criterion
also applies to positive cones of the tropical determinantal variety of rank 2. By
Remark 5.7, it suffices to consider maximal cones.

Lemma 5.10. Let C ⊆ T 2
d,n be a maximal cone and C1, . . . Cm ⊆ BPTd,n be maximal

cones of the space of bicolored phylogenetic trees triangulating C. Let Pk be the com-
binatorially unique (maximal) bicolored phylogenetic tree corresponding to Ck. Then

E(Γ(C)c) ⊇ {rigj | {i, j} is an elementary bicolored split of Pk for some k ∈ [m]} .

Proof. The rays of the space of bicolored phylogenetic trees are in bijection with
bicolored splits (A, B), i.e. trees with one internal edge partitioning the set of
leaves into two parts A and B, such that both parts contain leaves of both colors
(cf. Appendix A.2). As a matrix in Rd×n, a ray generator (modulo lineality space)
can be given as

∑
i,j∈A Eij , |A| ⩽ |B|. If A = {i, j} is an elementary split, then Eij

spans a ray of some Ck, so cone(Eij) is contained in C. Any point except the rays
of C are nontrivial nonnegative combinations of rays of C. Thus, cone(Eij) is also an
extremal ray of C. It follows that

{rigj | Eij spans a ray of C} ⊇ {rigj | {i, j} is an elementary bicolored
split of Pk for some k ∈ [m]}.

Let CIJ ⊆ trop(V (f IJ)) be the inclusion-minimal cone containing C. Then
cone(Eij) ⊆ CIJ . Since CIJ is a cone in the normal fan of BIJ

3 , all rays of CIJ are of
the form cone(Ekl). Hence, cone(Eij) cannot be written as a nontrivial nonnegative
combination of rays of CIJ , and so cone(Eij) is a ray of CIJ . By construction, for
the cone CIJ holds

E(Γ(CIJ)c) = {rigj | Eij spans a ray of CIJ},

and rigj is an edge in Γ(C)c if and only if it is contained in Γ(CIJ)c for all I, J such
that i ∈ I and j ∈ J . Thus,

E(Γ(C)c)) ⊇ {rigj | Eij spans a ray of C} .

□

Example 5.11. Consider the maximal cone C from Example 4.6. The edges in Γ(C)c

are r1g1, r2g2, r3g3 and r3g4. Let A ∈ C and P be the bicolored phylogenetic tree
corresponding to A. Lemma 5.10 implies that these are all the possible candidates for
bicolored elementary splits of bicolored phylogenetic trees in C. Note that the splits
corresponding to the edges r3g3 and r3g4 are not compatible. Thus, there exists no
phylogenetic tree having both as bicolored elementary splits simultaneously.
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Theorem 5.12. Let Γ(C) be the label of a maximal cone C ⊆ T 2
d,n. Then C is positive

if and only if the bipartite complement of Γ(C) consists of 4 edges which form two
disjoint paths of length 2 (as shown in Figure 13), and isolated vertices.

Proof. Let Γ(C)c be a graph consisting of 4 edges which form two disjoint paths
p1, p2. As first case, consider p1 = g1r1g2 and p2 = r2g3r3. Lemma 5.10 implies that
the union of bicolored elementary splits of all bicolored phylogenetic trees in C is
contained in

S = {{r1, g1} , {r1, g2} , {r2, g3} , {r3, g3}} .

Any subset of S of size 3 contains two splits that are not compatible (cf. Appendix A.2).
Hence, every maximal phylogenetic tree P in C has at most 2 elementary splits. At the
same time, every maximal phylogenetic tree contains at least 2 elementary splits, and
this number is 2 if and only if P is a caterpillar tree. Thus, each maximal phylogenetic
tree in C is a caterpillar tree. The argument is similar for p1 = r1g1r2, p2 = r3g2r4
and for the case p1 = g1r1g2, p2 = g3r2g4. In all of these cases, Corollary 5.6 implies
that C is positive.

Suppose C is a positive cone. By Theorem 4.7, every induced subgraph H on 3 + 3
vertices contains a subgraph Gpos consisting of a 4-cycle and a disjoint edge. For the
remainder of this proof, we consider the bipartite complement Hc. By Proposition 4.8,
every vertex in Hc has degree at most 2. Note that Hc cannot have a P4 (Figure 14a)
as a subgraph, since its complement (Figure 14b) does not contain a graph isomorphic
to Gpos. Hence, Hc (and therefore Γ(C)c) consists of disjoint paths of length 3 and
isolated edges.

r1

r2

r3

g1

g2

g3

(a)

r1

r2

r3

g1

g2

g3

(b)

Figure 14

Similarly, Hc cannot contain a perfect matching (3 isolated edges as shown in
Figure 15a), since the complement (Figure 15b) does not contain a graph isomorphic
to Gpos.

r1

r2

r3

g1

g2

g3

(a)

r1

r2

r3

g1

g2

g3

(b)

Figure 15

Thus, Γ(C)c has at most 4 edges which form two disjoint paths of length 2. However,
by Lemma 5.10 the edges of Γ(C)c contain the union of all elementary splits of trees
in C. Corollary 5.9 implies that there are at least 4 distinct such trees and hence at
least 4 distinct bicolored elementary splits. Therefore, the number of edges of Γ(C)c

is 4. □
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5.4. Bicolored trees and the tropical Grassmannian trop (Gr(2, d + n)). We
now investigate the striking resemblance between T 2

d,n, (its triangulation given by) the
moduli space BPTd,n of bicolored phylogenetic trees on d + n leaves, and the tropical
Grassmannian trop (Gr(2, d + n)), the moduli space of ordinary phylogenetic trees. It
was shown in [25] that a tropical Plücker vector p ∈ trop (Gr(2, d + n)) gives a tree
metric by
(9) −pij = length of the path between leaves i and j,

where the length of a path is the sum of the lengths of all edges of the path and the
length of the leaves i, j. A point p ∈ TP(d+n

2 ) is a tropical Plücker vector if and only
if it satisfies the 3-term Plücker relation (or 4-point condition)

min{pij + pkl, pil + pjk, pik + pjl} is attained at least twice
for all distinct i, j, k, l ∈ [d + n]. In the tropical Grassmannian trop (Gr(2, d + n)), the
maximal cones correspond to phylogenetic trees with d+n−3 internal edges and d+n
leaves with labels {1, . . . , d + n} = [d + n]. The rays of trop (Gr(2, d + n)) (modulo
lineality space) correspond to partitions of the leaves into two parts (a more detailed
description of the fan structure of trop (Gr(2, d + n)) can be found in Appendix A). It
is thus natural to raise the question of the connection between the space of bicolored
phylogenetic trees BPTd,n and trop (Gr(2, d + n)).

Definition 5.13. Let P be a phylogenetic tree on d + n leaves. A split of P is a
partition of the leaves into two parts induced by the deletion of an internal edge of P .
A split is elementary if one of the two parts has only 2 elements. A (d,n)-bicoloring
of P is a 2-coloring of the leaves into d red and n green leaves such that no split of P
has a monochromatic part.

Lemma 5.14. If d + n ⩾ 5, then a maximal phylogenetic tree on d + n leaves has at
most d+n

2 elementary splits.

The proof of this lemma can be found in Appendix B.3.

Remark 5.15. The number of elementary splits is minimized by caterpillar trees
(which have precisely 2 elementary splits) and the bound in Lemma 5.14 is attained
by snowflake trees, which are trees with a unique internal vertex incident to all in-
ternal edges. If d + n = 4, then there exists a unique tree, which has precisely one
elementary split. If the tree admits a (d, n)-coloring, then d = n = 2, since every the
split cannot have a monochromatic part. If d+n ⩽ 3, then there exists no elementary
split.

There is a simple characterization of the existence of a bicoloring in terms of the
number of leaves and elementary splits.

Proposition 5.16. Let P be a maximal phylogenetic tree on d+n leaves for some fixed
d, n ∈ N and k be the number of elementary splits of P . Then P has a (d, n)-bicoloring
if and only if k ⩽ min(d, n). In this case, the number of possible (d, n)-bicolorings
is 2k

(
d+n−2k

d−k

)
.

In particular, for any phylogenetic tree P on m leaves, there exist d, n ∈ N such
that d + n = m and P has a (d, n)-bicoloring.

The proof of this proposition can again be found in Appendix B.3. We illustrate
the existence of bicolorings with an example.

Example 5.17. Consider the maximal tree on 5 leaves as shown in Figure 16, with
elementary splits ({1, 2}, {3, 4, 5}) and ({1, 2, 3}, {4, 5}). We choose the partition d +
n = 2+3, i.e. we want to color 2 leaves in red and 3 leaves in green. In order to obtain
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1

2 3 4

5

Figure 16. The tree from Example 5.17.

a bicoloring, we need to color one of the leaves in {1, 2} in red, and one of the leaves
in {4, 5} in red, and color the remaining 3 leaves in green. For the partition 1+4 there
is no (1, 4)-bicoloring of this tree, as every 2-coloring has at least one monochromatic
elementary split.

5.5. Bicoloring trees and back. We now show that the combinatorial idea of
“bicoloring a tree” can be made precise also on the algebraic level. In this section we
describe a map that, for each (d, n)-bicoloring of leaves [d + n], establishes a bijection
between the polyhedral fan BPTd,n and a suitable subfan of trop (Gr(2, d + n)). On
the level of trees, the map correspond to “coloring a tree” and its inverse to “forget-
ting the colors”. A similar result was established in [18, Lemma 2.10]. Theorem 5.18
reveals that this map can be seen as a coordinate projection.

We first describe the subfan of trop (Gr(2, d + n)), and the map from this subfan
to BPTd,n. Fix d, n ∈ N and let R ⊔ G = [d + n] be a 2-coloring of the leaves in color
classes (R, G) such that |R| = d, |G| = n. We say that the coloring (R, G) of the leaves
is admissible for P if it is a (d, n)-bicoloring (as defined in Definition 5.13), i.e. if for
every split of P both parts contain leaves of both colors. Let now UPT (R,G) be the
collection of cones in trop (Gr(2, d + n)) corresponding to (uncolored) phylogenetic
trees such that the coloring (R, G) is admissible. Consider the coordinate projection

π(R,G) : UPT (R,G) −→ BPTd,n

(pij)ij∈(d+n
2 ) 7−→ (pij)i∈R,j∈G.

(10)

We will show that the image of this map is indeed BPTd,n. For a fixed uncolored
tree P and coloring (R, G), let P (R,G) denote the coloring of P with respect to (R, G).
Let p ∈ UPT (R,G), and denote by P the uncolored, metric phylogenetic tree defined
by p. Let π(R,G)(p) = A ∈ BPTd,n. We say that π(R,G) preserves the combinatorial
type of P if the bicolored phylogenetic tree defined by A has the same combinatorial
type (sometimes also called tree topology) as P . A tree is called a split tree if it is has
exactly one internal edge.

Theorem 5.18. The map π(R,S) induces a bijection of fans BPTd,n and UPT (R,G),
which preserves the combinatorial types of trees.

The proof of this theorem is deferred to Appendix B.4. The structure of the proof
is as follows. We first describe a “nice” representation (modulo lineality spaces of
UPT (R,G) and BPTd,n) of p and A (Lemma B.1). We then establish the result for
the lineality spaces of the fans (Lemma B.2) and rays (Proposition B.3). Finally, we
deduce the statement of Theorem 5.18.

By Proposition 5.16, for each cone C ⊆ trop (Gr(2, d + n)) there exists at least one
choice of R ⊔ G = [d + n] such that the projection of p ∈ int(C) gives the respective
bicoloring of the tree corresponding to C. However, this choice of R ∪ G cannot be
made globally, as the following example shows.

Algebraic Combinatorics, Vol. 6 #4 (2023) 1025



M. Brandenburg, G. Loho & R. Sinn
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1 3
P

2

3 1
P ′

Figure 17. The trees from Example 5.19.

Example 5.19 (A global bicoloring is impossible). Consider any uncolored phyloge-
netic tree P with labeled leaves 1, . . . , d + n and splits ({1, 2}, [d + n] ∖ {1, 2}) and
({1, 2, 3}, [d + n] ∖ {1, 2, 3}), as shown in Figure 17. We can choose a coloring such
that 1 ∈ R and 2, 3 ∈ G. The cone in BPTd,n containing P is adjacent to the cone
containing P ′, where P ′ is defined by the same set of splits as P , except that the first
split ({1, 2}, [d + n]∖{1, 2}) is replaced by the split ({2, 3}, [d + n]∖{2, 3}). However,
the coloring with 1 ∈ R and 2, 3 ∈ G is not an admissible bicoloring of P ′, since the
split ({2, 3}, [d + n] ∖ {2, 3}) has a part that does not contain leaves of both color
classes.

Remark 5.20. The inverse map (π(R,G))−1 can be interpreted as “forgetting the col-
ors” of a bicolored tree. Given a bicolored phylogenetic tree P , we forget the colors
relabeling the leaves with [d + n]. The relabeling is not canonical. For example, we
can assign to the red leaves the labels in [d] and assign the labels d + j, j ∈ [n] to the
green leaves.

We note that the map π(R,G) does not preserve positivity. The cones in the totally
positive Grassmannian correspond to trees with clockwise ordered labels [26]. There
are examples of caterpillar trees with a labeling of the leaves that is not in clockwise
order. On the other hand, there are trees with clockwise ordered labels that are not
caterpillar trees. It was described in [12, Example 3.10] that a 1-dimensional tropical
linear space is a Stiefel tropical linear space if and only is it is a caterpillar tree. This
gives us a characterization of the preimage of (T 2

d,n)+.

Proposition 5.21. Fix (R, G) such that R⊔G = [d+n] and let Σ(R,G) ⊆ UPT (R,G) ⊆
trop (Gr(2, d + n)) be the subfan consisting of all Stiefel tropical linear spaces for which
(R, G) is an admissible (d, n)-bicoloring. Then π(R,G)(Σ(R,G)) = BPTd,n ∩ (T 2

d,n)+

induces a bijection of fans.

Proof. A 1-dimensional tropical linear space is a Stiefel tropical linear space if and
only is it is a caterpillar tree [12, Example 3.10]. Thus, Corollary 5.6 implies that every
admissible (d, n)-bicoloring of a tree associated to a Stiefel tropical linear space be-
longs to the tropicalization of a nonnegative matrix and vice versa. By Theorem 5.18,
π(R,G) is a bijection of fans UPT (R,G) and T 2

d,n that preserves combinatorial types.
Restricting π(R,G) therefore induces a bijection of Σ(R,G) and (T 2

d,n)+. □

6. Rank 3
In this section, we show the extensions and limitations of the techniques for certifying
positivity for T 3

d,n. The main idea is to identify a criterion for a matrix A not to be
contained in the positive determinantal prevariety (P 3

d,n)+ by identifying a (4 × 4)-
minor, such that A is not contained in the respective positive tropical hypersurface.
As (T 3

d,n)+ ⊆ (P 3
d,n)+, we thereby also obtain a condition for A not to be contained

in (T 3
d,n)+.
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As before, we consider the columns of a matrix A ∈ T 3
d,n as a point configuration

of n points in TPd−1. Due to the rank condition (Proposition 2.17), these points
lie on a common tropical plane. We view a tropical plane as an embedded pure 2-
dimensional polyhedral complex in TPd−1. It has d unbounded rays r1, . . . rd, where
the slope of ri is in standard unit direction ei. Furthermore it has bounded edges
with edge directions

∑
i∈I ei for I ⊆ [d], |I| ⩾ 2. More precisely, a tropical plane is a

subcomplex of the polyhedral complex that is dual to a regular matroid subdivision
of the hypersimplex

∆(d, 3) = [0, 1]d ∩

{
x ∈ Rd |

d∑
i=1

xi = 3
}

.

where in this subdivision of ∆(d, 3) each maximal cell corresponds to a matroid of
rank 3. We describe this subcomplex in more detail in Section 6.2.

Let A ∈ T 3
d,n and consider the induced point configuration. The matrix A ∈ T 3

d,n

(or equivalently the corresponding point configuration) is generic with respect to a
tropical plane E if every point Aj lies on the interior of a 2-dimensional face of E. We
call a 2-dimensional face of the plane E a marked face if it contains a point of the point
configuration in its interior. Recall from Section 3.3 that we call the 2-dimensional
faces of a tropical plane in TP3 the wings of the plane.

6.1. Starship criterion for positivity. We establish a condition on the local
properties of a tropical plane based on Theorem 3.14 (Geometric triangle criterion).
The idea is as follows. Let A ∈ T 3

d,n and E be a tropical plane containing the columns
of A. The matrix A is non-positive if there exists a non-positive (4×4)-submatrix. The
geometric triangle criterion describes the associated point configuration of 4 points
in TP3. We identify a projection of E which selects such a (4×4)-submatrix to certify
non-positivity. The condition to identify the correct submatrix solely depends on the
collection of marked faces, i.e. a local structure of the underlying tropical plane. Since
a tropical plane is dual to a matroid subdivision of ∆(d, 3), we thus argue via normal
cones of faces of matroid polytopes, reducing this problem to a question about flags
of flats of the respective matroids.

Lemma 6.1. Let M be a matroid of rank 3 on n elements, and H1, H2, H3 be distinct
flats of rank 2. If H1 ∩ H2 ∩ H3 = F is a flat of rank 1, then H3 ̸⊆ H1 ∪ H2.

Proof. Assume for contradiction that H3 ⊆ H1 ∪ H2. Let h ∈ H3 ∖ F . Then h ∈ H1
or h ∈ H2, and without loss of generality we can assume h ∈ H1. Since F is a flat, and
h ̸∈ F we get that rk(F ∪{h}) = 2 = rk(H1). Hence, span(F ∪{h}) = H1. However, at
the same time, since F ∪{h} ∈ H3 we have that rk(F ∪{h}) = 2 = rk(H3), and hence
span(F ∪ {h}) = H3. Thus, H1 = span(F ∪ {h}) = H3, contradicting the assumption
that H1, H2, H3 are distinct. □

Lemma 6.2. Let E ⊆ TPd−1 be a realizable tropical plane. Let F1, F2, F3 be distinct
2-dimensional faces of E, intersecting in a common unbounded 1-dimensional face r.
Then there is an index set I ⊆ [d] with |I| = 4 such that for the coordinate projection
πI : TPd−1 → TP3 onto these coordinates the following holds: πI(E) ⊆ TP3 is a
tropical plane with wings πI(F1), πI(F2), πI(F3) intersecting in the common unbounded
1-dimensional πI(r).

Proof. Let E ⊆ TPd−1 be a realizable tropical plane. Then E is a subcomplex of
a polyhedral complex that is dual to a matroid subdivision of ∆(d, 3), where each
maximal matroid polytope corresponds to a matroid of rank 3. Let v be the vertex
of the ray r = F1 ∩ F3 ∩ F3, and P be the matroid polytope dual to v. Let M be
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F1

F2
F3

Figure 18. A configuration of three marked 2-faces forming a star-
ship, as in the assumptions of Lemma 6.2.

the corresponding matroid of rank 3 on ground set [n]. Each 2-dimensional face Fk

spans the normal cone of a face of P . The 1-dimensional faces of Fk that are incident
to v have slopes

∑
i∈Hk

1
ei and

∑
i∈Hk

2
ei respectively. Here, for each k = 1, 2, 3, we

have that ∅ ⊂ Hk
1 ⊂ Hk

2 ⊂ E is a chain of flats of M [17, Theorem 4.2.6]. Thus,
Hk

1 is a flat of rank 1, and Hk
2 is a flat of rank 2. By assumption, F1, F2, F3 intersect

in an unbounded 1-dimensional face r. Hence, there exists an element f ∈ [n] such
that H1

1 = H2
1 = H3

1 = {f}. By assumption, H1
2 , H2

2 , H3
3 are distinct, and so by

Lemma 6.1 we can choose distinct h1 ∈ H1
2 ∖ (H2

2 ∪ H3
2 ), h2 ∈ H2

2 ∖ (H1
2 ∪ H3

2 ) and
h3 ∈ H3

2 ∖ (H1
2 ∪ H2

2 ). Let I = {h1, h2, h3, f}. Then πI(r) ⊆ TP3 is the ray spanned
by ef , and πI(Fk) = cone(ef , ehk

).
Finally, we show that πI(E) is tropical plane. Since E is realizable, E is the tropi-

calization of a 2-dimensional plane E in CPd−1. We can first apply the coordinate pro-
jection to obtain a linear space πI(E) ⊆ CP3 of dimension at most 2. Note that πI(E)
is the tropicalization of πI(E), and is thus a tropical linear space of dimension at
most 2. But since πI(Fk) ⊆ πI(E) and πI(Fk) is a 2-dimensional cone, πI(E) has
dimension 2 and is a tropical plane. □

If the assumptions of Lemma 6.2 hold, i.e. if there is a tropical plane E with 3
marked 2-faces F1, F2, F3 intersecting in an unbounded ray, then we say that E con-
tains the starship(1) formed by the marked faces F1, F2, F3. Such a configuration can
be seen in Figure 18.

Theorem 6.3 (Starship criterion). Let A ∈ T 3
d,n be a matrix in the relative interior

of a cone C ⊆ T 3
d,n and let E be a tropical plane containing the points given by the

columns of A. If E has 3 marked 2-faces that intersect in an unbounded 1-dimensional
face, then C is not positive.

Proof. Let A1, A2, A3 be the points lying on 2-faces F1, F2, F3 respectively, and let
j ∈ [n]∖{1, 2, 3}. By Lemma 6.2 there exists a coordinate projection onto coordinates
I = {i1, . . . , i4} such that πI(F1), πI(F2), πI(F3) are 2-dimensional faces of the tropical
plane πI(E) ⊆ TP3, which intersect in a common unbounded ray in direction ei4 . Note
that the projection of the point πI(Ak) marks the 2-face πI(Fk) for k = 1, 2, 3, and
πI(A4) ∈ πI(E). This point configuration of 4 points in TP3 is also represented by
the (4 × 4)-submatrix of A with rows I = {i1, i2, i3, i4} and columns J = {1, 2, 3, j}.
Dually, this corresponds to 3 marked edges of the simplex ∆3 incident to the triangle

(1)more precisely, a starship of type “Lambda-class T-4a shuttle”
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that is dual to the ray ei4 . By the Geometric triangle criterion (Theorem 3.14) this
(4 × 4)-matrix is not positive. Thus, if {j1, j2, j3, j4} = {1, 2, 3, j} then for the minor

f IJ =
∑

σ∈S4

sgn σ

4∏
k=1

xikσ(jk)

holds that A ̸∈ trop+C(V (f IJ)). It follows that A is not contained in the positive
tropical determinantal prevariety (as defined in (2) in Section 2.4)

A ̸∈
⋂

fIJ is a
(4×4)-minor

trop+C(V (f IJ)) = (P 3
d,n)+

and in particular
A ̸∈

⋂
f∈Ir

trop+C(V (f)) = (T 3
d,n)+.

□

We give an example of a matrix A ∈ T 3
d,n, in which the point configuration in

TPd−1 does not contain a starship, but an appropriate coordinate projection does.
Example 6.4 (The converse of the Starship criterion does not hold). Consider the
matrix

A =


k k 0 0 0
0 k k 0 1
0 0 k k 0
0 0 0 k k
k 0 0 0 k


for any k > 1. This is a point configuration where

A1 ∈ W1 = cone(e1, e5), A2 ∈ W2 = cone(e1, e2), A3 ∈ W3 = cone(e2, e3),
A4 ∈ W4 = cone(e3, e4), A5 ∈ W5 = e2 + cone(e4, e5),

which are 2-dimensional wings of a tropical plane E ⊆ TP4. Hence, this point con-
figuration does not satisfy the assumptions of the Starship criterion (Theorem 6.3)
– it does not contain a starship. We project the marked wings W1, W2, W3, W5 onto
the first 4 coordinates. Then π(W1) = cone(e1), π(W2) = cone(e1, e2), π(W3) =
cone(e2, e3), π(W5) = e2 + cone(e4). The projections π(W1), π(W2), π(W3) are cones
of the (unique) tropical plane E′ in TP3 with apex at the origin, and the projection
π(W5) is a ray in the wing cone(e2, e4) of E′. Thus, the submatrix

A1 A2 A3 A5


1 k k 0 0
2 0 k k 1
3 0 0 k 0
4 0 0 0 k

constitutes a starship (with unbounded ray in direction e2) with respect to E′, where
the projections of A1, A3 and A5 are the marking points. If i1 = 1, i2 = 2, i3 = 3, i4 = 5
and

f IJ =
∑

σ∈S4

sgn σ

4∏
k=1

xikσ(k)

then the Geometric triangle criterion (Theorem 3.14) implies that A ̸∈ trop+C(V (f IJ))
and hence A ̸∈ (T 3

d,n)+. If C is a cone of T 3
d,n containing A in its relative interior,

then this implies that C is not positive. Hence, the converse of Theorem 6.3 does not
hold. We continue with this in Example 6.7.
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Figure 19. The bicolored tree arrangement of the non-positive ma-
trix in Example 6.4.

6.2. Bicolored tree arrangements. Tree arrangements were introduced in [14]
for studying the Dressian Dr(d, 3). It was shown that tree arrangements encode ma-
troid subdivisions of the hypersimplex ∆(d, 3) by looking at the induced subdivision
on the boundary. In particular, this implies that we can associate a tree arrangement
to every tropical plane. In this section, we extend this idea and introduce bicolored tree
arrangements, which correspond to a tropical plane with a configuration of points on
it. However, we will see in Example 6.7 that this is not a one-to-one correspondence.

We first describe the established bijection between tropical planes and (uncol-
ored) tree arrangements, following [14]. As introduced at the beginning of this sec-
tion, a tropical plane is a subcomplex of the polyhedral complex that is dual to
a regular matroid subdivision of the hypersimplex ∆(d, 3). Inside the affine space{

x ∈ Rd |
∑d

i=1 xi = 3
}

, the facets of ∆(d, 3) are given by xi = 0 and xi = 1. A trop-
ical plane is the polyhedral complex dual to the subcomplex of a matroid subdivision
of ∆(d, 3) consisting of the faces which are not contained in {xi = 0}. Every matroid
subdivision of ∆(d, 3) is uniquely determined by the restriction of the subdivision to
the n facets of ∆(d, 3) defined by {xi = 1} [14, Section 4]. We restrict this matroid
subdivision to the remaining facets given by {xi = 1}. These facets are isomorphic
to a hypersimplex ∆(d, 2), so the restricted subdivisions are dual to a tropical line
in TPd−2. This tropical line has rays in directions e1, . . . , ei−1, ei+1, . . . , ed. As these
tropical lines are in bijection with (uncolored) phylogenetic trees, this yields a tree
arrangement. We extend this idea as follows.

Construction 6.5 (Bicolored tree arrangements). Let A ∈ T 3
d,n be the matrix giv-

ing n points A1, . . . , An on a tropical plane E in TPd−1. If A is generic with respect
to E, then every point Aj , j ∈ [n] lies in the interior of a 2-face F , where each 1-
dimensional face of F ⊆ E has slope

∑
i∈I ei. When restricting to a facet {xi′ = 1}

of ∆(d, 3), then the subdivision of this facet is dual to the collection of faces of E
that contain the unbounded ray in direction ei′ . We denote the collection of these
unbounded faces by Fi′ .

Let Ji′ ⊆ [n] be the set of points lying on a face in Fi′ . To obtain a bicolored tree
arrangement, project all of these 2-dimensional faces of E and the points in Ji′ onto
the coordinates 1, . . . , i′ − 1, i′ + 1, . . . , d. The projection of the 2-faces in Fi′ form
tropical line Li′ , and the projection of the points are points on Li′ . Hence, applying
Construction 5.4 induces a bicolored phylogenetic tree Pi′ . We call the collection of
these bicolored trees P1, . . . , Pd a bicolored tree arrangement.

Algebraic Combinatorics, Vol. 6 #4 (2023) 1030



Tropical positivity and determinantal varieties

Theorem 6.6. Let A ∈ T 3
d,n be generic with respect to the tropical plane E. If A is

positive, then every tree in the induced bicolored tree arrangement is a caterpillar tree.

Proof. Let P be a tree in the bicolored tree arrangement that is not a caterpillar tree.
We show that A is not positive. After relabeling we can assume that P = Pd, i.e. P is
the tree on the d-th facet. Since P is not a caterpillar tree, it has an internal vertex that
is incident to at least 3 internal edges. Thus, P corresponds to a tropically collinear
point configuration, on which there are points with labels 1, 2, 3 on a tropical line
L ∈ TPd−2 whose tropical convex hull in TPd−2 contains the 3 internal edges. Consider
the ((d − 1) × 3)-matrix A

{1,2,3} consisting of the respective columns A1, A2, A3. This
matrix A

{1,2,3} has Kapranov rank 2. Then by Corollary 5.6, it has no positive lift of
rank 2. Thus, A

{1,2,3} has a (3 × 3)-submatrix B with row indices i1, i2, i3, such that
(possibly after relabeling ) the column Bk lies on the ray of a tropical line in TP2

with slope ek for k = 1, 2, 3.
Pick any additional column j, and consider the (4 × 4)-submatrix D with row

indices i1, i2, i3, d and column indices 1, 2, 3, j. Then the points given by the columns
Dk, k ∈ [3], and Dj lie on a common tropical plane E ⊆ TP3. By genericity of A
with respect to E, the points Dk, k ∈ [3] lie in the interior of the faces of E that are
(up to translation) the cones spanned by the rays ek and ed, respectively. Dually, this
corresponds to 3 marked edges of the simplex ∆3 incident to the triangle that is dual
to the ray ed. By the Geometric triangle criterion (Theorem 3.14) this (4 × 4)-matrix
is not positive. As in the proof of Theorem 6.3, this implies that A is not positive. □

Example 6.7. Consider the matrix from Example 6.4. This matrix is not positive.
However, the bicolored trees in this arrangement are all caterpillar trees, as depicted
in Figure 19. Thus, the converse of Theorem 6.6 does not hold.

Remark 6.8. The Starship criterion can be obtained as a corollary of Theorem 6.6
in the special case that A is generic with respect to to the tropical plane E. Indeed,
if A is positive, then every tree in the bicolored tree arrangement is a caterpillar tree.
However, a starship with unbounded ray in direction ei′ yields a tree Pi′ that is not
a caterpillar tree. Thus, A is not positive.

In both statements of Theorem 6.3 and Theorem 6.6, the converse fails to be true.
A main problem lies in that both the tree arrangement and the Starship criterion are
only able to capture the geometry of the unbounded faces of the tropical plane. While
this information is enough to reconstruct the entire plane [14], this does not suffice to
capture information about the point configuration on bounded faces of the tropical
plane.

Appendix A. Appendix: Lineality spaces and fan structures
A.1. Lineality spaces. We devote this section to describe the lineality spaces of
the three fans T r

d,n, BPTd,n and trop (Gr(2, d + n)), as well as their geometric inter-
pretations. Understanding the lineality spaces is a crucial part of the arguments made
in the proofs of Lemmas B.1 and B.2, which form the foundation of Theorem 5.18.
The lineality space of T r

d,n is spanned by the vectors

(11)
d∑

i=1
Eij for j ∈ [n] and

n∑
j=1

Eij for i ∈ [d],

where Eij denotes the standard basis matrix in Rd×n. Let A ∈ T r
d,n and consider

the columns as a point configuration in TPd−1. Let H be an (r − 1)-dimensional
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tropical linear space through the columns of A. We now describe in which sense the
combinatorics of the point configuration stays invariant modulo lineality space. We
write 1 for the vector (1, 1, . . . , 1)t ∈ Td. First, fix j ∈ [n]. Then

A′ := A +
d∑

i=1
Eij = (A1, . . . , Aj + 1, . . . , An)

so A′ is a matrix where for all columns holds A′
k = Ak, if k ̸= j. However, as a point

in TPd−1 we have Aj
∼= Aj +1 = A′. Therefore, as a point configuration inside TPd−1,

we consider the point configurations given by the matrices A and A′ to be the same.
Second, fix i ∈ [d]. Then

A′′ := A +
n∑

j=1
Eij = (A1 + ei, . . . , An + ei)

so A′′ is a matrix where for all columns holds A′′
k = Ak + ei. Thus, the point con-

figuration given by A′′ is a translation by ei of the point configuration defined by A.
The points of A′′ lie on the translated tropical linear space H + ei. Hence, the points
in T r

d,n modulo lineality space correspond to point configurations in TPd−1 modulo
translation.

The lineality space of the space BPTd,n of bicolored phylogenetic trees coincides
with the lineality space of T 2

d,n. By construction, two collinear point configurations
that are equal up translation induce the same bicolored phylogenetic trees.

The lineality space of the tropical Grassmannian trop (Gr(2, d + n)) is spanned by
the vectors ∑

i∈[d+n]
i ̸=k

ẽik, k ∈ [d + n]

where the vectors ẽij = ẽji ∈ TP(d+n
2 )−1 are the standard basis vectors. We fix p ∈

trop (Gr(2, d + n)) and k ∈ [d + n]. Then

(12) p′ := (p +
∑

i∈[d+n]
i ̸=k

ẽik)st =
{

pst if s, t ̸= k

pst + 1 if s = k or t = k.

Recall that −pij is the length of the path between leaves i and j of an (uncolored)
phylogenetic tree P . That is, the tree P has internal edges of certain lengths, and
each leaf i has a length li. The vector p′ is the tree metric of the tree P ′ of the same
combinatorial type, where all lengths of internal edges coincide with the lengths of
internal edges of P . Furthermore, the leaf i of P ′ has length l′

i, and (12) implies that
li = l′

i for i ̸= k and lk = l′
k − 1. Therefore, the points in trop (Gr(2, d + n)) modulo

lineality space correspond to metric phylogenetic trees modulo leaf lengths.

A.2. Rays and cones. Modulo the above described lineality space, the fan BPTd,n

is a simplicial fan in which every cone is generated by d + n − 3 rays. Recall from
Section 5.2 that the rays of BPTd,n correspond to bicolored splits. As partitions, these
are partitions (S, ([d]⊔[n])∖S) of the leaves [d]⊔[n] such that both S and ([d]⊔[n])∖S
contain leaves of both color classes. As trees, these are bicolored phylogenetic trees
with a unique internal edge separating the leaves in S and ([d] ⊔ [n]) ∖ S. More
precisely, if r = {λA | λ ⩾ 0} is a ray of the fan BPTd,n, then for each λ > 0 the
Construction 5.4 produces the same split tree.
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Two (bicolored) splits (S1, ([d]⊔ [n])∖S1) = (S1, Sc
1), (S2, ([d]⊔ [n])∖S2) = (S2, Sc

2)
are compatible if

S1 ⊆ S2 or S1 ⊆ Sc
2 or S2 ⊆ Sc

1 or Sc
1 ⊆ Sc

2.

A set of bicolored splits form a cone C in BPTd,n if and only if they are pairwise
compatible. If a bicolored tree P is contained in the relative interior of C, then the
rays of C are in correspondence with the internal edges of P .

Example A.1. Consider the matrices

A =

0 0 0
0 0 0
0 1 1

 , B =

1 0 0
0 0 0
0 0 0


Both A and B span rays in BPTd,n, as the corresponding phylogenetic trees are
the splits (r1r2g1, r3g2g3) and (r1g1, r2r3g2g3) respectively. Note that the splits are
compatible (r1g1 ⊆ r1r2g1), so they span a 2-dimensional cone. The sum A + B is a
point in the interior of the cone, and corresponds to the tree with exactly these two
splits. Hence, the rays A, B correspond to the bounded edges of the tree A + B.

The fan trop (Gr(2, d + n)) is, modulo its lineality space, a simplicial fan in which
every cone is generated by d + n − 3 rays. Recall from Section 5.4 that the rays of
trop (Gr(2, d + n)) correspond to (uncolored) splits. As partitions, these are partitions
(S, ([d + n]) ∖ S) of the leaves [d + n]. As trees, these are phylogenetic trees with a
unique internal edge separating the leaves in S and ([d + n]) ∖ S. More precisely,
if r = {λp | λ ⩾ 0} is a ray of the fan trop (Gr(2, d + n)), then for each λ > 0 this is
the tree metric for a tree with this topology.

Similarly to their bicolored counterparts, two (uncolored) splits (S1, Sc
1), (S2, Sc

2)
are compatible if

S1 ⊆ S2 or S1 ⊆ Sc
2 or S2 ⊆ Sc

1 or Sc
1 ⊆ Sc

2.

A set of splits forms a cone C in trop (Gr(2, d + n)) if and only if they are pairwise
compatible. If a tree P is contained in the interior of C, then the rays of C are in
correspondence to the bounded edges of P .

Example A.2. Let d + n = 5 and consider the tropical Plücker vectors

12 13 14 15 23 24 25 34 35 45
p = ( 0 −1 −1 −1 −1 −1 −1 0 0 0)
q = ( 0 0 −1 −1 0 −1 −1 −1 −1 0)

Both p and q span rays in trop (Gr(2, d + n)), as the corresponding phylogenetic trees
are split trees with splits (12, 345) and (123, 45) respectively, and in both cases the
unique internal edge has length 1 and all leaves have length 0. Note that the splits
are compatible (12 ⊆ 123), so they span a 2-dimensional cone. The sum p + q is a
point in the interior of the cone, and corresponds to the tree with exactly these two
splits. Moreover, the length of each internal edge is 1 and all leaf lengths are 0.

Appendix B. Additional proofs
B.1. Positivity in tropical geometry.

Proof of Proposition 2.13. Without loss of generality, we assume d ⩽ n. We first
show the claim for a matrix of full rank d. First set Bij = lt(Aij). If the rank of
the resulting matrix B is less than d, then we can add terms of higher degree with
generic real coefficients to the entries of B to obtain a matrix of full rank such that
lt(Bij) = lt(Aij) for all (i, j) ∈ [d] × [n] as claimed.
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Figure 20. The trees P and P ′ from Lemma 5.8 and the corre-
sponding point configurations A and B.

Let now rk A = r < d. We can assume that the first r rows of A are linearly
independent and write the bottom rows Ai for r + 1 ⩽ i ⩽ d as linear combinations
of the first r, say

Ai =
r∑

k=1
ci

kAk

with ci
k ∈ C. We write akjtαkj for the leading term of Akj (for (k, j) ∈ [r] × [n]) and

bi
ktβi

k for the leading term of ci
k so that akj ∈ R and bi

k ∈ C. If the entry Aij for
i ⩾ r + 1 is non-zero, then its leading coefficient is therefore of the form

∑
k∈S akjbi

k

for some subset S ⊆ [r].
To get the matrix B as desired, we apply the first part of the proof to the first r

rows of A so that we get rows B1, . . . , Br where each entry is a real Puisseux series.
To fill in the last rows, we replace ci

k by (ci
k + ci

k)/2 ∈ R, where c for a Puisseux
series c ∈ C is defined as the series whose coefficients are the complex conjugate of
the coefficients of c. Setting

Bi =
r∑

k=1

1
2(ci

k + ci
k)Ak = 1

2

(
r∑

k=1
ci

kAk +
r∑

k=1
ci

kAk

)
for i ⩾ r + 1 gives the leading term of Bij as

1
2

(∑
k∈S

akjbi
k +

∑
k∈S

akjbi
k

)
=
∑
k∈S

akjbi
k ∈ R.

So the leading term of Bij is the same as that of Aij , which is real by assumption. □

Proof of Proposition 2.17. Let A ∈ T r
d,n. Then A has Kapranov rank r′ ⩽ r, and

there exists a matrix Ã ∈ Cd×n of rank r′ such that A = val(Ã). Hence, the columns
of Ã are n points on a linear space H ⊆ Cd of dimension r′. Equivalently, we can view
them as n points on a linear space in CPd−1 of dimension r′ −1. The tropicalization of
this linear subspace yields a linear space of the same dimension in TPd−1 containing
the columns of A. □
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B.2. Bicolored phylogenetic trees.

Proof of Lemma 5.8. We reverse construction Construction 5.4 to obtain a point con-
figuration of points A1, . . . , An forming a matrix A ∈ CP . Let A1, . . . , An be such
points and L a tropical line containing them. The line L is a 1-dimensional poly-
hedral complex consisting of bounded edges and d unbounded rays in directions
e1, . . . , ed

∼= −(e1 + · · · + ed−1). The splits of P imply that the point A1 lies on
the ray of L in direction e1, the rays e1 and e2 meet in a common vertex v, and that
there is a bounded edge E of L separating the rays in directions e1, e2 from all other
rays (cf. Figure 20). Similarly, if B is a matrix realizing P ′, and L′ is the line through
columns of B, then the splits of P ′ imply that the point B1 lies on the ray direction e2,
the rays e1 and e2 meet in a common vertex v′, and that there is an internal edge E′

of L′ separating the rays in directions e1, e2 from all other rays. Since all remaining
splits of P and P ′ are the same, we can assume that all columns Ak = Bk coincide
for k ⩾ 2. Therefore, L = L′ and the point configurations only differ in the position
of the points A1, B1 respectively, as depicted in Figure 20 (bottom). After translation
of the point configurations, we can assume that both for L and L′ the vertices v, v′

are the origin 0. The points A1 and B1 can be realized by the first two unit vectors
respectively. Since L and L′ satisfy the balancing condition, the internal edges E, E′

have slope −e1 − e2 ∼= e3 + . . . ed, and so all remaining points in the two point con-
figurations can be realized as points M = (M1, . . . , Md), where M1j = M2j = 0 and
Mkj > 0 for all 3 ⩽ k ⩽ d and 2 ⩽ j ⩽ n. Therefore, the tree P can be realized as the
matrix A, and P ′ is induced by the matrix B as follows:

A =


1 0 0 . . . 0
0 0 0 . . . 0
0
...
0

M

 B =


0 0 0 . . . 0
1 0 0 . . . 0
0
...
0

M

 ,

where M is some (d − 2) × (n − 1)-matrix such that Mij > 0 ∀i ∈ [d − 2], j ∈ [n − 1].
We need to show that, for a fixed (3×3)-minor f IJ , the initial forms selected by the

weights in A and in B, respectively, are the same. So let i1 < i2 < i3, j1 < j2 < j3 be
the indices of three rows and three columns, respectively. They define the polynomial
f IJ corresponding to the (3 × 3)-minor

f IJ = xi1j1xi2j2xi3j3 + xi1j2xi2j3xi3j1 + xi1j3xi2j1xi3j2

−xi1j1xi2j3xi3j2 − xi1j3xi2j2xi3j1 − xi1j2xi2j1xi3j3

and (3 × 3)-submatrices AIJ , BIJ of A, B. With this notation, we need to prove the
equality inAIJ (f IJ) = inBIJ (f IJ), where inAIJ (f IJ) is the polynomial consisting of
those terms with minimal AIJ -weight.

If 1 ̸∈ {j1, j2, j3} or 1, 2 ̸∈ {i1, i2, i3} them AIJ = BIJ and the claim holds. For
j1 = 1 and i1 = 1, i2 = 2 the submatrices are

AIJ =

1 0 0
0 0 0
0 Mi3j2 Mi3j3

 and BIJ =

0 0 0
1 0 0
0 Mi3j2 Mi3j3

 .

The choice Mij > 0 implies that inAIJ (f) = inBIJ (f) = xi1j2xi2j3xi3j1 −
xi1j3xi2j2xi3j1 , where in each case both terms have weight 0. If j1 = 1, i1 = 1, i2 ̸= 2
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the submatrices are

AIJ =

1 0 0
0 Mi2j2 Mi3j2

0 Mi3j2 Mi3j3

 and BIJ =

0 0 0
0 Mi3j2 Mi3j2

0 Mi3j2 Mi3j3

 .

The initial form with respect to these matrices can only differ if Mi2j2 + Mi3j3 or
Mi3j2 + Mi2j3 are the terms with minimal BIJ -weight. However, e.g. Mi2j2 appears
as weight of the term xi1j3xi2j2xi3j1 , and since Mij > 0, the weight Mi2j2 is strictly
smaller. Finally, if j1 = 1, i1 = 2 then the argument is analogous to the above case
j1 = 1, i1 = 1, i2 ̸= 2. □

B.3. Bicolored trees and the tropical Grassmannian trop (Gr(2, d + n)).

Proof of Lemma 5.14. By definition, an elementary split arises through the removal
of an internal edge which separates 2 leaves from all others. Within this proof, we call
such an edge an “outer edge”. Let k be the number of outer edges. We double count
the number of leaf-edge-incidences for outer edges (i.e. the pairs (leaf, outer edge)
such that the leaf is adjacent to the outer edge). A single outer edge is adjacent to
precisely 2 leaves. Thus, the number of such pairs is 2k. On the other hand, a single
leaf is adjacent to at most one outer edge. The tree has d + n leaves, and hence
the number of pairs is at most d + n. Combining both counts yields 2k ⩽ d + n or
equivalently k ⩽ d+n

2 . □

Proof of Proposition 5.16. Let P be a phylogenetic tree on d+n leaves, and suppose P
has a (d, n)-bicoloring. Since every elementary split contains exactly one leaf of each
color in the part with 2 elements, it follows directly that there are at least k leaves of
each color, and thus k ⩽ d and k ⩽ n.

Conversely, let k be the number of elementary splits of P and k ⩽ min(d, n). For
each of these k elementary splits there are exactly 2 possible colorings of the part
with two elements. Thus, there are exactly 2k possible colorings of the sets of size 2
of the elementary splits.

Since P has d + n leaves in total, there are d + n − 2k remaining leaves to color:
d − k in one color and n − k in the other color. Note that for any such coloring, the
removal of any internal edge will split the colored tree into 2 parts, with leaves of
both colors in both parts. Thus, any such coloring is a bicoloring. In total there are
hence

2k

(
d + n − 2k

n − k

)
= 2k

(
d + n − 2k

d − k

)
(d, n)-bicolorings of a maximal tree with k elementary splits. Finally, by Lemma 5.14
a maximal phylogenetic tree on m leaves has at most k ⩽ m

2 elementary splits. Thus,
choosing values for d, n ∈ N such that d+n = m and k ⩽ min(d, n) is always possible.
For non-maximal trees this is a lower bound: Let (A, B) be an inclusion-minimal split,
i.e. a split such that |A| ⩽ |B| and there exists no split (C, D) such that C ⊆ A or
D ⊆ A. Then A contains at least 2 leaves and we can apply the same argument as
above to inclusion-minimal splits instead of elementary splits. □

B.4. Bicoloring trees and back. We devote this section to the proof of Theo-
rem 5.18. To this end, fix a partition (R, G) of [d + n] such that |R| = d and |G| = n.

Lemma B.1. Let P be the (uncolored) phylogenetic split tree with one internal edge of
length λ, and m = d+n leaves, where the removal of the internal edge splits the leaves
into two parts S1 and S2. Let P (R,G) be the bicolored split tree (R1 ⊔ G1, R2 ⊔ G2),
i.e. a tree with one internal edge of positive length, red leaves R = {r1, . . . , rd}, and
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green leaves G = {g1, . . . , gn}, where the removal of the internal edge splits the leaves
into two parts R1 ⊔ G1 and R2 ⊔ G2, and additionally R1 ⊔ R2 = R, G1 ⊔ G2 = G.

(i) Let p ∈ trop (Gr(2, d + n)) be the tropical Plücker vector corresponding to P .
Then p ∼ pλ modulo the lineality space of trop (Gr(2, d + n)), where

pλ
ij =

{
−λ if i ∈ S1 and j ∈ S2,

0 if i, j ∈ S1 or i, j ∈ S2.

(ii) Let A ∈ BPTd,n be a matrix corresponding to P (R,G). Then there exists a
unique λ > 0 such that A ∼ Aλ modulo the lineality space of BPTd,n, where
Aλ is the matrix with columns

Aλ
j =

{
−λ
∑

i∈R2
ei if j ∈ G1

−λ
∑

i∈R1
ei if j ∈ G2.

Proof. We begin by showing (i). Let ℓ1, . . . , ℓm denote the lengths of the leaves
1, . . . , m of P . By (9) (in Section 5.4), the Plücker vector p corresponding to P is

pij =
{

−λ − ℓi − ℓj if i ∈ S1 and j ∈ S2

−ℓi − ℓj if i, j ∈ S1 or i, j ∈ S2

= pλ
ij + pℓ

ij ,

where we define pℓ
ij = −ℓi − ℓj . Note that pℓ lies in the lineality space of

trop (Gr(2, d + n)), and so p ∼ pλ.
For (ii), note that the bicolored split tree P (R,G) is also generated by the matrix Aλ

for any λ > 0. Since A and Aλ generate the same tree, they are both contained in the
interior of the same cone of BPTd,n. Since P (R,G) is a split tree, modulo lineality space
of BPTd,n, this cone is 1-dimensional. We choose λ = 1 and consider the matrix A1 as
generator for this ray. Then for every point A′ ∈ cone(A1) there exists a unique λ ⩾ 0
such that A′ = λA1 = Aλ. Hence, this also holds for the original matrix A, i.e. there
exists a unique λ > 0 such that A ∼ Aλ modulo lineality space of BPTd,n. □

Lemma B.2. If p ∼ p′ then π(R,G)(p) ∼ π(R,G)(p′). π(R,G) induces a bijection of
lineality spaces of T 2

d,n and trop (Gr(2, d + n)).

Proof. Note, that since UPT (R,G) is a subfan of trop (Gr(2, d + n)), for the respective
lineality spaces holds the reverse inclusion. We first show that the images of the d + n
generators of the lineality space of trop (Gr(2, d + n)) (as described in Appendix A)
span the lineality space of BPTd,n. This implies that π(R,G) induces a bijection of
lineality spaces. Let p =

∑
i∈[d+n]

i ̸=k

ẽik, k ∈ [d + n]. Since R ⊔ G = [d + n], either k ∈ R

or k ∈ G. If k ∈ R, then for i ∈ R, j ∈ G we have

pij =
{

0 if i = k

1 otherwise .

Thus, π(R,G)(p) is the matrix π(R,G)(p) =
∑d

i=1
i ̸=k

∑n
j=1 Eij . On the other hand, if

k ∈ G, then π(R,G)(p) =
∑d

i=1
∑d

j=1
j ̸=k

Eij . Indeed, these vectors span the same vector

space as the vectors given in (11) in Appendix A. Hence, π(R,G) induces a bijection
of lineality spaces of trop (Gr(2, d + n)) and BPTd,n.

Let p, p′ ∈ trop (Gr(2, d + n)) arbitrary, such that p ∼ p′ modulo lineality space
L of trop (Gr(2, d + n)). Then p ∈ p′ + L, and since π(R,G) is linear, it follows that
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π(R,G)(p+L) = π(R,G)(p)+π(R,G)(L), where π(R,G)(L) is the lineality space of BPTd,n

by the above. Hence, π(R,G)(p) ∼ π(R,G)(p′). □

Proposition B.3. The map π(R,G) induces a bijection of rays of the fans UPT (R,G)

and BPTd,n and preserves the combinatorial types of split trees.

Proof. Let p ∈ UPT (R,G) ⊆ trop (Gr(2, d + n)) be a ray generator. Then p corre-
sponds to a split tree P with two parts S1, S2 of leaves. By Lemma B.1 we have
that p ∼ pλ modulo the lineality space of trop (Gr(2, d + n)). By construction,
π(R,S)(pλ) = Aλ, so by Lemma B.2 p ∼ pλ implies π(R,G)(p) ∼ Aλ. Note that Aλ

is the matrix representing the (R, G)-bicoloring P (R,G) of P . Hence, π(R,G) sends
rays of UPT (R,G) onto rays of BPTd,n, preserving the combinatorial type of split
trees. Note that this implies injectivity: Let r, r′ be distinct rays of UPT (R,G) with
respective ray generators p, p′. Then p, p′ correspond to phylogenetic split trees P, P ′

of distinct combinatorial types. Since the (R, G)-bicoloring is admissible for both P
and P ′, the matrices π(R,G)(p) and π(R,G)(p′) correspond to bicolored trees of distinct
combinatorial types. Hence, π(R,G)(r) and π(R,G)(r′) are distinct rays of BPTd,n.

For surjectivity, let r = cone(A) be a ray of BPTd,n. Then there is a unique λ > 0
such that A ∼ Aλ. Let Aℓ be a matrix in the lineality space of BPTd,n such that
A = Aλ + Aℓ. By construction π(R,G)(pλ) = Aλ and since π(R,G) is a bijection on the
lineality spaces, there is a unique pℓ in the lineality space of trop (Gr(2, d + n)) such
that Aℓ = π(R,G)(pℓ). Again, since π(R,G) is linear, it follows for p := pλ + pℓ that

π(R,G)(p) = π(R,G)(pλ) + π(R,G)(pℓ) = Aλ + Aℓ = A.

□

Proof of Theorem 5.18. Proposition B.3 establishes the statement for rays. Let p ∈
UPT (R,G) be an arbitrary Plücker vector and P be the corresponding uncolored
phylogenetic tree with splits. Modulo lineality space of trop (Gr(2, d + n)), we can
assume that P has all leaf lengths 0. Let S1, . . . , Sk be the compatible splits of P
with internal edge lengths λ1, . . . , λk, and pS1 , . . . , pSk be the Plücker vectors of
the corresponding split trees P1, . . . , Pk. Since the Si are the splits of P , it follows
that pS1 + · · · + pSk = p and pS1 , . . . , pSk are ray generators for the rays of the cone C
such that p ∈ relint(C). Since C is simplicial, this sum is unique. By above, π(R,G)

is a bijection on the level of rays, so equivalently π(R,G)(pS1), . . . , π(R,G)(pSk ) is a set
of rays in BPTd,n, corresponding to the bicolored split trees P

(R,S)
1 , . . . , P

(R,S)
k . Since

the definition of compatibility is independent of the coloring, these bicolored splits
are compatible and hence form a cone C ′ in BPTd,n. Again, BPTd,n is a simplicial
fan, and so any point C ′ has a unique representation as sum of ray generators of C ′.
Consider A = π(R,G)(pS1)+· · ·+π(R,G)(pSk ). Then by construction, this matrix corre-
sponds to a tree with bicolored splits P

(R,S)
1 , . . . , P

(R,S)
k , i.e. the tree P (R,G). Finally,

since π(R,G) is a coordinate projection, if i ∈ R, j ∈ G, then
pij = π(R,G)(pS1 + · · · + pSk )ij = π(R,G)(pS1)ij + · · · + π(R,G)(pSk )ij = Aij

and so π(R,G)(p) = A. Since π(R,G) is a bijection of the rays, and all sums are unique,
this extends to a bijection to the entire fan. □
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