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Demi-shuffle duals of Magnus polynomials
in a free associative algebra

Hiroaki Nakamura

Abstract We study two linear bases of the free associative algebra Z⟨X, Y ⟩: one is formed by
the Magnus polynomials of type (adk1

X Y ) · · · (adkd
X Y )Xk and the other is its dual basis (formed

by what we call the “demi-shuffle” polynomials) with respect to the standard pairing on the
monomials of Z⟨X, Y ⟩. As an application, we derive a formula of Le–Murakami, Furusho type
that expresses arbitrary coefficients of a group-like series J ∈ C⟨⟨X, Y ⟩⟩ in terms of the “regular”
coefficients of J .

1. Introduction
Let R be a commutative integral domain of characteristic 0, and let R⟨X, Y ⟩ be the
free associative algebra generated over R by two (non-commutative) letters X and Y .
For u, v ∈ R⟨X, Y ⟩, we shall write [u, v] to denote the Lie bracket uv − vu. In [9],
W. Magnus introduced the associative subalgebra SX ⊂ R⟨X, Y ⟩ generated by (what
are called) the elements arising by elimination of X:

(1) Y (0) := Y, Y (k+1) := [X, Y (k)] (k = 0, 1, 2, . . . ),

and showed that SX is freely generated by the Y (k) (k = 0, 1, 2, . . . ). Moreover, he
derived that every element Z of R⟨X, Y ⟩ can be written uniquely in the form

(2) Z = α0Xm + s1Xm−1 + · · · + sm,

where α0 ∈ R, s1, . . . , sm ∈ SX (see [9, Hilfssatz 2], [10, Lemma 5.6]). This observa-
tion is the first step in the construction of the basic Lie elements (an ordered basis of
the free Lie algebra), which are obtained via repeated elimination, and whose powered
products in decreasing orders give the Poincaré-Birkoff-Witt basis of the enveloping
algebra R⟨X, Y ⟩ ([10, Theorem 5.8]). Apparently, this theory was historically a start-
ing point toward subsequent developments of finer constructions of free Lie algebra
bases due to Lazard, Hall, Lyndon, Viennot and others (see, e.g., [15, Notes 4.5, 5.7]).

In this note, we however stay on the first step of elimination (2) and look at
combinatorial properties of a certain basis {M(k)}k∈N(∞)

0
of R⟨X, Y ⟩ (to be called the

Magnus polynomials below) designed as follows:
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Notation 1.1. Let N0 denote the set of non-negative integers, and let

N(∞)
0 :=

∞⋃
d=0

(
d∏

k=1
N0

)
× N0

be the collection of finite sequences k = (k1, . . . , kd; k∞) of non-negative integers
equipped with a special last entry k∞ ∈ N0. Here, we consider (; k∞) also as elements
of N(∞)

0 coming from d = 0. For k ∈ N(∞)
0 , define |k| :=

∑∞
i=1 ki = k1 + · · · + kd + k∞

(resp. dep(k) := d), and call it the size (resp. depth) of k.

Definition 1.2 (Magnus polynomial). For k = (k1, . . . , kd; k∞) ∈ N(∞)
0 , define

M(k) := Y (k1) · · · Y (kd) · Xk∞ ∈ R⟨X, Y ⟩.
We also set M(;0) = 1, and M(;k) = Xk for k = 1, 2, . . . . Note that M(k;0) = Y (k)

for k ⩾ 0.

Example 1.3. M(1,0;2) = Y (1)Y (0)X2 = (XY − Y X)Y X2 = XY 2X2 − Y XY X2.

It is not difficult to see that the Magnus polynomial M(k) ∈ R⟨X, Y ⟩ is homoge-
neous of bidegree (|k|, dep(k)) in X and Y .

The above mentioned Magnus expression (2) can then be rephrased as

(3) Z =
∑

k∈N(∞)
0

αk M(k)

with uniquely determined coefficients αk ∈ R for any given Z ∈ R⟨X, Y ⟩. In other
words, the collection {M(k) | k ∈ N(∞)

0 } forms an R-linear basis of R⟨X, Y ⟩.
Below in §2, we will construct another R-linear basis {S(k) | k ∈ N(∞)

0 } (formed
by what we call the “demi-shuffle” polynomials) and show that {M(k)}k and {S(k)}k
are dual to each other under the standard pairing with respect to the monomials
of R⟨X, Y ⟩ (Theorem 2.4). We then in §3 shortly generalize the duality to the case of
free associative algebras of more variables (Theorem 3.2). In §4, we apply the forma-
tion of dual basis to derive a formula of Le–Murakami, Furusho type that expresses
arbitrary coefficients of a group-like series J ∈ R⟨⟨X, Y ⟩⟩ in terms of the “regular”
coefficients of J (Theorem 4.1).

2. Demi-shuffle duals and array binomial coefficients
Let W be the subset of R⟨X, Y ⟩ formed by the monomials in X, Y together with 1,
and call any element of W a word. It is clear that W forms a free monoid by the
concatenation product that restricts the multiplication of R⟨X, Y ⟩. Each element of
R⟨X, Y ⟩ is an R-linear combination of words in W . For two elements u, v ∈ R⟨X, Y ⟩,
define the standard pairing ⟨u, v⟩ ∈ R so as to extend R-linearly the Kronecker symbol
⟨w, w′⟩ := δw′

w ∈ {0, 1} for words w, w′ ∈ W .

Notation 2.1. We use the notation wk := Xk1Y · · · XkdY Xk∞ and call it the word
associated to k = (k1, . . . , kd; k∞) ∈ N(∞)

0 . The mapping k 7→ wk gives a bijection
from N(∞)

0 onto W . (Note that w(;0) = 1.) The standard pairing ⟨wk, wk′⟩ is equal
to 0 or 1 according to whether k ̸= k′ or k = k′.

The purpose of this section is to describe the dual of the Magnus basis {M(k)}k∈N(∞)
0

with respect to the standard pairing.

Definition 2.2 (Demi-shuffle polynomial). For k = (k1, . . . , kd; k∞) ∈ N(∞)
0 , define

S(k) := (· · · ((Xk1Y )∃ Xk2)Y ) ∃ · · · )∃ Xkd)Y ) ∃ Xk∞ ∈ R⟨X, Y ⟩,
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where ∃ denotes the usual shuffle product. We also set S(;0) = 1, and S(;k) = Xk for
k = 1, 2, . . . . Note that S(k;0) = XkY for k ⩾ 0.

The construction of S(k) can be interpreted as forming the linear sum of all words
obtained from the word wk = Xk1Y · · · XkdY Xk∞ by consecutively applying “left
shuffles” of the X letters and “concatenations” of the Y letters in wk.

Example 2.3. Here are a few examples: S(0,1;0) = (Y ∃

X)Y = Y XY +XY Y ; S(1,1;0) =
((XY ) ∃ X)Y = XY XY + 2XXY Y ; S(1,0,1;0) = (((XY )Y )∃ X)Y = XY Y XY +
XY XY 2 + 2X2Y 3. Using the first identity, one can also compute

S(0,1;1) = ((Y ∃

X)Y )∃

X = (Y XY + XY Y ) ∃
X

= (Y XY X + 2Y XXY + XY XY ) + (XY Y X + XY XY + 2XXY Y )
= 2XXY Y + 2XY XY + XY Y X + 2Y XXY + Y XY X.

Theorem 2.4 (Duality). For t, k ∈ N(∞)
0 , we have

⟨S(t), M(k)⟩ = δk
t .

Here δk
t is the Kronecker symbol, i.e., designating 0 or 1 according to whether t ̸= k

or t = k respectively.

Before going to the proof of the above theorem, we introduce the following notation.

Definition 2.5 (Array binomial coefficient). For t, k ∈ N(∞)
0 with dep(t) = dep(k),

|t| = |k|, define

(4)
(

t
k

)
:=
(

t1

k1

)(
t1 + t2 − k1

k2

)
· · ·
(

t1 + · · · td − k1 − · · · − kd−1

kd

)
,

where t = (t1, . . . , td, t∞), k = (k1, . . . , kd, k∞). We understand
(t

k
)

= 1 if t = k =
(; N) for some N ∈ N0. We set

(t
k
)

:= 0 if either dep(t) ̸= dep(k) or |t| ≠ |k| holds.

Remark 2.6. The special case
(

N,0,...,0;0
k1,k2,...,kd;k∞

)
is the same as the usual multinomial

coefficient
(

N
k1,k2,...,kd,k∞

)
in combinatorics. Note also that

(t
k
)

̸= 0 implies t∞ ⩽ k∞,
as the last factor of

(t
k
)

could survive only when (t1 + · · · td − k1 − · · · − kd−1) − kd =
k∞ − t∞ ⩾ 0.

It turns out that the array binomial coefficients give the expansion of S(t) as a
linear sum of the monomials in W . Recall that, for t = (t1, . . . , td, t∞) ∈ N(∞)

0 , wt
denotes the word Xt1Y Xt2Y · · · XtdY Xt∞ ∈ W .

Lemma 2.7 (Monomial expansion).

S(k) =
∑

t∈N(∞)
0

(
t
k

)
wt.

Proof. Without loss of generality, it suffices to show ⟨wt, S(k)⟩ =
(t

k
)

in the case
(N :=) |t| = |k| and (d :=) dep(t) = dep(k). The assertion is trivial when d = 0, as
then k = t = (; N), S(k) = XN = wt and

(t
k
)

= 1. For d > 0, we argue by induction
on d. Suppose d = 1, k = (k1; k∞) and t = (t1; t∞). Then

S(k) = (Xk1Y ) ∃

Xk∞ =
k∞∑
i=0

(Xk1 ∃

Xi)Y Xk∞−i =
k∞∑
i=0

(
k1 + i

k1

)
Xk1+iY Xk∞−i.
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Since N = k1 +k∞ = t1 +t∞, we have ⟨wt, S(k)⟩ =
(

k1+k∞−t∞
k1

)
=
(

t1
k1

)
. Suppose d > 1

with k = (k1, . . . , kd; k∞) and t = (t1, . . . , td; t∞). Write k′ = (k1, . . . , kd−1; 0) ∈
N(∞)

0 . Then

S(k) = (((S(k′)Y )∃

Xkd)Y ) ∃

Xk∞

=
k∞∑
i=0

S(k′)Y (Xkd ∃

Xi)Y Xk∞−i (associativity of ∃ )

=
k∞∑
i=0

∑
t′

(
t′

k′

)(
kd + i

kd

)
wt′Xkd+iY Xk∞−i,

where t′ = (t′
1, . . . , t′

d−1; t′
d) ∈ N(∞)

0 runs over those tuples with t′
1 + · · · + t′

d = |k′| so
that S(k′) is expressed as

∑
t′

(t′

k′

)
wt′ by the induction hypothesis on dep(k′) = d − 1.

The coefficient of wt in S(k) can be found in the above summand where k∞ − i = t∞,
t′
d + kd + i = td and t′

s = ts (s = 1, . . . , d − 1), hence

⟨wt, S(k)⟩ =
(

t1

k1

)
· · ·
(

t1 + · · · td−1 − k1 − · · · − kd−2

kd−1

)
·
(

kd + k∞ − t∞

kd

)
.

Since N = |k| = |t|, we have kd + k∞ − t∞ = t1 + · · · td − k1 − · · · − kd−1. This
establishes the formula ⟨wt, S(k)⟩ =

(t
k
)
. □

Remark 2.8. It would be worth noting that Lemma 2.7 can be derived from count-
ing ⟨wt, S(k)⟩ as the number of certain shufflings of letters in wk = Xk1Y · · · XkdY Xk∞

to produce wt = Xt1Y · · · XtdY Xt∞ . Assume |t| = |k| and dep(t) = dep(k), and
consider letters Y as partitions between groups of letters X in wk and in wt.
Then ⟨wt, S(k)⟩ is the number of ways of moving some letters X in wk to the
left (beyond any number of Y ’s) to form the word wt without changing orders
between X’s from the same group in wk. We count this number by enumerating
branches of possibilities for choosing places of X’s in wt for those moved from wk
group by group. The first binomial factor

(
t1
k1

)
of (4) is the number of ways to

choose k1 places for X’s (coming from the first group in wk) in the first group Xt1Y

of wt. The second binomial factor
(

t1+t2−k1
k2

)
of (4) represents the number of ways to

choose k2 places for X’s (coming from the second group Y Xk2Y in wk) in the first
two groups Xt1Y Xt2Y of wt where the already occupied k1 places in the previous
step are prohibited from being chosen. We continue the process in the same way.
For each given i ∈ {2, . . . , d}, suppose that destinations of X’s in Xt1Y · · · Xti−1

from Xk1Y · · · Y Xki−1Y have already been chosen. Then, the i-th binomial factor(
t1+···ti−k1−···−ki−1

ki

)
of (4) represents the number of ways to choose ki places for

X’s (coming from the i-th group Y XkiY in wk) in Xt1Y · · · Y XtiY (the first i
groups of wt): there are t1 + · · · + ti places for X in Xt1Y · · · Y XtiY , but already
k1 + · · · + ki−1 places are occupied by earlier choices. Performing the process until
i = d verifies the desired identity ⟨wt, S(k)⟩ =

(t
k
)
.

Proof of Theorem 2.4. From the formula Y (k) =
∑k

i=0(−1)i
(

k
i

)
Xk−iY Xi ([9, (4)]), it

is not difficult to see that the expansion of the Magnus polynomial in monomials is
given by

(5) M(k) =
∑

t∈N(∞)
0

{
k
t

}
wt
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with
(6){

k
t

}
:= (−1)

∑d

i=1
(d−i+1)(ki−ti)

(
k1

k1 − t1

)(
k2

k1 + k2 − t1 − t2

)
· · ·
(

kd∑d
i=1(ki − ti)

)
for t := (t1, . . . , td; t∞) and k := (k1, . . . , kd; k∞). Since we have ⟨S(t), M(k)⟩ =∑

u∈N(∞)
0

⟨S(t), wu⟩⟨M(k), wu⟩, it suffices to show

(7)
∑

u

{
k
u

}(
u
t

)
= δt

k.

Noting that a non-zero pairing ⟨S(t), M(k)⟩ occurs only when |t| = |k| and dep(t) =
dep(k), we may assume without loss of generality that u in the above summation also
runs over those with the fixed size N := |t| = |k| and depth d := dep(t) = dep(k).
Then, the summation

∑
u with u = (u1, . . . , ud; u∞) has d independent parameters

u1, . . . , ud that determine u∞ = N −
∑d

i=1 ui. We may also regard each ui as running
over Z, as the coefficients

{k
u
}

,
(u

t
)

vanish when their combinatorial meaning is lost.
Then, in the summation

∑
(u1,...,ud)∈Zd in (7), the partial factor of summation involved

with the last parameter ud can be factored out in the form:∑
ud∈Z

(−1)−ud

(
kd

ud +
∑d−1

i=1 (ui − ki)

)(
ud +

∑d−1
i=1 (ui − ti)
td

)

= (−1)
∑d−1

i=1
(ui−ki)−kd

(∑d−1
i=1 (ki − ti)
td − kd

)
.

(Use [5, (5.24)].) Repeating this process inductively on d, we eventually find

⟨S(t), M(k)⟩ =
(

0
t1 − k1

)(
k1 − t1

t2 − k2

)(
k1 + k2 − t1 − t2

t3 − k3

)
· · ·
(∑d−1

i=1 (ki − ti)
td − kd

)
which is equal to δk

t as desired. □

Corollary 2.9. Each element u ∈ R⟨X, Y ⟩ can be written as

u =
∑

k∈N(∞)
0

⟨S(k), u⟩ M(k) =
∑

k∈N(∞)
0

⟨M(k), u⟩ S(k).

Note that only a finite number of summands are nonzero in either summation
above.

3. Generalization to the case R⟨X, Y1, Y2, · · ·⟩
It is not difficult to generalize the above duality in R⟨X, Y ⟩ (Theorem 2.4) to similar
duality in R⟨X, Yλ⟩λ∈Λ for Λ a nonempty index set, viz. in the associative algebra
freely generated by the symbols X, Yλ (λ ∈ Λ) over R. In fact, introducing

(8) Y
(0)

λ := Yλ, Y
(k+1)

λ := [X, Y
(k)

λ ] (λ ∈ Λ, k = 0, 1, 2, . . . ),
which are called the elements arising by elimination of X, Magnus ([9, Hilfssatz 2],
[10, Lemma 5.6]) showed that every element Z of R⟨X, Yλ⟩λ∈Λ has the unique expres-
sion (2) with SX the subalgebra freely generated by the Y

(k)
λ (k ∈ N0, λ ∈ Λ).

Definition 3.1 (Depth-varied Magnus/demi-shuffle polynomials and monomials).
Let d be a positive integer. For k = (k1, . . . , kd; k∞) ∈ N(∞)

0 and a finite sequence
λ = (λ1, . . . , λd) ∈ Λd, define

M(k,λ) := Y
(k1)

λ1
· · · Y

(kd)
λd

· Xk∞ ;
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S(k,λ) := (· · · ((Xk1Yλ1)∃

Xk2)Yλ2) ∃ · · · ∃ )Xkd)Yλd
)∃

Xk∞ ;
wk,λ := Xk1Yλ1 · · · XkdYλd

Xk∞ .

For d = 0 with k = (; k), λ = (), we simply set w(;k),() = M((;k),()) = S((;k),()) = Xk.

Note that the monomials wk,λ (k ∈ N(∞)
0 , λ ∈ Λdep(k)) form an R-linear basis of

R⟨X, Yλ⟩λ∈Λ. Let us write ⟨ , ⟩ for the standard pairing defined by the Kronecker
symbol with respect to these monomials.

Theorem 3.2 (Duality). For t, k ∈ N(∞)
0 and λ ∈ Λdep(t), µ ∈ Λdep(k), we have

⟨S(t,λ), M(k,µ)⟩ = δ
(k,µ)
(t,λ) .

Here δ
(k,µ)
(t,λ) is the Kronecker symbol, i.e., designating 1 or 0 according to whether the

pairs (t, λ) and (k, µ) coincide or not respectively.

Proof. Given a fixed λ = (λ1, . . . , λd) ∈ Λd, let Vλ be the R-linear subspace
of R⟨X, Yλ⟩λ∈Λ generated by the monomials {wk,λ | k ∈ N(∞)

0 , dep(k) = d}. It is
obvious that if λ ̸= µ then Vλ and Vµ are mutually orthogonal under the stan-
dard pairing ⟨ , ⟩. Since M(k,µ) ∈ Vµ, S(t,λ) ∈ Vλ, we only need to look at the
case µ = λ ∈ Λd. Consider the R-linear subspace Vd of R⟨X, Y ⟩ generated by
{wk | k ∈ N(∞)

0 , dep(k) = d}. Then, the mapping wk 7→ wk,λ defines an isometry, i.e.,
an R-linear isomorphism ϕλ : Vd

∼→ Vλ preserving ⟨ , ⟩. The assertion then follows at
once from Theorem 2.4 after observing ϕλ(S(t)) = S(t,λ) and ϕλ(M(k)) = M(k,λ). □

4. Application to a formula of Le–Murakami and Furusho type
In this section, we assume that R is a field and consider R⟨X, Y ⟩ as a subalgebra of
the ring of non-commutative formal power series R⟨⟨X, Y ⟩⟩, where a standard comul-
tiplication ∆ is defined by setting ∆(a) = 1 ⊗ a + a ⊗ 1 for a ∈ {X, Y }. An element
J ∈ R⟨⟨X, Y ⟩⟩ is called group-like if it has constant term 1 and satisfies ∆(J) = J ⊗J .
There are many group-like elements: for example, the subgroup multiplicatively gen-
erated by exp(X) and exp(Y ) in R⟨⟨X, Y ⟩⟩× consists of group-like elements and forms
a free group of rank 2.

Theorem 4.1 (Le–Murakami, Furusho type formula). Let J ∈ R⟨⟨X, Y ⟩⟩ be a group-
like element in the form

J =
∑

k∈N(∞)
0

ckwk,

and write cX for the coefficient c(;1) of X in J . Then,

c(k1,...,kd;k∞) =
∑

s,t⩾0
s+t=k∞

(−1)s (cX)t

t!
∑

s1,...,sd⩾0
s=s1+···+sd

(
k1 + s1

k1

)
· · ·
(

kd + sd

kd

)
c(k1+s1,...,kd+sd;0).

We first prove an elementary identity that will be used for the proof of the above
formula.

Lemma 4.2. Let κ = (k1, . . . , kd) ∈ Nd
0 and s = (s1, . . . , sd) ∈ Zd satisfy s = s1 + · · ·+

sd ⩾ 0 and ki + si ⩾ 0 (i = 1, . . . , d). Then, we have∑
τ∈Nd

0

⟨S(τ ;0), w(κ+s;0)⟩ · ⟨M(τ ;0), w(κ;s)⟩ = (−1)s

(
k1 + s1

k1

)
· · ·
(

kd + sd

kd

)
.
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Proof. We shall compute the left-hand side explicitly as the sum over τ ∈ Nd
0 satisfying∑d

i=1 ti =
∑d

i=1(ki + si) with

⟨S(τ ;0), w(κ+s;0)⟩ =
(

(κ + s; 0)
(τ ; 0)

)
=
(

k1 + s1

t1

)
· · ·
(∑d−1

i=1 (ki + si) −
∑d−2

i=1 ti

td−1

)(
td

td

)
by Lemma 2.7 and with

⟨M(τ ;0), w(κ;s)⟩ =
{

(τ ; 0)
(κ; s)

}
= (−1)s+

∑d−1
i=1

(d−i)(ti−ki)
(

t1

t1 − k1

)
· · ·
(

td−1∑d−1
i=1 (ti − ki)

)(
td

s

)
by (5) and s =

∑d
i=1(ti−ki). Note that, since

((κ+s;0)
(τ ;0)

){(τ ;0)
(κ;s)

}
̸= 0 only when all entries

of τ = (t1, . . . , td) are nonnegative and t1 + · · · + td =
∑d

i=1(ki + si) (a constant), the
above sum can be taken over the tuples (t1, . . . , td−1) ∈ Zd−1 with entries running
as independent integers. Then, the partial summation involved with the last variable
td−1 may be factored out as∑
td−1

(−1)td−1

(∑d−1
i=1 (ki + si) −

∑d−2
i=1 ti

td−1

)(
td−1∑d−1

i=1 (ti − ki)

)(
td

s

)

=
∑
td−1

(−1)td−1

(∑d−1
i=1 (ki + si) −

∑d−2
i=1 ti∑d−1

i=1 ki −
∑d−2

i=1 ti

)( ∑d−1
i=1 si∑d−1

i=1 (ti − ki)

)(∑d

i=1(ki + si) −
∑d−1

i=1 ti∑d

i=1 si

)

=
(∑d−1

i=1 (ki + si) −
∑d−2

i=1 ti∑d−1
i=1 si

)
(−1)

∑d−1
i=1

ki−
∑d−2

i=1
ti

(
kd + sd

sd

)
,

where [5, (5.21)] is applied for the first equality and [5, (5.24)] for the second. After
factoring out the constant

(
kd+sd

sd

)
and repeating the similar process with the other

variables td−2, . . . , t1 consecutively, we eventually obtain the asserted formula. Below
in Note 4.3, we also provide an alternative proof of the lemma free from intricate use
of [5, (5.21),(5.24)]. □

Proof of Theorem 4.1. We argue in the beautiful framework exploited in Reutenauer’s
book [15, 1.5] using the complete tensor product

A = R⟨⟨X, Y ⟩⟩⊗̄R⟨⟨X, Y ⟩⟩

equipped with a product induced from the shuffle product (resp. the concatenation
product) on the left (resp. right) of ⊗̄. Recall that the ring of R-linear endomorphisms
EndRR⟨⟨X, Y ⟩⟩ can be embedded into A by f 7→

∑
w∈W w ⊗ f(w), and that the

product of A restricts to the convolution product of EndRR⟨⟨X, Y ⟩⟩ defined by f ∗g :=
conc◦(f ⊗g)◦∆ (where “conc” means concatenation of left and right sides of ⊗). Note
that, for f ∈ EndRR⟨⟨X, Y ⟩⟩ and J ∈ R⟨⟨X, Y ⟩⟩, we have f(J) =

∑
w∈W ⟨w, J⟩f(w).

Since, by Corollary 2.9, every word w can be written as
∑

t∈N(∞)
0

⟨S(t), w⟩M(t), the
element of A corresponding to the identity id ∈ EndRR⟨⟨X, Y ⟩⟩ is:∑

w∈W

w ⊗ w =
∑

w

w ⊗
∑

t
⟨S(t), w⟩M(t) =

∑
t

(
∑

w

⟨S(t), w⟩w) ⊗ M(t)

=
∑

t
S(t) ⊗ M(t)

=

 ∞∑
d=0

∑
τ∈Nd

0

S(τ ;0) ⊗ M(τ ;0)

 ·

( ∞∑
t=0

Xt ⊗ Xt

)
,
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where we have used S(t) = S(τ ;t) = S(τ ;0) ∃

Xt and M(t) = M(τ ;t) = M(τ ;0) · Xt.
Observing that both factors of the last expression above correspond to specific R-
linear endomorphisms, we can apply id to J as the convolution product of them and
find from ∆(J) = J ⊗ J that

(9) J = id(J) =

 ∞∑
d=0

∑
τ∈Nd

0

⟨S(τ ;0), J⟩M(τ ;0)

( ∞∑
t=0

(cX)t

t! Xt

)
.

Note here that the pairing of J with Xt = X

∃

t/t! is equal to (cX)t/t!, as easily
seen from the fact that the specialization J(X, 0) ∈ R⟨⟨X⟩⟩ at Y = 0 is a group
like element exp(cX · X). To complete the proof of Theorem 4.1, given a fixed k =
(κ; k∞) = (k1, . . . , kd; k∞) ∈ N(∞)

0 and 0 ⩽ s ⩽ k∞, we compute the coefficient
of w(κ;s) = Xk1Y · · · XkdY Xs in the expansion of the first factor of the above right-
hand side as follows:

∞∑
d=0

∑
τ∈Nd

0

⟨S(τ ;0), J⟩⟨M(τ ;0), w(κ;s)⟩ =
〈 ∞∑

d=0

∑
τ∈Nd

0

⟨S(τ ;0), J⟩M(τ ;0), w(κ;s)

〉

=
〈 ∞∑

d=0

∑
τ∈Nd

0

〈
S(τ ;0),

∑
u∈N(∞)

0

(J, wu)wu

〉
M(τ ;0), w(κ;s)

〉

=
∑

u
⟨J, wu⟩

∞∑
d=0

∑
τ∈Nd

0

⟨S(τ ;0), wu⟩⟨M(τ ;0), w(κ;s)⟩.

But since ⟨S(τ ;0), wu⟩⟨M(τ ;0), w(κ;s)⟩ survives only when dep(τ ; 0) = dep(κ; s) =
dep(u) and |(τ ; 0)| = |(κ; s)| = |u|, the summation

∑
u in the last expression above

occurs only for those u of the form (κ + s; 0) ∈ N(∞)
0 with s = (s1, . . . , sd) ∈ Zd,

s = s1 + · · · + sd ⩾ 0 (cf. also Remark 2.6). Then, it follows from Lemma 4.2 that the
last expression above is equal to

∞∑
d=0

∑
s∈Nd

0
|(s;0)|=s

⟨J, w(κ+s;0)⟩(−1)s

(
k1 + s1

k1

)
· · ·
(

kd + sd

kd

)
.

(Note: the prescribed condition s ∈ Zd has been replaced with s ∈ Nd
0 because

of the a posteriori survivals of binomial factors.) From this and (9) together with
⟨J, w(κ+s;0)⟩ = c(k1+s1,...,kd+sd;0), we conclude the assertion. □

Note 4.3 (Alternative proof of Lemma 4.2). In the right-hand side of Lemma 4.2,
the quantity

(
k1+s1

k1

)
· · ·
(

kd+sd

kd

)
appearing there can also be interpreted as the pairing

⟨w(k1,...,kd;0)

∃ Xs, w(k1+s1,...,kd+sd;0)⟩. Therefore, the assertion of this lemma is equiv-
alent to the identity

(10)
∑

τ∈Nd
0

⟨S(τ ;0), w(κ+s;0)⟩ · ⟨M(τ ;0), w(κ;0) ·Xs⟩ = (−1)s⟨w(κ;0)

∃

Xs, w(κ+s;0)⟩

for κ = (k1, . . . , kd) ∈ Nd
0, s = (s1, . . . , sd) ∈ Zd satisfying s = s1 + · · · + sd ⩾ 0

and κ + s ∈ Nd
0. We now give an alternative proof for it using the Magnus/demi-

shuffle duality. First, by Corollary 2.9, we have w(κ;0) =
∑

r⟨M(r), w(κ;0)⟩S(r) and
w(κ+s;0) =

∑
t⟨S(t), w(κ+s;0)⟩M(t) so that the right-hand side of (10) can be written

as

(−1)s⟨w(κ;0)

∃

Xs, w(κ+s;0)⟩(11)
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= (−1)s
∑

r,t∈N(∞)
0

⟨S(r) ∃ Xs, M(t)⟩⟨M(r), w(κ;0)⟩⟨S(t), w(κ+s;0)⟩

= (−1)s
∑

ρ∈Nd
0

⟨M(ρ;0), w(κ;0)⟩⟨S(ρ;s), w(κ+s;0)⟩.

Here in the second equality, we use the fact that ⟨M(r), w(κ;0)⟩ survives only if
r = (ρ; 0) ∈ N(∞)

0 for some ρ ∈ Nd
0 and then apply the duality (Theorem 2.4) to

⟨S(r) ∃

Xs, M(t)⟩ with S(ρ;0) ∃

Xs = S(ρ;s) (cf. Definitions 1.2 and 2.2).
On the other hand, in the left-hand side of (10), one observes that nontrivial

terms of the summation arise only from those τ = (τ1, . . . , τd) ∈ Nd
0 with

∑d
i=1 τi =

s +
∑d

i=1 κi (a constant). But the last binomial factor in (6) for ⟨M(τ ;0), w(κ;0)·Xs⟩ ={(τ1,...,τd;0)
(κ1,...,κd;s)

}
equals

(
τd

s

)
, which is non-zero only if τd ⩾ s. Therefore, the summa-

tion
∑

τ may be replaced by
∑

ρ with ρ = τ − (0, s) in Nd
0 (where 0 ∈ Nd−1

0 is the
zero vector). Thus, the left-hand side of (10) can be written as∑

τ∈Nd
0

⟨S(τ ;0), w(κ+s;0)⟩ · ⟨M(τ ;0), w(κ;0) ·Xs⟩(12)

=
∑

ρ∈Nd
0

⟨S(ρ+(0,s);0), w(κ+s;0)⟩ · ⟨M(ρ+(0,s);0), w(κ;s)⟩.

Comparing summands of the above (11) and (12) for individual ρ ∈ Nd
0 in view of

coefficients of monomial expansions of demi-shuffle/Magnus polynomials (Lemma 2.7
and (5)), we reduce the formula (10) to the following elementary identity for κ = (ki),
ρ = (ri) ∈ Nd

0 and s = (si) ∈ Zd satisfying
∑d

i=1 ki =
∑d

i=1 ri, s + κ ∈ Nd
0 and

s :=
∑d

i=1 si ⩾ 0:

(13)
(

(κ + s; 0)
(ρ; s)

){
(ρ; 0)
(κ; 0)

}
= (−1)s

(
(κ + s; 0)

(ρ + (0, s); 0)

){
(ρ + (0, s); 0)

(κ, s)

}
.

This is an immediate consequence of definitions of these symbols {∗
∗}, (∗

∗). (Observe
that only difference between the corresponding symbols occurs from the last binomial
coefficient in (4) and (6).) □

Example 4.4. The following shows an output of a group-like element J =
∑

w∈W cww
of R⟨⟨X, Y ⟩⟩ with the shuffle relation (which is necessary and sufficient for group-
likeness due to Ree [14]). It was computed using the software [11], and shows terms
up to total degree 4.

J = 1 + cXX + cY Y +
c2

XXX
2

+ cXY XY + (cXcY − cXY ) YX +
c2

Y YY
2

+
c3

XXXX
6

+ cXXY XXY + (cXcXY − 2cXXY ) XYX + cXYY XYY +
(1

2
c2

XcY − cXcXY + cXXY

)
YXX

+ (cXY cY − 2cXYY ) YXY +
(1

2
cXc2

Y − cXY cY + cXYY

)
YYX +

c3
Y YYY

6

+
c4

XXXXX
24

+ cXXXY XXXY + (cXcXXY − 3cXXXY ) XXYX + cXXYY XXYY

+
(1

2
c2

XcXY − 2cXcXXY + 3cXXXY

)
XYXX +

(
c2

XY
2

− 2cXXYY

)
XYXY

+
(

cXcXYY −
c2

XY
2

)
XYYX + cXYYY XYYY +

(1
6

c3
XcY −

1
2

c2
XcXY + cXcXXY − cXXXY

)
YXXX

+
(

cXXY cY −
c2

XY
2

)
YXXY +

(
cXcXY cY − 2cXcXYY − 2cXXY cY +

1
2

c2
XY + 2cXXYY

)
YXYX
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+ (cXYY cY − 3cXYYY ) YXYY +
(1

4
c2

Xc2
Y − cXcXY cY + cXcXYY + cXXY cY − cXXYY

)
YYXX

+
(1

2
cXY c2

Y − 2cXYY cY + 3cXYYY

)
YYXY +

(1
6

cXc3
Y −

1
2

cXY c2
Y + cXYY cY − cXYYY

)
YYYX

+
c4

Y YYYY
24

+ (terms of degree ⩾ 5).

In the above computation, one observes that the coefficient cXY XY is expressed
by lower, simpler coefficients of J . This does not follow from Theorem 4.1; however,
it does reflect the fact that XY XY is not a Lyndon word. Discussions on the most
economical expression using only the coefficients of Lyndon words can be found in [12].

Note 4.5. In the modern theory of multiple zeta values, a certain standard solution
Gz

0(X, Y ) ∈ C⟨⟨X, Y ⟩⟩ to the KZ-equation on z ∈ C − {0, 1} is known as the gener-
ating function for the multiple polylogarithms (MPL). It is also used to define the
Drinfeld associator Φ(X, Y ) ∈ C⟨⟨X, Y ⟩⟩. The coefficients of w(k1,...,kd;0) in Φ(X, Y )
(resp. in Gz

0(X, Y )) are regular multiple zeta values (resp. regular MPL) of multi-
index (k1, . . . , kd), but the other coefficients are in general not. Le–Murakami [7] and
Furusho [4] derived formulas that express all coefficients of Φ(X, Y ) and Gz

0(X, Y )
by those “regular” coefficients explicitly. In [13, Remark 2], the author posed a
question if something similar could be the case for the “ℓ-adic Galois associator
fz

σ(X, Y ) ∈ Qℓ⟨⟨X, Y ⟩⟩”, in which context the analytic theory of KZ-equation is un-
available as of yet. Since fz

σ(X, Y ) is by definition a group-like element, the above
Theorem 4.1 answers the question affirmatively.

Note 4.6. A noteworthy notion closely related to our S(k), S(k,λ) is the free Zinbiel
(or, dual Leibniz) algebra studied by J.-L. Loday [8], I. Dokas [2], F. Chapoton [1]
and others. Let V be a vector space with a basis B = {X0, X1, . . . } and T (V ) be
the tensor algebra (free associative algebra) generated by the letters in B. Loday
introduced the “half-shuffle” product ≺ in T (V ) as the linear extension of the binary
product on words given by:

(x0x1 · · · xp) ≺ (xp+1 · · · xp+q) := x0 ·
(
(x1 · · · xp) ∃ (xp+1 · · · xp+q)

)
,

where xi are letters in B (i = 0, . . . , p + q). It is worth noting that, while the usual
shuffle product w

∃

w′ = w ≺ w′ + w′ ≺ w is associative (and commutative), the
half-shuffle product ≺ is not even associative; however, it does satisfy (w1 ≺ w2) ≺
w3 = w1 ≺ (w2 ≺ w3) + w1 ≺ (w3 ≺ w2). We may relate the “Zinbiel monomials”
with our demi-shuffle polynomials S(k,λ) in Definition 3.1 as follows. Write ∗ 7→ ∗ for
the anti-automorphism of R⟨X, Yλ⟩λ∈Λ reversing the order of letters in each word,
e.g., XXYλ = YλXX. Then,

(14) S(k,λ) = Xk∞ ∃ (
...
(
Yλd

Xkd ≺
(
Yλd−1Xkd−1 ≺

(
· · · ≺

(
Yλ2Xk2 ≺ Yλ1Xk1

))
...
)

for k = (k1, . . . , kd; k∞) ∈ N(∞)
0 , λ = (λ1, . . . , λd) ∈ Λd. These polynomials also

appeared in [6, Proposition 5.10] to illustrate the coefficients (of the main factor) of
a solution of the KZ-equation expanded in (adk1

−XY ) · · · (adkd

−XY ). We also learned
from a paper by L. Foissy and F. Patras [3] that already in M.-P. Schützenberger’s
work [16] there is an axiomatic treatment of half-shuffle combinatorics on words called
the “algèbre de shuffle”.

Calling S(k), S(k,λ) “demi-shuffles” as in Definitions 2.2, 3.1, and reserving “semi-
shuffle” for the name of anything else, might keep a moderate distance from the
already overloaded term “half-shuffle” of the operation ≺ in the literature.
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