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Strong cospectrality in trees

Gabriel Coutinho, Emanuel Juliano & Thomás Jung Spier

Abstract We prove that no tree contains a set of three vertices which are pairwise strongly
cospectral. This answers a question raised by Godsil and Smith in 2017.

1. Introduction
Let G be a finite simple graph and A its adjacency matrix. A continuous-time quantum
walk can be defined having G as an underlying graph, and in certain models where no
external interference exists, all properties of the walk are determined by the spectrum
of A. A desirable property for a quantum walk is that at certain times the quantum
state input at a vertex is transferred to another — if this occurs with probability 1,
then it is called perfect state transfer, and if it occurs with probability arbitrarily
close to 1, it is called pretty good state transfer.

In both cases, a necessary condition is that the two vertices involved are so that
their projections onto the eigenspaces of the graph are either equal or minus each
other, in which case the vertices will be called strongly cospectral. Precisely, if a and
b are vertices of G and A =

∑
r θrEr is the spectral decomposition of A, then a

and b are strongly cospectral if Erea = ±Ereb, for all r, where ea stands for the
characteristic vector of the vertex a.

Strongly cospectral vertices have been extensively studied in [5] and we do not aim
to survey all results therein. However, it is enlightening to realize that if two vertices
are strongly cospectral, then they are cospectral in conventional usage of the term,
meaning, the graphs obtained upon the removal of each are going to have the same
spectrum. Cospectral vertices have been studied for a long time, and in the context
of trees, they are a key piece in Schwenk’s [9] seminal paper.

Two vertices a and b in G are similar if there is an automorphism of the graph that
maps a to b. This automorphism, restricted to G\a, implies that G\a ≃ G\b, and if
the latter isomorphism exists even when no automorphism of G maps a to b, we say
that a and b are pseudo-similar. Again, these concepts have been around for some
time, see for instance [8, 6]. It is immediate to note that similar and pseudosimilar
vertices are cospectral, so it is natural to wonder what is their connection to the
concept of strong cospectrality. It is perhaps natural to expect that similar vertices
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are strongly cospectral but this is false — for instance, no pair of vertices in Kn with
n ⩾ 3 is strongly cospectral. In fact, if a and b are strongly cospectral and there
is an automorphism that fixes a, then it must also fix b. This suggests that strong
cospectrality captures a sort of regularity or symmetry that must distinguish the pair
of vertices from the remaining vertices of the graph.

Naturally at this point one gets suspicious of the fact that in a given graph there
cannot be a set of three or more vertices which are pairwise strongly cospectral. This
suspicion is further reinforced by the fact that perfect state transfer, the quantum
property inspiring the definition of strong cospectrality, is indeed monogamous (see
[7]): no three vertices in a given graph can be involved in perfect state transfer with
each other. Yet, there are graphs with three or more vertices pairwise strongly cospec-
tral. The easiest examples are vertices of smallest degree in cartesian powers of paths
of different lengths, as long they have simple eigenvalues. With simple eigenvalues,
cospectrality is equivalent to strong cospectrality (see [5]), it is enough to simply check
that the number of closed walks of fixed length around the vertices is constant for all
of them.

So why bother with trees? First, there is special interest in understanding quantum
walks in trees (see for instance [2]) because trees model quantum systems which are
likely cheaper and easier to build. Unfortunately, there is no known example of perfect
state transfer in trees with more than 3 vertices, and this may as well be a consequence
of the fact that strong cospectrality in trees is not as common as it is for other graphs.
In fact, our result is the first to display a disparity: even though there are graphs with
arbitrarily large sets of pairwise strongly cospectral vertices, no such set will exist
in a tree. Second, trees seem to behave differently than graphs when it comes to
cospectrality. A famous example is the fact that almost all trees have a cospectral
mate [9], whereas the opposite is widely believed to be true for graphs in general
(a conjecture due to W. Haemers). Our result shows that one further aspect of this
difference, and therefore hopefully serves as inspiration for future investigations.

Third, and most importantly, the question on whether there are trees with three
or more vertices pairwise strongly cospectral was asked by Godsil and Smith [5]. We
answer it fully in the negative.

In Section 2 we introduce the basic facts and notation used throughout the paper.
In Section 3, we state a key lemma and prove our main result. Section 4 is dedicated
to prove the key lemma.

2. Graph spectra and polynomials
In this paper, we will denote by ϕG the characteristic polynomial of the graph G in
the variable t. If θ0, θ1, . . . , θd are the distinct eigenvalues of the adjacency matrix A
of G, then we denote by Er the orthogonal projection onto the θr-eigenspace.

Two vertices i and j of the graph G are called cospectral if ϕG\i = ϕG\j . Using
walk generating functions, it is possible to write the entries of Er in terms of these
polynomials, as follows:

(1) (Er)i,i = (t − θr)ϕG\i

ϕG

∣∣∣∣
t=θr

,

whereas this is well defined as θr is a pole of order at most 1 in ϕG\i/ϕG (see [3, 1]).
From this, it follows that i and j are cospectral if and only if, for every r in {0, 1, . . . , d},
(Er)i,i = (Er)j,j .

If, moreover, Erei = ±Erej for every r in {0, 1, . . . , d}, then i and j are strongly
cospectral. It is easy to verify that this is equivalent to requiring that they are cospec-
tral and that (Er)i,i = ±(Er)i,j for every r in {0, 1, . . . , d}. Walk generating functions
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also provide the following expression

(2) (Er)i,j = (t − θr)
√

ϕG\iϕG\j − ϕGϕG\{i,j}

ϕG

∣∣∣∣
t=θr

and so we obtain the following result:
Theorem 2.1 ([5, Corollary 8.4]). Vertices i and j of a graph G are strongly cospectral
if and only if ϕG\i = ϕG\j and all poles of ϕG\{i,j}/ϕG are simple.

Note that as a consequence, if i and j are in distinct connected components of the
graph G, then i and j are not strongly cospectral.

At first sight, the expression within the square root in (2) is not clearly a perfect
square, but in fact it is, and given by the following expression:
Lemma 2.2 ([3, Lemma 2.1]). Let i and j be vertices in the graph G. Then,

ϕG\iϕG\j − ϕG\{i,j}ϕG =

 ∑
P :i→j

ϕG\P

2

,

where the sum is over all the paths from i to j.
Our proof will require manipulating ratios of characteristic polynomials of a graph

and its vertex deleted subgraphs, and for that end, we have found it more convenient
to introduce the following notation. Given a graph G and vertex i, have

(3) αG
i = ϕG

ϕG\i
.

We end this section establishing a description of the graph of this rational function.
Lemma 2.3 ([3, Theorem 1.5]). Let G be a graph. Then, the derivative of ϕG is given
by (ϕG)′ =

∑
i∈V (G) ϕG\i.

Lemma 2.4. Let i be a vertex in the graph G. Then, (αG
i )′(t) ⩾ 1 for every t that is not

a pole of αG
i . In particular, αG

i (t) has only simple zeros and poles, and is increasing
and surjective on each of its branches.
Proof. Naturally, all zeros and poles of αG

i are real. By taking the derivative in (3)
and by Lemmas 2.3 and 2.2, it follows that

(αG
i )′ = 1 +

∑
j∈V (G\i)

(∑
P :i→j ϕG\P

ϕG\i

)2

.

This implies that (αG
i )′(t) ⩾ 1 for every t that is not a zero of ϕG\i. It follows by

continuity that (αG
i )′(t) ⩾ 1 for every t that is not a pole of αG

i . As a consequence,
αG

i is increasing and surjective in each of its branches and all of its zeros are simple.
Since deg(ϕG) = deg(ϕG\i) + 1, the number of zeros of αG

i is one more than the
number of poles counted with multiplicity of αG

i . But in each branch, because αG
i is

increasing, there can only be one zero of αG
i . Putting this all together, it follows that

all the poles of αG
i are also simple. □

3. Main result
The result we prove in this section is that no tree has three (or more) pairwise strongly
cospectral vertices. First, we show that if such a set of pairwise strongly cospectral
vertices exist, then there must be a cut vertex whose removal separates all three of
them in different connected components. In fact, it is enough to assume they are
pairwise cospectral for this result.
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Figure 1. Representation of the tree T with vertices i, j and k on
the same path.

Lemma 3.1. If three vertices in a tree are pairwise cospectral, then they do not lie on
a path.

Proof. Let T be a tree as in Figure 1, where the vertices i, j and k are on the same
path. We will prove that j cannot be cospectral to both i and k.

Let θ1(G) be the largest eigenvalue of the adjacency matrix of the graph G. As
j is a cut-vertex, it follows that θ1(T\j) = max{θ1(Ti), θ1(Tj), θ1(Tk)}. But since
θ1(H) < θ1(G) for every proper subgraph H of a connected graph G (as a consequence
of the Perron-Frobenius Theorem, see [4, Chapter 8]), we have θ1(Ti) < θ1(T\k);
θ1(Tj) < θ1(T\i), θ1(T\k); θ1(Tk) < θ1(T\i).

Thus θ1(T\j) < max{θ1(T\i), θ1(T\k)}, and therefore j cannot be cospectral to
both i and k. □

Next, we state a main technical lemma, which we will prove in the next section.

Lemma 3.2. Assume vertices i, j and k are pairwise strongly cospectral in a graph G,
and that there exists v so that each i, j and k lie in a different component of G\v.
Thus, for any θ ∈ R, if α

G\v
i (θ) = 0, then α

G\v
j (θ) = α

G\v
k (θ) ̸= 0.

The last lemma describes a situation that is not possible.

Theorem 3.3. Let G be a graph with three pairwise cospectral vertices i, j and k, and
assume that there is a cut-vertex v such that these cospectral vertices are in distinct
connected components of G\v. Then, one of the pairs of cospectral vertices is not
strongly cospectral.

Proof. Assume, by contradiction, that the vertices i, j and k are pairwise
strongly cospectral.

First, note by the Lemma 2.4 that if θ is a sufficiently large negative number, then
α

G\v
i (θ), α

G\v
j (θ) and α

G\v
k (θ) are all negative. On the other hand, if θ is a sufficiently

large positive number, then α
G\v
i (θ), α

G\v
j (θ) and α

G\v
k (θ) are all positive. Let τ be

the smallest real number so that at least one of them is equal to zero, and λ the
largest real number so that at least one is equal to zero.

Observe also by Lemma 2.4 that α
G\v
i , α

G\v
j and α

G\v
k are increasing and continuous

in each branch. Finally, note that by Lemma 3.2 it cannot happen that two terms
among α

G\v
i (θ), α

G\v
j (θ) and α

G\v
k (θ) are simultaneously equal to 0.

Thus, it must be that between τ and λ there is at least one real number θ for which
among α

G\v
i (θ), α

G\v
j (θ) and α

G\v
k (θ) there is a negative number, a positive number

and a 0. But this contradicts Lemma 3.2.
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So the vertices i, j and k cannot be pairwise strongly cospectral. □

This leads to the promised result.

Corollary 3.4. There is no tree with three pairwise strongly cospectral vertices.

Proof. By Lemma 3.1, if these vertices exist, then it must be so that there is another
vertex of the tree whose removal puts each in a different component. By Theorem 3.3,
this is not possible. □

It is possible to give a statement analogous to Theorem 3.3 for matching polyno-
mials, but in this case the definition of strong cospectrality should be given by the
analogous statement for matching polynomials of Theorem 2.1. The proof in this case
will follow similarly, with the exception that Lemmas 2.3 and 2.2 are replaced by [3,
Theorem 1.1] and [3, Lemma 4.1], respectively.

In the next section, we work on the proof of Lemma 3.2.

4. Proof of the key lemma
4.1. Properties of the α’s. We start this section writing the definition of strongly
cospectral vertices in terms of the α’s defined in (3).

Lemma 4.1. Let i and j be distinct vertices in the graph G. Then, i and j are strongly
cospectral if, and only if, αG

i = αG
j and αG

i (θ) = αG
j (θ) ̸= 0 whenever α

G\j
i (θ) = 0 or

α
G\i
j (θ) = 0.

Proof. Our proof proceeds via Theorem 2.1. Observe that ϕG\i = ϕG\j if, and only

if, αG
i = αG

j . We claim that ϕG\{i,j}

ϕG
has a double pole at θ if, and only if, αG

i (θ),

αG
j (θ), α

G\j
i (θ), α

G\i
j (θ) are all equal to zero. In order to see this, simply notice that,

ϕG\{i,j}

ϕG
= 1

αG
i α

G\i
j

= 1
αG

j α
G\j
i

,

and αG
i , αG

j , α
G\j
i and α

G\i
j have simple zeros by the Lemma 2.4. □

In what follows in order to work with the rational functions αG
i for vertex deleted

subgraphs we make use of a technique called contraction. This technique is inspired
by the theory of continued fractions and has also been used in the context of matching
polynomials [10].

For distinct vertices i and j in a graph G denote by,

λG
ij := −

(∑
P :i→j ϕG\P

ϕG\{i,j}

)2

.

From here onwards, if q(x) is a rational function, then if we write q(θ) = ∞ we
simply mean that θ is a pole of q(x).

Observe that λG
ij = λG

ji, and that either λG
ij(θ) = ∞ or λG

ij(θ) < 0, for every
real number θ. Note also that λG

ij has double zeros and poles. It is an immediate
consequence of Lemma 2.2 that,

(4) αG
i = α

G\j
i +

λG
ij

α
G\i
j

and αG
j = α

G\i
j +

λG
ij

α
G\j
i

.

In this case we have the following useful observation.
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Lemma 4.2. If λG
ij(θ) = 0, then αG

i (θ) = α
G\j
i (θ).

Proof. Note that λG
ij has double zeros, while, by Lemma 2.4, α

G\i
j has simple zeros.

It follows that if λG
ij(θ) = 0, then

λG
ij

α
G\i
j

(θ) = 0, which in turn implies αG
i (θ) =

α
G\j
i (θ). □

Our next result shows that, more generally, given α
G\i
j (θ), α

G\j
i (θ) and λG

ij(θ) ̸= ∞,
we can compute αG

i (θ) and αG
j (θ). In the statement of the next result we use the

following conventions. For every C in R ∪ {∞}, 0
C = 0 and ∞ + C = C + ∞ = ∞; if

C ̸= ∞, then C
∞ = 0; if C /∈ {0, ∞}, then C

0 = ∞.

Lemma 4.3. If λG
ij(θ) ̸= ∞, then, assuming the above conventions,

αG
i (θ) = α

G\j
i (θ) +

λG
ij(θ)

α
G\i
j (θ)

.

Proof. If λG
ij(θ) = 0, then, by Lemma 4.2, it holds that αG

i (θ) = α
G\j
i (θ), and because

the zeros of the λ’s are double and the zeros of the α’s are simple, the equality follows.
Therefore, assume that λG

ij(θ) is in (−∞, 0). In this case, the first equation at (4)
guarantees the result unless both summands on the right hand side have poles at θ,
that is, the result follows unless α

G\j
i (θ) = ∞ and α

G\i
j (θ) = 0.

Assume we are in this last situation, then we claim that αG
i (θ) = ∞. To see

this, observe that, by Lemma 2.4, for every ε > 0 sufficiently small it holds that
α

G\j
i (θ − ε) > 0 > α

G\j
i (θ + ε) and α

G\i
j (θ − ϵ) < 0 < α

G\i
j (θ + ε).

Then, since αG
i = α

G\j
i + λG

ij/α
G\i
j and λG

ij is negative, we obtain αG
i (θ − ε) >

0 > αG
i (θ + ε) for every ϵ > 0 sufficiently small. It follows by Lemma 2.4 that

αG
i (θ) = ∞. □

In case λG
ij(θ) = ∞ we can still obtain some information.

Lemma 4.4. If λG
ij(θ) = ∞, then α

G\j
i (θ) = α

G\i
j (θ) = ∞. If, in addition, αG

j (θ) = ∞,
then αG

i (θ) = ∞.

Proof. First, by (4), we have

λG
ij = α

G\j
i (−α

G\i
j + αG

i ) = α
G\i
j (−α

G\j
i + αG

j ).

Now, notice that λG
ij has double poles, while αG

i , αG
j , α

G\j
i and α

G\j
i have simple

poles by the Lemma 2.4. Thus, due to these last expressions for λG
ij , it follows that

λG
ij(θ) = ∞ can only happen if α

G\j
i (θ) = α

G\i
j (θ) = ∞. This proves the first part of

the statement.
For the second part of the statement, observe that,

αG
i α

G\i
j = ϕG

ϕG\{i,j} = αG
j α

G\j
i .

It follows that if, in addition, αG
j (θ) = ∞, then αG

i α
G\i
j has a double pole at θ, which

implies that αG
i (θ) = ∞, proving the second part of the statement. □
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Figure 2. A representation of a graph G such that the vertices i, j
and k are in distinct connected components of G\v.

4.2. The proof of Lemma 3.2. In this subsection, we assume the graph G has the
property that there exists a vertex v such that the vertices i, j and k are in distinct
connected components of G\v.

On Figure 2 there is a representation of a graph with this property.
Our proof of Lemma 3.2 will follow from conditions imposed by the pairwise strong

cospectrality of i, j and k on α
G\v
i , α

G\v
j and α

G\v
k .

The characteristic polynomial of G\v factors into the product of the characteris-
tic polynomials of its connected components. Thus, since i, j and k are in distinct
connected components of G\v, it follows that

ϕG\v

ϕG\{v,i} = ϕG\{v,j}

ϕG\{v,i,j} = ϕG\{v,j,k}

ϕG\{v,i,j,k} ,

that is, α
G\v
i = α

G\{v,j}
i = α

G\{v,j,k}
i . Similarly,

−
(∑

P :i→v ϕG\P

ϕG\{i,v}

)2

= −
(∑

P :i→v ϕ(G\j)\P

ϕG\{j,i,v}

)2

= −
(∑

P :i→v ϕ(G\{j,k})\P

ϕG\{j,k,i,v}

)2

,

that is, λG
iv = λ

G\j
iv = λ

G\{j,k}
iv . Analogous identities hold by exchanging the roles of i,

j and k. In what follows, we make heavy use of these facts without further mention.
Also it is important to recall Lemma 2.2 and its consequence Equation 4, which we
restate below:

(5) αG
i = α

G\j
i +

λG
ij

α
G\i
j

.

We will use this equation several times below, applied to the graph G or its vertex
removed subgraphs, interchanging the roles of i, j, k and v.

Lemma 4.5. If λG
iv(θ) = 0, then αG

i (θ) = α
G\v
i (θ) = α

G\j
i (θ).

Proof. First, note that,

αG
i = α

G\v
i + λG

iv

α
G\i
v

and α
G\j
i = α

G\{j,v}
i + λG

iv

α
G\{j,i}
v

.
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As a consequence, by Lemma 4.2, αG
i (θ) = α

G\v
i (θ) and α

G\j
i (θ) = α

G\{j,v}
i (θ), but

it also follows that α
G\{j,v}
i (θ) = α

G\v
i (θ). □

This last result has the following crucial corollary for strongly cospectral vertices.

Corollary 4.6. If vertices i and j are strongly cospectral and α
G\v
i (θ) = 0, then

λG
iv(θ) ̸= 0.

Proof. Assume otherwise, then, by Lemma 4.5, both αG
i (θ) and α

G\j
i (θ) are equal to

α
G\v
i (θ) = 0, which is impossible by Lemma 4.1. □

The next results develop the consequences of the conclusion of Corollary 4.6.

Lemma 4.7. If α
G\v
i (θ) = 0 and λG

iv(θ) ̸= 0, then,

αG
v (θ) = αG\j

v (θ) = αG\{j,k}
v (θ) = ∞.

Proof. First, note that λG
iv(θ) ̸= ∞ because if this was not the case then, by

Lemma 4.4, α
G\v
i (θ) = ∞, which is impossible.

Then, note that,

αG
v = αG\i

v + λG
iv/α

G\v
i ,

αG\j
v = αG\{j,i}

v + λG
iv/α

G\{j,v}
i ,

αG\{j,k}
v = αG\{j,k,i}

v + λG
iv/α

G\{j,k,v}
i .

But we also have that α
G\{j,k,v}
i (θ) = α

G\{j,v}
i (θ) = α

G\v
i (θ) = 0. It follows from

Lemma 4.3 that αG
v (θ) = α

G\j
v (θ) = α

G\{j,k}
v (θ) = ∞. □

The next proposition presents the main consequence from the conclusion of Corol-
lary 4.6, from which more consequences will follow with the hypothesis of strong
cospectrality of j and k.

Lemma 4.8. If α
G\v
i (θ) = 0 and λG

iv(θ) ̸= 0, then,

αG
j (θ) = α

G\v
j (θ) = α

G\k
j (θ).

Proof. If λG
jv(θ) = ∞, then Lemma 4.4 implies α

G\v
j (θ) = ∞. But by Lemma 4.7

we also have αG
v (θ) = α

G\k
v (θ) = ∞, from which it follows by the second part of

Lemma 4.4 that αG
j (θ) = α

G\k
j (θ) = ∞. It follows that, αG

j (θ) = α
G\v
j (θ) = α

G\k
j (θ) =

∞, as we wanted.
Now, assume that λG

jv(θ) ̸= ∞. Observe that,

αG
j = α

G\v
j +

λG
jv

α
G\j
v

, α
G\k
j = α

G\{k,v}
j +

λG
jv

α
G\{k,j}
v

.

But by Lemma 4.7 we also have α
G\j
v (θ) = α

G\{j,k}
v (θ) = ∞. It then follows by

Lemma 4.3 that, αG
j (θ) = α

G\v
j (θ) and α

G\k
j (θ) = α

G\{k,v}
j (θ) = α

G\v
j (θ), which

finishes the proof. □

If the vertices j and k are cospectral, this last result has the following corollary.

Corollary 4.9. If α
G\v
i (θ) = 0 and λG

iv(θ) ̸= 0, and j and k are cospectral, then,

α
G\k
j (θ) = α

G\v
j (θ) = αG

j (θ) = αG
k (θ) = α

G\v
k (θ) = α

G\j
k (θ).

Furthermore, if j and k are strongly cospectral, then this common value is different
than zero.
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Proof. By Lemma 4.8, αG
j (θ) = α

G\v
j (θ) = α

G\k
j (θ) and αG

k (θ) = α
G\v
k (θ) = α

G\j
k (θ).

But j and k are cospectral, so αG
j (θ) = αG

k (θ). This proves the first part of the
statement.

Now, if j and k are strongly cospectral, then the common value of these quantities
cannot be zero. To see this, observe that if this were not the case, then in particular
αG

j (θ) = α
G\k
j (θ) = 0, which is impossible by Lemma 4.1. □

As a consequence we are ready to prove the key Lemma 3.2, which we restate for
convenience.

Lemma. Assume vertices i, j and k are pairwise strongly cospectral in a graph G, and
that there exists v so that each i, j and k lie in a different component of G\v. Thus,
for any θ ∈ R, if α

G\v
i (θ) = 0, then α

G\v
j (θ) = α

G\v
k (θ) ̸= 0.

Proof. Note that by the Corollary 4.6, as i and j are strongly cospectral, it follows
that λG

iv(θ) ̸= 0. But then by the Corollary 4.9, as j and k are strongly cospectral, it
follows that α

G\v
j (θ) = α

G\v
k (θ) ̸= 0. □
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