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Maximality of subfields as cliques in Cayley
graphs over finite fields

Chi Hoi Yip

Abstract We show the maximality of subfields as cliques in a special family of Cayley graphs
defined on the additive group of a finite field. In particular, this confirms a conjecture of Yip
on generalized Paley graphs.

1. Introduction
Throughout the paper, let p be an odd prime and q a power of p. Let Fq be the finite
field with q elements, F+

q be its additive group, and F∗
q = Fq∖{0} be its multiplicative

group.
In this paper we study maximal cliques in Cayley graphs. We begin by recalling

some basic terminologies. Given an abelian group G and a connection set S ⊂ G∖{0}
with S = −S, the Cayley graph Cay(G, S) is the undirected graph whose vertices are
elements of G, such that two vertices g and h are adjacent if and only if g − h ∈ S. A
clique in a graph X is a subset of vertices in X such that every two distinct vertices
in the clique are adjacent. The clique number of X, denoted by ω(X), is the size of a
maximum clique in X. A maximal clique is a clique that is not contained in a strictly
larger clique.

Generalized Paley graphs are well-studied Cayley graphs. They were first intro-
duced by Cohen [4] in 1988, and have been reintroduced by several groups of authors.
Let d > 1 be a positive integer and q ≡ 1 (mod 2d). The d-Paley graph on Fq, denoted
GP (q, d), is the Cayley graph Cay(F+

q , (F∗
q)d), where (F∗

q)d is the set of d-th powers
in F∗

q . Note that the condition q ≡ 1 (mod 2d) avoids degeneracy of the graph; see
for example [4, Section 4]. Note that Paley graphs are simply 2-Paley graphs. 3-Paley
graphs and 4-Paley graphs are also known as cubic Paley graphs and quadruple Paley
graphs.

It is known that in the Paley graph GP (q2, 2), the subfield Fq forms a maxi-
mal clique for a trivial reason [3]: the clique number of GP (q2, 2) is q. In general,
Broere, Döman, and Ridley [3] observed that in the generalized Paley graph GP (qn, d),
the subfield Fq forms a clique if d | qn−1

q−1 . In this case, this observation leads to
ω(GP (qn, d)) ⩾ q, which is much better than the generic best-known lower bound
O(log q) on the clique number that holds for all generalized Paley graphs due to Co-
hen [4]. In fact, Green [6] showed that the clique number of almost all Cayley graphs
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defined on a cyclic group G is O(log |G|), as |G| → ∞. While in the case of gen-
eralized Paley graphs, the underlying group may not be cyclic, Green’s result still
suggests that a clique in a Cayley graph with exceptional size (that is, much larger
than O(log q)) tends to have special algebraic structures.

Determining the clique number of (generalized) Paley graphs is widely open in
general [5]; we refer to [11, Section 1.3] for a survey on recent (minor) improvements
on the square root trivial upper bound. Thus, it is interesting if one can show that
the above subfield constructions of cliques are not maximal so that the lower bound
on the clique number can be further improved. However, the rigid algebraic structure
of subfields suggests that it is very unlikely. Indeed, in [12, Conjecture 1.4], Yip
conjectured that such constructions give rise to maximal cliques:

Conjecture 1.1 ([12, Conjecture 1.4]). Let d > 1 be an integer. Let q ≡ 1 (mod 2d)
be a power of a prime p, and let r be the largest integer such that d | q−1

pr−1 . Then the
subfield Fpr forms a maximal clique in GP (q, d).

In other words, the conjecture states that if Fpr is the maximum subfield of Fq that
forms a clique in GP (q, d), then in fact it forms a maximal clique. The motivation of
Conjecture 1.1 is explained in [12] in greater details; in particular, Yip [12, Section 3]
showed that if Fpr is not maximal, then there is a clique that is a 2-dimensional space
over Fpr and consequently the lower bound on the clique number can be improved
significantly to ω(GP (q, d)) ⩾ p2r. This observation, together with known upper
bounds on the clique number, allows Yip [12, Theorem 1.5 and Theorem 1.6] to
confirm Conjecture 1.1 for cubic Paley graphs with cubic order and quadruple Paley
graphs with quartic order. However, a similar argument fails to work in general since
the best-known upper bound on the clique number is O(√q).

In this paper, we use different ideas to resolve Conjecture 1.1. For simplicity, we
call a clique C in a Cayley graph X = Cay(F+

q , S) a subfield clique if C is a subfield
of Fq, and we say C is a maximal subfield clique if C is not contained in a strictly
larger subfield clique. Our first main result confirms Conjecture 1.1 in a stronger form:
a maximal subfield clique in a generalized Paley graph is a maximal clique.

Theorem 1.2. Let d > 1 be an integer. Let q be a prime power with qn ≡ 1 (mod 2d)
and q > (n − 1)2. If Fq is a maximal subfield clique in GP (qn, d), then Fq is also a
maximal clique.

In [12, Theorem 1.7], Yip described a similar phenomenon in Peisert graphs and
conjectured that Fq forms a maximal clique in a Peisert graph with order q4 provided
that q > 3; this was confirmed by Asgarli and Yip in [1, Theorem 1.5]. Moreover, in [1,
Section 5] of the same paper, they observed that a similar result holds for generalized
Peisert graphs under extra assumptions.

Our second main result improves and extends the results in [1, Section 5] substan-
tially. Before stating that, we shall recall the definition of generalized Peisert graphs,
first introduced by Mullin [9]. This definition is motivated by the similarity between
generalized Paley graphs and Peisert graphs (first introduced by Peisert in [10] in
order to classify self-complementary symmetric graphs).

Definition 1.3 ([1, Definition 2.11]). Let d be a positive even integer, and q a prime
power such that q ≡ 1 (mod 2d). The d-th power Peisert graph of order q, denoted
GP ∗(q, d), is the Cayley graph Cay(F+

q , Mq,d), where

Mq,d =
{

gdk+j : 0 ⩽ j ⩽
d

2 − 1, k ∈ Z
}

,

and g is a primitive root of Fq.
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While the definition of GP ∗(q, d) depends on the choice of the primitive root g, it is
clear that the isomorphism class of GP ∗(q, d) is independent of the choice of g. We re-
fer to [1, Remark 2.12] for a discussion on the connection between generalized Peisert
graphs and generalized Paley graphs. In particular, if d is even, then GP ∗(q, d) con-
tains GP (q, d) as a subgraph and thus the structure of maximal cliques in GP ∗(q, d)
is potentially richer. However, our second main result shows that a maximal subfield
clique in GP ∗(q, d) is still a maximal clique.

Theorem 1.4. Let d ⩾ 4 be an even integer. Let q be a prime power such that
qn ≡ 1 (mod 2d) and q > (n − 1)2d4/π2(d − 1)2. If Fq is a maximal subfield clique
in GP ∗(qn, d), then Fq is also a maximal clique.

Note that Theorem 1.4 refines Theorem 1.2 provided that q is sufficiently large.
In fact, we will prove a more general (yet technical) statement for any Cayley graph
containing a generalized Paley graph as a subgraph in Proposition 3.1. Before proving
our main results, we shall introduce some preliminary tools in Section 2.

2. Preliminaries
A multiplicative character of Fq is a group homomorphism from F∗

q to the multiplica-
tive group of complex numbers with modulus 1. For a multiplicative character χ, its
order d is the smallest positive integer such that χd = χ0, where χ0 is the trivial
multiplicative character of Fq. We refer to [8, Chapter 5] for a general discussion on
estimates on character sums. The following theorem, due to Katz [7], is crucial in our
proofs.

Theorem 2.1 (Katz). Let θ ∈ Fqn such that Fq(θ) = Fqn . Let χ be a non-trivial
multiplicative character of Fqn . Then∣∣∣∣∣∣

∑
a∈Fq

χ(θ + a)

∣∣∣∣∣∣ ⩽ (n − 1)√q.

The following definition is helpful for our discussions.

Definition 2.2 ([1, Definition 2.16]). Let ϵ > 0. A set M ⊂ C is said to be ϵ-lower
bounded if for every integer k ∈ N, and for every choice of x1, x2, . . . , xk ∈ M , we
have ∣∣∣∣ k∑

j=1
xj

∣∣∣∣ ⩾ ϵk.

Using trigonometric manipulations, it is not difficult to show the following lemma.

Lemma 2.3 ([1, Lemma 4.5]). Let d ⩾ 4 be an even integer, and ω = exp(2πi/d).
Then the set M = {ωj : 0 ⩽ j ⩽ d/2 − 1} is

(
π
d − π

d2

)
-lower bounded.

3. Proof of main results
We will prove a more general statement in the following proposition, and then deduce
Theorem 1.2 and Theorem 1.4 as special cases.

Proposition 3.1. Let n ⩾ 2 be an integer and ϵ > 0 a real number. Let X =
Cay(F+

qn , S) be a Cayley graph with q > (n − 1)2/ϵ2. Assume that there is an integer
d > 1, such that X contains GP (qn, d) as a subgraph and the set M = {χ(x) : x ∈ S}
is ϵ-lower bounded for some multiplicative character χ of Fqn with order d. If Fq is a
maximal subfield clique in X, then Fq is also a maximal clique in X.
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Proof. Assume that Fq is not a maximal clique; then we can find θ ∈ Fqn ∖ Fq such
that Fq ∪{θ} forms a clique in X. Thus, by definition, for any a ∈ Fq, we have θ−a ∈ S
and χ(θ − a) ∈ M .

Let Fqm be the smallest extension of Fq that contains θ; then Fqm is necessarily a
subfield of Fqn and m > 1. Let χ′ be the restriction of χ on the subfield Fqm ; then χ′

is a multiplicative character of Fqm .
Suppose χ′ is the trivial multiplicative character of Fqm ; then χ(x) = 1 for each

x ∈ F∗
qm . This means that each element in F∗

qm is a d-th power in F∗
qn and it follows

that F∗
qm ⊂ S since X contains GP (qn, d) as a subgraph. In particular, Fqm is a

subfield clique in X that is strictly larger than Fq, violating the assumption. Thus,
χ′ is a non-trivial multiplicative character of Fqm .

Applying Theorem 2.1 to the character χ′ on the affine line θ + Fq and using the
definition that M is ϵ-lower bounded, we obtain that

ϵq ⩽

∣∣∣∣∣∣
∑
a∈Fq

χ(θ + a)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈Fq

χ′(θ + a)

∣∣∣∣∣∣ ⩽ (m − 1)√q ⩽ (n − 1)√q.

Therefore, q ⩽ (n − 1)2/ϵ2, contradicting our assumption. This shows that Fq is a
maximal clique in X. □

Remark 3.2. From the proof, it is easy to see that the condition “{χ(x) : x ∈ S}
is ϵ-lower bounded" in the statement of the above proposition can be weakened to
|
∑

x∈A χ(x)| ⩾ ϵq for any A ⊂ S with |A| = q. In other words, if there is S′ ⊂ S
such that |S ∖ S′| is small and {χ(x) : x ∈ S′} is ϵ-lower bounded, then we can still
conclude that Fq is maximal clique provided that q is sufficiently large.

Remark 3.3. A result of a similar flavor has appeared in [1, Theorem 1.3] in terms
of maximum cliques in the so-called Peisert-type graphs. It generalizes the celebrated
Van Lint–MacWilliams’ conjecture (equivalently, Erdős–Ko–Rado theorem for Paley
graphs of square order), first proved by Blokhuis [2]. We refer to [1, Section 2] for a
historical discussion.

Finally, we prove Theorem 1.2 and Theorem 1.4, and discuss the sharpness of the
assumption that q is sufficiently large in both theorems.

Proof of Theorem 1.2. Note that the connection set S of GP (qn, d) consists of d-th
powers in F∗

qn . It follows that M = {χ(x) : x ∈ S} = {1} is 1-lower bounded for any
multiplicative character χ of Fqn with order d. Thus, the theorem follows immediately
from Proposition 3.1. □

Remark 3.4. We conjecture that the condition q > (n − 1)2 in Theorem 1.2 can
be dropped. However, we do not know how to remove this condition. When n ⩽ 5,
we verified that Theorem 1.2 holds for all q ⩽ (n − 1)2 by enumerating all possible
generalized Paley graphs via SageMath. We also verified that Theorem 1.2 holds for
all q ⩽ 17 when n = 6.

Proof of Theorem 1.4. Let g be the primitive root of Fqn that defines the graph
GP ∗(qn, d). Let χ be a multiplicative character in Fq such that χ(g) = ω, where ω =
exp(2πi/d); then χ has order d. As discussed before, GP ∗(qn, d) contains GP (qn, d)
as a subgraph. Let M = {χ(x) : x ∈ S}, where S = {gj+kd : 0 ⩽ j ⩽ d/2 − 1, k ∈ Z}
is the connection set of GP ∗(qn, d). It then follows from Lemma 2.3 that the set

Algebraic Combinatorics, Vol. 6 #4 (2023) 904



Maximality of subfields as cliques in Cayley graphs

M = {ωj : 0 ⩽ j ⩽ d/2 − 1} is
(

π
d − π

d2

)
-lower bounded. Therefore, by Proposi-

tion 3.1, Fq is a maximal clique provided that

q >
(n − 1)2(
π
d − π

d2

)2 = (n − 1)2d4

π2(d − 1)2 .

□

Remark 3.5. We believe that the condition q > (n−1)2d4/π2(d−1)2 in Theorem 1.4
is not optimal. However, we do need to assume q is sufficiently large for Theorem 1.4
to hold. There are plenty of counterexamples when q is small compared to n and d.
For example, when q = 3, n = 4, and d = 4, the subfield F3 is a maximal subfield
clique in GP ∗(81, 4), and yet there is a maximal clique with size 9 containing F3.
Similarly, when q = 5, n = 6, and d = 62, the subfield F5 is a maximal subfield clique
in GP ∗(15625, 62), and yet there is a maximal clique with size 25 containing F5.
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