象
 ALGEBRAIC COMBINATORICS

Mike Cummings, Sergio Da Silva, Jenna Rajchgot \& Adam Van Tuyl
Geometric vertex decomposition and liaison for toric ideals of graphs

Volume 6, issue 4 (2023), p. 965-997.
https://doi.org/10.5802/alco. 295
© The author(s), 2023.
(c) BY This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Geometric vertex decomposition and liaison for toric ideals of graphs

Mike Cummings, Sergio Da Silva, Jenna Rajchgot \& Adam
Van Tuyl

Abstract

Geometric vertex decomposability for polynomial ideals is an ideal-theoretic generalization of vertex decomposability for simplicial complexes. Indeed, a homogeneous geometrically vertex decomposable ideal is radical and Cohen-Macaulay, and is in the Gorenstein liaison class of a complete intersection (glicci).

In this paper, we initiate an investigation into when the toric ideal I_{G} of a finite simple graph G is geometrically vertex decomposable. We first show how geometric vertex decomposability behaves under tensor products, which allows us to restrict to connected graphs. We then describe a graph operation that preserves geometric vertex decomposability, thus allowing us to build many graphs whose corresponding toric ideals are geometrically vertex decomposable. Using work of Constantinescu and Gorla, we prove that toric ideals of bipartite graphs are geometrically vertex decomposable. We also propose a conjecture that all toric ideals of graphs with a square-free degeneration with respect to a lexicographic order are geometrically vertex decomposable. As evidence, we prove the conjecture in the case that the universal Gröbner basis of I_{G} is a set of quadratic binomials. We also prove that some other families of graphs have the property that I_{G} is glicci.

1. Introduction

Vertex decomposable simplicial complexes are recursively defined simplicial complexes that have been extensively studied in both combinatorial algebraic topology and combinatorial commutative algebra. This family of complexes, first defined by Provan and Billera [29] for pure simplicial complexes and later generalized to the non-pure case by Björner and Wachs [2], has many nice features. For example, they are shellable and hence Cohen-Macaulay in the pure case.

Because of the Stanley-Reisner correspondence between square-free monomial ideals and simplicial complexes, the definition and properties of vertex decomposable simplicial complexes can be translated into algebraic statements about square-free monomial ideals. For example, Moradi and Khosh-Ahang [26, Definition 2.1] introduced vertex splittable ideals, which are precisely the ideals of the Alexander duals of vertex decomposable simplicial complexes. As another example, which is directly relevant to this paper, Nagel and Römer [27] showed that if I_{Δ} is the square-free monomial ideal associated to a vertex decomposable simplicial complex Δ via the Stanley-Reisner correspondence, then the ideal I_{Δ} belongs to the Gorenstein liasion class of a complete intersection, i.e., the ideal I_{Δ} is glicci.

Knutson, Miller, and Yong [23] introduced the notion of a geometric vertex decomposition, which is an ideal-theoretic generalization (beyond the square-free monomial

[^0]ideal setting) of a vertex decomposition of a simplicial complex. Building on this, Klein and Rajchgot [21] gave a recursive definition of a geometrically vertex decomposable ideal which is an ideal-theoretic generalization of a vertex decomposable simplicial complex. Indeed, when specialized to square-free monomial ideals, those ideals that are geometrically vertex decomposable are precisely those square-free monomial ideals whose associated simplicial complexes are vertex decomposable. As shown by Klein and Rajchgot [21, Theorem 4.4], this definition captures some of the properties of vertex decomposable simplicial complexes. For example, a more general version of Nagel and Römer's result holds; that is, a homogeneous ideal that is geometrically vertex decomposable is also glicci. Because geometrically vertex decomposable ideals are glicci, identifying such families allows us to give further evidence to an important open question in liaison theory: is every arithmetically Cohen-Macaulay subscheme of \mathbb{P}^{n} glicci (see [22, Question 1.6])?

Since the definition of geometrically vertex decomposable ideals is recent, there is a need to not only develop the corresponding theory (e.g., which properties of StanleyReisner ideals of vertex decomposable simplicial complexes also hold for geometrically vertex decomposable ideals?), but also a need to find families of concrete examples. There has already been some work in these two directions. Klein and Rajchgot [21] showed that Schubert determinantal ideals, (homogeneous) ideals coming from lower bound cluster algebras, and ideals defining equioriented type A quiver loci are all geometrically vertex decomposable. Klein [20] used geometric vertex decomposability to prove a conjecture of Hamaker, Pechenik, and Weigandt [16] on Gröbner bases of Schubert determinantal ideals. Da Silva and Harada have investigated the geometric vertex decomposability of certain Hessenberg patch ideals which locally define regular nilpotent Hessenberg varieties [6].

We contribute to this program by further developing the theory of geometric vertex decomposibility, and show that many families of toric ideals of graphs are geometrically vertex decomposable. Let \mathbb{K} be an algebraically closed field of characteristic 0 . If $G=(V, E)$ is a finite simple graph with vertex set $V=\left\{x_{1}, \ldots, x_{m}\right\}$ and edge set $E=\left\{e_{1}, \ldots, e_{n}\right\}$, we can define a ring homomorphism $\varphi: \mathbb{K}\left[e_{1}, \ldots, e_{n}\right] \rightarrow$ $\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ by letting $\varphi\left(e_{i}\right)=x_{k} x_{l}$ where the edge $e_{i}=\left\{x_{k}, x_{l}\right\}$. The toric ideal of G is the ideal $I_{G}=\operatorname{ker}(\varphi)$. The study of toric ideals of graphs is an active area of research (e.g., see $[1,3,9,10,14,28,31,32]$), so our work also complements the recent developments in this area. What makes toric ideals of graphs amenable to our investigation of geometric vertex decomposability is that their (universal) Gröbner bases are fairly well-understood (see Theorem 3.1) and can be related to the graph's structure.

Our first main result describes how geometric vertex decomposability behaves over tensor products:

Theorem 1.1 (Theorem 2.9). Let $I \subsetneq R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $J \subsetneq S=\mathbb{K}\left[y_{1}, \ldots, y_{m}\right]$ be proper ideals. Then I and J are geometrically vertex decomposable if and only if $I+J$ is geometrically vertex decomposable in $R \otimes S=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$.

Our result can be viewed as the ideal-theoretic version of the fact that two simplicial complexes Δ_{1} and Δ_{2} are vertex decomposable if and only if their join $\Delta_{1} \star \Delta_{2}$ is vertex decomposable [29, Proposition 2.4]. Moreover, this result allows us to reduce our study of toric ideals of graphs to the case that the graph G is connected (Theorem 3.3).

When we restrict to toric ideals of graphs, we show that the graph operation of "gluing" an even length cycle onto a graph preserves the geometric vertex decomposability property:

Theorem 1.2 (Theorem 3.11). Let G be a finite simple graph with toric ideal I_{G}. Let H be obtained from G by gluing a cycle of even length to G along a single edge. If I_{G} is geometrically vertex decomposable, then I_{H} is also geometrically vertex decomposable.

This gluing operation and its connection to toric ideals of graphs appears in work of Favacchio, Hofscheier, Keiper and Van Tuyl [9], while a similar construction of using H-paths is employed by Gitler, Reyes, and Villarreal [11] to characterize the toric ideals of bipartite graphs that are complete intersections. By repeatedly applying this operation, we can construct many toric ideals of graphs that are geometrically vertex decomposable and glicci.

Our gluing operation requires one to start with a graph whose corresponding toric ideal is geometrically vertex decomposable. It is therefore desirable to identify families of graphs whose toric ideals have this property. Towards this end, we prove:
Theorem 1.3 (Theorem 5.8). Let G be a finite simple graph with toric ideal I_{G}. If G is bipartite, then I_{G} is geometrically vertex decomposable.

Our proof of Theorem 1.3 relies on work of Constantinescu and Gorla [3]. For some families of bipartite graphs, we give alternative proofs for the geometric vertex decomposable property that exploit the additional structure of the graph (see Theorem 5.10). These families are also used to illustrate that in certain cases, the recursive definition of geometric vertex decomposability easily lends itself to induction.

Based on our results and computer experimentation in Macaulay2 [13], we propose the following conjecture:

Conjecture 1.4 (Conjecture 6.1). Let G be a finite simple graph with toric ideal $I_{G} \subseteq \mathbb{K}\left[e_{1}, \ldots, e_{n}\right]$. If $\mathrm{in}_{<}\left(I_{G}\right)$ is square-free with respect to a lexicographic monomial order $<$, then I_{G} is geometrically vertex decomposable, and thus glicci.

We provide a framework to prove this conjecture. In fact, we show that the conjecture is true if one can prove that a particular family of ideals is equidimensional (see Theorem 6.6). As further evidence for Conjecture 1.4, we prove the following special case:
Theorem 1.5 (Theorem 6.11). Let I_{G} be the toric ideal of a finite simple graph G. Assume that I_{G} has a universal Gröbner basis consisting entirely of quadratic binomials. Then I_{G} is geometrically vertex decomposable.

Finally, we prove that additional collections of toric ideals of graphs are glicci (though not necessarily geometrically vertex decomposable). Our first result in this direction relies on a very general result of Migliore and Nagel [25, Lemma 2.1] from the liaison literature.
Theorem 1.6 (Corollary 4.10). Let G be a finite simple graph and let $I_{G} \subseteq R=$ $\mathbb{K}\left[e_{1}, \ldots, e_{n}\right]$ be its toric ideal. Let H be obtained from G by gluing a cycle of even length to G along a single edge. If R / I_{G} is Cohen-Macaulay, then I_{H} is glicci.

We also show that many toric ideals of graphs which contain 4-cycles are glicci. The following is a slightly weaker version of Corollary 4.13.

Theorem 1.7 (Corollary 4.13). Let G be a finite simple graph and suppose there is an edge $y \in E(G)$ contained in a 4-cycle. If the initial ideal $\mathrm{in}_{<} I_{G}$ is a square-free monomial ideal for some lexicographic monomial order with $y>e$ for all $e \in E(G)$ with $e \neq y$, then I_{G} is glicci.

As a corollary to this theorem, we show that the toric ideal of any gap-free graph which contains a 4 -cycle is glicci. For the definition of gap-free graph and this result, see the end of Section 4.2.
1.1. OUtLINE OF THE PAPER. In the next section we formally introduce geometrically vertex decomposable ideals, along with the required background and notation about Gröbner bases. We also explain how geometrically vertex decomposable ideals behave with respect to tensor products. In Section 3 we provide the needed background on toric ideals of graphs, and we explain how a particular graph operation preserves the geometric vertex decomposability property. In Section 4, we focus on the glicci property for toric ideals of graphs that can be deduced from the results of Section 3 together with general results from the liaison theory literature. In Section 5 we prove that toric ideals of bipartite graphs are geometrically vertex decomposable. In Section 6 we propose a conjecture on toric ideals with a square-free initial ideal, describe a framework to prove this conjecture, and illustrate this framework by proving that toric ideals of graphs which have quadratic universal Gröbner bases are geometrically vertex decomposable.
1.2. Remark on the field \mathbb{K}. Many of the arguments in this paper are valid over any infinite field. Indeed, the liaison-theoretic setup in Sections 2 and 4 requires an infinite field but is characteristic-free. Similarly, toric ideals of graphs can be defined combinatorially, and since the coefficients of their generators are ± 1, defining such ideals in positive characteristic does not pose any issues. Nevertheless, we assume that \mathbb{K} throughout this paper is algebraically closed of characteristic zero since some of the references that we use make this assumption (e.g., [30, Proposition 13.15], which is needed in the proof of Theorem 3.4).

Acknowledgements. We thank Patricia Klein for some helpful conversations. Cummings was partially supported by an NSERC USRA. Da Silva was partially supported by an NSERC postdoctoral fellowship. Rajchgot's research is supported by NSERC Discovery Grant 2017-05732. Van Tuyl's research is supported by NSERC Discovery Grant 2019-05412.

2. GEOMETRICALLY VERTEX DECOMPOSABLE IDEALS

In this paper \mathbb{K} denotes an algebraically closed field of characteristic zero and $R=$ $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring in n variables. This section gives the required background on geometrically vertex decomposable ideals, following [21]. We also examine how geometric vertex decomposability behaves over tensor products.

Fix a variable $y=x_{i}$ in R. For any $f \in R$, we can write f as $f=\sum_{i} \alpha_{i} y^{i}$, where α_{i} is a polynomial only in the variables $\left\{x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right\}$. For $f \neq 0$, the initial y-form of f, denoted $\operatorname{in}_{y}(f)$, is the non-zero coefficient of the highest power of y appearing in $\sum_{i} \alpha_{i} y^{i}$. That is, if $\alpha_{d} \neq 0$, but $\alpha_{t}=0$ for all $t>d$, then $\operatorname{in}_{y}(f)=\alpha_{d} y^{d}$. Note that if y does not appear in any term of f, then $\operatorname{in}_{y}(f)=f$. For any ideal I of R, we set $\operatorname{in}_{y}(I)=\left\langle\operatorname{in}_{y}(f) \mid f \in I\right\rangle$ to be the ideal generated by all the initial y-forms in I. A monomial order $<$ on R is said to be y-compatible if the initial term of f satisfies $\operatorname{in}_{<}(f)=\operatorname{in}_{<}\left(\operatorname{in}_{y}(f)\right)$ for all $f \in R$. For such an order, we have in $\operatorname{in}_{<}(I)=\operatorname{in}_{<}\left(\operatorname{in}_{y}(I)\right)$, where $\mathrm{in}_{<}(I)$ is the initial ideal of I with respect to the order $<$.

Given an ideal I and a y-compatible monomial order $<$, let $\mathcal{G}(I)=\left\{g_{1}, \ldots, g_{m}\right\}$ be a Gröbner basis of I with respect to this monomial order. For $i=1, \ldots, m$, write g_{i} as $g_{i}=y^{d_{i}} q_{i}+r_{i}$, where y does not divide any term of q_{i}; that is, $\operatorname{in}_{y}\left(g_{i}\right)=y^{d_{i}} q_{i}$. It can then be shown that $\operatorname{in}_{y}(I)=\left\langle y^{d_{1}} q_{1}, \ldots, y^{d_{m}} q_{m}\right\rangle$ (see [23, Theorem 2.1(a)]).

Given this setup, we define two ideals:

$$
C_{y, I}=\left\langle q_{1}, \ldots, q_{m}\right\rangle \text { and } N_{y, I}=\left\langle q_{i} \mid d_{i}=0\right\rangle .
$$

Recall that an ideal I is unmixed if the ideal I satisfies $\operatorname{dim}(R / I)=\operatorname{dim}(R / P)$ for all associated primes $P \in \operatorname{Ass}_{R}(R / I)$. We come to our main definition:

Definition 2.1. An ideal I of $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is geometrically vertex decomposable if I is unmixed and
(1) $I=\langle 1\rangle$, or I is generated by a (possibly empty) subset of variables of R, or
(2) there is a variable $y=x_{i}$ in R and a y-compatible monomial order $<$ such that

$$
\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right),
$$

and the contractions of the ideals $C_{y, I}$ and $N_{y, I}$ to $\mathbb{K}\left[x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right]$ are geometrically vertex decomposable.
We make the convention that the two ideals $\langle 0\rangle$ and $\langle 1\rangle$ of the ring \mathbb{K} are also geometrically vertex decomposable.
Remark 2.2. For any ideal I of R, if there exists a variable $y=x_{i}$ in R and a y-compatible monomial order $<$ such that $\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)$, then this decomposition is called a geometric vertex decomposition of I with respect to y. This decomposition was first defined in [23]. Consequently, Definition 2.1 (2) says that there is a variable y such that I has a geometric vertex decomposition with respect to this variable.

We say that a geometric vertex decomposition is degenerate if either $C_{y, I}=\langle 1\rangle$ or $\sqrt{C_{y, I}}=\sqrt{N_{y, I}}$ (see [21, Section 2.2] for further details and results). Otherwise, we call a geometric vertex decomposition nondegenerate.

If elements in our Gröbner basis are square-free in y, i.e., if $\operatorname{in}_{y}\left(g_{i}\right)=y^{d_{i}} q_{i}$ with $d_{i}=0$ or 1 for all $g_{i} \in \mathcal{G}(I)$, then Knutson, Miller, and Yong note that we get the geometric vertex decomposition of I with respect to y for "free":

Lemma 2.3 ([23, Theorem 2.1 (a), (b)]). Let I be an ideal of R and let $<$ be a y compatible monomial order. Suppose that $\mathcal{G}(I)=\left\{g_{1}, \ldots, g_{m}\right\}$ is a Gröbner basis of I with respect to $<$, and also suppose that $\operatorname{in}_{y}\left(g_{i}\right)=y^{d_{i}} q_{i}$ with $d_{i}=0$ or 1 for all i. Then
(1) $\left\{q_{1}, \ldots, q_{m}\right\}$ is a Gröbner basis of $C_{y, I}$ and $\left\{q_{i} \mid d_{i}=0\right\}$ is a Gröbner basis of $N_{y, I}$.
(2) $\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)$, i.e., I has a geometric vertex decomposition with respect to y.

Remark 2.4. If I is a square-free monomial ideal in R, then I is geometrically vertex decomposable if and only if the simplicial complex Δ associated with I via the Stanley-Reisner correspondence is a vertex decomposable simplicial complex; see [21, Proposition 2.8] for more details. As a consequence, we can view Definition 2.1 as a generalization of the notion of vertex decomposability. When I is a square-free monomial ideal with associated simplicial complex Δ, then $C_{y, I}$ is the Stanley-Reisner ideal of the star of y, i.e., $\operatorname{star}_{\Delta}(y)=\{F \in \Delta \mid F \cup\{y\} \in \Delta\}$ and $N_{y, I}+\langle y\rangle$ corresponds to the deletion of y from Δ, that is, $\operatorname{del}_{\Delta}(y)=\{F \in \Delta \mid y \notin F\}$ (see [21, Remark 2.5]).

If I has a geometric vertex decomposition with respect to a variable y, we can determine some additional information about a reduced Gröbner basis of I with respect to any y-compatible monomial order. In the following statement, I is square-free in y if there is a generating set $\left\{g_{1}, \ldots, g_{s}\right\}$ of I such that no term of g_{1}, \ldots, g_{s} is divisible by y^{2}.

Lemma 2.5 ([21, Lemma 2.6]). Suppose that the ideal I of R has a geometric vertex decomposition with respect to the variable $y=x_{i}$. Then I is square-free in y. Moreover, for any y-compatible term order, the reduced Gröbner basis of I with respect to this order has the form $\left\{y q_{1}+r_{1}, \ldots, y q_{k}+r_{k}, h_{1}, \ldots, h_{t}\right\}$ where y does not divide any term of q_{i}, r_{i}, h_{j} for $i \in\{1, \ldots, k\}$ and $j \in\{1, \ldots, t\}$.

The following lemma and its proof helps to illustrate some of the above ideas. Furthermore, since the definition of geometrically vertex decomposable lends itself to proof by induction, the following facts are sometimes useful for the base cases of our induction.

Lemma 2.6. (1) An an ideal I of $R=\mathbb{K}[x]$ is geometrically vertex decomposable if and only if $I=\langle a x+b\rangle$ for some $a, b \in \mathbb{K}$.
(2) Let $f=c_{1} m_{1}+\cdots+c_{s} m_{s}$ be any polynomial in $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ with $c_{i} \in \mathbb{K}$ and m_{i} a monomial. If each m_{i} is square-free, then $I=\langle f\rangle$ is geometrically vertex decomposable. In particular, if m is a square-free monomial, then $\langle m\rangle$ is geometrically vertex decomposable.
Proof. (1) (\Leftarrow) If $a=0$, or $b=0$, or both $a=b=0$, the ideal $I=\langle a x+b\rangle$ satisfies Definition 2.1 (1). So, suppose $a, b \neq 0$. The ideal I is prime, so it is unmixed. Since x is the only variable of R, and because there is only one monomial order on this ring, it is easy to see that this monomial order is x-compatible, and that $\{a x+b\}$ is a Gröbner basis of I. So, $C_{x, I}=\langle a\rangle=\langle 1\rangle$ and $N_{x, I}=\langle 0\rangle$. It is straightforward to check that we have a geometric vertex decomposition of I with respect to x. Furthermore, as ideals in $\mathbb{K}[\hat{x}]=\mathbb{K}, C_{x, I}=\langle 1\rangle$ and $N_{x, I}=\langle 0\rangle$ are geometrically vertex decomposable by definition. So, I is geometrically vertex decomposable.
(\Rightarrow) Since $R=\mathbb{K}[x]$ is a principal ideal domain, $I=\langle f\rangle$ for some $f \in R$, i.e., $f=a_{d} x^{d}+\cdots+a_{1} x+a_{0}$ with $a_{i} \in \mathbb{K}$. Since I is geometrically vertex decomposable, and because x is the only variable of R, by Lemma 2.5 , the ideal I is square-free in x. This fact then forces $d \leqslant 1$, and thus $I=\left\langle a_{1} x+a_{0}\right\rangle$ as desired.
(2) We proceed by induction on the number of variables in $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. The base case $n=1$ follows from statement (1). Because $I=\langle f\rangle$ is principal, f is a Gröbner basis with respect to any monomial order. In particular, let $>$ be the lexicographic order on R with $x_{1}>\cdots>x_{n}$, and assume $m_{1}>\cdots>m_{s}$. Let y be the largest variable dividing m_{1}. Then we can write f as $f=y\left(c_{1} m_{1}^{\prime}+\cdots+c_{i} m_{i}^{\prime}\right)+c_{i+1} m_{i+1}+$ $\cdots+c_{s} m_{s}$ for some i such that y does not divide m_{i+1}, \ldots, m_{s}. Note that $>$ is a y compatible monomial order, and so by Lemma 2.3 we have $\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)$ with $C_{y, I}=\left\langle c_{1} m_{1}^{\prime}+\cdots+c_{i} m_{i}^{\prime}\right\rangle$ and $N_{y, I}=\langle 0\rangle$. The ideal $N_{y, I}$ is geometrically vertex decomposable in $\mathbb{K}\left[x_{1}, \ldots, \hat{y}, \ldots, x_{n}\right]$ by definition, and $C_{y, I}$ is geometrically vertex decomposable in the same ring by induction. Observe that $I, C_{y, I}$ and $N_{y, I}$ are also unmixed since they are principal.

Theorem 2.9, which is of independent interest, shows how we can treat ideals whose generators lie in different sets of variables. We require a lemma about Gröbner bases in tensor products. For completeness, we give a proof, although it follows easily from standard facts about Gröbner bases.

We first need to recall a characterization of Gröbner bases using standard representations. Fix a monomial order $<$ on $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Given $G=\left\{g_{1}, \ldots, g_{s}\right\}$ in R, we say f reduces to zero modulo G if f has a standard representation

$$
f=f_{1} g_{1}+\cdots+f_{s} g_{s} \text { with } f_{i} \in R
$$

with multidegree $(f) \geqslant \operatorname{multidegree}\left(f_{i} g_{i}\right)$ for all i with $f_{i} g_{i} \neq 0$. Here

$$
\operatorname{multidegree}(h)=\max \left\{\alpha \in \mathbb{N}^{n} \mid x^{\alpha} \text { is a term of } h\right\},
$$

where we use the monomial order $<$ to order \mathbb{N}^{n}. We then have the following result.
Theorem 2.7 ([5, Chapter 2.9, Theorem 3]). Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ with fixed monomial order $<$. A basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of an ideal I in R is a Gröbner basis for I if and only if each S-polynomial $S\left(g_{i}, g_{j}\right)$ reduces to zero modulo G.

For the lemma below, note that if $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $S=\mathbb{K}\left[y_{1}, \ldots, y_{m}\right]$, and if $<$ is a monomial order on $R \otimes S:=R \otimes_{\mathbb{K}} S$, then $<$ induces a monomial order $<_{R}$ on R where $m_{1}<_{R} m_{2}$ if and only if $m_{1}<m_{2}$, where we view m_{1}, m_{2} as monomials of both R and $R \otimes S$. Here, "viewing $f \in R$ as an element of $R \otimes S$ " means writing $\varphi_{R}(f)$ as f where $\varphi_{R}: R \rightarrow R \otimes S$ is the natural inclusion $f \mapsto f \otimes 1$. Similarly, we let $<_{S}$ denote the induced monomial order on S.

Lemma 2.8. Let $I \subseteq R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $J \subseteq S=\mathbb{K}\left[y_{1}, \ldots, y_{m}\right]$ be ideals. For any monomial order $<$ on $R \otimes S$, there exists a Gröbner basis of $I+J$ in $R \otimes S$ which has the form $\mathcal{G}(I+J)=\mathcal{G}_{1} \cup \mathcal{G}_{2}$, where \mathcal{G}_{1} is a Gröbner basis of I in R with respect to $<_{R}$ but viewed as elements of $R \otimes S$, and \mathcal{G}_{2} is a Gröbner basis of J in S with respect to $<_{S}$ but viewed as elements of $R \otimes S$.

Proof. Given $<$, select a Gröbner basis \mathcal{G}_{1} of I and \mathcal{G}_{2} of J with respect to the induced monomial orders $<_{R}$ and $<_{S}$ on R and S respectively. Since \mathcal{G}_{1} generates I and \mathcal{G}_{2} generates J, the set $\mathcal{G}_{1} \cup \mathcal{G}_{2}$ generates $I+J$ as an ideal of $R \otimes S$. To prove that $\mathcal{G}_{1} \cup \mathcal{G}_{2}$ is a Gröbner basis of $I+J$, by Theorem 2.7 it suffices to show that for any $g_{i}, g_{j} \in \mathcal{G}_{1} \cup \mathcal{G}_{2}$, the S-polynomial $S\left(g_{i}, g_{j}\right)$ reduces to zero modulo this set.

If $g_{i}, g_{j} \in \mathcal{G}_{1}$, then since $g_{i}, g_{j} \in R$, and since \mathcal{G}_{1} is a Gröbner basis of I in R, by Theorem 2.7, the S-polynomial $S\left(g_{i}, g_{j}\right)$ reduces to zero modulo \mathcal{G}_{1}. But then in the larger ring $R \otimes S$, the S-polynomial $S\left(g_{i}, g_{j}\right)$ also reduces to zero modulo $\mathcal{G}_{1} \cup \mathcal{G}_{2}$. A similar result holds if $g_{i}, g_{j} \in \mathcal{G}_{2}$.

So, suppose $g_{i} \in \mathcal{G}_{1}$ and $g_{j} \in \mathcal{G}_{2}$. Note that the leading monomial of g_{i} is only in the variables $\left\{x_{1}, \ldots, x_{n}\right\}$, while the leading monomial of g_{j} is only in the variables $\left\{y_{1}, \ldots, y_{m}\right\}$. Consequently, their leading monomials are relatively prime. Thus, according to [5, Chapter 2.9, Proposition 4], the S-polynomial $S\left(g_{i}, g_{j}\right)$ reduces to zero modulo $\mathcal{G}_{1} \cup \mathcal{G}_{2}$.

THEOREM 2.9. Let $I \subsetneq R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $J \subsetneq S=\mathbb{K}\left[y_{1}, \ldots, y_{m}\right]$ be proper ideals. Then I and J are geometrically vertex decomposable if and only if $(I+J)$ is geometrically vertex decomposable in $R \otimes S=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$.
Proof. First suppose that $I \subsetneq R$ and $J \subsetneq S$ are geometrically vertex decomposable. Since neither ideal contains 1, we have $I+J \neq\langle 1\rangle$. By [15, Corollary 2.8], the set of associated primes of $(R \otimes S) /(I+J) \cong R / I \otimes S / J$ satisfies
(1) $\quad \operatorname{Ass}_{R \otimes S}(R / I \otimes S / J)=\left\{P+Q \mid P \in \operatorname{Ass}_{R}(R / I)\right.$ and $\left.Q \in \operatorname{Ass}_{S}(S / J)\right\}$.

Thus any associated prime $P+Q$ of $(R \otimes S) /(I+J)$ satisfies

$$
\begin{aligned}
\operatorname{dim}((R \otimes S) /(P+Q)) & =\operatorname{dim}(R / P)+\operatorname{dim}(S / Q) \\
& =\operatorname{dim}(R / I)+\operatorname{dim}(S / J) \\
& =\operatorname{dim}((R \otimes S) /(I+J))
\end{aligned}
$$

where we are using the fact that I and J are unmixed for the second equality. So, $I+J$ is also unmixed.

To see that $I+J \subseteq R \otimes S$ is geometrically vertex decomposable, we proceed by induction on the number of variables $\ell=n+m$ in $R \otimes S$. The base case $\ell=0$ is trivial. Assume now that $\ell>0$. If both I and J are generated by indeterminates, then $I+J$ is too and so is geometrically vertex decomposable. Thus, without loss of generality, suppose that I is not generated by indeterminates (note that $I \neq\langle 1\rangle$ by assumption).

Because I is geometrically vertex decomposable in R, there is a variable $y=x_{i}$ in R such that $\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)$ is a geometric vertex decomposition and the contractions of $C_{y, I}$ and $N_{y, I}$ to $R^{\prime}=\mathbb{K}\left[x_{1}, \ldots, \hat{y}, \ldots, x_{n}\right]$ are geometrically vertex
decomposable. Extend the y-compatible monomial order $<$ on R to a y-compatible monomial order on $R \otimes S$ by taking any monomial order on S, and let our new monomial order \prec be the product order of these two monomial orders (where $x_{i} \succ y_{j}$ for all i, j).

If we write K^{e} to denote the extension of an ideal K in R into the ring $R \otimes S$, then one checks that with respect to this new y-compatible order

$$
\begin{aligned}
\operatorname{in}_{y}(I+J) & =\left(\operatorname{in}_{y}(I)\right)^{e}+J=\left[C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)\right]^{e}+J \\
& =\left(\left(C_{y, I}\right)^{e}+J\right) \cap\left(\left(N_{y, I}\right)^{e}+J+\langle y\rangle\right) .
\end{aligned}
$$

Using the identities

$$
\left(C_{y, I}\right)^{e}+J=C_{y, I+J} \text { and }\left(N_{y, I}\right)^{e}+J=N_{y, I+J}
$$

(note that \prec is being used to define $C_{y, I+J}$ and $N_{y, I+J}$ and $<$ is being used to define $C_{y, I}$ and $N_{y, I}$), we have a geometric vertex decomposition of $I+J$ with respect to y in $R \otimes S$:

$$
\operatorname{in}_{y}(I+J)=C_{y, I+J} \cap\left(N_{y, I+J}+\langle y\rangle\right) .
$$

Now let C^{\prime} and N^{\prime} denote the contractions of $C_{y, I}$ and $N_{y, I}$ to R^{\prime}. First assume that C^{\prime} and N^{\prime} are both proper ideals. Then, since C^{\prime} and N^{\prime} are geometrically vertex decomposable, we may apply induction to see that $C^{\prime}+J$ and $N^{\prime}+J$ in $R^{\prime} \otimes S$ are geometrically vertex decomposable. In particular, as $C^{\prime}+J$ and $N^{\prime}+J$ are the contractions of $\left(C_{y, I}\right)^{e}+J$ and $\left(N_{y, I}\right)^{e}+J$ to $R^{\prime} \otimes S$, we have that $I+J$ is geometrically vertex decomposable by induction. If either C^{\prime} or N^{\prime} is the ideal $\langle 1\rangle$, the same would be true for the contractions of $\left(C_{y, I}\right)^{e}+J$ or $\left(N_{y, I}\right)^{e}+J$ because the contraction of $\left(C_{y, I}\right)^{e}+J$, respectively $\left(N_{y, I}\right)^{e}+J$, contains C^{\prime}, respectively N^{\prime}. So $I+J$ is geometrically vertex decomposable.

For the converse, we proceed by induction on the number of variables ℓ in $R \otimes S$. The base case is $\ell=0$, which is trivial. So suppose $\ell>0$. We first show that I is unmixed. Suppose that I is not unmixed; that is, there are associated primes P_{1} and P_{2} of $\operatorname{Ass}(R / I)$ such that $\operatorname{dim}\left(R / P_{1}\right) \neq \operatorname{dim}\left(R / P_{2}\right)$. For any associated prime Q of S / J, we know by (1) that $P_{1}+Q$ and $P_{2}+Q$ are associated primes of $(R \otimes S) /(I+J)$. Since $I+J$ is unmixed, we can derive the contradiction

$$
\begin{aligned}
\operatorname{dim}((R \otimes S) /(I+J)) & =\operatorname{dim}\left((R \otimes S) /\left(P_{1}+Q\right)\right) \\
& =\operatorname{dim}\left(R / P_{1}\right)+\operatorname{dim}(S / Q) \\
& \neq \operatorname{dim}\left(R / P_{2}\right)+\operatorname{dim}(S / Q) \\
& =\operatorname{dim}\left((R \otimes S) /\left(P_{2}+Q\right)\right)=\operatorname{dim}((R \otimes S) /(I+J))
\end{aligned}
$$

So, I is unmixed (the proof for J is similar).
If $I+J$ is generated by indeterminates, then so are I and J, hence they are geometrically vertex decomposable. So, suppose that there is a variable y in $R \otimes S$ and a y-compatible monomial order $<$ such that

$$
\operatorname{in}_{y}(I+J)=C_{y, I+J} \cap\left(N_{y, I+J}+\langle y\rangle\right)
$$

Without loss of generality, assume that $y \in\left\{x_{1}, \ldots, x_{n}\right\}$. So $C_{y, I+J}$ and $N_{y, I+J}$ are geometrically vertex decomposable in $\mathbb{K}\left[x_{1}, \ldots, \hat{y}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$.

By Lemma 2.8, we can construct a Gröbner basis \mathcal{G} of $I+J$ with respect to $<$ such that

$$
\mathcal{G}=\left\{g_{1}, \ldots, g_{s}\right\} \cup\left\{h_{1}, \ldots, h_{t}\right\}
$$

where $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis of I with respect to the order $<_{R}$ in R, and $\left\{h_{1}, \ldots, h_{t}\right\}$ is a Gröbner basis of J with respect to $<_{S}$ in S. Since y can only appear among the g_{i} 's, we have

$$
C_{y, I+J}=\left(C_{y, I}\right)+J \text { and } N_{y, I+J}=\left(N_{y, I}\right)+J
$$

where $C_{y, I}$, respectively $N_{y, I}$, denote the ideals constructed from the Gröbner basis $\left\{g_{1}, \ldots, g_{s}\right\}$ of I in R using the monomial order $<_{R}$. Note that in $R,<_{R}$ is still y-compatible.

Since the ideals $\left(C_{y, I}\right)+J$ and $\left(N_{y, I}\right)+J$ are geometrically vertex decomposable in the ring $\mathbb{K}\left[x_{1}, \ldots, \hat{y}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$, by induction, $C_{y, I}$ and $N_{y, I}$ are geometrically vertex decomposable in $\mathbb{K}\left[x_{1}, \ldots, \hat{y}, \ldots, x_{n}\right]$ and J is geometrically vertex decomposable in S. To complete the proof, note that in R, we have $\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)$. Thus I is also geometrically vertex decomposable in R.

Remark 2.10. If we weaken the hypotheses in Theorem 2.9 to allow I or J to be $\langle 1\rangle$, then only one direction remains true. In particular, if I and J are geometrically vertex decomposable, then so is $I+J$. However, the converse statement would no longer be true. To see why, let $I=\langle 1\rangle$ and let J to be any ideal which is not geometrically vertex decomposable. Then $I+J=\langle 1\rangle$ is geometrically vertex decomposable in $R \otimes S$, but we do not have that both I and J are geometrically vertex decomposable.

Remark 2.11. Theorem 2.9 is an algebraic generalization of [29, Proposition 2.4] which showed that if Δ_{1} and Δ_{2} were simplicial complexes on different sets of variables, then the join $\Delta_{1} \star \Delta_{2}$ is vertex decomposable if and only if Δ_{1} and Δ_{2} are vertex decomposable.

Corollary 2.12. Let $I \subseteq R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a square-free monomial ideal. If I is a complete intersection, then I is geometrically vertex decomposable.

Proof. Suppose $I=\left\langle m_{1}, \ldots, m_{t}\right\rangle$, where m_{1}, \ldots, m_{t} are the minimal square-free monomial generators. Because I is a complete intersection, the ideal is unmixed. Furthermore, because I is a complete intersection, the support of each monomial is pairwise disjoint. So, after a relabelling, we can assume that $m_{1}=x_{1} x_{2} \cdots x_{a_{1}}$, $m_{2}=x_{a_{1}+1} \cdots x_{a_{2}}, \ldots, m_{t}=x_{a_{t-1}+1} \cdots x_{a_{t}}$. Then
$R / I \cong \mathbb{K}\left[x_{1}, \ldots, x_{a_{1}}\right] /\left\langle m_{1}\right\rangle \otimes \cdots \otimes \mathbb{K}\left[x_{a_{t-1}+1}, \ldots, x_{a_{t}}\right] /\left\langle m_{t}\right\rangle \otimes \mathbb{K}\left[x_{a_{t+1}}, \ldots, x_{n}\right]$.
By Lemma 2.6, the ideals $\left\langle m_{i}\right\rangle$ are geometrically vertex decomposable for $i=1, \ldots, t$. Now repeatedly apply Theorem 2.9.

Remark 2.13. Corollary 2.12 can also be deduced via results from Stanley-Reisner theory, which we sketch out. One proceeds by induction on the number of generators of the complete intersection I. If $I=\left\langle x_{1} \cdots x_{k}\right\rangle$ has one generator, then one can prove directly from the definition of a vertex decomposable simplicial complex (e.g., see [29]) that the simplicial complex associated with I, denoted by $\Delta=\Delta(I)$, is vertex decomposable. For the induction step, note that if $I=\left\langle m_{1}, \ldots, m_{t}\right\rangle$, then $I=I_{1}+I_{2}=\left\langle m_{1}, \ldots, m_{t-1}\right\rangle+\left\langle m_{t}\right\rangle$. If $\left\{w_{1}, \ldots, w_{m}\right\}$ are variables that appear in the generator m_{t} and $\left\{x_{1}, \ldots, x_{\ell}\right\}$ are the other variables, then we have

$$
R / I \cong \mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right] / I_{1} \otimes \mathbb{K}\left[w_{1}, \ldots, w_{m}\right] / I_{2}
$$

By induction, the simplicial complexes Δ_{1} and Δ_{2} defined by I_{1} and I_{2} are vertex decomposable. As noted in Remark 2.11, the join $\Delta_{1} \star \Delta_{2}$ is also vertex decomposable. So, the ideal I is a square-free monomial ideal whose associated simplicial complex is vertex decomposable. The result now follows from [21, Theorem 4.4] which implies that the ideal I is also geometrically vertex decomposable.

3. TORIC IDEALS OF GRAPHS

This section initiates a study of the geometric vertex decomposability of toric ideals of graphs. We have subdivided this section into three parts: (a) a review of the needed background on toric ideals, (b) an analysis of the ideals $C_{y, I}$ and $N_{y, I}$ when I is the
toric ideal of a graph, and (c) an explanation of how the graph operation of "gluing" a cycle to a graph preserves geometric vertex decomposability.

We will study some specific families of graphs whose toric ideals are geometrically vertex decomposable in Sections 5 and 6.
3.1. Toric ideals of graphs. We review the relevant background on toric ideals of graphs. Our main references for this material are [30, 33].

Let $G=(V(G), E(G))$ be a finite simple graph with vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, \ldots, e_{t}\right\}$ where each $e_{i}=\left\{x_{j}, x_{k}\right\}$. Let $\mathbb{K}[E(G)]=$ $\mathbb{K}\left[e_{1}, \ldots, e_{t}\right]$ be a polynomial ring, where we treat the e_{i} 's as indeterminates. Similarly, let $\mathbb{K}[V(G)]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Consider the \mathbb{K}-algebra homomorphism $\varphi_{G}: \mathbb{K}[E(G)] \rightarrow \mathbb{K}[V(G)]$ given by

$$
\varphi_{G}\left(e_{i}\right)=x_{j} x_{k} \text { where } e_{i}=\left\{x_{j}, x_{k}\right\} \text { for all } i \in\{1, \ldots, t\} .
$$

The toric ideal of the graph G, denoted I_{G}, is the kernel of the homomorphism φ_{G}.
While the generators of I_{G} are defined implicitly, these generators (and a Gröbner basis) of I_{G} can be described in terms of the graph G, specifically, the walks in G. A walk of length ℓ is an alternating sequence of vertices and edges

$$
\left\{x_{i_{0}}, e_{i_{1}}, x_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{\ell}}, x_{i_{\ell}}\right\}
$$

such that $e_{i_{j}}=\left\{x_{i_{j-1}}, x_{i_{j}}\right\}$. The walk is closed if $x_{i_{\ell}}=x_{i_{0}}$. When the vertices are clear, we simply write the walk as $\left\{e_{i_{1}}, \ldots, e_{i_{\ell}}\right\}$. It straightforward to check that every closed walk of even length, say $\left\{e_{i_{1}}, \ldots, e_{i_{2 \ell}}\right\}$, results in an element of I_{G}; indeed

$$
\varphi_{G}\left(e_{i_{1}} e_{i_{3}} \cdots e_{i_{2 \ell-1}}-e_{i_{2}} e_{i_{4}} \cdots e_{2 \ell}\right)=x_{i_{0}} x_{i_{1}} \cdots x_{2 \ell-1}-x_{i_{1}} x_{i_{2}} \cdots x_{i_{2 \ell}}=0
$$

since $x_{i_{2 \ell}}=x_{i_{0}}$. Note that $e_{i_{1}} e_{i_{3}} \cdots e_{i_{2 \ell-1}}-e_{i_{2}} e_{i_{4}} \cdots e_{i_{2 \ell}}$ is a binomial. For any $\alpha=$ $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{N}^{t}$, let $e^{\alpha}=e_{1}^{a_{1}} e_{2}^{a_{2}} \cdots e_{t}^{a_{t}}$. A binomial $e^{\alpha}-e^{\beta} \in I_{G}$ is primitive if there is no other binomial $e^{\gamma}-e^{\delta} \in I_{G}$ such that $e^{\gamma} \mid e^{\alpha}$ and $e^{\delta} \mid e^{\beta}$. We can now describe generators and a universal Gröbner basis of I_{G}.

Theorem 3.1. Let G be a finite simple graph.
(1) ([33, Proposition 10.1.5]) The ideal I_{G} is generated by the set of binomials $\left\{e_{i_{1}} e_{i_{3}} \cdots e_{i_{2 \ell-1}}-e_{i_{2}} e_{i_{4}} \cdots e_{i_{2 \ell}} \mid\left\{e_{i_{1}}, \ldots, e_{i_{2 \ell}}\right\}\right.$ is a closed even walk of $\left.G\right\}$.
(2) ([33, Proposition 10.1.9]) The set of all primitive binomials that also correspond to closed even walks in G is a universal Gröbner basis of I_{G}.

Going forward, we will write $\mathcal{U}\left(I_{G}\right)$ to denote this universal Gröbner basis of I_{G}.
The next two results allow us to make some additional assumptions on G when studying I_{G}. First, we can ignore leaves in G when studying I_{G}. Recall that the degree of a vertex $x \in V(G)$ is the number of edges $e \in E(G)$ that contain x. An edge $e=\{x, y\}$ is a leaf of G if either x or y has degree one. In the statement below, if $e \in E(G)$, then by $G \backslash e$ we mean the graph formed by removing the edge e from G; note $V(G \backslash e)=V(G)$. We include a proof for completeness.
Lemma 3.2. Let G be a finite simple graph. If e is a leaf of G, then $I_{G}=I_{G \backslash e}$.
Proof. For the containment $I_{G \backslash e} \subseteq I_{G}$, observe that any closed even walk in $G \backslash e$ is also a closed even walk in G. For the reverse containment, if a closed even walk $\left\{e_{i_{1}}, \ldots, e, \ldots, e_{i_{2 \ell}}\right\}$ contains the leaf e, then e must be repeated, i.e., $\left\{e_{i_{1}}, \ldots, e, e, \ldots, e_{i_{2 \ell}}\right\}$. The corresponding binomial $b_{1}-b_{2}$ is divisible by e, i.e., $b_{1}-b_{2}=e\left(b_{1}^{\prime}-b_{2}^{\prime}\right) \in I_{G}$. But since I_{G} is a prime binomial ideal, this forces $b_{1}^{\prime}-b_{2}^{\prime} \in I_{G}$. Thus every minimal generator of I_{G} corresponds to a closed even walk that does not go through e, and thus is an element of $I_{G \backslash e}$.

A graph G is connected if for any two pairs of vertices in G, there is a walk in G between these two vertices. A connected component of G is a subgraph of G that is connected, but it is not contained in any larger connected subgraph. To study the geometric vertex decomposability of I_{G}, we may always assume that G is connected.
Theorem 3.3. Suppose that $G=H \sqcup K$ is the disjoint union of two finite simple graphs. Then I_{G} is geometrically vertex decomposable in $\mathbb{K}[E(G)]$ if and only if I_{H}, and respectively I_{K}, is geometrically vertex decomposable in $\mathbb{K}[E(H)]$, and respectively $\mathbb{K}[E(K)]$.

Proof. Apply Theorem 2.9 to $I_{G}=I_{H}+I_{K}$ in $\mathbb{K}[E(G)]=\mathbb{K}[E(H)] \otimes \mathbb{K}[E(K)]$.
The well-known result below gives a condition for $\mathbb{K}[E(G)] / I_{G}$ to be CohenMacaulay.

Theorem 3.4. Let G be a finite simple graph with toric ideal $I_{G} \subseteq \mathbb{K}[E(G)]$. Suppose that there is a monomial order $<$ such that $\mathrm{in}_{<}\left(I_{G}\right)$ is a square-free monomial ideal. Then $\mathbb{K}[E(G)] / I_{G}$ is Cohen-Macaulay.

Proof. If $\mathrm{in}_{<}\left(I_{G}\right)$ is a square-free monomial ideal, then I_{G} is normal by [30, Proposition 13.15]. Thus, by Hochster [19], $\mathbb{K}[E(G)] / I_{G}$ is Cohen-Macaulay.
3.2. Structure results about $N_{y, I}$ and $C_{y, I}$. To study the geometric vertex decomposability of I_{G}, we need access to both $N_{y, I_{G}}$ and $C_{y, I_{G}}$. While determining $C_{y, I_{G}}$ in terms of G will prove to be subtle, the ideal $N_{y, I_{G}}$ has a straightforward description.

Lemma 3.5. Let G be a finite simple graph with toric ideal $I_{G} \subseteq \mathbb{K}[E(G)]$. Let $<$ by any y-compatible monomial order with $y=e$ for some edge e of G. Then

$$
N_{y, I_{G}}=I_{G \backslash e} .
$$

In particular, a universal Gröbner basis of $N_{y, I_{G}}$ consists of all the binomials in the universal Gröbner basis $\mathcal{U}\left(I_{G}\right)$ of I_{G} where neither term is divisible by y.

Proof. By Theorem 3.1 (2), I_{G} has a universal Gröbner basis $\mathcal{U}\left(I_{G}\right)$ of primitive binomials associated to closed even walks of G. Write this basis as $\mathcal{U}\left(I_{G}\right)=\left\{y^{d_{1}} q_{1}+\right.$ $\left.r_{1}, \ldots, y^{d_{k}} q_{k}+r_{k}, g_{1}, \ldots, g_{r}\right\}$, where $d_{i}>0$ and where y does not divide any term of g_{i} and q_{i}. By definition

$$
N_{y, I_{G}}=\left\langle g_{1}, \ldots, g_{r}\right\rangle .
$$

In particular, $N_{y, I_{G}}$ is generated by primitive binomials in $\mathcal{U}\left(I_{G}\right)$ which do not include the variable y. These primitive binomials correspond to closed even walks in G which do not pass through the edge e. In particular, they are also closed even walks in $G \backslash e$, so $\left\{g_{1}, \ldots, g_{r}\right\} \subset \mathcal{U}\left(I_{G \backslash e}\right)$, the universal Gröbner basis of $I_{G \backslash e}$ from Theorem 3.1 (2).

To show the reverse containment $\mathcal{U}\left(I_{G \backslash e}\right) \subseteq\left\{g_{1}, \ldots, g_{r}\right\}$, suppose that there is some binomial $u-v \in \mathcal{U}\left(I_{G \backslash e}\right)$ which is not in $\mathcal{U}\left(I_{G}\right)$. Then there would be some closed even walk of G which is not primitive, but becomes primitive after deleting the edge e. For $u-v$ to not be primitive means that there is some primitive binomial $u^{\prime}-v^{\prime} \in \mathcal{U}\left(I_{G}\right)$ such that $u^{\prime} \mid u$ and $v^{\prime} \mid v$. Since y does not divide u or v, we must have $u^{\prime}-v^{\prime} \in \mathcal{U}\left(I_{G \backslash e}\right)$, a contradiction to $u-v$ being primitive. Therefore $\mathcal{U}\left(I_{G \backslash e}\right)=$ $\left\{g_{1}, \ldots, g_{r}\right\}$. Since $\left\{g_{1}, \ldots, g_{r}\right\}$ generates $I_{G \backslash e}$, we have $I_{G \backslash e}=\left\langle g_{1}, \ldots, g_{r}\right\rangle=N_{y, I_{G}}$, thus proving the result.

It is more difficult to give a similar description for $C_{y, I_{G}}$. For example, $C_{y, I_{G}}$ may not be prime, and thus, it may not be the toric ideal of any graph. If we make the extra assumption that the binomial generators in $\mathcal{U}\left(I_{G}\right)$ are doubly square-free (i.e.,
each binomial is the difference of two square-free monomials), then it is possible to give a slightly more concrete description of $C_{y, I_{G}}$. We work out these details below.

Fix a variable y in $\mathbb{K}[E(G)]$, and write the elements of $\mathcal{U}\left(I_{G}\right)$ as $\left\{y^{d_{1}} q_{1}+\right.$ $\left.r_{1}, \ldots, y^{d_{k}} q_{k}+r_{k}, g_{1}, \ldots, g_{r}\right\}$, where $d_{i}>0$ and where y does not divide q_{i} or any term of g_{i}. Since we are assuming the elements in $\mathcal{U}\left(I_{G}\right)$ are doubly square-free, we have $d_{i}=1$ for $i=1, \ldots, k$ and q_{1}, \ldots, q_{k} are square-free monomials. Consequently

$$
\operatorname{in}_{y}\left(I_{G}\right)=\left\langle y q_{1}, \ldots, y q_{k}, g_{1}, \ldots, g_{r}\right\rangle
$$

is generated by doubly square-free binomials and square-free monomials. Let $\bigcap_{j} Q_{j}$ be the primary decomposition of $\left\langle y q_{1}, \ldots, y q_{k}\right\rangle$. Each Q_{j} is an ideal generated by variables since $\left\langle y q_{1}, \ldots, y q_{k}\right\rangle$ is a square-free monomial ideal. Thus

$$
\operatorname{in}_{y}\left(I_{G}\right)=\left(\bigcap_{j} Q_{j}\right)+\left\langle g_{1}, \ldots, g_{r}\right\rangle=\bigcap_{j}\left(Q_{j}+\left\langle g_{1}, \ldots, g_{r}\right\rangle\right) .
$$

If there is a $g_{l}=u_{l}-v_{l}$ with either u_{l} or $v_{l} \in Q_{j}$, then $Q_{j}+\left\langle g_{1}, \ldots, g_{r}\right\rangle$ can be further decomposed into an intersection of ideals generated by variables and squarefree binomials.

Continuing this process, we can write $\operatorname{in}_{y}\left(I_{G}\right)=\bigcap_{i} P_{i}$, where each $P_{i}=M_{i}+T_{i}$, with M_{i} an ideal generated by a subset of indeterminates in $\left\{e_{1}, \ldots, e_{t}\right\}$, and $T_{i} \subseteq$ $\mathcal{U}\left(I_{G}\right)$ is an ideal of binomials generated by $g_{l}=u_{l}-v_{l}$ where $u_{l}, v_{l} \notin M_{i}$. Again, we point out that each binomial is a doubly square-free binomial by our assumption on $\mathcal{U}\left(I_{G}\right)$. As the next result shows, the binomial ideal T_{i} is a toric ideal corresponding to a subgraph of G.

Theorem 3.6. Let G be a finite simple graph with toric ideal $I_{G} \subseteq \mathbb{K}[E(G)]$, and suppose that the elements of $\mathcal{U}\left(I_{G}\right)$ are doubly square-free. For a fixed variable y in $\mathbb{K}[E(G)]$, suppose that

$$
\operatorname{in}_{y}\left(I_{G}\right)=\bigcap_{i} P_{i} \text { with } P_{i}=M_{i}+T_{i}
$$

using the notation as above. Let $E_{i} \subseteq E(G)$ be the set of edges that correspond to the variables in $M_{i}+\langle y\rangle$, and let $G \backslash E_{i}$ be the graph G with all the edges of E_{i} removed. Then $T_{i}=I_{G \backslash E_{i}}$.
Proof. The generators of T_{i} are those elements of $\mathcal{U}\left(I_{G}\right)$ whose terms are not divisible by any variable contained in $M_{i}+\langle y\rangle$. So a generator of T_{i} corresponds to a primitive closed even walk that does not contain any of the edges in E_{i}. Therefore, each generator of T_{i} is a closed even walk in $G \backslash E_{i}$, and thus $T_{i} \subset I_{G \backslash E_{i}}$ by Theorem 3.1 (1). Conversely, suppose that $\Gamma \in \mathcal{U}\left(I_{G \backslash E_{i}}\right)$. Then by Theorem 3.1 (2), Γ corresponds to some primitive closed even walk of G not passing through any edge of E_{i}. These are exactly the generators in T_{i}.

We now arrive at a primary decomposition of $\operatorname{in}_{y}\left(I_{G}\right)$.
Corollary 3.7. Let G be a finite simple graph with toric ideal $I_{G} \subseteq \mathbb{K}[E(G)]$, and suppose that the elements of $\mathcal{U}\left(I_{G}\right)$ are doubly square-free. For a fixed variable y in $\mathbb{K}[E(G)]$, suppose that

$$
\operatorname{in}_{y}\left(I_{G}\right)=\bigcap_{i} P_{i}
$$

using the notation as above. Then each P_{i} is a prime ideal, and after removing redundant components, this intersection defines a primary decomposition of $\mathrm{in}_{y}\left(I_{G}\right)$.

Proof. By the previous result, $P_{i}=M_{i}+I_{G \backslash E_{i}}$ for every i. So the fact that P_{i} is a prime ideal immediately follows from the fact that any toric ideal is prime, and that no cancellation occurs between variables in M_{i} and elements of $T_{i}=I_{G \backslash E_{i}}$.

If I_{G} is generated by a doubly square-free universal Gröbner basis, choosing any $y=e_{i}$ defines a geometric vertex decomposition of I_{G} with respect to y by Lemma 2.3. Note that $\langle y\rangle$ appears in the primary decomposition of $\left\langle y q_{1}, \ldots, y q_{k}\right\rangle$, so one prime ideal in the decomposition given in Corollary $3.7 \mathrm{in}_{y}\left(I_{G}\right)$ will always be $\langle y\rangle+\left\langle g_{1}, \ldots, g_{r}\right\rangle$. But this is exactly $\langle y\rangle+N_{y, I_{G}}=\langle y\rangle+I_{G \backslash e}$, by Theorem 3.5. As the next theorem shows, if we omit this prime ideal, the remaining prime ideals form a primary decomposition of $C_{y, I_{G}}$.

Theorem 3.8. Let G be a finite simple graph with toric ideal $I_{G} \subseteq \mathbb{K}[E(G)]$, and suppose that the elements of $\mathcal{U}\left(I_{G}\right)$ are doubly square-free. Fix any variable $y=e_{i}$. Suppose that after relabelling the primary decomposition $\mathrm{in}_{y}\left(I_{G}\right)$ of Corollary 3.7 we have

$$
\begin{equation*}
\operatorname{in}_{y}\left(I_{G}\right)=\bigcap_{i=0}^{d}\left(M_{i}+I_{G \backslash E_{i}}\right)=\left(\langle y\rangle+I_{G \backslash e_{i}}\right) \cap \bigcap_{i=1}^{d}\left(M_{i}+I_{G \backslash E_{i}}\right) . \tag{2}
\end{equation*}
$$

Then

$$
C_{y, I_{G}}=\bigcap_{i=1}^{d}\left(M_{i}+I_{G \backslash E_{i}}\right)
$$

is a primary decomposition for $C_{y, I_{G}}$. Furthermore, if $<$ is a y-compatible monomial order, then (2) is a geometric vertex decomposition for I_{G} with respect to y.

Proof. The fact about the geometric vertex decomposition follows from Lemma 2.3.
Since $\mathcal{U}\left(I_{G}\right)$ contains doubly square-free binomials, we can write

$$
\operatorname{in}_{y}\left(I_{G}\right)=\left\langle y m_{1}, \ldots, y m_{k}, g_{1}, \ldots, g_{r}\right\rangle=\left\langle y, g_{1} \ldots, g_{r}\right\rangle \cap\left\langle m_{1}, \ldots, m_{k}, g_{1}, \ldots, g_{r}\right\rangle
$$

where y does not divide any m_{i} or any term of any g_{i}. By definition,

$$
N_{y, I_{G}}=\left\langle g_{1}, \ldots, g_{r}\right\rangle \text { and } C_{y, I_{G}}=\left\langle m_{1}, \ldots, m_{k}, g_{1}, \ldots, g_{r}\right\rangle .
$$

Applying the process described before Theorem 3.6 to $\left\langle m_{1}, \ldots, m_{k}, g_{1}, \ldots, g_{r}\right\rangle$ proves the first claim.

Remark 3.9. Let M be a square-free monomial ideal and I_{H} a toric ideal of a graph H where elements of $\mathcal{U}(H)$ are doubly square-free. The arguments presented above can be adapted to prove that $M+I_{H}$ has a primary decomposition into prime ideals of the form $M_{i}+T_{i}$ as in Theorem 3.6.
3.3. Geometric vertex decomposability under graph operations. Given a graph G whose toric ideal I_{G} is geometrically vertex decomposable, it is natural to ask if there are any graph operations we can perform on G to make a new graph H so that the associated toric ideal I_{H} is also geometrically vertex decomposable. We show that the operation of "gluing" an even cycle onto a graph G is one such operation.

We make this more precise. Given a graph $G=(V(G), E(G))$ and a vertex subset $W \subseteq V(G)$, the induced graph of G on W, denoted G_{W}, is the graph $G_{W}=$ ($W, E\left(G_{W}\right)$) where $E\left(G_{W}\right)=\{e \in E(G) \mid e \subseteq W\}$. A graph G is a cycle (of length n) if $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $E(G)=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\}, \ldots,\left\{x_{n-1}, x_{n}\right\},\left\{x_{n}, x_{1}\right\}\right\}$.

Following [9, Construction 4.1], we define the gluing of two graphs as follows. Let G_{1} and G_{2} be two graphs, and suppose that $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$ are induced subgraphs of G_{1} and G_{2} that are isomorphic. If $\varphi: H_{1} \rightarrow H_{2}$ is the corresponding graph isomorphism, we let $G_{1} \cup_{\varphi} G_{2}$ denote the disjoint union $G_{1} \sqcup G_{2}$ with the associated edges and vertices of $H_{1} \cong H_{2}$ being identified. We may say G_{1} and G_{2} are glued along H if both the induced subgraphs $H_{1} \cong H_{2} \cong H$ and φ are clear.

Example 3.10. Figure 1 (which is adapted from [9]) shows the gluing of a cycle C of even length onto a graph G to make a new graph H. The labelling is included to help illuminate the proof of the next theorem. In this figure, the cycle C has edges

Figure 1. Gluing an even cycle C to a graph G along an edge.
$f_{1}, f_{2}, \ldots, f_{2 n}$. The edge e is part of the graph G. We have glued C and G along the edge $e \cong f_{2 n}$.

The geometric vertex decomposability property is preserved when an even cycle is glued along an edge of a graph whose toric ideal is geometrically vertex decomposable.

Theorem 3.11. Suppose that G is a graph such that I_{G} is geometrically vertex decomposable in $\mathbb{K}[E(G)]$. Let H be the graph obtained from G by gluing a cycle of even length onto an edge of G (as in Figure 1). Then I_{H} is geometrically vertex decomposable in $\mathbb{K}[E(H)]$.
Proof. The ideal I_{H} is clearly unmixed since I_{H} is a prime ideal. Now let $E(G)=$ $\left\{e_{1}, \ldots, e_{s}\right\}$ denote the edges of G and let $E(C)=\left\{f_{1}, \ldots, f_{2 n}\right\}$ denote the edges of the even cycle C. Let e be any edge of G, and after relabelling the f_{i} 's we can assume that C is glued to G along $f_{2 n}$ and e (see Figure 1). Consequently,

$$
E(H)=E(G) \cup\left\{f_{1}, \ldots, f_{2 n-1}\right\}
$$

Let $e=f_{2 n}=\{a, b\}$, and suppose that $a \in f_{1}$ and $b \in f_{2 n-1}$, i.e., a is the vertex that f_{1} shares with $f_{2 n}$, and b is the vertex of $f_{2 n-1}$ shared with $f_{2 n}$. By Theorem 3.1 (2), a universal Gröbner basis of I_{H} is given by the primitive binomials that correspond to even closed walks. Consider any even closed walk that passes through f_{1}. It will have the form

$$
\left(f_{1}, f_{2}, \ldots, f_{2 n-1}, e\right) \text { or }\left(f_{1}, f_{2}, \ldots, f_{2 n-1}, e_{j_{1}}, \ldots, e_{j_{2 k-1}}\right)
$$

for some odd walk $\left(e_{j_{1}}, \ldots, e_{j_{2 k-1}}\right)$ in G that connects the vertex a of f_{1} with the vertex b of $f_{2 n-1}$. Thus, any primitive binomial involving the variable f_{1} has the form

$$
f_{1} f_{3} \cdots f_{2 n-1}-e f_{2} \cdots f_{2 n-2}
$$

or

$$
f_{1} f_{3} \cdots f_{2 n-1} e_{j_{2}} e_{j_{4}} \cdots e_{j_{2 k-2}}-f_{2} f_{4} \cdots f_{2 n-2} e_{j_{1}} \cdots e_{j_{2 k-1}} .
$$

Let $y=f_{1}$ and let $<$ be a y-compatible monomial order, and consider the universal Gröbner basis of I_{H} written as $\mathcal{U}\left(I_{H}\right)=\left\{y^{d_{1}} q_{1}+r_{1}, \ldots, y^{d_{k}} q_{k}+r_{k}, g_{1}, \ldots, g_{r}\right\}$, where $d_{i}>0$ and where y does not divide any term of g_{i} and q_{i}. Each g_{1}, \ldots, g_{r} corresponds to a primitive closed even walk that does not pass through f_{1}. Consequently, each g_{i} corresponds to a primitive closed even walk in G. Thus $\left\langle g_{1}, \ldots, g_{r}\right\rangle=I_{G}$ (we abuse notation and write I_{G} for the induced ideal $\left.I_{G} \mathbb{K}[E(H)]\right)$.

Additionally, by Lemma 3.5 we have $N_{y, I_{H}}=\left\langle g_{1}, \ldots, g_{r}\right\rangle=I_{H \backslash f_{1}}$. But note that in $H \backslash f_{1}$, the edge f_{2} is a leaf. Removing f_{2} from $\left(H \backslash f_{1}\right)$ makes f_{3} a leaf, and so on. So, by repeatedly applying Lemma 3.2 , we have

$$
N_{y, I_{H}}=\left\langle g_{1}, \ldots, g_{r}\right\rangle=I_{H \backslash f_{1}}=I_{\left(H \backslash f_{1}\right) \backslash f_{2}}=\cdots=I_{\left(\cdots\left(H \backslash f_{1}\right) \cdots\right) \backslash f_{2 n-1}}=I_{G} .
$$

Figure 2. A graph whose toric ideal is geometrically vertex decomposable

Since $f_{1} f_{3} \cdots f_{2 n-1}-e f_{2} \cdots f_{2 n-2}$ is a primitive binomial $f_{3} \cdots f_{2 n-1} \in C_{y, I_{H}}$. Furthermore, by our discussion above, any other primitive binomial containing a term divisible by $y=f_{1}$ has the form

$$
f_{1} f_{3} \cdots f_{2 n-1} e_{j_{2}} e_{j_{4}} \cdots e_{j_{2 k-2}}-f_{2} f_{4} \cdots f_{2 n-2} e_{j_{1}} \cdots e_{j_{2 k-1}}
$$

and consequently $f_{3} \cdots f_{2 n-1} e_{j_{2}} \cdots e_{j_{2 k-2}} \in C_{y, I_{H}}$. But this form is divisible by $f_{3} \cdots f_{2 n-1}$, so

$$
C_{y, I_{H}}=\left\langle f_{3} \cdots f_{2 n-1}, g_{1}, \ldots, g_{r}\right\rangle=\left\langle f_{3} \cdots f_{2 n-1}\right\rangle+I_{G}
$$

It is now straightforward to check that

$$
\operatorname{in}_{y}\left(I_{H}\right)=\left\langle f_{1} f_{3} \cdots f_{2 n-1}\right\rangle+I_{G}=C_{y, I_{H}} \cap\left(N_{y, I_{H}}+\langle y\rangle\right),
$$

thus giving a geometric vertex decomposition of I_{H} with respect to y. (We could also deduce this from Lemma 2.3 since each $d_{i}=1$ in our description of $\mathcal{U}\left(I_{H}\right)$ above.)

To complete the proof, the contraction of $N_{y, I_{H}}$ to $\mathbb{K}\left[f_{2}, \ldots, f_{2 n}, e_{1}, \ldots, e_{s}\right]$ satisfies

$$
N_{y, I_{H}}=\langle 0\rangle+I_{G} \subseteq \mathbb{K}\left[f_{2}, \ldots, f_{2 n}\right] \otimes \mathbb{K}[E(G)]
$$

So $N_{y, I_{H}}$ is geometrically vertex decomposable by Theorem 2.9 since I_{G} is geometrically vertex decomposable in $\mathbb{K}[E(G)]$, and similarly for $\langle 0\rangle$ in $\mathbb{K}\left[f_{2}, \ldots, f_{n}\right]$. The ideal $C_{y, I_{H}}$ contracts to

$$
C_{y, I_{H}}=\left\langle f_{3} \cdots f_{2 n-1}\right\rangle+I_{G} \subseteq \mathbb{K}\left[f_{2}, \ldots, f_{2 n}\right] \otimes \mathbb{K}[E(G)]
$$

Since $\left\langle f_{3} f_{5} \cdots f_{2 n-1}\right\rangle \subseteq \mathbb{K}\left[f_{2}, \ldots, f_{2 n}\right]$ is geometrically vertex decomposable by Lemma $2.6(2)$, and I_{G} is geometrically vertex decomposable in $\mathbb{K}[E(G)]$ by hypothesis, the ideal $C_{y, I_{H}}$ is geometrically vertex decomposable by again appealing to Theorem 2.9. Thus I_{H} is geometrically vertex decomposable, as desired.

Example 3.12. Let G be a cycle of even length, i.e., G has edge set $e_{1}, \ldots, e_{2 n}$ with $\left(e_{1}, \ldots, e_{2 n}\right)$ a closed even walk. The ideal $I_{G}=\left\langle e_{1} e_{3} \cdots e_{2 n-1}-e_{2} e_{4} \cdots e_{2 n}\right\rangle$ is geometrically vertex decomposable by Lemma 2.6 (2). By repeatedly applying Theorem 3.11, we can glue on even cycles to make new graphs whose toric ideals are geometrically vertex decomposable. Note that by Lemma 3.2, we can also add leaves (and leaves to leaves, and so on) and not destroy the geometrically vertex decomposability property. These constructions allow us to build many graphs whose toric ideal is geometrically vertex decomposable.

As a specific example, the graph in Figure 2 is geometrically vertex decomposable since we have repeatedly glued cycles of length four along edges, and then added some leaves. This bipartite graph is also an example of what Gitler, Reyes, and Villarreal call a ring graph [11, Definition 2.5].

4. Toric ideals of graphs and the glicci property

In this section we recall some of the basics of Gorenstein liaison (Section 4.1) and then show that some large classes of toric ideals of graphs are glicci (Section 4.2). This section is partly motivated by a result of Klein and Rajchgot [21, Theorem 4.4], which says that geometrically vertex decomposable ideals are glicci. We note that while geometrically vertex decomposable ideals are glicci, glicci ideals need not be geometrically vertex decomposable. Indeed, we do not know if the toric ideals of graphs proven to be glicci in this section are also geometrically vertex decomposable. However, the results of this section make use of the geometric vertex decomposition language of Remark 2.2. For the remainder of the section, we will let $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ denote the graded polynomial ring with respect to the standard grading.
4.1. Gorenstein liaison preliminaries. We provide a quick review of the basics of Gorenstein liaison; our main references for this material are [24, 25].

Definition 4.1. Suppose that V_{1}, V_{2}, X are subschemes of \mathbb{P}^{n} defined by saturated ideals $I_{V_{1}}, I_{V_{2}}$ and I_{X} of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$, respectively. Suppose also that $I_{X} \subset$ $I_{V_{1}} \cap I_{V_{2}}$ and $I_{V_{1}}=I_{X}: I_{V_{2}}$ and $I_{V_{2}}=I_{X}: I_{V_{1}}$. We say that V_{1} and V_{2} are directly algebraically G-linked if X is Gorenstein. In this case we write $V_{1} \stackrel{X}{\sim} V_{2}$.

We can now define an equivalence relation using the notion of algebraically G linked.

Definition 4.2. Let V_{1}, \ldots, V_{k} be subschemes of \mathbb{P}^{n} defined by the saturated ideals $I_{V_{1}}, \ldots, I_{V_{k}}$. If there are Gorenstein varieties X_{1}, \ldots, X_{k-1} such that $V_{1} \underset{\sim}{X_{1}} V_{2} \underset{\sim}{X_{2}}$ $\ldots \stackrel{X_{k-1}}{\sim} V_{k}$, then we say V_{1} and V_{k} are in the same Gorenstein liaison class (or G liaison class) and V_{1} and V_{k} are G-linked in $k-1$ steps. If V_{k} is a complete intersection, then we say V_{1} is in the Gorenstein liaison class of a complete intersection or glicci.

In what follows, we say a homogeneous saturated ideal I is glicci if the subscheme defined by I is glicci.

Example 4.3. Consider the twisted cubic $V_{1} \subset \mathbb{P}^{3}$ with

$$
I_{V_{1}}=\left\langle x z-y^{2}, x w-z^{2}, x w-y z\right\rangle \subseteq \mathbb{K}[x, y, z]
$$

Choose two of these quadrics, and let X be subscheme defined by their intersection. It is an exercise to check that X is the union of V_{1} and a line, which we denote by V_{2}. Therefore, $V_{1} \stackrel{X}{\sim} V_{2}$. Furthermore, since X is a complete intersection, and thus Gorenstein, the twisted cubic and a line are directly G-linked.

Remark 4.4. One of the main open questions in liaison theory asks if every arithmetically Cohen-Macaulay subscheme of \mathbb{P}^{n} is glicci (see [22, Question 1.6]).

While it can be difficult in general to find a sequence of G-links between two varieties, there is a tool called an elementary G-biliaison which simplifies the process when it exists.

Definition 4.5. Let $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ with the standard grading. Let C and I be homogeneous, saturated, and unmixed ideals of S such that $\mathrm{ht}(C)=\mathrm{ht}(I)$. Suppose that there is some $d \in \mathbb{Z}$ and Cohen-Macaulay homogeneous ideal $N \subset C \cap I$ with $\operatorname{ht}(N)=\operatorname{ht}(I)-1$ such that I / N is isomorphic to $[C / N](-d)$ as an R / N-module. If N is generically Gorenstein, then I is obtained from C via an elementary G-biliaison of height d.

In fact, suppose that V and W are two subschemes of \mathbb{P}^{n} such that I_{V} and I_{W} are homogeneous, saturated and unmixed ideals. If I_{V} is obtained from I_{W} by an elementary G-biliaison, then V and W are G-linked in two steps [17, Theorem 3.5]. Moreover, elementary G-biliaisons preserve the Cohen-Macaulay property. This and other properties of G-linked varieties can be found in [24]. Indeed, we will use the following:

Lemma 4.6 ([24, Corollary 5.13]). Let I and J be homogeneous, saturated ideals in S and assume that I and J are directly G-linked. Then S / I is Cohen-Macaulay if and only S / J is Cohen-Macaulay.

Migliore and Nagel have given a criterion for an ideal to be glicci.
Theorem 4.7 ([25, Lemma 2.1]). Let $I \subset S$ be a homogeneous ideal such that S / I is Cohen-Macaulay and generically Gorenstein. If $f \in S$ is a homogeneous non-zerodivisor of S / I, then the ideal $I+\langle f\rangle \subset S$ is glicci.

Another criterion for an ideal to be glicci is geometric vertex decomposability. In fact a geometric vertex decomposition gives rise to an elementary G-biliaison of height 1.
Lemma 4.8 ([21, Corollary 4.3]). Let I be a homogeneous, saturated, unmixed ideal of S and $i n_{y} I=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)$ a nondegenerate geometric vertex decomposition with respect to some variable $y=x_{i}$ of S. Assume that $N_{y, I}$ is Cohen-Macaulay and generically Gorenstein and that $C_{y, I}$ is also unmixed. Then I is obtained from $C_{y, I}$ by an elementary G-biliaison of height 1.
Theorem 4.9 ([21, Theorem 4.4]). If the saturated homogeneous ideal $I \subseteq S$ is geometrically vertex decomposable, then I is glicci.

As noted in the introduction of the paper, the previous result partially motivates our interest in developing a deeper understanding of geometrically vertex decomposable ideals.
4.2. Some toric ideals of graphs which are glicci. In this section we use Migliore and Nagel's result [25, Lemma 2.1] (see Theorem 4.7 above) to show that some classes of toric ideals of graphs are glicci. We begin with a straightforward consequence of this theorem together with [9, Theorem 3.7].
TheOrem 4.10. Let G be a finite simple graph such that $\mathbb{K}[E(G)] / I_{G}$ is CohenMacaulay. Let H be the graph obtained by gluing an even cycle C to G along any edge. Then I_{H} is glicci.

Proof. As in the proof of Theorem 3.11, let $E(G)=\left\{e_{1}, \ldots, e_{s}\right\}$ denote the edges of G and $E(C)=\left\{f_{1}, \ldots, f_{2 n}\right\}$ denote the (consecutive) edges of the even cycle C. Assume that C is glued to G along $f_{2 n}$ and e. Then $\mathbb{K}[E(H)]=\mathbb{K}[E(G)] \otimes \mathbb{K}\left[f_{1}, \ldots, f_{2 n-1}\right]$. For convenience, write I_{G} for the induced ideal $I_{G} \mathbb{K}[E(H)]$.

Let $F=f_{1} f_{3} \cdots f_{2 n-1}-f_{2} f_{4} \cdots f_{2 n-2} e$ be the primitive binomial associated to the even cycle C. By [9, Theorem 3.7], $I_{H}=I_{G}+\langle F\rangle$. As I_{G} is prime, we have that F is a homogeneous non-zero-divisor on $\mathbb{K}[E(H)] / I_{G}$ and $\mathbb{K}[E(H)] / I_{G}$ is generically Gorenstein. As $\mathbb{K}[E(H)] / I_{G}$ is Cohen-Macaulay by assumption, Theorem 4.7 implies that I_{H} is glicci.

We can combine a one step geometric vertex decomposition with Theorem 4.7 to see that many toric ideals of graphs which contain 4 -cycles are glicci. Our main theorem in this direction is Theorem 4.14, which says that the toric ideal of a gap-free graph containing a 4 -cycle is glicci. We begin with a general lemma which is not necessarily about toric ideals of graphs.

Lemma 4.11. Let $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ with the standard grading, and let $I \subset S$ be a homogeneous, saturated ideal such that S / I is Cohen-Macaulay. Assume the following conditions are satisfied:
(1) I is square-free in y with a nondegenerate geometric vertex decomposition

$$
\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right) ;
$$

(2) I contains a homogeneous polynomial Q of degree 2 such that y divides some term of Q; and
(3) $S / N_{y, I}$ is Cohen-Macaulay and generically Gorenstein, and $C_{y, I}$ is radical.

Then I is glicci.
Proof. By assumption (1), we have a nondegenerate geometric vertex decomposition $\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)$. Since I is Cohen-Macaulay and hence unmixed, we can conclude that $C_{y, I}$ is equidimensional by [21, Lemma 2.8]. Since $C_{y, I}$ is also radical by assumption (3), $C_{y, I}$ must be unmixed. Furthermore, because $S / N_{y, I}$ is CohenMacaulay and generically Gorenstein by assumption (3), we may use Lemma 4.8 to see that the geometric vertex decomposition gives rise to an elementary G-biliaison of height 1 from I to $C_{y, I}$. Hence S / I being Cohen-Macaulay implies that $S / C_{y, I}$ is too by Lemma 4.6.

Let $<$ be a y-compatible monomial order. By assumptions (1) and (2), I contains a degree 2 form which can be written as $Q=y f+R$ where y does not divide any term in f or R. Thus, $f \in C_{y, I}$. Let $z=\mathrm{in}_{<}(f)$. Since the geometric vertex decomposition $\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)$ is nondegenerate, we have that $C_{y, I} \neq\langle 1\rangle$. Hence $C_{y, I}$ has a reduced Gröbner basis of the form $\left\{f^{\prime}, t_{1}, \ldots, t_{s}\right\}$ where $\mathrm{in}_{<}\left(f^{\prime}\right)=z$ and z does not divide any term of any $t_{i}, 1 \leqslant i \leqslant s$. Let $C^{\prime}=\left\langle t_{1}, \ldots, t_{s}\right\rangle$ so that $C_{y, I}=\left\langle f^{\prime}\right\rangle+C^{\prime}$. With this set-up, we see that $f^{\prime} \neq 0$ is a non-zero-divisor on S / C^{\prime}.

Let $S_{\hat{z}}=\mathbb{K}\left[x_{1}, \ldots, \hat{z}, \ldots, x_{n}\right]$. Then $S / C_{y, I} \cong S_{\hat{z}} / C^{\prime}$. Thus, $S_{\hat{z}} / C^{\prime}$ (and hence S / C^{\prime} after extending C^{\prime} to S) is Cohen-Macaulay because $S / C_{y, I}$ is Cohen-Macaulay. Similarly, $C_{y, I}$ being radical implies that C^{\prime} (viewed in $S_{\hat{z}}$ or S) is radical. Thus, by [25, Lemma 2.1] (see Theorem 4.7), we conclude that $C_{y, I}$ is glicci.

By applying the elementary G-biliaison between I and $C_{y, I}$ once more, we conclude that I is also glicci.

We will now apply Lemma 4.11 to see that certain classes of toric ideals of graphs are glicci. In what follows, let $y=x_{i}$ be an indeterminate in $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and let < be a y-compatible monomial order. Let M_{y}^{G} be the ideal generated by all monomials $m \in S$ such that $y m-r \in \mathcal{U}\left(I_{G}\right)$ and in ${ }_{<}(y m-r)=y m$. Observe that M_{y}^{G} does not depend on the choice of y-compatible monomial order. Furthermore, since I_{G} is prime and $y m-r$ is primitive, y cannot appear in both terms of the binomial. We will consider generalizations of M_{y}^{G} in Section 6.
Theorem 4.12. Let G be a finite simple graph where $\mathbb{K}[E(G)] / I_{G}$ is Cohen-Macaulay. Suppose that there exists an edge $y \in E(G)$ such that y is contained in a 4-cycle of G, and a y-compatible monomial order $<_{y}$ such that $\mathrm{in}_{y}\left(I_{G}\right)$ is square-free in y. Suppose also that $I_{G \backslash y}$ is Cohen-Macaulay and $I_{G \backslash y}+M_{y}^{G}$ is radical. Then I_{G} is glicci.
Proof. We will show that the three assumptions of Lemma 4.11 hold. Let $<$ be a y-compatible monomial order.

Since I_{G} is square-free in y, there exists a geometric vertex decomposition

$$
\operatorname{in}_{y}\left(I_{G}\right)=C_{y, I_{G}} \cap\left(N_{y, I_{G}}+\langle y\rangle\right)
$$

by Lemma 2.3. Then $N_{y, I_{G}}=I_{G \backslash y}$ and $C_{y, I_{G}}=I_{G \backslash y}+M_{y}^{G}$. Since I_{G} is a toric ideal of a graph, and hence generated in degree 2 or higher, we do not have that
$C_{y, I}=\langle 1\rangle$. Furthermore, I_{G} and $N_{y, I_{G}}$ are each the toric ideal of a graph, hence radical (and therefore saturated since I_{G} is not the irrelevant ideal), and $C_{y, I_{G}}$ is radical by assumption. Thus, by [21, Proposition 2.4], we conclude that the geometric vertex decomposition $\operatorname{in}_{y}\left(I_{G}\right)=C_{y, I_{G}} \cap\left(N_{y, I_{G}}+\langle y\rangle\right)$ is nondegenerate since the reduced Gröbner basis of I_{G} involves y by assumption. Thus, assumption (1) of Lemma 4.11 holds.

Assumption (2) of Lemma 4.11 holds because there exists an edge $y \in E(G)$ such that y is contained in a 4 -cycle of G. Assumption (3) of Lemma 4.11 holds by the assumption that $I_{G \backslash y}$ is Cohen-Macaulay and $I_{G \backslash y}+M_{y}^{G}$ is radical.

Recall from Theorem 3.4 that if $I_{G} \subseteq \mathbb{K}[E(G)]$ is a toric ideal of a graph which has a square-free degeneration, then $\mathbb{K}[E(G)] / I_{G}$ is Cohen-Macaulay. We can use Theorem 4.12 to show that many toric ideals of graphs which have both square-free degenerations and 4-cycles are glicci. Specifically, we have the following:
Corollary 4.13. Let G be a finite simple graph and suppose that there exists an edge $y \in E(G)$ such that y is contained in a 4-cycle of G. Suppose also that there exists some y-compatible monomial order $<$ such that $\mathrm{in}_{<}\left(I_{G}\right)$ is a square-free monomial ideal. Then I_{G} is glicci.
Proof. Since $\mathrm{in}_{<}\left(I_{G}\right)$ is a square-free monomial ideal, we have that $\mathbb{K}[E(G)] / I_{G}$ is Cohen-Macaulay. Furthermore, I_{G} is square-free in y.

Let $\left\{y q_{1}+r_{1}, \ldots, y q_{s}+r_{s}, h_{1}, \ldots, h_{t}\right\}$ be a reduced Gröbner basis for I_{G} so that each $\operatorname{in}_{<}\left(y q_{i}\right), 1 \leqslant i \leqslant s$, and each $\operatorname{in}_{<}\left(h_{j}\right), 1 \leqslant j \leqslant t$ are square-free monomials. Consider the geometric vertex decomposition

$$
\operatorname{in}_{y}\left(I_{G}\right)=C_{y, I_{G}} \cap\left(N_{y, I_{G}}+\langle y\rangle\right) .
$$

By [23, Theorem 2.1], $\left\{h_{1}, \ldots, h_{t}\right\}$ and $\left\{q_{1}, \ldots, q_{s}, h_{1}, \ldots, h_{t}\right\}$ are a Gröbner bases for $N_{y, I_{G}}$ and $C_{y, I_{G}}$ respectively. Thus, $\mathrm{in}_{<}\left(N_{y, I_{G}}\right)$ and $\mathrm{in}_{<}\left(C_{y, I_{G}}\right)$ are square-free monomial ideals. Since $N_{y, I_{G}}=I_{G \backslash y}$ is a toric ideal of a graph, it follows that $I_{G \backslash y}$ is Cohen-Macaulay. Since $C_{y, I_{G}}=I_{G \backslash y}+M_{y}^{G}$, it follows that $I_{G \backslash y}+M_{y}^{G}$ is radical. Thus, the assumptions of Theorem 4.12 hold and we conclude that I_{G} is glicci.

We end by proving that the toric ideal of a gap-free graph containing a 4-cycle is glicci. A graph G is gap-free if for any two edges $e_{1}=\{u, v\}$ and $e_{2}=\{w, x\}$ with $\{u, v\} \cap\{w, x\}=\varnothing$, there is an edge $e \in E(G)$ that is is adjacent to both e_{1} and e_{2}, i.e., one of the edges $\{u, w\},\{u, x\},\{v, w\},\{v, x\}$ is also in G. Note that the name for this family is not standardized; these graphs are sometimes called $2 K_{2}$-free, or C_{4}-free, among other names (see D'Alì [7] for more). Note that G has a 4-cycle if and only if the graph complement \bar{G} is not gap-free.
Theorem 4.14. Let G be a gap-free graph such that the graph complement \bar{G} is not gap-free. Then I_{G} is glicci.
Proof. Since \bar{G} is not gap-free, G must contain a 4-cycle. Pick any variable y belonging to this cycle. By [7, Theorem 3.9], since G is gap-free, there exists a y-compatible order $<_{y}$ such that $\mathrm{in}_{<_{y}}\left(I_{G}\right)$ is square-free (we can ensure this by choosing $<_{\sigma}$ in $[7$, Theorem 3.9] so that the vertices defining y have the smallest weight). The result now follows from Corollary 4.13.

5. Toric ideals of bipartite graphs

In this section, we show that toric ideals of bipartite graphs are geometrically vertex decomposable. In Section 5.1, we treat the general case, making use of results of Constantinescu and Gorla from [3]. Then, in Section 5.2 we give alternate proofs of geometric vertex decomposibility in special cases.
5.1. Toric ideals of bipartite graphs are geometrically vertex decomPOSABLE. Recall that a simple graph G is bipartite if its vertex set $V(G)=V_{1} \sqcup V_{2}$ is a disjoint union of two sets V_{1} and V_{2}, such that every edge in G has one of its endpoints in V_{1} and the other endpoint in V_{2}. The purpose of this subsection is to prove Theorem 5.8 below, which says that the toric ideal of a bipartite graph is geometrically vertex decomposable. We will make use of the results and ideas in Constantinescu and Gorla's paper [3] on Gorenstein liaison of toric ideals of bipartite graphs.

Let G be a bipartite graph. Following [3, Definition 2.2], we say that a subset $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\} \subseteq E(G)$ is a path ordered matching of length r if the vertices of G can be relabelled such that $e_{i}=\{i, i+r\}$ and
(1) $f_{i}=\{i, i+r+1\} \in E(G)$, for each $1 \leqslant i \leqslant r-1$,
(2) if $\{i, j+r\} \in E(G)$ and $1 \leqslant i, j \leqslant r$, then $i \leqslant j$.

The following is straightforward. It will be referenced later in the subsection.
Lemma 5.1. Let $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}$ be a path ordered matching. Then $\left\{e_{1}, \ldots, e_{r-1}\right\}$ is a path ordered matching on $G \backslash e_{r}$.

Given a subset $\mathbf{e} \subseteq E(G)$, let $M_{\mathbf{e}}^{G}$ be the set of all monomials m such that there is some non-empty subset $\tilde{\mathbf{e}} \subseteq \mathbf{e}$ where $m\left(\prod_{e_{i} \in \tilde{\mathbf{e}}} e_{i}\right)-n$ is the binomial associated to a cycle in G. Let

$$
\begin{equation*}
I_{\mathbf{e}}^{G}=I_{G \backslash \mathbf{e}}+\left\langle M_{\mathbf{e}}^{G}\right\rangle, \tag{3}
\end{equation*}
$$

and observe that when $\mathbf{e}=\varnothing, I_{\mathrm{e}}^{G}=I_{G}$.
Let G be a bipartite graph and $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}$ a path ordered matching. Let \prec be a lexicographic monomial order on $\mathbb{K}[E(G)]$ with $e_{r}>e_{r-1}>\cdots>e_{1}$ and $e_{1}>f$ for all $f \in E(G) \backslash \mathbf{e}$. Let $\mathcal{C}(G)$ denote the set of binomials associated to cycles in G. By [3, Lemma 2.6], $\mathcal{C}(G \backslash \mathbf{e}) \cup M_{\mathbf{e}}^{G}$ is a Gröbner basis for $I_{\mathbf{e}}^{G}$ with respect to the term order \prec, and $\operatorname{in}_{\prec}\left(I_{\mathbf{e}}^{G}\right)$ is a square-free monomial ideal.
REMARK 5.2. Let $\widetilde{M}_{\text {e }}^{G}$ be the set of monomials m such that there is some non-empty subset $\tilde{\mathbf{e}} \subseteq \mathbf{e}$ where $m\left(\prod_{e_{i} \in \tilde{\mathbf{e}}} e_{i}\right)-n$ is the binomial associated to a cycle in G and n is not divisible by any $e_{i} \in \mathbf{e}$. By [3, Remark 2.7], $\mathcal{C}(G \backslash \mathbf{e}) \cup \widetilde{M}_{\mathbf{e}}^{G}$ is also a Gröbner basis for $I_{\mathbf{e}}^{G}$ with respect to \prec. Furthermore, observe that if $m e_{i} \in \widetilde{M}_{\mathbf{e}}^{G}$ for some $e_{i} \in \mathbf{e}$, then m is also an element of $\widetilde{M}_{\mathbf{e}}^{G}$. Hence, if we let $L_{\mathbf{e}}^{G}$ be the set of monomials in $\widetilde{M}_{\mathrm{e}}^{G}$ which are not divisible by any $e_{i} \in \mathbf{e}$, then $\mathcal{C}(G \backslash \mathbf{e}) \cup L_{\mathrm{e}}^{G}$ is a Gröbner basis for I_{e}^{G} with respect to \prec.

Using Remark 5.2, we obtain the following lemma, which we will need when proving geometric vertex decomposability of toric ideals of bipartite graphs.

Lemma 5.3. Let G be a bipartite graph and let $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}, r \geqslant 1$, be a path ordered matching on G, and let $\mathbf{e}^{\prime}=\left\{e_{1}, \ldots, e_{r-1}\right\}$. Let \prec be a lexicographic monomial order on $\mathbb{K}[E(G)]$ with $e_{r}>e_{r-1}>\cdots>e_{1}$ and $e_{1}>f$ for all $f \in E(G) \backslash \mathbf{e}$. The set $\mathcal{C}\left(G \backslash \mathbf{e}^{\prime}\right) \cup L_{\mathbf{e}^{\prime}}^{G}$ is a Gröbner basis for $I_{\mathbf{e}^{\prime}}^{G}$ with respect to \prec and $\operatorname{in}_{\prec}\left(I_{\mathbf{e}^{\prime}}^{G}\right)$ is a square-free monomial ideal.

Proof. By Remark 5.2, $\mathcal{G}:=\mathcal{C}\left(G \backslash \mathbf{e}^{\prime}\right) \cup L_{\mathbf{e}^{\prime}}^{G}$ is a Gröbner basis for $I_{\mathbf{e}^{\prime}}^{G}$ with respect to the lexicographic term order $e_{r-1}>e_{r-2}>\cdots>e_{1}>e_{r}$ and $e_{r}>f$ for all $f \in E(G) \backslash \mathbf{e}$. Since none of e_{1}, \ldots, e_{r-1} appear in \mathcal{G}, we have that \mathcal{G} is also a Gröbner basis for the lexicographic monomial order \prec. Furthermore, all terms of all elements in \mathcal{G} are square-free, so $\operatorname{in}_{\prec}\left(I_{\mathbf{e}^{\prime}}^{G}\right)$ is a square-free monomial ideal.

We now use Lemma 5.3 to obtain a geometric vertex decomposition of $I_{\mathbf{e}^{\prime}}^{G}$:

Proposition 5.4. Let G be a bipartite graph and let $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}$ be a path ordered matching. Let $\mathbf{e}^{\prime}=\left\{e_{1}, \ldots, e_{r-1}\right\}$. Then there is a geometric vertex decomposition

$$
\begin{equation*}
\operatorname{in}_{e_{r}}\left(I_{\mathbf{e}^{\prime}}^{G}\right)=\left(I_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}+\left\langle e_{r}\right\rangle\right) \cap I_{\mathbf{e}}^{G} . \tag{4}
\end{equation*}
$$

Proof. Let \prec be a lexicographic monomial order on $\mathbb{K}[E(G)]$ with $e_{r}>e_{r-1}>\cdots>$ e_{1} and $e_{1}>f$ for all $f \in E(G) \backslash \mathbf{e}$. This is an e_{r}-compatible monomial order. By Lemma 5.3, $\mathcal{C}\left(G \backslash \mathbf{e}^{\prime}\right) \cup L_{\mathbf{e}^{\prime}}^{G}$ is a Gröbner basis for $I_{\mathbf{e}^{\prime}}^{G}$ with respect to \prec, and $\mathcal{C}\left(G \backslash \mathbf{e}^{\prime}\right) \cup L_{\mathbf{e}^{\prime}}^{G}$ are square-free in e_{r}. We can write:

$$
\begin{gathered}
\mathcal{C}\left(G \backslash \mathbf{e}^{\prime}\right)=\left\{e_{r} m_{1}-n_{1}, e_{r} m_{2}-n_{2}, \ldots, e_{r} m_{q}-n_{q}, h_{1}, \ldots, h_{t}\right\}, \text { and } \\
L_{\mathbf{e}^{\prime}}^{G}=\left\{e_{r} a_{1}, \ldots, e_{r} a_{u}, b_{1}, \ldots, b_{v}\right\}
\end{gathered}
$$

where e_{r} does divide any $m_{\ell}, n_{\ell}, 1 \leqslant \ell \leqslant q$, nor any term of $h_{k}, 1 \leqslant k \leqslant t$, nor any of the monomials $a_{1}, \ldots, a_{u}, b_{1}, \ldots, b_{v}$. We thus have the geometric vertex decomposition

$$
\begin{aligned}
\operatorname{in}_{e_{r}}\left(I_{\mathbf{e}^{\prime}}^{G}\right) & =\left(\left\langle h_{1}, \ldots, h_{t}, b_{1}, \ldots, b_{v}\right\rangle+\left\langle e_{r}\right\rangle\right) \cap\left\langle m_{1}, \ldots, m_{q}, h_{1}, \ldots, h_{t}, a_{1}, \ldots, a_{u}, b_{1}, \ldots, b_{v}\right\rangle \\
& =\left(\left\langle h_{1}, \ldots, h_{t}, b_{1}, \ldots, b_{v}\right\rangle+\left\langle e_{r}\right\rangle\right) \cap I_{\mathbf{e}}^{G} .
\end{aligned}
$$

It remains to show that $\left\langle h_{1}, \ldots, h_{t}, b_{1}, \ldots, b_{v}\right\rangle=I_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$.
By Lemma 5.1, \mathbf{e}^{\prime} is a path ordered matching on $G \backslash e_{r}$. Thus, $I_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$ is generated by

$$
\mathcal{C}\left(\left(G \backslash e_{r}\right) \backslash \mathbf{e}^{\prime}\right) \cup L_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}=\mathcal{C}(G \backslash \mathbf{e}) \cup L_{\mathbf{e}^{\prime}}^{G \backslash e_{r}} .
$$

Observe that $\left\{h_{1}, \ldots, h_{t}\right\}=\mathcal{C}(G \backslash \mathbf{e})$. Also, it follows from the definitions that $L_{\mathrm{e}^{\prime}}^{G \backslash e_{r}} \subseteq\left\{b_{1}, \ldots, b_{v}\right\}$. Thus, we have the inclusion $I_{\mathrm{e}^{\prime}}^{G \backslash e_{r}} \subseteq\left\langle h_{1}, \ldots, h_{t}, b_{1}, \ldots, b_{v}\right\rangle$.

For the reverse inclusion, fix some $b_{j}, 1 \leqslant j \leqslant v$. Then there is some non-empty subset $\widetilde{\mathbf{e}} \subseteq \mathbf{e}^{\prime}$ and a binomial $b_{j}\left(\prod_{e_{i} \in \tilde{\mathbf{e}}} e_{i}\right)-n$ associated to a cycle in G. If e_{r} does not divide n then $b_{j} \in M_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$, and hence $b_{j} \in I_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$. Otherwise, since \mathbf{e} is also a path ordered matching, one can apply the proof of [3, Remark 2.7] to find another cycle in G which does not pass through e_{r} and which gives rise to an element $c_{j} \in M_{\mathbf{e}}^{G}$ which divides b_{j}. Since the cycle does not pass through e_{r}, we have $c_{j} \in M_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$. As $\mathcal{C}\left(\left(G \backslash e_{r}\right) \backslash \mathbf{e}^{\prime}\right) \cup M_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$ is a Gröbner basis for $I_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$, we see that c_{j}, and hence b_{j}, is an element of $I_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$. Thus, $\left\langle h_{1}, \ldots, h_{t}, b_{1}, \ldots, b_{v}\right\rangle \subseteq I_{\mathbf{e}^{\prime}}^{G \backslash e_{r}}$.

We say that a path ordered matching $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}$ is right-extendable if there is some edge $e_{r+1} \in E(G)$ such that $\left\{e_{1}, \ldots, e_{r}, e_{r+1}\right\}$ is also a path ordered matching.

Lemma 5.5. Let G be a bipartite graph with no leaves and let $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}$ be a path ordered matching which is not right-extendable. Then, $M_{\mathbf{e}}^{G}$ contains an indeterminate $x \in E(G)$ and \mathbf{e} is a path ordered matching on $G \backslash x$. Furthermore, $I_{\mathbf{e}}^{G}=I_{\mathbf{e}}^{G \backslash x}+\langle x\rangle$.
Proof. The proof is identical to the proof of [3, Lemmas 2.12 and 2.13] upon replacing maximal path ordered matchings in [3, Lemmas 2.12 and 2.13] with right-extendable path ordered matchings.

Lemma 5.6. Let G be a bipartite graph and let $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}$ be a path ordered matching. Suppose that G has a leaf y. Then:
(1) if $y \notin \mathbf{e}$, then \mathbf{e} is a path ordered matching in $G \backslash y$ and $I_{\mathbf{e}}^{G}=I_{\mathbf{e}}^{G \backslash y}$;
(2) if $y \in \mathbf{e}$, then $y=e_{1}$ or e_{r} and $\mathbf{e} \backslash y$ is a path ordered matching in $G \backslash y$ and $I_{\mathbf{e}}^{G}=I_{\mathbf{e} \backslash y}^{G \backslash y}$.
Proof. Since \mathbf{e} is a path ordered matching, the vertices of G can be labelled such that $e_{i}=\{i, i+r\}, 1 \leqslant i \leqslant r$. Let $f_{i}=\{i, i+r+1\}, 1 \leqslant i \leqslant r-1$ so that

$$
e_{1}, f_{1}, e_{2}, f_{2}, \ldots, e_{r-1}, f_{r-1}, e_{r}
$$

is a path of consecutive edges in G. Since y is a leaf, we see that $y \notin\left\{f_{1}, \ldots, f_{r-1}\right\}$. If $y \notin \mathbf{e}$, then each e_{i}, f_{i} remains and \mathbf{e} is a path ordered matching in $G \backslash y$. Furthermore no cycle in G passes through y, hence $I_{\mathbf{e}}^{G}=I_{\mathbf{e}}^{G \backslash y}$.

If $y \in \mathbf{e}$, then either $y=e_{1}$ or $y=e_{r}$. In either case, since each f_{i} remains in $G \backslash y$, $\mathbf{e} \backslash y$ is still a path ordered matching in $G \backslash y$. Since there is no cycle in G which passes through y, we have $I_{\mathbf{e}}^{G}=I_{\mathbf{e} \backslash y}^{G}=I_{\mathbf{e} \backslash y}^{G \backslash y}$.

We will need one more result from [3]:
Theorem 5.7 ([3, Theorem 2.8]). Let G be a bipartite graph and $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}$ a path ordered matching. Then $\mathbb{K}[E(G)] / I_{\mathbf{e}}^{G}$ is Cohen-Macaulay.

We now adapt the proof of [3, Corollary 2.15] on vertex decomposability of the simplicial complex associated to an initial ideal of $I_{\mathbf{e}}^{G}$ to prove the main theorem of this subsection.

Theorem 5.8. Let G be a bipartite graph and $\mathbf{e}=\left\{e_{1}, \ldots, e_{r}\right\}$ a path ordered matching. Then the ideal I_{e}^{G} is geometrically vertex decomposable. In particular, the toric ideal I_{G} is geometrically vertex decomposable.

Proof. Let $R=\mathbb{K}[E(G)]$. By Theorem 5.7 , each R / I_{e}^{G} is Cohen-Macaulay, hence unmixed.

We proceed by double induction on $|E(G)|$ and $s-r$ where $\tilde{\mathbf{e}}=\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{s}\right\}$ is a path ordered matching that is not right-extendable and is such that $\tilde{e}_{1}=e_{1}, \ldots, \tilde{e}_{r}=e_{r}$.

If $|E(G)| \leqslant 3$, then $I_{G}=\langle 0\rangle$ as there are no primitive closed even walks in G, so the result holds trivially.

If G has a leaf, then by Lemma 5.6, there is an edge y and a path ordered matching \mathbf{e}^{\prime} in $G \backslash y$ such that $I_{\mathbf{e}}^{G}=I_{\mathbf{e}^{\prime}}^{G \backslash y}$. By induction on the number of edges in the graph, $I_{\mathbf{e}^{\prime}}^{G \backslash y}$ is geometrically vertex decomposable, hence so is I_{e}^{G}.

So, assume that G has no leaves. If $s-r=0$, then \mathbf{e} is not right extendable. Then, by Lemma 5.5, there is an indeterminate $z \in M_{\mathbf{e}}^{G}$ such that

$$
I_{\mathbf{e}}^{G}=I_{\mathbf{e}}^{G \backslash z}+\langle z\rangle .
$$

By Lemma 5.5, e is a path ordered matching on $G \backslash z$, so again by induction on the number of edges in the graph, we have the $I_{\mathbf{e}}^{G \backslash z}$ is geometrically vertex decomposable, hence so is I_{e}^{G}.

Now suppose that \mathbf{e} is right extendable, so that $s-r>0$ and $\mathbf{e}^{*}=\left\{e_{1}, \ldots, e_{r+1}\right\}$ is a path ordered matching. By Lemma 5.4, we have the geometric vertex decomposition

$$
\operatorname{in}_{e_{r+1}}\left(I_{\mathbf{e}}^{G}\right)=\left(I_{\mathbf{e}}^{G \backslash e_{r+1}}+\left\langle e_{r+1}\right\rangle\right) \cap I_{\mathbf{e}^{*}}^{G} .
$$

By Lemma 5.1, e is a path ordered matching on $G \backslash e_{r+1}$. So, by induction on the number of edges, $I_{\mathrm{e}}^{G \backslash e_{r+1}}$ is geometrically vertex decomposable. By induction on $s-r, I_{\mathbf{e}^{*}}^{G}$ is geometrically vertex decomposable. Hence, I_{e}^{G} is geometrically vertex decomposable.

The final conclusion now follows from the fact that $I_{G}=I_{\mathbf{e}}^{G}$ when $\mathbf{e}=\varnothing$.
5.2. Alternate proofs in special cases. In this section, we apply results from the literature to give alternate proofs of geometric vertex decomposability for some well-studied families of bipartite graphs. These proofs illustrate that in some cases, we can prove that a family of ideals is geometrically vertex decomposable directly from the definition. Moreover, these examples do not require the full strength of the machinery of Section 5.1; in particular, these families of examples have the property that the ideals $C_{y, I}$ and $N_{y, I}$ usually do not leave the family of ideals we are considering, thus giving us nice inductive proofs.

Figure 3. The graph T_{λ} for $\lambda=(5,3,2,1)$
We define the relevant families of graphs. A Ferrers graph is a bipartite graph on the vertex set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ such that $\left\{x_{n}, y_{1}\right\}$ and $\left\{x_{1}, y_{m}\right\}$ are edges, and if $\left\{x_{i}, y_{j}\right\}$ is an edge, then so are all the edges $\left\{x_{k}, y_{l}\right\}$ with $1 \leqslant k \leqslant i$ and $1 \leqslant l \leqslant j$. We associate a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ to a Ferrers graph where $\lambda_{i}=\operatorname{deg} x_{i}$. Some of the properties of the toric ideals of these graphs were studied by Corso and Nagel [4]. Following Corso and Nagel, we denote a Ferrers graph as T_{λ} where λ denotes the associated partition.

As an example, consider the partition $\lambda=(5,3,2,1)$ which can be visualized as

We have labelled the rows with the x_{i} vertices and the columns with the y_{j} vertices. From this representation, the graph T_{λ} is the graph on the vertex set $\left\{x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{5}\right\}$ where $\left\{x_{i}, y_{j}\right\}$ is an edge if and only if there is dot in the row and column indexed by x_{i} and y_{j} respectively. Figure 3 gives the corresponding bipartite graph T_{λ} for λ.

Next we consider the graphs studied in Galetto, et al. [10] as our second family of graphs. For integers $r \geqslant 3$ and $d \geqslant 2$, we let $G_{r, d}$ be the graph with vertex set

$$
V\left(G_{r, d}\right)=\left\{x_{1}, x_{2}, y_{1}, \ldots, y_{d}, z_{1}, \ldots, z_{2 r-3}\right\}
$$

and edge set

$$
\begin{aligned}
E\left(G_{r, d}\right)= & \left\{\left\{x_{i}, y_{j}\right\} \mid 1 \leqslant i \leqslant 2,1 \leqslant j \leqslant d\right\} \cup \\
& \left\{\left\{x_{1}, z_{1}\right\},\left\{z_{1}, z_{2}\right\},\left\{z_{2}, z_{3}\right\}, \ldots,\left\{z_{2 r-4}, z_{2 r-3}\right\},\left\{z_{2 r-3}, x_{2}\right\}\right\} .
\end{aligned}
$$

Observe that $G_{r, d}$ is the graph formed by taking the complete bipartite graph $K_{2, d}$ (defined below), and then joining the two vertices of degree d by a path of length $2 r-2$. As an example, see Figure 4 for the graph $G_{3,5}$. We label the edges so that $a_{i}=\left\{x_{1}, y_{i}\right\}$ and $b_{i}=\left\{x_{2}, y_{i}\right\}$ for $i=1, \ldots, d$, and $e_{1}=\left\{x_{1}, z_{1}\right\}, e_{2 r-2}=\left\{z_{2 r-3}, x_{2}\right\}$ and $e_{i+1}=$ $\left\{z_{i}, z_{i+1}\right\}$ for $1 \leqslant i \leqslant 2 r-4$.

Using the above labelling, we can describe the universal Gröbner basis of $I_{G_{r, d}}$.
Theorem 5.9 ([10, Corollary 3.3]). Fix integers $r \geqslant 3$ and $d \geqslant 2$. A universal Gröbner basis for $I_{G_{r, d}}$ is given by

$$
\left\{a_{i} b_{j}-b_{i} a_{j} \mid 1 \leqslant i<j \leqslant d\right\} \cup\left\{a_{i} e_{2} e_{4} \cdots e_{2 r-2}-b_{i} e_{1} e_{3} e_{5} \cdots e_{2 r-3} \mid 1 \leqslant i \leqslant d\right\} .
$$

The next result provides many examples of toric ideals which are geometrically vertex decomposable. Recall that the complete bipartite graph $K_{n, m}$ is the graph with vertex set $V=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}$ and edge set $\left\{\left\{x_{i}, y_{j}\right\} \mid 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m\right\}$.

Figure 4. The graph $G_{3,5}$

ThEOREM 5.10. The toric ideals of the following families of graphs are geometrically vertex decomposable:
(1) G is a cycle;
(2) G is a Ferrers graph T_{λ} for any partition λ;
(3) G is a complete bipartite graph $K_{n, m}$; and
(4) G is the graph $G_{r, d}$ for any $r \geqslant 3, d \geqslant 2$.

Proof. (1) Suppose that G is a cycle with $2 n$ edges. Then $I_{G}=\left\langle e_{1} e_{3} \cdots e_{2 n-1}-\right.$ $\left.e_{2} e_{4} \cdots e_{2 n}\right\rangle$, so the result follows from Lemma 2.6 (2). If G is an odd cycle, then $I_{G}=\langle 0\rangle$, and so it is geometrically vertex decomposable by definition.
(2) As shown in the proof of [4, Proposition 5.1], the toric ideal of T_{λ} is generated by the 2×2 minors of a one-sided ladder. The ideal generated by the 2×2 minors of a one-sided ladder is an example of Schubert determinantal ideal (e.g., see [23]). The conclusion now follows from [21, Proposition 5.2] which showed that all Schubert determinantal ideals are geometrically vertex decomposable. ${ }^{(1)}$
(3) Apply the previous result using the partition $\lambda=\underbrace{(m, m, \ldots, m)}_{n}$.
(4) Let $I=I_{G_{r, d}}$. Since it is a prime ideal, it is unmixed. We first show that the statement holds if $d=2$ and for any $r \geqslant 3$. Let $y=a_{2}$, and consider the lexicographic order on $\mathbb{K}\left[E\left(G_{r, d}\right)\right]=\mathbb{K}\left[a_{1}, a_{2}, b_{1}, b_{2}, e_{1}, \ldots, e_{2 r-2}\right]$ with $a_{2}>a_{1}>b_{2}>b_{1}>e_{2 r-2}>$ $\cdots>e_{1}$. This monomial order is y-compatible.

By using the universal Gröbner basis of Theorem 5.9, we have

$$
C_{y, I}=\left\langle b_{1}, e_{2} e_{4} \cdots e_{2 r-2}, a_{1} e_{2} \cdots e_{2 r-2}-b_{1} e_{1} e_{3} \cdots e_{2 r-3}\right\rangle=\left\langle b_{1}, e_{2} e_{4} \cdots e_{2 r-2}\right\rangle
$$

and $N_{y, I}=\left\langle a_{1} e_{2} \cdots e_{2 r-2}-b_{1} e_{1} \cdots e_{2 r-3}\right\rangle$. Note that each binomial in $\mathcal{U}(I)$ is doubly square-free, so we can use Lemma 2.3 to deduce that

$$
\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)
$$

is a geometric vertex decomposition. To complete this case, note that $C_{y, I}$ is a monomial complete intersection in $\mathbb{K}\left[a_{1}, b_{1}, b_{2}, e_{1}, \ldots, e_{2 r-2}\right]$, so this ideal is geometrically

[^1]vertex decomposable by Corollary 2.12. The ideal $N_{y, I}$ is a principal ideal generated by $a_{1} e_{2} \cdots e_{2 r-2}-b_{1} e_{1} \cdots e_{2 r-3}$, so it is geometrically vertex decomposable by Lemma 2.6 (2). So, for all $r \geqslant 3$, the toric ideal $I_{G_{r, 2}}$ is geometrically vertex decomposable.

We proceed by induction on d. Assume $d>2$ and let $r \geqslant 3$. Let $y=a_{d}$, and consider the lexicographic order on $\mathbb{K}\left[E\left(G_{r, d}\right)\right]=\mathbb{K}\left[a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}, e_{1}, \ldots, e_{2 r-2}\right]$ with $a_{d}>\cdots>a_{1}>b_{d}>\cdots>b_{1}>e_{2 r-2}>\cdots>e_{1}$. This monomial order is y compatible.

By again appealing to Theorem 5.9, we have

$$
\begin{aligned}
C_{y, I}= & \left\langle b_{1}, \ldots, b_{d-1}, e_{2} e_{4} \cdots e_{2 r-2}\right\rangle+\left\langle a_{i} b_{j}-b_{i} a_{j} \mid 1 \leqslant i<j \leqslant d-1\right\rangle+ \\
& \left\langle a_{i} e_{2} e_{4} \cdots e_{2 r-2}-b_{i} e_{1} e_{3} e_{5} \cdots e_{2 r-3} \mid 1 \leqslant i \leqslant d-1\right\rangle \\
= & \left\langle b_{1}, \ldots, b_{d-1}, e_{2} e_{4} \ldots e_{2 r-2}\right\rangle
\end{aligned}
$$

where the last equality comes from removing redundant generators. On the other hand, by Lemma 3.5, $N_{y, I}=I_{K}$ where $K=G_{r, d} \backslash a_{d}$. Note that in this graph, the edge b_{d} is a leaf, and consequently, $N_{y, I}=I_{G_{r, d-1}}$ since $K \backslash b_{d}=G_{r, d-1}$.

We can again use Lemma 2.3 to deduce that

$$
\operatorname{in}_{y}(I)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)
$$

is a geometric vertex decomposition.
To complete the proof, note that in the ring $\mathbb{K}\left[a_{1}, \ldots, a_{d-1}, b_{1}, \ldots, b_{d}, e_{1}, \ldots, e_{2 r-2}\right]$, the ideal $C_{y, I}$ is geometrically vertex decomposable by Corollary 2.12 since this ideal is a complete intersection monomial ideal. Also, the ideal $N_{y, I}=I_{G_{r, d-1}}$ is geometrically vertex decomposable by induction. Thus, $I_{G_{r, d}}$ is geometrically vertex decomposable for all $d \geqslant 2$ and $r \geqslant 3$.

As we will see in the remainder of the paper, there are many non-bipartite graphs which have geometrically vertex decomposable toric ideals.

6. Toric ideals with a square-Free degeneration

As mentioned in the introduction, an important question in liaison theory asks if every arithmetically Cohen-Macaulay subscheme of \mathbb{P}^{n} is glicci (e.g., see [22, Question 1.6]). As shown by Klein and Rajchgot (see Theorem 4.9), if a homogeneous ideal I is a geometrically vertex decomposable ideal, then I defines an arithmetically CohenMacaulay subscheme, and furthermore, this scheme is glicci. It is therefore natural to ask if every toric ideal I_{G} of a finite graph G that has the property that $\mathbb{K}[E(G)] / I_{G}$ is Cohen-Macaulay is also geometrically vertex decomposable. If true, then this would imply that the scheme defined by I_{G} is glicci.

Instead of considering all toric ideals of graphs such that $\mathbb{K}[E(G)] / I_{G}$ is CohenMacaulay, we restrict ourselves to ideals I_{G} which possess a square-free Gröbner degeneration with respect to some monomial order $<$. By Theorem 3.4, $\mathbb{K}[E(G)] / I_{G}$ is Cohen-Macaulay. Furthermore, if in $\mathrm{n}_{<}\left(I_{G}\right)$ defines a vertex decomposable simplicial complex via the Stanley-Reisner correspondence, then I_{G} would be geometrically vertex decomposable with respect to a lexicographic monomial order $<$ (see [21, Proposition 2.14$]$). We propose the conjecture below. Note that this conjecture would imply that any toric ideal of a graph with a square-free initial ideal is glicci.

Conjecture 6.1. Let G be a finite simple graph with toric ideal $I_{G} \subseteq \mathbb{K}[E(G)]$. If $\mathrm{in}_{<}\left(I_{G}\right)$ is square-free with respect to a lexicographic monomial order $<$, then I_{G} is geometrically vertex decomposable.

By Theorem 5.8, Conjecture 6.1 is true in the bipartite setting. In this section, we build a framework for proving Conjecture 6.1. In particular, we reduce Conjecture 6.1 to checking whether certain related ideals are equidimensional, and we prove Conjecture 6.1 for the case where the generators in the universal Gröbner basis $\mathcal{U}\left(I_{G}\right)$ are quadratic.
6.1. Framework for the conjecture. Suppose that G is a labelled graph with n edges e_{1}, \ldots, e_{n} and toric ideal $I_{G} \subseteq \mathbb{K}[E(G)]$. Let $<_{G}$ be the lexicographic monomial order induced from the ordering of the edges coming from the labelling. That is, $e_{1}>e_{2}>\cdots>e_{n}$.

We define a class of ideals of the form $I_{E, F}^{G}$ such that $E \cup F=E_{k}=\left\{e_{1}, \ldots, e_{k}\right\}$ for some $0 \leqslant k \leqslant n$ with $E \cap F=\varnothing$. Here $E_{0}=\varnothing$. Define

$$
I_{E, F}^{G}:=I_{G \backslash(E \cup F)}+M_{E, F}^{G}
$$

where $I_{G \backslash(E \cup F)}$ is the toric ideal of the graph G with the edges $E \cup F$ removed, and where $M_{E, F}^{G}$ is the ideal of $\mathbb{K}\left[e_{1}, \ldots, e_{n}\right]$ generated by those monomials m with $m \ell-p \in \mathcal{U}\left(I_{G}\right)$ such that:
(1) $\mathrm{in}_{<_{G}}(m \ell-p)=m \ell$,
(2) ℓ is a monomial only involving some non-empty subset of variables in E, and
(3) no $f \in F$ divides $m \ell$ and no $e \in E$ divides m.

If there are no monomials m which satisfy conditions (1), (2), and (3), we set $M_{E, F}^{G}=$ $\langle 0\rangle$. Therefore $M_{\varnothing, F}^{G}=\langle 0\rangle$ and $I_{\varnothing, F}^{G}=I_{G \backslash F}$ (which is generated by those primitive closed even walks in G which do not pass through any edge of $F=E_{k}$). On the other hand, if there is an $\ell-p \in \mathcal{U}\left(I_{G}\right)$ with $\mathrm{in}_{<_{G}}(\ell-p)=\ell$ where ℓ is a monomial only involving the variables in E, then we take $m=1$, and so $M_{E, F}^{G}=\langle 1\rangle$.

There is a natural set of generators for $I_{E, F}^{G}$ using the primitive closed even walks of I_{G}. In particular, the ideal $I_{E, F}^{G}$ is generated by the set

$$
\mathcal{U}\left(I_{G \backslash(E \cup F)}\right) \cup \mathcal{U}\left(M_{E, F}^{G}\right),
$$

where $\mathcal{U}\left(I_{G \backslash(F \cup E)}\right)$ is the set of binomials defined by primitive closed even walks of the graph $G \backslash(E \cup F)$, and $\mathcal{U}\left(M_{E, F}^{G}\right)$ are those monomials m appearing in a generator of $\mathcal{U}\left(I_{G}\right)$ and satisfying conditions (1), (2), and (3) above. Because $M_{E, F}^{G}$ is a monomial ideal, its minimal generators form a universal Gröbner basis, so our notation makes sense. Going forward, we restrict our attention to the case where $\mathrm{in}_{<_{G}}\left(I_{G}\right)$ is squarefree (this setting includes families of graphs like gap-free graphs $[7]$ for certain choices of $<_{G}$).

To illustrate some of the above ideas, we consider the case that $E \cup F=E_{1}=\left\{e_{1}\right\}$. This example also highlights a connection to the geometric vertex decomposition of I_{G} with respect to e_{1}.
Example 6.2. Assume that $\operatorname{in}_{<_{G}}\left(I_{G}\right)$ is square-free. Then we can write

$$
\mathcal{U}\left(I_{G}\right)=\left\{e_{1} m_{1}-p_{1}, \ldots, e_{1} m_{r}-p_{r}, t_{1}, \ldots, t_{s}\right\}
$$

where e_{1} does not divide m_{i}, p_{i} or any term of t_{i}. This set defines a universal Gröbner basis for $I_{G}=I_{\varnothing, \varnothing}^{G}$. Since $I_{G \backslash e_{1}}=\left\langle t_{1}, \ldots, t_{s}\right\rangle$ (by Lemma 3.5), we can write

$$
\begin{aligned}
\operatorname{in}_{e_{1}}\left(I_{\varnothing, \varnothing}^{G}\right) & =\left\langle e_{1} m_{1}, \ldots, e_{1} m_{r}, t_{1}, \ldots, t_{s}\right\rangle \\
& =\left\langle e_{1}, t_{1}, \ldots, t_{s}\right\rangle \cap\left\langle m_{1}, \ldots, m_{r}, t_{1}, \ldots, t_{s}\right\rangle \\
& =\left(\left\langle e_{1}\right\rangle+I_{G \backslash e_{1}}\right) \cap\left(M_{\left\{e_{1}\right\}, \varnothing}^{G}+I_{G \backslash e_{1}}\right) \\
& =\left(\left\langle e_{1}\right\rangle+I_{G \backslash e_{1}}+M_{\varnothing,\left\{e_{1}\right\}}^{G}\right) \cap I_{\left\{e_{1}\right\}, \varnothing}^{G} \\
& =\left(\left\langle e_{1}\right\rangle+I_{\varnothing,\left\{e_{1}\right\}}^{G}\right) \cap I_{\left\{e_{1}\right\}, \varnothing}^{G} .
\end{aligned}
$$

Figure 5. The relation between the ideals $I_{E, F}^{G}$

Note that $I_{G \backslash e_{1}}=I_{G \backslash e_{1}}+M_{\varnothing,\left\{e_{1}\right\}}^{G}$ since $M_{\varnothing,\left\{e_{1}\right\}}^{G}=\langle 0\rangle$.
Note that if we take $y=e_{1}$ and $I=I_{\varnothing, \varnothing}^{G}$, then we get $C_{y, I}=I_{\left\{e_{1}\right\}, \varnothing}^{G}$ and $N_{y, I}=$ $I_{\varnothing,\left\{e_{1}\right\}}^{G}$. That is, $y=e_{1}$ defines a geometric vertex decomposition of I_{G}. Therefore, when $E \cup F=E_{1}=\left\{e_{1}\right\}$, either $e_{1} \in E$ or $e_{1} \in F$, and each case appears in the geometric vertex decomposition.

If we continue the process by taking $\operatorname{in}_{e_{2}}(\cdot)$ of $I_{\left\{e_{1}\right\}, \varnothing}^{G}$ and of $I_{\varnothing,\left\{e_{1}\right\}}^{G}$, we get one of four possible $C_{y, I}$ and $N_{y, I}$ ideals, each corresponding to a possible distribution of $\left\{e_{1}, e_{2}\right\}$ into the disjoint sets E and F such that $E \cup F=E_{2}$. Figure 5 shows the relationship between the ideals $I_{E, F}^{G}$ for the cases $E \cup F=E_{i}$ for $i=0, \ldots, 3$.

One strategy to verify Conjecture 6.1 is to prove the following three statements:
(A) Given $I=I_{E, F}^{G}$ such that $E \cup F=E_{k-1}$ and $I \neq\langle 0\rangle$ or $\langle 1\rangle$, then $y=e_{k}$ defines a geometric vertex decomposition. Furthermore, $N_{y, I}$ and $C_{y, I}$ must also be of the form $I_{E^{\prime}, F^{\prime}}^{G}$ where $E^{\prime} \cup F^{\prime}=E_{k}$.
(B) If $E \cup F=E_{n}$, then $I_{E, F}^{G}=\langle 0\rangle$ or $\langle 1\rangle$.
(C) For any $E \cup F=E_{k}$, the ideal $I_{E, F}^{G}$ must be unmixed.

Indeed, the next theorem verifies that proving $(A),(B)$, and (C) suffices to show that I_{G} is geometrically vertex decomposable.

Theorem 6.3. Let G be a finite simple graph with toric ideal $I_{G} \subseteq \mathbb{K}[E(G)]$, and suppose that $\mathrm{in}_{<}\left(I_{G}\right)$ is square-free with respect to a lexicographic monomial order $<$. If statements $(A),(B)$, and (C) are true, then I_{G} is geometrically vertex decomposable.

Proof. Let n be the number of edges of G. We show that for all sets E and F such that $E \cup F=E_{k}$, the ideal $I_{E, F}^{G}$ is geometrically vertex decomposable, and in particular, $I_{\varnothing, \varnothing}^{G}=I_{G}$ is geometrically vertex decomposable. We do descending induction on $|E \cup F|$. If $|E \cup F|=n$, then $E \cup F=E_{n}$, and so by statement $(B), I_{E, F}^{G}=\langle 0\rangle$ or $\langle 1\rangle$, both of which are geometrically vertex decomposable by definition.

For the induction step, assume that all ideals of the form $I_{E, F}^{G}$ with $E \cup F=E_{\ell}$ with $\ell \in\{k, \ldots, n\}$ are geometrically vertex decomposable. Suppose that E and F are two sets such that $E \cup F=E_{k-1}$. The ideal $I_{E, F}^{G}$ is unmixed by statement (C). If $I_{E, F}^{G}$ is $\langle 0\rangle$ or $\langle 1\rangle$, then it is geometrically vertex decomposable by definition. Otherwise, by statement (A), the variable $y=e_{k}$ defines a geometric vertex decomposition of $I=I_{E, F}^{G}$, i.e.,

$$
\operatorname{in}_{y}\left(I_{E, F}^{G}\right)=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right) .
$$

Moreover, also by statement (A), the ideals $C_{y, I}$ and $N_{y, I}$ have the form $I_{E^{\prime}, F^{\prime}}^{G}$ with $E^{\prime} \cup F^{\prime}=E_{k}$. By induction, these two ideals are geometrically vertex decomposable. So, $I_{E, F}^{G}$ is geometrically vertex decomposable.

We now show that (A) and (B) are always true. Thus, to prove Conjecture 6.1 , one needs to verify (C). In fact, we will show that it is enough to show that $\mathbb{K}[E(G)] / I_{E, F}$ is equidimensional for all ideals of the form $I_{E, F}^{G}$.

We begin by proving that statement (A) holds if in ${<_{G}}\left(I_{G}\right)$ is a square-free monomial ideal. In fact, we prove some additional properties about the ideals $I_{E, F}^{G}$.
Theorem 6.4. Let I_{G} be the toric ideal of a finite simple graph G such that $\mathrm{in}_{<_{G}}\left(I_{G}\right)$ is square-free. For each $k \in\{1, \ldots, n\}$, let E, F be disjoint subsets of $\left\{e_{1}, \ldots, e_{n}\right\}$ such that $E \cup F=E_{k-1}=\left\{e_{1}, \ldots, e_{k-1}\right\}$. Then
(1) The natural generators $\mathcal{U}\left(I_{G \backslash(E \cup F)}\right) \cup \mathcal{U}\left(M_{E, F}^{G}\right)$ of $I_{E, F}^{G}$ form a Gröbner basis for $I_{E, F}^{G}$ with respect to $<_{G}$. Furthermore, $\operatorname{in}_{<_{G}}\left(I_{E, F}^{G}\right)$ is a square-free monomial ideal.
(2) $I_{E, F}^{G}$ is a radical ideal.
(3) The variable $y=e_{k}$ defines a geometric vertex decomposition of $I_{E, F}^{G}$.
(4) If $I=I_{E, F}^{G}$ and $y=e_{k}$, then $C_{y, I}=I_{E \cup\left\{e_{k}\right\}, F}^{G}$ and $N_{y, I}=I_{E, F \cup\left\{e_{k}\right\}}^{G}$; in particular,

$$
\operatorname{in}_{e_{k}}\left(I_{E, F}^{G}\right)=I_{E \cup\left\{e_{k}\right\}, F}^{G} \cap\left(I_{E, F \cup\left\{e_{k}\right\}}^{G}+\left\langle e_{k}\right\rangle\right) .
$$

Proof. (1) We will proceed by induction on $|E \cup F|=r=k-1$. If $r=0$, then $E \cup F=$ \varnothing and $I_{E, F}^{G}=I_{G}$. In this case the natural generators are $\mathcal{U}\left(I_{G}\right) \cup \mathcal{U}\left(M_{\varnothing, \varnothing}^{G}\right)=\mathcal{U}\left(I_{G}\right)$, and this set defines a universal Gröbner basis consisting of primitive closed even walks of G. Its initial ideal is square-free by the assumption on $<_{G}$.

Now suppose that $|E \cup F|=r \geqslant 1$ and assume the result holds for $r-1$. There are two cases to consider:
Case 1: Assume that $e_{r} \in E$. By induction, the natural generators

$$
\mathcal{U}\left(I_{G \backslash\left(\left(E \backslash\left\{e_{r}\right\}\right) \cup F\right)}\right) \cup \mathcal{U}\left(M_{E \backslash\left\{e_{r}\right\}, F}^{G}\right)
$$

of $I_{E \backslash\left\{e_{r}\right\}, F}^{G}$ is a Gröbner basis with respect to $<_{G}$ and has a square-free initial ideal with respect to $<_{G}$. For the computations that follow, we can restrict to a minimal Gröbner basis by removing elements of this generating set which do not have a squarefree lead term.

Since e_{r} cannot divide both terms of a binomial defined by a primitive closed even walk, we must have that this minimal Gröbner basis is square-free in $y=e_{r}$ (any e_{r} that appears in a binomial must appear in the lead term by definition of $<_{G}$, because none of the generators of $I_{E \backslash\left\{e_{r}\right\}, F}^{G}$ involve $\left.e_{1}, \ldots, e_{r-1}\right)$. Therefore, $I_{E \backslash\left\{e_{r}\right\}, F}^{G}$ has a geometric vertex decomposition with respect to y by Lemma 2.3 (2).

The ideal $C_{y, I_{E \backslash\left\{e_{r}\right\}, F}^{G}}$ is therefore generated by:

- Binomials corresponding to primitive closed even walks not passing through any edge of E_{r}. That is, elements of $\mathcal{U}\left(I_{G \backslash E_{r}}\right)$.
- Monomials m which appear as the coefficient of e_{r} in $m e_{r}-p \in \mathcal{U}\left(I_{G \backslash E_{r-1}}\right)$.
- Monomials m which appear as the coefficient of e_{r} in $\mathcal{U}\left(M_{E \backslash\left\{e_{r}\right\}, F}^{G}\right)$. In this case, m is part of a binomial $m e_{r} \prod_{i \in \mathcal{I}} e_{i}-p \in \mathcal{U}\left(I_{G}\right)$, where \mathcal{I} indexes a subset of $E \backslash\left\{e_{r}\right\}$.
The last two types of monomials are exactly those monomials defining $\mathcal{U}\left(M_{E, F}^{G}\right)$. Therefore

$$
C_{y, I_{E \backslash\left\{e_{r}\right\}, F}^{G}}=I_{E, F}^{G} .
$$

Furthermore, the generators listed above for $C_{y, I_{E \backslash\left\{e_{r}\right\}, F}^{G}}$ are a Gröbner basis with respect to $<_{G}$ by Lemma 2.3 (1) and are a subset of the natural generators of $I_{E, F}^{G}$.

Its initial ideal is also square-free since we restricted to a minimal Gröbner basis before computing $C_{y, I_{E}^{G} \backslash\left\{e_{r}\right\}, F}$.
Case 2: Assume that $e_{r} \in F$. We argue similarly to Case 1 and omit the details. By induction $\mathcal{U}\left(I_{E, F \backslash\left\{e_{r}\right\}}^{G}\right)$ is a Gröbner basis with respect to $<_{G}$ and defines a square-free initial ideal. We can once again restrict to a minimal Gröbner basis, both ensuring that all lead terms are square-free and that $y=e_{r}$ defines a geometric vertex decomposition. In this case, $N_{y, I_{E, F \backslash\left\{e_{r}\right\}}^{G}}=I_{E, F}^{G}$, and $\mathcal{U}\left(I_{E, F \backslash\left\{e_{r}\right\}}^{G}\right)$ is a Gröbner basis by Lemma 2.3 (1) with respect to $<_{G}$. As in Case 1, the initial ideal of $I_{E, F}^{G}$ is square-free with respect to this monomial order since we restricted to a minimal Gröbner basis when computing $N_{y, I_{E, F \backslash\left\{e_{r}\right\}}^{G}}$.

For statement (2), the ideal $I_{E, F}^{G}$ is radical because it has a square-free degeneration. Statements (3) and (4) were shown as part of the proof of statement (1).

We now verify that statement (B) holds.
Theorem 6.5. Let I_{G} be the toric ideal of a finite simple graph G such that $\mathrm{in}_{<_{G}}\left(I_{G}\right)$ is square-free. If $E \cup F=E_{n}$, then $I_{E, F}^{G}=\langle 0\rangle$ or $\langle 1\rangle$.
Proof. Let $\mathcal{U}\left(I_{G}\right)$ be the universal Gröbner basis of I_{G} defined in Theorem 3.1. Since $\mathrm{in}_{<_{G}}\left(I_{G}\right)$ is square-free, we can take a minimal Gröbner basis where each lead term is square-free. We can write each element in our Gröbner basis as a binomial of the form $m \ell-p$ with $\operatorname{in}_{<_{G}}(m \ell-p)=m \ell$ where ℓ is a monomial only in the variables in E. Suppose that there is a binomial $m \ell-p \in \mathcal{U}\left(I_{G}\right)$ such that $m \ell=\ell$, i.e., the lead term only involves variables in E. Then $1 \in M_{E, F}^{G}$, and so $I_{E, F}^{G}=\langle 1\rangle$, since the monomials of $M_{E, F}^{G}$ form part of the generating set of $I_{E, F}^{G}$.

Otherwise, for every $m \ell-p \in \mathcal{U}\left(I_{G}\right)$, there is a variable $e_{j} \notin E$ such that $e_{j} \mid m$. Since $E \cup F=E_{n}$, we must have $e_{j} \in F$. But then m is not in $M_{E, F}^{G}$ since it fails to satisfy condition (3) of being a monomial in $M_{E, F}^{G}$, and thus $M_{E, F}^{G}=\langle 0\rangle$. Since $G \backslash(E \cup F)$ is the graph G with all of its edges removed, $I_{G \backslash(E \cup F)}=\langle 0\rangle$. Thus $I_{E, F}^{G}=\langle 0\rangle$.

To prove Conjecture 6.1, it remains to verify statement (C); that is, each ideal $I_{E, F}^{G}$ must be unmixed. This has proven difficult to show in general without specific restrictions on G. Nonetheless, the framework presented above leads to the next theorem which reduces statement (C) to showing that $\mathbb{K}[E(G)] / I_{E, F}^{G}$ is equidimensional. Recall that a ring R / I is equidimensional if $\operatorname{dim}(R / I)=\operatorname{dim}(R / P)$ for all minimal primes P of $\operatorname{Ass}_{R}(R / I)$.

Theorem 6.6. Let I_{G} be the toric ideal of a finite simple graph G such that $\mathrm{in}_{<_{G}}\left(I_{G}\right)$ is square-free. If $\mathbb{K}[E(G)] / I_{E, F}^{G}$ is equidimensional for every choice of E, F, ℓ such that $E \cup F=E_{\ell}$ and $0 \leqslant \ell \leqslant n$, then I_{G} is geometrically vertex decomposable.

Proof. In light of Theorems 6.3, 6.4, and 6.5, we only need to check that each $I_{E, F}^{G}$ is unmixed. However, by Theorem 6.4 (3), each ideal $I_{E, F}^{G}$ is radical, so being unmixed is equivalent to being equidimensional.

Remark 6.7. The definition of $I_{E, F}^{G}$ is an extension of the setup of Constantinescu and Gorla in [3] and is also used in Section 5. It is designed to utilize known results about geometric vertex decomposition. In [3], G is a bipartite graph, and techniques from liaison theory are employed to prove that I_{G} is glicci. Using a similar argument for general G, we can use

$$
\operatorname{in}_{<_{G}}\left(I_{E, F}^{G}\right)=e_{k} \operatorname{in}_{<_{G}}\left(I_{E \cup\left\{e_{k}\right\}, F}^{G}\right)+\operatorname{in}_{<_{G}}\left(I_{E, F \cup\left\{e_{k}\right\}}^{G}\right)
$$

to show that $\mathrm{in}_{<_{G}}\left(I_{E, F}^{G}\right)$ can be obtained from $\mathrm{in}_{<_{G}}\left(I_{E \cup\left\{e_{k}\right\}, F}^{G}\right)$ via a Basic Double Glink (see [3, Lemma 2.1 and Theorem 2.8]), and so in $<_{G}\left(I_{E, F}^{G}\right)$ being Cohen-Macaulay implies that $\operatorname{in}_{<_{G}}\left(I_{E \cup\left\{e_{k}\right\}, F}^{G}\right)$ is too (see Lemma 4.6). Through induction, we could then prove that some (but not all) of the $I_{E, F}^{G}$ in the tree following Example 6.2 are Cohen-Macaulay.

On the other hand, to produce G-biliaisons as in [3, Theorem 2.11], we would need specialized information about the graph G, something which is not a straightforward extension of the bipartite case.
6.2. Proof of the conjecture in the quadratic case. In the case that $\mathcal{U}\left(I_{G}\right)$ contains only quadratic binomials, we are able to verify that Conjecture 6.1 is true, that is, I_{G} is geometrically vertex decomposable. We first show that when $\mathcal{U}\left(I_{G}\right)$ contains only quadratic binomials, it has the property that $\mathrm{in}_{<_{G}}\left(I_{G}\right)$ is a squarefree monomial ideal for any monomial order. In the statement below, recall that a binomial $m_{1}-m_{2}$ is doubly square-free if both monomials that make up the binomial are square-free.

Lemma 6.8. Suppose that G is a graph such that I_{G} has a universal Gröbner basis $\mathcal{U}\left(I_{G}\right)$ of quadratic binomials. Then these generators are doubly square-free.
Proof. By Theorem 3.1, a quadratic element of $\mathcal{U}\left(I_{G}\right)$ comes from a primitive closed walk of length four of G. Since consecutive edges cannot be equal, all primitive walks of length four are actually cycles, so no edge is repeated, or equivalently, the generator is doubly square-free.

As noted in the previous subsection, to verify the conjecture in this case, it suffices to show that $\mathbb{K}[E(G)] / I_{E, F}^{G}$ is equidimensional for all E, F, ℓ with $E \cup F=E_{\ell}$. In fact, we will show a stronger result and show that all of these rings are Cohen-Macaulay.

We start with the useful observation that the natural set of generators of $I_{E, F}^{G}$ actually defines a universal Gröbner basis for the ideal.
Lemma 6.9. Under the assumptions of Theorem 6.4, $\mathcal{U}\left(I_{G \backslash E_{\ell}}\right) \cup \mathcal{U}\left(M_{E, F}^{G}\right)$ is a universal Gröbner basis of $I_{E, F}^{G}$.
Proof. We will proceed by induction on $|E \cup F|$. The result is clear when $|E \cup F|=0$. For the induction step, observe that $I_{E, F}^{G}$ is either $N_{y, I_{E, F \backslash y}^{G}}$ or $C_{y, I_{E \backslash y, F}^{G}}$ for some variable $y=e_{i}$. Suppose towards a contradiction that there is some monomial order $<$ on $\mathbb{K}\left[e_{1}, \ldots, \hat{y}, \ldots e_{n}\right]$ for which $\mathcal{U}\left(I_{E, F}^{G}\right)$ is not a Gröbner basis. Extend $<$ to a monomial order $<_{y}$ on $\mathbb{K}\left[e_{1}, \ldots, e_{n}\right]$ which first chooses terms with the highest degree in y and breaks ties using $<$. Clearly $<_{y}$ is a y-compatible order. By [23, Theorem 2.1], $\mathcal{U}\left(I_{E, F}^{G}\right)$ is a Gröbner basis with respect to $<_{y}$. But $<_{y}=<$ on $\mathbb{K}\left[e_{1}, \ldots, \hat{y}, \ldots e_{n}\right]$, a contradiction.
Lemma 6.10. Let $R=\mathbb{K}[E(G)]$, and suppose that G is finite simple graph such that I_{G} has a universal Gröbner basis $\mathcal{U}\left(I_{G}\right)$ of quadratic binomials. Then $R / I_{E, F}^{G}$ is CohenMacaulay for every choice of E, F and ℓ such that $E \cup F=E_{\ell}$.
Proof. Fix some E and F such that $E \cup F=E_{\ell}$. By definition $I_{E, F}^{G}=I_{G \backslash E_{\ell}}+$ $M_{E, F}^{G}$. Since $\mathcal{U}\left(I_{G}\right)$ consists of quadratic binomials, then $M_{E, F}^{G}$ is either $\langle 1\rangle,\langle 0\rangle$, or $\left\langle e_{i_{1}}, \ldots, e_{i_{s}}\right\rangle$ with $s>0$.

The statement of the theorem clearly holds if $M_{E, F}^{G}=\langle 1\rangle$. If $M_{E, F}^{G}=\langle 0\rangle$, then $I_{E, F}^{G}=I_{G \backslash E_{\ell}}$. Then $I_{G \backslash E_{\ell}}$ is generated by quadratic primitive binomials and therefore possesses a square-free degeneration. By Theorem 3.4 these are toric ideals of graphs that are Cohen-Macaulay. We are left with the case that $M_{E, F}^{G}$ is generated by s indeterminates.

We first show that each $I_{E, F}^{G}$ is actually equal to $\widetilde{I}_{E, F}^{G}:=I_{G \backslash\left(E \ell \cup\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right)\right\}}+M_{E, F}^{G}$. We certainly have $\widetilde{I}_{E, F}^{G} \subset I_{E, F}^{G}$. Let $<_{E, F}$ be the monomial order $e_{i_{1}}>\cdots>e_{i_{s}}$ and $e_{i_{s}}>f$ for all $f \in E(G) \backslash\left(E_{\ell} \cup\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right)\right\}$. By Lemma 6.9, $\mathcal{U}\left(I_{G \backslash E_{\ell}}\right) \cup \mathcal{U}\left(M_{E, F}^{G}\right)$ is a universal Gröbner basis for $I_{E, F}^{G}$. A similar statement holds for $\widetilde{I}_{E, F}^{G}$ since no variable of $\mathcal{U}\left(M_{E, F}^{G}\right)$ is used to define $I_{G \backslash\left(E_{\ell} \cup\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right)\right\}}$.

Clearly in ${\overline{<_{E, F}}}\left(\widetilde{I}_{E, F}^{G}\right) \subset \operatorname{in}_{<_{E, F}}\left(I_{E, F}^{G}\right)$. On the other hand, if there is some $u-v \in$ $\mathcal{U}\left(I_{G \backslash E_{\ell}}\right)$ where u or v is in the ideal $M_{E, F}^{G}$, then $\operatorname{in}_{<_{E, F}}(u-v)$ is a multiple of some $e_{i_{j}}$ for $j \in\{1, \ldots, s\}$. Therefore, $\operatorname{in}_{<_{E, F}}\left(\widetilde{I}_{E, F}^{G}\right)=\operatorname{in}_{<_{E, F}}\left(I_{E, F}^{G}\right)$ which in turn implies that $\widetilde{I}_{E, F}^{G}=I_{E, F}^{G}$ (e.g., see [8, Problem 2.8]).

Therefore, we can show that $R / I_{E, F}^{G}$ is Cohen-Macaulay by proving that $R / \widetilde{I}_{E, F}^{G}$ is. Recall that if a ring S is Cohen-Macaulay and graded and x is a non-zero-divisor of S, then $S /\langle x\rangle$ is also Cohen-Macaulay.

Now it is easy to see that $e_{i_{1}}+I_{G \backslash\left(E_{\ell} \cup\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right)\right\}}, \ldots, e_{i_{s}}+I_{G \backslash\left(E_{\ell} \cup\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right)\right\}}$ is a regular sequence on $R / I_{G \backslash\left(E_{\ell} \cup\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right)\right\} \text {. This follows from the fact that }}$ $I_{G \backslash\left(E_{\ell} \cup\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right)\right\}}$ is Cohen-Macaulay since it possesses a square-free degeneration, and from the fact that $\mathcal{U}\left(I_{G \backslash\left(E_{\ell} \cup\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right)\right\}}\right)$ is not defined using the variables $\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right\}$.

The previous lemma provides the unmixed condition needed to use Theorem 6.6. In summary, we have the following result:

Theorem 6.11. Let I_{G} be the toric ideal of a finite simple graph G such that $\mathcal{U}\left(I_{G}\right)$ consists of quadratic binomials. Then I_{G} is geometrically vertex decomposable and glicci.

Proof. By Lemma 6.8, any lexicographic order on the variables will determine a square-free degeneration of I_{G}. By Lemma 6.10 the rings $\mathbb{K}[E(G)] / I_{E, F}^{G}$ are CohenMacaulay for all E, F, and ℓ such that $E \cup F=E_{\ell}$. In particular, all of these rings are equidimensional. Thus, by Theorem $6.6, I_{G}$ is geometrically vertex decomposable, and therefore glicci by Theorem 4.9.

REMARK 6.12. Although the condition that $\mathcal{U}\left(I_{G}\right)$ consists of quadratic binomials is restrictive, it is worth noting that there are families of graphs for which this is true (e.g., certain bipartite graphs). See [28, Theorem 1.2] for a characterization of when I_{G} can be generated by quadratic binomials, and [18, Proposition 1.3] for the case where the Gröbner basis is quadratic.

References

[1] Jennifer Biermann, Augustine O'Keefe, and Adam Van Tuyl, Bounds on the regularity of toric ideals of graphs, Adv. in Appl. Math. 85 (2017), 84-102.
[2] Anders Björner and Michelle L. Wachs, Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3945-3975.
[3] Alexandru Constantinescu and Elisa Gorla, Gorenstein liaison for toric ideals of graphs, J. Algebra 502 (2018), 249-261.
[4] Alberto Corso and Uwe Nagel, Monomial and toric ideals associated to ferrers graphs, Trans. Amer. Math. Soc 361 (2009), no. 3, 1371-1395.
[5] David A. Cox, John Little, and Donal O'Shea, Ideals, varieties, and algorithms, 4 ed., Springer Cham, 2015.
[6] Sergio Da Silva and Megumi Harada, Geometric vertex decomposition, Gröbner bases, and Frobenius splittings for regular nilpotent Hessenberg varieties, 2022, https://arxiv.org/abs/ 2207.08573 , forthcoming, Transform. Groups.
[7] Alessio D'Alí, Toric ideals associated with gap-free graphs, J. Pure Appl. Algebra 219 (2015), no. 9, 3862-3872.
[8] Viviana Ene and Jürgen Herzog, Gröbner bases in commutative algebra, Graduate studies in mathematics, American Mathematical Soc., 2012.
[9] Giuseppe Favacchio, Johannes Hofscheier, Graham Keiper, and Adam Van Tuyl, Splittings of toric ideals, J. Algebra 574 (2021), 409-433.
[10] Federico Galetto, Johannes Hofscheier, Graham Keiper, Craig Kohne, Miguel Eduardo Uribe Paczka, and Adam Van Tuyl, Betti numbers of toric ideals of graphs: A case study, J. Algebra Appl. 18 (2019), no. 12, article no. 1950226 (12 pages).
[11] Isidoro Gitler, Enrique Reyes, and Rafael H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 (2010), no. 3, 430-441.
[12] E. Gorla, J.C. Migliore, and U. Nagel, Gröbner bases via linkage, J. Algebra 384 (2013), 110134.
[13] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, https://math.uiuc.edu/Macaulay2/.
[14] Zachary Greif and Jason McCullough, Green-Lazarsfeld condition for toric edge ideals of bipartite graphs, J. Algebra 562 (2020), 1-27.
[15] Huy Tài Hà, Hop Dang Nguyen, Ngo Viet Trung, and Tran Nam Trung, Symbolic powers of sums of ideals, Math. Z. 294 (2020), no. 3, 1499-1520.
[16] Zachary Hamaker, Oliver Pechenik, and Anna Weigandt, Gröbner geometry of schubert polynomials through ice, Adv. Math. 398 (2022), article no. 108228 (29 pages).
[17] Robin Hartshorne, Generalized divisors and biliaison, Illinois J. Math. 51 (2007), no. 1, 83-98.
[18] Takayuki Hibi, Kenta Nishiyama, Hidefumi Ohsugi, and Akihiro Shikama, Many toric ideals generated by quadratic binomials possess no quadratic Gröbner bases, J. Algebra 408 (2014), 138-146.
[19] Melvin Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318-337.
[20] Patricia Klein, Diagonal degenerations of matrix Schubert varieties, Algebr. Comb. 6 (2023), no. 4, 1073-1094.
[21] Patricia Klein and Jenna Rajchgot, Geometric vertex decomposition and liaison, Forum Math. Sigma 9 (2021), article no. e70 (23 pages).
[22] Jan O. Kleppe, Juan C. Migliore, Rosa Miró-Roig, Uwe Nagel, and Chris Peterson, Complete intersection liaison invariants and unobstructedness, Mem. Amer. Math. Soc. 154 (2001), no. 732, viii +116 pp.
[23] Allen Knutson, Ezra Miller, and Alexander Yong, Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math. 630 (2009), 1-31.
[24] Juan C. Migliore and Uwe Nagel, Liaison and related topics: Notes from the Torino workshop/school, Rend. Semin. Mat. Univ. Politec. Torino 59 (2001), no. 2, 59-126.
[25] , Glicci ideals, Compos. Math. 149 (2013), no. 9, 1583-1591.
[26] Somayeh Moradi and Fahimeh Khosh-Ahang, On vertex decomposable simplicial complexes and their Alexander duals, Math. Scand. 118 (2016), no. 1, 43-56.
[27] Uwe Nagel and Tim Römer, Glicci simplicial complexes, J. Pure Appl. Algebra 212 (2008), no. 10, 2250-2258.
[28] Hidefumi Ohsugi and Takayuki Hibi, Toric ideals generated by quadratic binomials, J. Algebra 218 (1999), no. 2, 509-527.
[29] J. Scott Provan and Louis J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5 (1980), no. 4, 576-594.
[30] Bernd Sturmfels, Gröbner bases and convex polytopes, vol. 8, American Mathematical Soc., 1996.
[31] Christos Tatakis and Apostolos Thoma, On the universal Gröbner bases of toric ideals of graphs, J. Combin. Theory Ser. A 118 (2011), no. 5, 1540-1548.
[32] Rafael H. Villarreal, Rees algebras of edge ideals, Comm. Algebra 23 (1995), no. 9, 3513-3524.
[33] \qquad , Monomial algebras, second edition. ed., Monographs and research notes in mathematics, CRC Press, Taylor \& Francis Group, Boca Raton, 2015.

Mike Cummings, McMaster University, Department of Mathematics and Statistics, 1280 Main St W, Hamilton, ON CAN L8S4L8
E-mail : cummim5@mcmaster.ca
Sergio Da Silva, Virginia State University, Department of Mathematics and Economics, 1 Hayden Dr, Petersburg, VA USA 23806
E-mail: sdasilva@vsu.edu
Jenna Rajchgot, McMaster University, Department of Mathematics and Statistics, 1280 Main St W, Hamilton, ON CAN L8S4L8
E-mail : rajchgot@math.mcmaster.ca
Adam Van Tuyl, McMaster University, Department of Mathematics and Statistics, 1280 Main St W, Hamilton, ON CAN L8S4L8
E-mail : vantuyl@math.mcmaster.ca

[^0]: Manuscript received 11th August 2022, revised 18th January 2023, accepted 21st January 2023.
 KEYWORDS. geometric vertex decomposition, toric ideals of graphs, liaison.

[^1]: ${ }^{(1)}$ It is not necessary to use the connection to Schubert determinantal ideals. Indeed, it is known from the ladder determinantal ideal literature that (mixed) ladder determinantal ideals from (twosided) ladders possess initial ideals which are Stanley-Reisner ideals of vertex decomposable simplicial complexes (see [12] and references therein). Then, an analogous proof to our proof of Theorem 5.8 can be given to show that these ideals are geometrically vertex decomposable.

