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Geometric vertex decomposition and liaison
for toric ideals of graphs

Mike Cummings, Sergio Da Silva, Jenna Rajchgot & Adam
Van Tuyl

Abstract Geometric vertex decomposability for polynomial ideals is an ideal-theoretic general-
ization of vertex decomposability for simplicial complexes. Indeed, a homogeneous geometrically
vertex decomposable ideal is radical and Cohen-Macaulay, and is in the Gorenstein liaison class
of a complete intersection (glicci).

In this paper, we initiate an investigation into when the toric ideal IG of a finite simple
graph G is geometrically vertex decomposable. We first show how geometric vertex decompos-
ability behaves under tensor products, which allows us to restrict to connected graphs. We then
describe a graph operation that preserves geometric vertex decomposability, thus allowing us
to build many graphs whose corresponding toric ideals are geometrically vertex decomposable.
Using work of Constantinescu and Gorla, we prove that toric ideals of bipartite graphs are
geometrically vertex decomposable. We also propose a conjecture that all toric ideals of graphs
with a square-free degeneration with respect to a lexicographic order are geometrically vertex
decomposable. As evidence, we prove the conjecture in the case that the universal Gröbner
basis of IG is a set of quadratic binomials. We also prove that some other families of graphs
have the property that IG is glicci.

1. Introduction
Vertex decomposable simplicial complexes are recursively defined simplicial complexes
that have been extensively studied in both combinatorial algebraic topology and com-
binatorial commutative algebra. This family of complexes, first defined by Provan and
Billera [29] for pure simplicial complexes and later generalized to the non-pure case
by Björner and Wachs [2], has many nice features. For example, they are shellable
and hence Cohen-Macaulay in the pure case.

Because of the Stanley–Reisner correspondence between square-free monomial
ideals and simplicial complexes, the definition and properties of vertex decomposable
simplicial complexes can be translated into algebraic statements about square-free
monomial ideals. For example, Moradi and Khosh-Ahang [26, Definition 2.1] intro-
duced vertex splittable ideals, which are precisely the ideals of the Alexander duals
of vertex decomposable simplicial complexes. As another example, which is directly
relevant to this paper, Nagel and Römer [27] showed that if I∆ is the square-free
monomial ideal associated to a vertex decomposable simplicial complex ∆ via the
Stanley–Reisner correspondence, then the ideal I∆ belongs to the Gorenstein liasion
class of a complete intersection, i.e., the ideal I∆ is glicci.

Knutson, Miller, and Yong [23] introduced the notion of a geometric vertex decom-
position, which is an ideal-theoretic generalization (beyond the square-free monomial
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ideal setting) of a vertex decomposition of a simplicial complex. Building on this, Klein
and Rajchgot [21] gave a recursive definition of a geometrically vertex decomposable
ideal which is an ideal-theoretic generalization of a vertex decomposable simplicial
complex. Indeed, when specialized to square-free monomial ideals, those ideals that
are geometrically vertex decomposable are precisely those square-free monomial ideals
whose associated simplicial complexes are vertex decomposable. As shown by Klein
and Rajchgot [21, Theorem 4.4], this definition captures some of the properties of
vertex decomposable simplicial complexes. For example, a more general version of
Nagel and Römer’s result holds; that is, a homogeneous ideal that is geometrically
vertex decomposable is also glicci. Because geometrically vertex decomposable ideals
are glicci, identifying such families allows us to give further evidence to an important
open question in liaison theory: is every arithmetically Cohen-Macaulay subscheme
of Pn glicci (see [22, Question 1.6])?

Since the definition of geometrically vertex decomposable ideals is recent, there is a
need to not only develop the corresponding theory (e.g., which properties of Stanley–
Reisner ideals of vertex decomposable simplicial complexes also hold for geometrically
vertex decomposable ideals?), but also a need to find families of concrete examples.
There has already been some work in these two directions. Klein and Rajchgot [21]
showed that Schubert determinantal ideals, (homogeneous) ideals coming from lower
bound cluster algebras, and ideals defining equioriented type A quiver loci are all
geometrically vertex decomposable. Klein [20] used geometric vertex decomposability
to prove a conjecture of Hamaker, Pechenik, and Weigandt [16] on Gröbner bases of
Schubert determinantal ideals. Da Silva and Harada have investigated the geometric
vertex decomposability of certain Hessenberg patch ideals which locally define regular
nilpotent Hessenberg varieties [6].

We contribute to this program by further developing the theory of geometric vertex
decomposibility, and show that many families of toric ideals of graphs are geomet-
rically vertex decomposable. Let K be an algebraically closed field of characteris-
tic 0. If G = (V, E) is a finite simple graph with vertex set V = {x1, . . . , xm} and
edge set E = {e1, . . . , en}, we can define a ring homomorphism φ : K[e1, . . . , en] →
K[x1, . . . , xm] by letting φ(ei) = xkxl where the edge ei = {xk, xl}. The toric ideal
of G is the ideal IG = ker(φ). The study of toric ideals of graphs is an active area
of research (e.g., see [1, 3, 9, 10, 14, 28, 31, 32]), so our work also complements the
recent developments in this area. What makes toric ideals of graphs amenable to our
investigation of geometric vertex decomposability is that their (universal) Gröbner
bases are fairly well-understood (see Theorem 3.1) and can be related to the graph’s
structure.

Our first main result describes how geometric vertex decomposability behaves over
tensor products:

Theorem 1.1 (Theorem 2.9). Let I ⊊ R = K[x1, . . . , xn] and J ⊊ S = K[y1, . . . , ym]
be proper ideals. Then I and J are geometrically vertex decomposable if and only
if I + J is geometrically vertex decomposable in R ⊗ S = K[x1, . . . , xn, y1, . . . , ym].

Our result can be viewed as the ideal-theoretic version of the fact that two simplicial
complexes ∆1 and ∆2 are vertex decomposable if and only if their join ∆1⋆∆2 is vertex
decomposable [29, Proposition 2.4]. Moreover, this result allows us to reduce our study
of toric ideals of graphs to the case that the graph G is connected (Theorem 3.3).

When we restrict to toric ideals of graphs, we show that the graph operation of
“gluing” an even length cycle onto a graph preserves the geometric vertex decompos-
ability property:
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Theorem 1.2 (Theorem 3.11). Let G be a finite simple graph with toric ideal IG.
Let H be obtained from G by gluing a cycle of even length to G along a single edge.
If IG is geometrically vertex decomposable, then IH is also geometrically vertex de-
composable.

This gluing operation and its connection to toric ideals of graphs appears in work of
Favacchio, Hofscheier, Keiper and Van Tuyl [9], while a similar construction of using
H-paths is employed by Gitler, Reyes, and Villarreal [11] to characterize the toric
ideals of bipartite graphs that are complete intersections. By repeatedly applying this
operation, we can construct many toric ideals of graphs that are geometrically vertex
decomposable and glicci.

Our gluing operation requires one to start with a graph whose corresponding toric
ideal is geometrically vertex decomposable. It is therefore desirable to identify families
of graphs whose toric ideals have this property. Towards this end, we prove:
Theorem 1.3 (Theorem 5.8). Let G be a finite simple graph with toric ideal IG. If G
is bipartite, then IG is geometrically vertex decomposable.

Our proof of Theorem 1.3 relies on work of Constantinescu and Gorla [3]. For
some families of bipartite graphs, we give alternative proofs for the geometric vertex
decomposable property that exploit the additional structure of the graph (see Theo-
rem 5.10). These families are also used to illustrate that in certain cases, the recursive
definition of geometric vertex decomposability easily lends itself to induction.

Based on our results and computer experimentation in Macaulay2 [13], we propose
the following conjecture:
Conjecture 1.4 (Conjecture 6.1). Let G be a finite simple graph with toric ideal
IG ⊆ K[e1, . . . , en]. If in<(IG) is square-free with respect to a lexicographic monomial
order <, then IG is geometrically vertex decomposable, and thus glicci.

We provide a framework to prove this conjecture. In fact, we show that the conjec-
ture is true if one can prove that a particular family of ideals is equidimensional (see
Theorem 6.6). As further evidence for Conjecture 1.4, we prove the following special
case:
Theorem 1.5 (Theorem 6.11). Let IG be the toric ideal of a finite simple graph G. As-
sume that IG has a universal Gröbner basis consisting entirely of quadratic binomials.
Then IG is geometrically vertex decomposable.

Finally, we prove that additional collections of toric ideals of graphs are glicci
(though not necessarily geometrically vertex decomposable). Our first result in this
direction relies on a very general result of Migliore and Nagel [25, Lemma 2.1] from
the liaison literature.
Theorem 1.6 (Corollary 4.10). Let G be a finite simple graph and let IG ⊆ R =
K[e1, . . . , en] be its toric ideal. Let H be obtained from G by gluing a cycle of even
length to G along a single edge. If R/IG is Cohen-Macaulay, then IH is glicci.

We also show that many toric ideals of graphs which contain 4-cycles are glicci.
The following is a slightly weaker version of Corollary 4.13.
Theorem 1.7 (Corollary 4.13). Let G be a finite simple graph and suppose there is
an edge y ∈ E(G) contained in a 4-cycle. If the initial ideal in<IG is a square-free
monomial ideal for some lexicographic monomial order with y > e for all e ∈ E(G)
with e ̸= y, then IG is glicci.

As a corollary to this theorem, we show that the toric ideal of any gap-free graph
which contains a 4-cycle is glicci. For the definition of gap-free graph and this result,
see the end of Section 4.2.
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1.1. Outline of the paper. In the next section we formally introduce geometrically
vertex decomposable ideals, along with the required background and notation about
Gröbner bases. We also explain how geometrically vertex decomposable ideals behave
with respect to tensor products. In Section 3 we provide the needed background on
toric ideals of graphs, and we explain how a particular graph operation preserves
the geometric vertex decomposability property. In Section 4, we focus on the glicci
property for toric ideals of graphs that can be deduced from the results of Section 3
together with general results from the liaison theory literature. In Section 5 we prove
that toric ideals of bipartite graphs are geometrically vertex decomposable. In Sec-
tion 6 we propose a conjecture on toric ideals with a square-free initial ideal, describe
a framework to prove this conjecture, and illustrate this framework by proving that
toric ideals of graphs which have quadratic universal Gröbner bases are geometrically
vertex decomposable.

1.2. Remark on the field K. Many of the arguments in this paper are valid over
any infinite field. Indeed, the liaison-theoretic setup in Sections 2 and 4 requires an
infinite field but is characteristic-free. Similarly, toric ideals of graphs can be defined
combinatorially, and since the coefficients of their generators are ±1, defining such
ideals in positive characteristic does not pose any issues. Nevertheless, we assume
that K throughout this paper is algebraically closed of characteristic zero since some
of the references that we use make this assumption (e.g., [30, Proposition 13.15], which
is needed in the proof of Theorem 3.4).

Acknowledgements. We thank Patricia Klein for some helpful conversations. Cum-
mings was partially supported by an NSERC USRA. Da Silva was partially supported
by an NSERC postdoctoral fellowship. Rajchgot’s research is supported by NSERC
Discovery Grant 2017-05732. Van Tuyl’s research is supported by NSERC Discovery
Grant 2019-05412.

2. Geometrically vertex decomposable ideals
In this paper K denotes an algebraically closed field of characteristic zero and R =
K[x1, . . . , xn] is the polynomial ring in n variables. This section gives the required
background on geometrically vertex decomposable ideals, following [21]. We also ex-
amine how geometric vertex decomposability behaves over tensor products.

Fix a variable y = xi in R. For any f ∈ R, we can write f as f =
∑

i αiy
i, where αi

is a polynomial only in the variables {x1, . . . , x̂i, . . . , xn}. For f ̸= 0, the initial y-form
of f , denoted iny(f), is the non-zero coefficient of the highest power of y appearing
in
∑

i αiy
i. That is, if αd ̸= 0, but αt = 0 for all t > d, then iny(f) = αdyd. Note

that if y does not appear in any term of f , then iny(f) = f . For any ideal I of R, we
set iny(I) = ⟨iny(f) | f ∈ I⟩ to be the ideal generated by all the initial y-forms in I.
A monomial order < on R is said to be y-compatible if the initial term of f satisfies
in<(f) = in<(iny(f)) for all f ∈ R. For such an order, we have in<(I) = in<(iny(I)),
where in<(I) is the initial ideal of I with respect to the order <.

Given an ideal I and a y-compatible monomial order <, let G(I) = {g1, . . . , gm}
be a Gröbner basis of I with respect to this monomial order. For i = 1, . . . , m, write
gi as gi = ydiqi + ri, where y does not divide any term of qi; that is, iny(gi) = ydiqi.
It can then be shown that iny(I) = ⟨yd1q1, . . . , ydmqm⟩ (see [23, Theorem 2.1(a)]).

Given this setup, we define two ideals:
Cy,I = ⟨q1, . . . , qm⟩ and Ny,I = ⟨qi | di = 0⟩.

Recall that an ideal I is unmixed if the ideal I satisfies dim(R/I) = dim(R/P ) for all
associated primes P ∈ AssR(R/I). We come to our main definition:
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Definition 2.1. An ideal I of R = K[x1, . . . , xn] is geometrically vertex decomposable
if I is unmixed and

(1) I = ⟨1⟩, or I is generated by a (possibly empty) subset of variables of R, or
(2) there is a variable y = xi in R and a y-compatible monomial order < such

that
iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩),

and the contractions of the ideals Cy,I and Ny,I to K[x1, . . . , x̂i, . . . , xn] are
geometrically vertex decomposable.

We make the convention that the two ideals ⟨0⟩ and ⟨1⟩ of the ring K are also geo-
metrically vertex decomposable.

Remark 2.2. For any ideal I of R, if there exists a variable y = xi in R and a
y-compatible monomial order < such that iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩), then this
decomposition is called a geometric vertex decomposition of I with respect to y. This
decomposition was first defined in [23]. Consequently, Definition 2.1 (2) says that
there is a variable y such that I has a geometric vertex decomposition with respect
to this variable.

We say that a geometric vertex decomposition is degenerate if either Cy,I = ⟨1⟩
or
√

Cy,I =
√

Ny,I (see [21, Section 2.2] for further details and results). Otherwise,
we call a geometric vertex decomposition nondegenerate.

If elements in our Gröbner basis are square-free in y, i.e., if iny(gi) = ydiqi with
di = 0 or 1 for all gi ∈ G(I), then Knutson, Miller, and Yong note that we get the
geometric vertex decomposition of I with respect to y for “free":

Lemma 2.3 ([23, Theorem 2.1 (a), (b)]). Let I be an ideal of R and let < be a y-
compatible monomial order. Suppose that G(I) = {g1, . . . , gm} is a Gröbner basis of I
with respect to <, and also suppose that iny(gi) = ydiqi with di = 0 or 1 for all i.
Then

(1) {q1, . . . , qm} is a Gröbner basis of Cy,I and {qi | di = 0} is a Gröbner basis
of Ny,I .

(2) iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩), i.e., I has a geometric vertex decomposition with
respect to y.

Remark 2.4. If I is a square-free monomial ideal in R, then I is geometrically ver-
tex decomposable if and only if the simplicial complex ∆ associated with I via the
Stanley–Reisner correspondence is a vertex decomposable simplicial complex; see [21,
Proposition 2.8] for more details. As a consequence, we can view Definition 2.1 as a
generalization of the notion of vertex decomposability. When I is a square-free mono-
mial ideal with associated simplicial complex ∆, then Cy,I is the Stanley–Reisner ideal
of the star of y, i.e., star∆(y) = {F ∈ ∆ | F ∪ {y} ∈ ∆} and Ny,I + ⟨y⟩ corresponds to
the deletion of y from ∆, that is, del∆(y) = {F ∈ ∆ | y ̸∈ F} (see [21, Remark 2.5]).

If I has a geometric vertex decomposition with respect to a variable y, we can de-
termine some additional information about a reduced Gröbner basis of I with respect
to any y-compatible monomial order. In the following statement, I is square-free in y
if there is a generating set {g1, . . . , gs} of I such that no term of g1, . . . , gs is divisible
by y2.

Lemma 2.5 ([21, Lemma 2.6]). Suppose that the ideal I of R has a geometric vertex
decomposition with respect to the variable y = xi. Then I is square-free in y. Moreover,
for any y-compatible term order, the reduced Gröbner basis of I with respect to this
order has the form {yq1 + r1, . . . , yqk + rk, h1, . . . , ht} where y does not divide any
term of qi, ri, hj for i ∈ {1, . . . , k} and j ∈ {1, . . . , t}.
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The following lemma and its proof helps to illustrate some of the above ideas.
Furthermore, since the definition of geometrically vertex decomposable lends itself to
proof by induction, the following facts are sometimes useful for the base cases of our
induction.

Lemma 2.6. (1) An an ideal I of R = K[x] is geometrically vertex decomposable
if and only if I = ⟨ax + b⟩ for some a, b ∈ K.

(2) Let f = c1m1 + · · ·+csms be any polynomial in R = K[x1, . . . , xn] with ci ∈ K
and mi a monomial. If each mi is square-free, then I = ⟨f⟩ is geometrically
vertex decomposable. In particular, if m is a square-free monomial, then ⟨m⟩
is geometrically vertex decomposable.

Proof. (1) (⇐) If a = 0, or b = 0, or both a = b = 0, the ideal I = ⟨ax + b⟩ satisfies
Definition 2.1 (1). So, suppose a, b ̸= 0. The ideal I is prime, so it is unmixed. Since x
is the only variable of R, and because there is only one monomial order on this ring, it
is easy to see that this monomial order is x-compatible, and that {ax+b} is a Gröbner
basis of I. So, Cx,I = ⟨a⟩ = ⟨1⟩ and Nx,I = ⟨0⟩. It is straightforward to check that we
have a geometric vertex decomposition of I with respect to x. Furthermore, as ideals
in K[x̂] = K, Cx,I = ⟨1⟩ and Nx,I = ⟨0⟩ are geometrically vertex decomposable by
definition. So, I is geometrically vertex decomposable.

(⇒) Since R = K[x] is a principal ideal domain, I = ⟨f⟩ for some f ∈ R, i.e.,
f = adxd + · · · + a1x + a0 with ai ∈ K. Since I is geometrically vertex decomposable,
and because x is the only variable of R, by Lemma 2.5, the ideal I is square-free in x.
This fact then forces d ⩽ 1, and thus I = ⟨a1x + a0⟩ as desired.

(2) We proceed by induction on the number of variables in R = K[x1, . . . , xn]. The
base case n = 1 follows from statement (1). Because I = ⟨f⟩ is principal, f is a Gröbner
basis with respect to any monomial order. In particular, let > be the lexicographic
order on R with x1 > · · · > xn, and assume m1 > · · · > ms. Let y be the largest
variable dividing m1. Then we can write f as f = y(c1m′

1 + · · · + cim
′
i) + ci+1mi+1 +

· · · + csms for some i such that y does not divide mi+1, . . . , ms. Note that > is a y-
compatible monomial order, and so by Lemma 2.3 we have iny(I) = Cy,I ∩(Ny,I +⟨y⟩)
with Cy,I = ⟨c1m′

1 + · · ·+cim
′
i⟩ and Ny,I = ⟨0⟩. The ideal Ny,I is geometrically vertex

decomposable in K[x1, . . . , ŷ, . . . , xn] by definition, and Cy,I is geometrically vertex
decomposable in the same ring by induction. Observe that I, Cy,I and Ny,I are also
unmixed since they are principal. □

Theorem 2.9, which is of independent interest, shows how we can treat ideals whose
generators lie in different sets of variables. We require a lemma about Gröbner bases
in tensor products. For completeness, we give a proof, although it follows easily from
standard facts about Gröbner bases.

We first need to recall a characterization of Gröbner bases using standard repre-
sentations. Fix a monomial order < on R = K[x1, . . . , xn]. Given G = {g1, . . . , gs}
in R, we say f reduces to zero modulo G if f has a standard representation

f = f1g1 + · · · + fsgs with fi ∈ R

with multidegree(f) ⩾ multidegree(figi) for all i with figi ̸= 0. Here

multidegree(h) = max{α ∈ Nn | xα is a term of h},

where we use the monomial order < to order Nn. We then have the following result.

Theorem 2.7 ([5, Chapter 2.9, Theorem 3]). Let R = K[x1, . . . , xn] with fixed mono-
mial order <. A basis G = {g1, . . . , gs} of an ideal I in R is a Gröbner basis for I if
and only if each S-polynomial S(gi, gj) reduces to zero modulo G.
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For the lemma below, note that if R = K[x1, . . . , xn] and S = K[y1, . . . , ym], and
if < is a monomial order on R ⊗ S := R ⊗K S, then < induces a monomial order <R

on R where m1 <R m2 if and only if m1 < m2, where we view m1, m2 as monomials
of both R and R ⊗ S. Here,“viewing f ∈ R as an element of R ⊗ S" means writing
φR(f) as f where φR : R → R ⊗ S is the natural inclusion f 7→ f ⊗ 1. Similarly, we
let <S denote the induced monomial order on S.

Lemma 2.8. Let I ⊆ R = K[x1, . . . , xn] and J ⊆ S = K[y1, . . . , ym] be ideals. For any
monomial order < on R ⊗ S, there exists a Gröbner basis of I + J in R ⊗ S which
has the form G(I + J) = G1 ∪ G2, where G1 is a Gröbner basis of I in R with respect
to <R but viewed as elements of R ⊗ S, and G2 is a Gröbner basis of J in S with
respect to <S but viewed as elements of R ⊗ S.

Proof. Given <, select a Gröbner basis G1 of I and G2 of J with respect to the
induced monomial orders <R and <S on R and S respectively. Since G1 generates I
and G2 generates J , the set G1 ∪ G2 generates I + J as an ideal of R ⊗ S. To prove
that G1 ∪ G2 is a Gröbner basis of I + J , by Theorem 2.7 it suffices to show that for
any gi, gj ∈ G1 ∪ G2, the S-polynomial S(gi, gj) reduces to zero modulo this set.

If gi, gj ∈ G1, then since gi, gj ∈ R, and since G1 is a Gröbner basis of I in R, by
Theorem 2.7, the S-polynomial S(gi, gj) reduces to zero modulo G1. But then in the
larger ring R ⊗ S, the S-polynomial S(gi, gj) also reduces to zero modulo G1 ∪ G2. A
similar result holds if gi, gj ∈ G2.

So, suppose gi ∈ G1 and gj ∈ G2. Note that the leading monomial of gi is only in
the variables {x1, . . . , xn}, while the leading monomial of gj is only in the variables
{y1, . . . , ym}. Consequently, their leading monomials are relatively prime. Thus, ac-
cording to [5, Chapter 2.9, Proposition 4], the S-polynomial S(gi, gj) reduces to zero
modulo G1 ∪ G2. □

Theorem 2.9. Let I ⊊ R = K[x1, . . . , xn] and J ⊊ S = K[y1, . . . , ym] be proper
ideals. Then I and J are geometrically vertex decomposable if and only if (I + J) is
geometrically vertex decomposable in R ⊗ S = K[x1, . . . , xn, y1, . . . , ym].

Proof. First suppose that I ⊊ R and J ⊊ S are geometrically vertex decomposable.
Since neither ideal contains 1, we have I + J ̸= ⟨1⟩. By [15, Corollary 2.8], the set of
associated primes of (R ⊗ S)/(I + J) ∼= R/I ⊗ S/J satisfies

(1) AssR⊗S(R/I ⊗ S/J) = {P + Q | P ∈ AssR(R/I) and Q ∈ AssS(S/J)}.

Thus any associated prime P + Q of (R ⊗ S)/(I + J) satisfies

dim((R ⊗ S)/(P + Q)) = dim(R/P ) + dim(S/Q)
= dim(R/I) + dim(S/J)
= dim((R ⊗ S)/(I + J))

where we are using the fact that I and J are unmixed for the second equality. So,
I + J is also unmixed.

To see that I + J ⊆ R ⊗ S is geometrically vertex decomposable, we proceed by
induction on the number of variables ℓ = n + m in R ⊗ S. The base case ℓ = 0 is
trivial. Assume now that ℓ > 0. If both I and J are generated by indeterminates,
then I + J is too and so is geometrically vertex decomposable. Thus, without loss of
generality, suppose that I is not generated by indeterminates (note that I ̸= ⟨1⟩ by
assumption).

Because I is geometrically vertex decomposable in R, there is a variable y = xi

in R such that iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩) is a geometric vertex decomposition and
the contractions of Cy,I and Ny,I to R′ = K[x1, . . . , ŷ, . . . , xn] are geometrically vertex
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decomposable. Extend the y-compatible monomial order < on R to a y-compatible
monomial order on R ⊗ S by taking any monomial order on S, and let our new
monomial order ≺ be the product order of these two monomial orders (where xi ≻ yj

for all i, j).
If we write Ke to denote the extension of an ideal K in R into the ring R ⊗S, then

one checks that with respect to this new y-compatible order
iny(I + J) = (iny(I))e + J = [Cy,I ∩ (Ny,I + ⟨y⟩)]e + J

= ((Cy,I)e + J) ∩ ((Ny,I)e + J + ⟨y⟩).
Using the identities

(Cy,I)e + J = Cy,I+J and (Ny,I)e + J = Ny,I+J

(note that ≺ is being used to define Cy,I+J and Ny,I+J and < is being used to
define Cy,I and Ny,I), we have a geometric vertex decomposition of I +J with respect
to y in R ⊗ S:

iny(I + J) = Cy,I+J ∩ (Ny,I+J + ⟨y⟩).
Now let C ′ and N ′ denote the contractions of Cy,I and Ny,I to R′. First assume

that C ′ and N ′ are both proper ideals. Then, since C ′ and N ′ are geometrically
vertex decomposable, we may apply induction to see that C ′ +J and N ′ +J in R′ ⊗S
are geometrically vertex decomposable. In particular, as C ′ + J and N ′ + J are the
contractions of (Cy,I)e+J and (Ny,I)e+J to R′⊗S, we have that I+J is geometrically
vertex decomposable by induction. If either C ′ or N ′ is the ideal ⟨1⟩, the same would
be true for the contractions of (Cy,I)e + J or (Ny,I)e + J because the contraction
of (Cy,I)e + J , respectively (Ny,I)e + J , contains C ′, respectively N ′. So I + J is
geometrically vertex decomposable.

For the converse, we proceed by induction on the number of variables ℓ in R ⊗ S.
The base case is ℓ = 0, which is trivial. So suppose ℓ > 0. We first show that I
is unmixed. Suppose that I is not unmixed; that is, there are associated primes P1
and P2 of Ass(R/I) such that dim(R/P1) ̸= dim(R/P2). For any associated prime Q
of S/J , we know by (1) that P1+Q and P2+Q are associated primes of (R⊗S)/(I+J).
Since I + J is unmixed, we can derive the contradiction

dim((R ⊗ S)/(I + J)) = dim((R ⊗ S)/(P1 + Q))
= dim(R/P1) + dim(S/Q)
̸= dim(R/P2) + dim(S/Q)
= dim((R ⊗ S)/(P2 + Q)) = dim((R ⊗ S)/(I + J)).

So, I is unmixed (the proof for J is similar).
If I + J is generated by indeterminates, then so are I and J , hence they are

geometrically vertex decomposable. So, suppose that there is a variable y in R ⊗ S
and a y-compatible monomial order < such that

iny(I + J) = Cy,I+J ∩ (Ny,I+J + ⟨y⟩).
Without loss of generality, assume that y ∈ {x1, . . . , xn}. So Cy,I+J and Ny,I+J are
geometrically vertex decomposable in K[x1, . . . , ŷ, . . . , xn, y1, . . . , ym].

By Lemma 2.8, we can construct a Gröbner basis G of I +J with respect to < such
that

G = {g1, . . . , gs} ∪ {h1, . . . , ht}
where {g1, . . . , gs} is a Gröbner basis of I with respect to the order <R in R, and
{h1, . . . , ht} is a Gröbner basis of J with respect to <S in S. Since y can only appear
among the gi’s, we have

Cy,I+J = (Cy,I) + J and Ny,I+J = (Ny,I) + J
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where Cy,I , respectively Ny,I , denote the ideals constructed from the Gröbner basis
{g1, . . . , gs} of I in R using the monomial order <R. Note that in R, <R is still
y-compatible.

Since the ideals (Cy,I)+J and (Ny,I)+J are geometrically vertex decomposable in
the ring K[x1, . . . , ŷ, . . . , xn, y1, . . . , ym], by induction, Cy,I and Ny,I are geometrically
vertex decomposable in K[x1, . . . , ŷ, . . . , xn] and J is geometrically vertex decompos-
able in S. To complete the proof, note that in R, we have iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩).
Thus I is also geometrically vertex decomposable in R. □

Remark 2.10. If we weaken the hypotheses in Theorem 2.9 to allow I or J to be ⟨1⟩,
then only one direction remains true. In particular, if I and J are geometrically vertex
decomposable, then so is I + J . However, the converse statement would no longer be
true. To see why, let I = ⟨1⟩ and let J to be any ideal which is not geometrically
vertex decomposable. Then I +J = ⟨1⟩ is geometrically vertex decomposable in R⊗S,
but we do not have that both I and J are geometrically vertex decomposable.

Remark 2.11. Theorem 2.9 is an algebraic generalization of [29, Proposition 2.4]
which showed that if ∆1 and ∆2 were simplicial complexes on different sets of vari-
ables, then the join ∆1 ⋆ ∆2 is vertex decomposable if and only if ∆1 and ∆2 are
vertex decomposable.

Corollary 2.12. Let I ⊆ R = K[x1, . . . , xn] be a square-free monomial ideal. If I is
a complete intersection, then I is geometrically vertex decomposable.

Proof. Suppose I = ⟨m1, . . . , mt⟩, where m1, . . . , mt are the minimal square-free
monomial generators. Because I is a complete intersection, the ideal is unmixed.
Furthermore, because I is a complete intersection, the support of each monomial
is pairwise disjoint. So, after a relabelling, we can assume that m1 = x1x2 · · · xa1 ,
m2 = xa1+1 · · · xa2 , . . . , mt = xat−1+1 · · · xat

. Then
R/I ∼= K[x1, . . . , xa1 ]/⟨m1⟩ ⊗ · · · ⊗ K[xat−1+1, . . . , xat

]/⟨mt⟩ ⊗ K[xat+1 , . . . , xn].
By Lemma 2.6, the ideals ⟨mi⟩ are geometrically vertex decomposable for i = 1, . . . , t.
Now repeatedly apply Theorem 2.9. □

Remark 2.13. Corollary 2.12 can also be deduced via results from Stanley–Reisner
theory, which we sketch out. One proceeds by induction on the number of generators
of the complete intersection I. If I = ⟨x1 · · · xk⟩ has one generator, then one can
prove directly from the definition of a vertex decomposable simplicial complex (e.g.,
see [29]) that the simplicial complex associated with I, denoted by ∆ = ∆(I), is
vertex decomposable. For the induction step, note that if I = ⟨m1, . . . , mt⟩, then
I = I1 + I2 = ⟨m1, . . . , mt−1⟩+ ⟨mt⟩. If {w1, . . . , wm} are variables that appear in the
generator mt and {x1, . . . , xℓ} are the other variables, then we have

R/I ∼= K[x1, . . . , xℓ]/I1 ⊗ K[w1, . . . , wm]/I2.

By induction, the simplicial complexes ∆1 and ∆2 defined by I1 and I2 are vertex
decomposable. As noted in Remark 2.11, the join ∆1 ⋆∆2 is also vertex decomposable.
So, the ideal I is a square-free monomial ideal whose associated simplicial complex
is vertex decomposable. The result now follows from [21, Theorem 4.4] which implies
that the ideal I is also geometrically vertex decomposable.

3. Toric ideals of graphs
This section initiates a study of the geometric vertex decomposability of toric ideals
of graphs. We have subdivided this section into three parts: (a) a review of the needed
background on toric ideals, (b) an analysis of the ideals Cy,I and Ny,I when I is the
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toric ideal of a graph, and (c) an explanation of how the graph operation of “gluing”
a cycle to a graph preserves geometric vertex decomposability.

We will study some specific families of graphs whose toric ideals are geometrically
vertex decomposable in Sections 5 and 6.

3.1. Toric ideals of graphs. We review the relevant background on toric ideals
of graphs. Our main references for this material are [30, 33].

Let G = (V (G), E(G)) be a finite simple graph with vertex set V (G) = {x1, . . . , xn}
and edge set E(G) = {e1, . . . , et} where each ei = {xj , xk}. Let K[E(G)] =
K[e1, . . . , et] be a polynomial ring, where we treat the ei’s as indeterminates.
Similarly, let K[V (G)] = K[x1, . . . , xn]. Consider the K-algebra homomorphism
φG : K[E(G)] → K[V (G)] given by

φG(ei) = xjxk where ei = {xj , xk} for all i ∈ {1, . . . , t}.

The toric ideal of the graph G, denoted IG, is the kernel of the homomorphism φG.
While the generators of IG are defined implicitly, these generators (and a Gröbner

basis) of IG can be described in terms of the graph G, specifically, the walks in G. A
walk of length ℓ is an alternating sequence of vertices and edges

{xi0 , ei1 , xi1 , ei2 , · · · , eiℓ
, xiℓ

}

such that eij = {xij−1 , xij }. The walk is closed if xiℓ
= xi0 . When the vertices are

clear, we simply write the walk as {ei1 , . . . , eiℓ
}. It straightforward to check that every

closed walk of even length, say {ei1 , . . . , ei2ℓ
}, results in an element of IG; indeed

φG(ei1ei3 · · · ei2ℓ−1 − ei2ei4 · · · e2ℓ) = xi0xi1 · · · x2ℓ−1 − xi1xi2 · · · xi2ℓ
= 0

since xi2ℓ
= xi0 . Note that ei1ei3 · · · ei2ℓ−1 − ei2ei4 · · · ei2ℓ

is a binomial. For any α =
(a1, . . . , at) ∈ Nt, let eα = ea1

1 ea2
2 · · · eat

t . A binomial eα − eβ ∈ IG is primitive if there
is no other binomial eγ − eδ ∈ IG such that eγ |eα and eδ|eβ . We can now describe
generators and a universal Gröbner basis of IG.

Theorem 3.1. Let G be a finite simple graph.
(1) ([33, Proposition 10.1.5]) The ideal IG is generated by the set of binomials
{ei1ei3 · · · ei2ℓ−1 − ei2ei4 · · · ei2ℓ

| {ei1 , . . . , ei2ℓ
} is a closed even walk of G}.

(2) ([33, Proposition 10.1.9]) The set of all primitive binomials that also corre-
spond to closed even walks in G is a universal Gröbner basis of IG.

Going forward, we will write U(IG) to denote this universal Gröbner basis of IG.
The next two results allow us to make some additional assumptions on G when

studying IG. First, we can ignore leaves in G when studying IG. Recall that the
degree of a vertex x ∈ V (G) is the number of edges e ∈ E(G) that contain x. An
edge e = {x, y} is a leaf of G if either x or y has degree one. In the statement below,
if e ∈ E(G), then by G∖e we mean the graph formed by removing the edge e from G;
note V (G ∖ e) = V (G). We include a proof for completeness.

Lemma 3.2. Let G be a finite simple graph. If e is a leaf of G, then IG = IG∖e.

Proof. For the containment IG∖e ⊆ IG, observe that any closed even walk in G ∖ e
is also a closed even walk in G. For the reverse containment, if a closed even
walk {ei1 , . . . , e, . . . , ei2ℓ

} contains the leaf e, then e must be repeated, i.e.,
{ei1 , . . . , e, e, . . . , ei2ℓ

}. The corresponding binomial b1 − b2 is divisible by e, i.e.,
b1 − b2 = e(b′

1 − b′
2) ∈ IG. But since IG is a prime binomial ideal, this forces

b′
1 − b′

2 ∈ IG. Thus every minimal generator of IG corresponds to a closed even walk
that does not go through e, and thus is an element of IG∖e. □
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A graph G is connected if for any two pairs of vertices in G, there is a walk in G
between these two vertices. A connected component of G is a subgraph of G that is
connected, but it is not contained in any larger connected subgraph. To study the
geometric vertex decomposability of IG, we may always assume that G is connected.

Theorem 3.3. Suppose that G = H ⊔ K is the disjoint union of two finite simple
graphs. Then IG is geometrically vertex decomposable in K[E(G)] if and only if IH ,
and respectively IK , is geometrically vertex decomposable in K[E(H)], and respec-
tively K[E(K)].

Proof. Apply Theorem 2.9 to IG = IH + IK in K[E(G)] = K[E(H)] ⊗ K[E(K)]. □

The well-known result below gives a condition for K[E(G)]/IG to be Cohen-
Macaulay.

Theorem 3.4. Let G be a finite simple graph with toric ideal IG ⊆ K[E(G)]. Suppose
that there is a monomial order < such that in<(IG) is a square-free monomial ideal.
Then K[E(G)]/IG is Cohen-Macaulay.

Proof. If in<(IG) is a square-free monomial ideal, then IG is normal by [30, Proposi-
tion 13.15]. Thus, by Hochster [19], K[E(G)]/IG is Cohen-Macaulay. □

3.2. Structure results about Ny,I and Cy,I . To study the geometric vertex de-
composability of IG, we need access to both Ny,IG

and Cy,IG
. While determining Cy,IG

in terms of G will prove to be subtle, the ideal Ny,IG
has a straightforward description.

Lemma 3.5. Let G be a finite simple graph with toric ideal IG ⊆ K[E(G)]. Let < by
any y-compatible monomial order with y = e for some edge e of G. Then

Ny,IG
= IG∖e.

In particular, a universal Gröbner basis of Ny,IG
consists of all the binomials in the

universal Gröbner basis U(IG) of IG where neither term is divisible by y.

Proof. By Theorem 3.1 (2), IG has a universal Gröbner basis U(IG) of primitive
binomials associated to closed even walks of G. Write this basis as U(IG) = {yd1q1 +
r1, . . . , ydk qk + rk, g1, . . . , gr}, where di > 0 and where y does not divide any term
of gi and qi. By definition

Ny,IG
= ⟨g1, . . . , gr⟩.

In particular, Ny,IG
is generated by primitive binomials in U(IG) which do not

include the variable y. These primitive binomials correspond to closed even walks
in G which do not pass through the edge e. In particular, they are also closed even
walks in G ∖ e, so {g1, . . . , gr} ⊂ U(IG∖e), the universal Gröbner basis of IG∖e from
Theorem 3.1 (2).

To show the reverse containment U(IG∖e) ⊆ {g1, . . . , gr}, suppose that there is
some binomial u − v ∈ U(IG∖e) which is not in U(IG). Then there would be some
closed even walk of G which is not primitive, but becomes primitive after deleting
the edge e. For u − v to not be primitive means that there is some primitive binomial
u′ − v′ ∈ U(IG) such that u′|u and v′|v. Since y does not divide u or v, we must
have u′ −v′ ∈ U(IG∖e), a contradiction to u−v being primitive. Therefore U(IG∖e) =
{g1, . . . , gr}. Since {g1, . . . , gr} generates IG∖e, we have IG∖e = ⟨g1, . . . , gr⟩ = Ny,IG

,
thus proving the result. □

It is more difficult to give a similar description for Cy,IG
. For example, Cy,IG

may
not be prime, and thus, it may not be the toric ideal of any graph. If we make the
extra assumption that the binomial generators in U(IG) are doubly square-free (i.e.,
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each binomial is the difference of two square-free monomials), then it is possible to
give a slightly more concrete description of Cy,IG

. We work out these details below.
Fix a variable y in K[E(G)], and write the elements of U(IG) as {yd1q1 +

r1, . . . , ydk qk + rk, g1, . . . , gr}, where di > 0 and where y does not divide qi or any
term of gi. Since we are assuming the elements in U(IG) are doubly square-free, we
have di = 1 for i = 1, . . . , k and q1, . . . , qk are square-free monomials. Consequently

iny(IG) = ⟨yq1, . . . , yqk, g1, . . . , gr⟩
is generated by doubly square-free binomials and square-free monomials. Let

⋂
j Qj

be the primary decomposition of ⟨yq1, . . . , yqk⟩. Each Qj is an ideal generated by
variables since ⟨yq1, . . . , yqk⟩ is a square-free monomial ideal. Thus

iny(IG) =
(⋂

j

Qj

)
+ ⟨g1, . . . , gr⟩ =

⋂
j

(Qj + ⟨g1, . . . , gr⟩).

If there is a gl = ul − vl with either ul or vl ∈ Qj , then Qj + ⟨g1, . . . , gr⟩ can be
further decomposed into an intersection of ideals generated by variables and square-
free binomials.

Continuing this process, we can write iny(IG) =
⋂

i Pi, where each Pi = Mi + Ti,
with Mi an ideal generated by a subset of indeterminates in {e1, . . . , et}, and Ti ⊆
U(IG) is an ideal of binomials generated by gl = ul − vl where ul, vl /∈ Mi. Again,
we point out that each binomial is a doubly square-free binomial by our assumption
on U(IG). As the next result shows, the binomial ideal Ti is a toric ideal corresponding
to a subgraph of G.

Theorem 3.6. Let G be a finite simple graph with toric ideal IG ⊆ K[E(G)], and
suppose that the elements of U(IG) are doubly square-free. For a fixed variable y
in K[E(G)], suppose that

iny(IG) =
⋂
i

Pi with Pi = Mi + Ti,

using the notation as above. Let Ei ⊆ E(G) be the set of edges that correspond to the
variables in Mi + ⟨y⟩, and let G∖Ei be the graph G with all the edges of Ei removed.
Then Ti = IG∖Ei

.

Proof. The generators of Ti are those elements of U(IG) whose terms are not divisible
by any variable contained in Mi + ⟨y⟩. So a generator of Ti corresponds to a primitive
closed even walk that does not contain any of the edges in Ei. Therefore, each gener-
ator of Ti is a closed even walk in G ∖ Ei, and thus Ti ⊂ IG∖Ei by Theorem 3.1 (1).
Conversely, suppose that Γ ∈ U(IG∖Ei). Then by Theorem 3.1 (2), Γ corresponds to
some primitive closed even walk of G not passing through any edge of Ei. These are
exactly the generators in Ti. □

We now arrive at a primary decomposition of iny(IG).

Corollary 3.7. Let G be a finite simple graph with toric ideal IG ⊆ K[E(G)], and
suppose that the elements of U(IG) are doubly square-free. For a fixed variable y
in K[E(G)], suppose that

iny(IG) =
⋂
i

Pi,

using the notation as above. Then each Pi is a prime ideal, and after removing re-
dundant components, this intersection defines a primary decomposition of iny(IG).

Proof. By the previous result, Pi = Mi + IG∖Ei
for every i. So the fact that Pi is a

prime ideal immediately follows from the fact that any toric ideal is prime, and that
no cancellation occurs between variables in Mi and elements of Ti = IG∖Ei . □
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If IG is generated by a doubly square-free universal Gröbner basis, choosing
any y = ei defines a geometric vertex decomposition of IG with respect to y by
Lemma 2.3. Note that ⟨y⟩ appears in the primary decomposition of ⟨yq1, . . . , yqk⟩, so
one prime ideal in the decomposition given in Corollary 3.7 iny(IG) will always be
⟨y⟩ + ⟨g1, . . . , gr⟩. But this is exactly ⟨y⟩ + Ny,IG

= ⟨y⟩ + IG∖e, by Theorem 3.5. As
the next theorem shows, if we omit this prime ideal, the remaining prime ideals form
a primary decomposition of Cy,IG

.

Theorem 3.8. Let G be a finite simple graph with toric ideal IG ⊆ K[E(G)], and
suppose that the elements of U(IG) are doubly square-free. Fix any variable y = ei.
Suppose that after relabelling the primary decomposition iny(IG) of Corollary 3.7 we
have

(2) iny(IG) =
d⋂

i=0
(Mi + IG∖Ei) = (⟨y⟩ + IG∖ei) ∩

d⋂
i=1

(Mi + IG∖Ei).

Then
Cy,IG

=
d⋂

i=1
(Mi + IG∖Ei

)

is a primary decomposition for Cy,IG
. Furthermore, if < is a y-compatible monomial

order, then (2) is a geometric vertex decomposition for IG with respect to y.

Proof. The fact about the geometric vertex decomposition follows from Lemma 2.3.
Since U(IG) contains doubly square-free binomials, we can write
iny(IG) = ⟨ym1, . . . , ymk, g1, . . . , gr⟩ = ⟨y, g1 . . . , gr⟩ ∩ ⟨m1, . . . , mk, g1, . . . , gr⟩

where y does not divide any mi or any term of any gi. By definition,
Ny,IG

= ⟨g1, . . . , gr⟩ and Cy,IG
= ⟨m1, . . . , mk, g1, . . . , gr⟩.

Applying the process described before Theorem 3.6 to ⟨m1, . . . , mk, g1, . . . , gr⟩ proves
the first claim. □

Remark 3.9. Let M be a square-free monomial ideal and IH a toric ideal of a graph H
where elements of U(H) are doubly square-free. The arguments presented above can
be adapted to prove that M + IH has a primary decomposition into prime ideals of
the form Mi + Ti as in Theorem 3.6.

3.3. Geometric vertex decomposability under graph operations. Given a
graph G whose toric ideal IG is geometrically vertex decomposable, it is natural to
ask if there are any graph operations we can perform on G to make a new graph H so
that the associated toric ideal IH is also geometrically vertex decomposable. We show
that the operation of “gluing” an even cycle onto a graph G is one such operation.

We make this more precise. Given a graph G = (V (G), E(G)) and a vertex sub-
set W ⊆ V (G), the induced graph of G on W , denoted GW , is the graph GW =
(W, E(GW )) where E(GW ) = {e ∈ E(G) | e ⊆ W}. A graph G is a cycle (of length n)
if V (G) = {x1, . . . , xn} and E(G) = {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}, {xn, x1}}.

Following [9, Construction 4.1], we define the gluing of two graphs as follows. Let G1
and G2 be two graphs, and suppose that H1 ⊆ G1 and H2 ⊆ G2 are induced subgraphs
of G1 and G2 that are isomorphic. If φ : H1 → H2 is the corresponding graph
isomorphism, we let G1 ∪φ G2 denote the disjoint union G1 ⊔ G2 with the associated
edges and vertices of H1 ∼= H2 being identified. We may say G1 and G2 are glued
along H if both the induced subgraphs H1 ∼= H2 ∼= H and φ are clear.

Example 3.10. Figure 1 (which is adapted from [9]) shows the gluing of a cycle C
of even length onto a graph G to make a new graph H. The labelling is included to
help illuminate the proof of the next theorem. In this figure, the cycle C has edges
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G

f2n−1

ef2n

f1

Cfi

Figure 1. Gluing an even cycle C to a graph G along an edge.

f1, f2, . . . , f2n. The edge e is part of the graph G. We have glued C and G along the
edge e ∼= f2n.

The geometric vertex decomposability property is preserved when an even cycle is
glued along an edge of a graph whose toric ideal is geometrically vertex decomposable.

Theorem 3.11. Suppose that G is a graph such that IG is geometrically vertex de-
composable in K[E(G)]. Let H be the graph obtained from G by gluing a cycle of even
length onto an edge of G (as in Figure 1). Then IH is geometrically vertex decompos-
able in K[E(H)].

Proof. The ideal IH is clearly unmixed since IH is a prime ideal. Now let E(G) =
{e1, . . . , es} denote the edges of G and let E(C) = {f1, . . . , f2n} denote the edges of
the even cycle C. Let e be any edge of G, and after relabelling the fi’s we can assume
that C is glued to G along f2n and e (see Figure 1). Consequently,

E(H) = E(G) ∪ {f1, . . . , f2n−1}.

Let e = f2n = {a, b}, and suppose that a ∈ f1 and b ∈ f2n−1, i.e., a is the
vertex that f1 shares with f2n, and b is the vertex of f2n−1 shared with f2n. By
Theorem 3.1 (2), a universal Gröbner basis of IH is given by the primitive binomials
that correspond to even closed walks. Consider any even closed walk that passes
through f1. It will have the form

(f1, f2, . . . , f2n−1, e) or (f1, f2, . . . , f2n−1, ej1 , . . . , ej2k−1)

for some odd walk (ej1 , . . . , ej2k−1) in G that connects the vertex a of f1 with the
vertex b of f2n−1. Thus, any primitive binomial involving the variable f1 has the form

f1f3 · · · f2n−1 − ef2 · · · f2n−2

or
f1f3 · · · f2n−1ej2ej4 · · · ej2k−2 − f2f4 · · · f2n−2ej1 · · · ej2k−1 .

Let y = f1 and let < be a y-compatible monomial order, and consider the universal
Gröbner basis of IH written as U(IH) = {yd1q1 +r1, . . . , ydk qk +rk, g1, . . . , gr}, where
di > 0 and where y does not divide any term of gi and qi. Each g1, . . . , gr corresponds
to a primitive closed even walk that does not pass through f1. Consequently, each gi

corresponds to a primitive closed even walk in G. Thus ⟨g1, . . . , gr⟩ = IG (we abuse
notation and write IG for the induced ideal IGK[E(H)]).

Additionally, by Lemma 3.5 we have Ny,IH
= ⟨g1, . . . , gr⟩ = IH∖f1 . But note that

in H ∖ f1, the edge f2 is a leaf. Removing f2 from (H ∖ f1) makes f3 a leaf, and so
on. So, by repeatedly applying Lemma 3.2, we have

Ny,IH
= ⟨g1, . . . , gr⟩ = IH∖f1 = I(H∖f1)∖f2 = · · · = I(···(H∖f1)··· )∖f2n−1 = IG.
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Figure 2. A graph whose toric ideal is geometrically vertex decomposable

Since f1f3 · · · f2n−1 − ef2 · · · f2n−2 is a primitive binomial f3 · · · f2n−1 ∈ Cy,IH
.

Furthermore, by our discussion above, any other primitive binomial containing a term
divisible by y = f1 has the form

f1f3 · · · f2n−1ej2ej4 · · · ej2k−2 − f2f4 · · · f2n−2ej1 · · · ej2k−1 ,

and consequently f3 · · · f2n−1ej2 · · · ej2k−2 ∈ Cy,IH
. But this form is divisible by

f3 · · · f2n−1, so

Cy,IH
= ⟨f3 · · · f2n−1, g1, . . . , gr⟩ = ⟨f3 · · · f2n−1⟩ + IG.

It is now straightforward to check that

iny(IH) = ⟨f1f3 · · · f2n−1⟩ + IG = Cy,IH
∩ (Ny,IH

+ ⟨y⟩),

thus giving a geometric vertex decomposition of IH with respect to y. (We could also
deduce this from Lemma 2.3 since each di = 1 in our description of U(IH) above.)

To complete the proof, the contraction of Ny,IH
to K[f2, . . . , f2n, e1, . . . , es] satisfies

Ny,IH
= ⟨0⟩ + IG ⊆ K[f2, . . . , f2n] ⊗ K[E(G)].

So Ny,IH
is geometrically vertex decomposable by Theorem 2.9 since IG is geomet-

rically vertex decomposable in K[E(G)], and similarly for ⟨0⟩ in K[f2, . . . , fn]. The
ideal Cy,IH

contracts to

Cy,IH
= ⟨f3 · · · f2n−1⟩ + IG ⊆ K[f2, . . . , f2n] ⊗ K[E(G)].

Since ⟨f3f5 · · · f2n−1⟩ ⊆ K[f2, . . . , f2n] is geometrically vertex decomposable by
Lemma 2.6 (2), and IG is geometrically vertex decomposable in K[E(G)] by hy-
pothesis, the ideal Cy,IH

is geometrically vertex decomposable by again appealing to
Theorem 2.9. Thus IH is geometrically vertex decomposable, as desired. □

Example 3.12. Let G be a cycle of even length, i.e., G has edge set e1, . . . , e2n with
(e1, . . . , e2n) a closed even walk. The ideal IG = ⟨e1e3 · · · e2n−1 − e2e4 · · · e2n⟩ is ge-
ometrically vertex decomposable by Lemma 2.6 (2). By repeatedly applying The-
orem 3.11, we can glue on even cycles to make new graphs whose toric ideals are
geometrically vertex decomposable. Note that by Lemma 3.2, we can also add leaves
(and leaves to leaves, and so on) and not destroy the geometrically vertex decompos-
ability property. These constructions allow us to build many graphs whose toric ideal
is geometrically vertex decomposable.

As a specific example, the graph in Figure 2 is geometrically vertex decomposable
since we have repeatedly glued cycles of length four along edges, and then added some
leaves. This bipartite graph is also an example of what Gitler, Reyes, and Villarreal
call a ring graph [11, Definition 2.5].
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4. Toric ideals of graphs and the glicci property
In this section we recall some of the basics of Gorenstein liaison (Section 4.1) and
then show that some large classes of toric ideals of graphs are glicci (Section 4.2).
This section is partly motivated by a result of Klein and Rajchgot [21, Theorem 4.4],
which says that geometrically vertex decomposable ideals are glicci. We note that
while geometrically vertex decomposable ideals are glicci, glicci ideals need not be
geometrically vertex decomposable. Indeed, we do not know if the toric ideals of
graphs proven to be glicci in this section are also geometrically vertex decomposable.
However, the results of this section make use of the geometric vertex decomposition
language of Remark 2.2. For the remainder of the section, we will let S = K[x0, . . . , xn]
denote the graded polynomial ring with respect to the standard grading.

4.1. Gorenstein liaison preliminaries. We provide a quick review of the basics
of Gorenstein liaison; our main references for this material are [24, 25].

Definition 4.1. Suppose that V1, V2, X are subschemes of Pn defined by saturated
ideals IV1 , IV2 and IX of S = K[x0, . . . , xn], respectively. Suppose also that IX ⊂
IV1 ∩ IV2 and IV1 = IX : IV2 and IV2 = IX : IV1 . We say that V1 and V2 are directly
algebraically G-linked if X is Gorenstein. In this case we write V1

X∼ V2.

We can now define an equivalence relation using the notion of algebraically G-
linked.

Definition 4.2. Let V1, . . . , Vk be subschemes of Pn defined by the saturated ideals
IV1 , . . . , IVk

. If there are Gorenstein varieties X1, . . . , Xk−1 such that V1
X1∼ V2

X2∼
· · · Xk−1∼ Vk, then we say V1 and Vk are in the same Gorenstein liaison class (or G-
liaison class) and V1 and Vk are G-linked in k−1 steps. If Vk is a complete intersection,
then we say V1 is in the Gorenstein liaison class of a complete intersection or glicci.

In what follows, we say a homogeneous saturated ideal I is glicci if the subscheme
defined by I is glicci.

Example 4.3. Consider the twisted cubic V1 ⊂ P3 with

IV1 = ⟨xz − y2, xw − z2, xw − yz⟩ ⊆ K[x, y, z].

Choose two of these quadrics, and let X be subscheme defined by their intersection.
It is an exercise to check that X is the union of V1 and a line, which we denote
by V2. Therefore, V1

X∼ V2. Furthermore, since X is a complete intersection, and thus
Gorenstein, the twisted cubic and a line are directly G-linked.

Remark 4.4. One of the main open questions in liaison theory asks if every arith-
metically Cohen-Macaulay subscheme of Pn is glicci (see [22, Question 1.6]).

While it can be difficult in general to find a sequence of G-links between two
varieties, there is a tool called an elementary G-biliaison which simplifies the process
when it exists.

Definition 4.5. Let S = K[x0, . . . , xn] with the standard grading. Let C and I be
homogeneous, saturated, and unmixed ideals of S such that ht(C) = ht(I). Suppose
that there is some d ∈ Z and Cohen-Macaulay homogeneous ideal N ⊂ C ∩ I with
ht(N) = ht(I)−1 such that I/N is isomorphic to [C/N ](−d) as an R/N -module. If N
is generically Gorenstein, then I is obtained from C via an elementary G-biliaison of
height d.
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In fact, suppose that V and W are two subschemes of Pn such that IV and IW

are homogeneous, saturated and unmixed ideals. If IV is obtained from IW by an
elementary G-biliaison, then V and W are G-linked in two steps [17, Theorem 3.5].
Moreover, elementary G-biliaisons preserve the Cohen-Macaulay property. This and
other properties of G-linked varieties can be found in [24]. Indeed, we will use the
following:
Lemma 4.6 ([24, Corollary 5.13]). Let I and J be homogeneous, saturated ideals in S
and assume that I and J are directly G-linked. Then S/I is Cohen-Macaulay if and
only S/J is Cohen-Macaulay.

Migliore and Nagel have given a criterion for an ideal to be glicci.
Theorem 4.7 ([25, Lemma 2.1]). Let I ⊂ S be a homogeneous ideal such that S/I
is Cohen-Macaulay and generically Gorenstein. If f ∈ S is a homogeneous non-zero-
divisor of S/I, then the ideal I + ⟨f⟩ ⊂ S is glicci.

Another criterion for an ideal to be glicci is geometric vertex decomposability.
In fact a geometric vertex decomposition gives rise to an elementary G-biliaison of
height 1.
Lemma 4.8 ([21, Corollary 4.3]). Let I be a homogeneous, saturated, unmixed ideal
of S and inyI = Cy,I ∩ (Ny,I + ⟨y⟩) a nondegenerate geometric vertex decomposition
with respect to some variable y = xi of S. Assume that Ny,I is Cohen–Macaulay and
generically Gorenstein and that Cy,I is also unmixed. Then I is obtained from Cy,I

by an elementary G-biliaison of height 1.
Theorem 4.9 ([21, Theorem 4.4]). If the saturated homogeneous ideal I ⊆ S is geo-
metrically vertex decomposable, then I is glicci.

As noted in the introduction of the paper, the previous result partially motivates
our interest in developing a deeper understanding of geometrically vertex decompos-
able ideals.

4.2. Some toric ideals of graphs which are glicci. In this section we use
Migliore and Nagel’s result [25, Lemma 2.1] (see Theorem 4.7 above) to show that
some classes of toric ideals of graphs are glicci. We begin with a straightforward
consequence of this theorem together with [9, Theorem 3.7].
Theorem 4.10. Let G be a finite simple graph such that K[E(G)]/IG is Cohen-
Macaulay. Let H be the graph obtained by gluing an even cycle C to G along any
edge. Then IH is glicci.
Proof. As in the proof of Theorem 3.11, let E(G) = {e1, . . . , es} denote the edges of G
and E(C) = {f1, . . . , f2n} denote the (consecutive) edges of the even cycle C. Assume
that C is glued to G along f2n and e. Then K[E(H)] = K[E(G)] ⊗ K[f1, . . . , f2n−1].
For convenience, write IG for the induced ideal IGK[E(H)].

Let F = f1f3 · · · f2n−1 −f2f4 · · · f2n−2e be the primitive binomial associated to the
even cycle C. By [9, Theorem 3.7], IH = IG + ⟨F ⟩. As IG is prime, we have that F
is a homogeneous non-zero-divisor on K[E(H)]/IG and K[E(H)]/IG is generically
Gorenstein. As K[E(H)]/IG is Cohen-Macaulay by assumption, Theorem 4.7 implies
that IH is glicci. □

We can combine a one step geometric vertex decomposition with Theorem 4.7 to see
that many toric ideals of graphs which contain 4-cycles are glicci. Our main theorem
in this direction is Theorem 4.14, which says that the toric ideal of a gap-free graph
containing a 4-cycle is glicci. We begin with a general lemma which is not necessarily
about toric ideals of graphs.
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Lemma 4.11. Let S = K[x0, . . . , xn] with the standard grading, and let I ⊂ S be a
homogeneous, saturated ideal such that S/I is Cohen-Macaulay. Assume the following
conditions are satisfied:

(1) I is square-free in y with a nondegenerate geometric vertex decomposition
iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩);

(2) I contains a homogeneous polynomial Q of degree 2 such that y divides some
term of Q; and

(3) S/Ny,I is Cohen-Macaulay and generically Gorenstein, and Cy,I is radical.
Then I is glicci.

Proof. By assumption (1), we have a nondegenerate geometric vertex decomposition
iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩). Since I is Cohen-Macaulay and hence unmixed, we can
conclude that Cy,I is equidimensional by [21, Lemma 2.8]. Since Cy,I is also radical
by assumption (3), Cy,I must be unmixed. Furthermore, because S/Ny,I is Cohen-
Macaulay and generically Gorenstein by assumption (3), we may use Lemma 4.8 to
see that the geometric vertex decomposition gives rise to an elementary G-biliaison
of height 1 from I to Cy,I . Hence S/I being Cohen-Macaulay implies that S/Cy,I is
too by Lemma 4.6.

Let < be a y-compatible monomial order. By assumptions (1) and (2), I contains a
degree 2 form which can be written as Q = yf + R where y does not divide any term
in f or R. Thus, f ∈ Cy,I . Let z = in<(f). Since the geometric vertex decomposition
iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩) is nondegenerate, we have that Cy,I ̸= ⟨1⟩. Hence Cy,I

has a reduced Gröbner basis of the form {f ′, t1, . . . , ts} where in<(f ′) = z and z does
not divide any term of any ti, 1 ⩽ i ⩽ s. Let C ′ = ⟨t1, . . . , ts⟩ so that Cy,I = ⟨f ′⟩+C ′.
With this set-up, we see that f ′ ̸= 0 is a non-zero-divisor on S/C ′.

Let Sẑ = K[x1, . . . , ẑ, . . . , xn]. Then S/Cy,I
∼= Sẑ/C ′. Thus, Sẑ/C ′ (and hence S/C ′

after extending C ′ to S) is Cohen-Macaulay because S/Cy,I is Cohen-Macaulay. Sim-
ilarly, Cy,I being radical implies that C ′ (viewed in Sẑ or S) is radical. Thus, by [25,
Lemma 2.1] (see Theorem 4.7), we conclude that Cy,I is glicci.

By applying the elementary G-biliaison between I and Cy,I once more, we conclude
that I is also glicci. □

We will now apply Lemma 4.11 to see that certain classes of toric ideals of graphs
are glicci. In what follows, let y = xi be an indeterminate in S = K[x1, . . . , xn]
and let < be a y-compatible monomial order. Let MG

y be the ideal generated by all
monomials m ∈ S such that ym−r ∈ U(IG) and in<(ym−r) = ym. Observe that MG

y

does not depend on the choice of y-compatible monomial order. Furthermore, since IG

is prime and ym − r is primitive, y cannot appear in both terms of the binomial. We
will consider generalizations of MG

y in Section 6.

Theorem 4.12. Let G be a finite simple graph where K[E(G)]/IG is Cohen-Macaulay.
Suppose that there exists an edge y ∈ E(G) such that y is contained in a 4-cycle of G,
and a y-compatible monomial order <y such that iny(IG) is square-free in y. Suppose
also that IG∖y is Cohen-Macaulay and IG∖y + MG

y is radical. Then IG is glicci.

Proof. We will show that the three assumptions of Lemma 4.11 hold. Let < be a
y-compatible monomial order.

Since IG is square-free in y, there exists a geometric vertex decomposition
iny(IG) = Cy,IG

∩ (Ny,IG
+ ⟨y⟩)

by Lemma 2.3. Then Ny,IG
= IG∖y and Cy,IG

= IG∖y + MG
y . Since IG is a toric

ideal of a graph, and hence generated in degree 2 or higher, we do not have that
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Cy,I = ⟨1⟩. Furthermore, IG and Ny,IG
are each the toric ideal of a graph, hence radical

(and therefore saturated since IG is not the irrelevant ideal), and Cy,IG
is radical by

assumption. Thus, by [21, Proposition 2.4], we conclude that the geometric vertex
decomposition iny(IG) = Cy,IG

∩ (Ny,IG
+ ⟨y⟩) is nondegenerate since the reduced

Gröbner basis of IG involves y by assumption. Thus, assumption (1) of Lemma 4.11
holds.

Assumption (2) of Lemma 4.11 holds because there exists an edge y ∈ E(G) such
that y is contained in a 4-cycle of G. Assumption (3) of Lemma 4.11 holds by the
assumption that IG∖y is Cohen-Macaulay and IG∖y + MG

y is radical. □

Recall from Theorem 3.4 that if IG ⊆ K[E(G)] is a toric ideal of a graph which
has a square-free degeneration, then K[E(G)]/IG is Cohen-Macaulay. We can use
Theorem 4.12 to show that many toric ideals of graphs which have both square-free
degenerations and 4-cycles are glicci. Specifically, we have the following:
Corollary 4.13. Let G be a finite simple graph and suppose that there exists an edge
y ∈ E(G) such that y is contained in a 4-cycle of G. Suppose also that there exists
some y-compatible monomial order < such that in<(IG) is a square-free monomial
ideal. Then IG is glicci.
Proof. Since in<(IG) is a square-free monomial ideal, we have that K[E(G)]/IG is
Cohen-Macaulay. Furthermore, IG is square-free in y.

Let {yq1 + r1, . . . , yqs + rs, h1, . . . , ht} be a reduced Gröbner basis for IG so that
each in<(yqi), 1 ⩽ i ⩽ s, and each in<(hj), 1 ⩽ j ⩽ t are square-free monomials.
Consider the geometric vertex decomposition

iny(IG) = Cy,IG
∩ (Ny,IG

+ ⟨y⟩).
By [23, Theorem 2.1], {h1, . . . , ht} and {q1, . . . , qs, h1, . . . , ht} are a Gröbner bases
for Ny,IG

and Cy,IG
respectively. Thus, in<(Ny,IG

) and in<(Cy,IG
) are square-free

monomial ideals. Since Ny,IG
= IG∖y is a toric ideal of a graph, it follows that IG∖y

is Cohen-Macaulay. Since Cy,IG
= IG∖y + MG

y , it follows that IG∖y + MG
y is radical.

Thus, the assumptions of Theorem 4.12 hold and we conclude that IG is glicci. □

We end by proving that the toric ideal of a gap-free graph containing a 4-cycle is
glicci. A graph G is gap-free if for any two edges e1 = {u, v} and e2 = {w, x} with
{u, v} ∩ {w, x} = ∅, there is an edge e ∈ E(G) that is is adjacent to both e1 and e2,
i.e., one of the edges {u, w}, {u, x}, {v, w}, {v, x} is also in G. Note that the name
for this family is not standardized; these graphs are sometimes called 2K2-free, or
C4-free, among other names (see D’Alì [7] for more). Note that G has a 4-cycle if and
only if the graph complement Ḡ is not gap-free.
Theorem 4.14. Let G be a gap-free graph such that the graph complement Ḡ is not
gap-free. Then IG is glicci.
Proof. Since Ḡ is not gap-free, G must contain a 4-cycle. Pick any variable y belonging
to this cycle. By [7, Theorem 3.9], since G is gap-free, there exists a y-compatible
order <y such that in<y

(IG) is square-free (we can ensure this by choosing <σ in [7,
Theorem 3.9] so that the vertices defining y have the smallest weight). The result now
follows from Corollary 4.13. □

5. Toric ideals of bipartite graphs
In this section, we show that toric ideals of bipartite graphs are geometrically vertex
decomposable. In Section 5.1, we treat the general case, making use of results of
Constantinescu and Gorla from [3]. Then, in Section 5.2 we give alternate proofs of
geometric vertex decomposibility in special cases.
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5.1. Toric ideals of bipartite graphs are geometrically vertex decom-
posable. Recall that a simple graph G is bipartite if its vertex set V (G) = V1⊔V2 is a
disjoint union of two sets V1 and V2, such that every edge in G has one of its endpoints
in V1 and the other endpoint in V2. The purpose of this subsection is to prove The-
orem 5.8 below, which says that the toric ideal of a bipartite graph is geometrically
vertex decomposable. We will make use of the results and ideas in Constantinescu
and Gorla’s paper [3] on Gorenstein liaison of toric ideals of bipartite graphs.

Let G be a bipartite graph. Following [3, Definition 2.2], we say that a subset
e = {e1, . . . , er} ⊆ E(G) is a path ordered matching of length r if the vertices of G
can be relabelled such that ei = {i, i + r} and

(1) fi = {i, i + r + 1} ∈ E(G), for each 1 ⩽ i ⩽ r − 1,
(2) if {i, j + r} ∈ E(G) and 1 ⩽ i, j ⩽ r, then i ⩽ j.

The following is straightforward. It will be referenced later in the subsection.

Lemma 5.1. Let e = {e1, . . . , er} be a path ordered matching. Then {e1, . . . , er−1} is
a path ordered matching on G ∖ er.

Given a subset e ⊆ E(G), let MG
e be the set of all monomials m such that there is

some non-empty subset ẽ ⊆ e where m
(∏

ei∈ẽ ei

)
− n is the binomial associated to a

cycle in G. Let

(3) IG
e = IG∖e + ⟨MG

e ⟩,

and observe that when e = ∅, IG
e = IG.

Let G be a bipartite graph and e = {e1, . . . , er} a path ordered matching. Let ≺
be a lexicographic monomial order on K[E(G)] with er > er−1 > · · · > e1 and e1 > f
for all f ∈ E(G) ∖ e. Let C(G) denote the set of binomials associated to cycles in G.
By [3, Lemma 2.6], C(G∖e) ∪ MG

e is a Gröbner basis for IG
e with respect to the term

order ≺, and in≺(IG
e ) is a square-free monomial ideal.

Remark 5.2. Let M̃G
e be the set of monomials m such that there is some non-empty

subset ẽ ⊆ e where m
(∏

ei∈ẽ ei

)
− n is the binomial associated to a cycle in G and n

is not divisible by any ei ∈ e. By [3, Remark 2.7], C(G ∖ e) ∪ M̃G
e is also a Gröbner

basis for IG
e with respect to ≺. Furthermore, observe that if mei ∈ M̃G

e for some
ei ∈ e, then m is also an element of M̃G

e . Hence, if we let LG
e be the set of monomials

in M̃G
e which are not divisible by any ei ∈ e, then C(G ∖ e) ∪ LG

e is a Gröbner basis
for IG

e with respect to ≺.

Using Remark 5.2, we obtain the following lemma, which we will need when proving
geometric vertex decomposability of toric ideals of bipartite graphs.

Lemma 5.3. Let G be a bipartite graph and let e = {e1, . . . , er}, r ⩾ 1, be a path
ordered matching on G, and let e′ = {e1, . . . , er−1}. Let ≺ be a lexicographic monomial
order on K[E(G)] with er > er−1 > · · · > e1 and e1 > f for all f ∈ E(G) ∖ e. The
set C(G ∖ e′) ∪ LG

e′ is a Gröbner basis for IG
e′ with respect to ≺ and in≺(IG

e′ ) is a
square-free monomial ideal.

Proof. By Remark 5.2, G := C(G ∖ e′) ∪ LG
e′ is a Gröbner basis for IG

e′ with respect
to the lexicographic term order er−1 > er−2 > · · · > e1 > er and er > f for all
f ∈ E(G) ∖ e. Since none of e1, . . . , er−1 appear in G, we have that G is also a
Gröbner basis for the lexicographic monomial order ≺. Furthermore, all terms of all
elements in G are square-free, so in≺(IG

e′ ) is a square-free monomial ideal. □

We now use Lemma 5.3 to obtain a geometric vertex decomposition of IG
e′ :
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Proposition 5.4. Let G be a bipartite graph and let e = {e1, . . . , er} be a path ordered
matching. Let e′ = {e1, . . . , er−1}. Then there is a geometric vertex decomposition

(4) iner
(IG

e′ ) = (IG∖er

e′ + ⟨er⟩) ∩ IG
e .

Proof. Let ≺ be a lexicographic monomial order on K[E(G)] with er > er−1 > · · · >
e1 and e1 > f for all f ∈ E(G) ∖ e. This is an er-compatible monomial order.
By Lemma 5.3, C(G ∖ e′) ∪ LG

e′ is a Gröbner basis for IG
e′ with respect to ≺, and

C(G ∖ e′) ∪ LG
e′ are square-free in er. We can write:

C(G ∖ e′) = {erm1 − n1, erm2 − n2, . . . , ermq − nq, h1, . . . , ht}, and

LG
e′ = {era1, . . . , erau, b1, . . . , bv}

where er does divide any mℓ, nℓ, 1 ⩽ ℓ ⩽ q, nor any term of hk, 1 ⩽ k ⩽ t, nor any of
the monomials a1, . . . , au, b1, . . . , bv. We thus have the geometric vertex decomposition

iner (IG
e′ ) = (⟨h1, . . . , ht, b1, . . . , bv⟩ + ⟨er⟩) ∩ ⟨m1, . . . , mq, h1, . . . , ht, a1, . . . , au, b1, . . . , bv⟩

= (⟨h1, . . . , ht, b1, . . . , bv⟩ + ⟨er⟩) ∩ IG
e .

It remains to show that ⟨h1, . . . , ht, b1, . . . , bv⟩ = IG∖er

e′ .
By Lemma 5.1, e′ is a path ordered matching on G∖ er. Thus, IG∖er

e′ is generated
by

C((G ∖ er) ∖ e′) ∪ LG∖er

e′ = C(G ∖ e) ∪ LG∖er

e′ .

Observe that {h1, . . . , ht} = C(G ∖ e). Also, it follows from the definitions that
LG∖er

e′ ⊆ {b1, . . . , bv}. Thus, we have the inclusion IG∖er

e′ ⊆ ⟨h1, . . . , ht, b1, . . . , bv⟩.
For the reverse inclusion, fix some bj , 1 ⩽ j ⩽ v. Then there is some non-empty

subset ẽ ⊆ e′ and a binomial bj(
∏

ei∈ẽ ei)−n associated to a cycle in G. If er does not
divide n then bj ∈ MG∖er

e′ , and hence bj ∈ IG∖er

e′ . Otherwise, since e is also a path
ordered matching, one can apply the proof of [3, Remark 2.7] to find another cycle
in G which does not pass through er and which gives rise to an element cj ∈ MG

e
which divides bj . Since the cycle does not pass through er, we have cj ∈ MG∖er

e′ . As
C((G ∖ er) ∖ e′) ∪ MG∖er

e′ is a Gröbner basis for IG∖er

e′ , we see that cj , and hence bj ,
is an element of IG∖er

e′ . Thus, ⟨h1, . . . , ht, b1, . . . , bv⟩ ⊆ IG∖er

e′ . □

We say that a path ordered matching e = {e1, . . . , er} is right-extendable if there is
some edge er+1 ∈ E(G) such that {e1, . . . , er, er+1} is also a path ordered matching.

Lemma 5.5. Let G be a bipartite graph with no leaves and let e = {e1, . . . , er} be a path
ordered matching which is not right-extendable. Then, MG

e contains an indeterminate
x ∈ E(G) and e is a path ordered matching on G∖x. Furthermore, IG

e = IG∖x
e + ⟨x⟩.

Proof. The proof is identical to the proof of [3, Lemmas 2.12 and 2.13] upon replacing
maximal path ordered matchings in [3, Lemmas 2.12 and 2.13] with right-extendable
path ordered matchings. □

Lemma 5.6. Let G be a bipartite graph and let e = {e1, . . . , er} be a path ordered
matching. Suppose that G has a leaf y. Then:

(1) if y /∈ e, then e is a path ordered matching in G ∖ y and IG
e = IG∖y

e ;
(2) if y ∈ e, then y = e1 or er and e∖ y is a path ordered matching in G∖ y and

IG
e = IG∖y

e∖y .

Proof. Since e is a path ordered matching, the vertices of G can be labelled such that
ei = {i, i + r}, 1 ⩽ i ⩽ r. Let fi = {i, i + r + 1}, 1 ⩽ i ⩽ r − 1 so that

e1, f1, e2, f2, . . . , er−1, fr−1, er
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is a path of consecutive edges in G. Since y is a leaf, we see that y /∈ {f1, . . . , fr−1}.
If y /∈ e, then each ei, fi remains and e is a path ordered matching in G∖ y. Further-
more no cycle in G passes through y, hence IG

e = IG∖y
e .

If y ∈ e, then either y = e1 or y = er. In either case, since each fi remains in G∖y,
e ∖ y is still a path ordered matching in G ∖ y. Since there is no cycle in G which
passes through y, we have IG

e = IG
e∖y = IG∖y

e∖y . □

We will need one more result from [3]:

Theorem 5.7 ([3, Theorem 2.8]). Let G be a bipartite graph and e = {e1, . . . , er} a
path ordered matching. Then K[E(G)]/IG

e is Cohen-Macaulay.

We now adapt the proof of [3, Corollary 2.15] on vertex decomposability of the
simplicial complex associated to an initial ideal of IG

e to prove the main theorem of
this subsection.

Theorem 5.8. Let G be a bipartite graph and e = {e1, . . . , er} a path ordered match-
ing. Then the ideal IG

e is geometrically vertex decomposable. In particular, the toric
ideal IG is geometrically vertex decomposable.

Proof. Let R = K[E(G)]. By Theorem 5.7, each R/IG
e is Cohen-Macaulay, hence

unmixed.
We proceed by double induction on |E(G)| and s−r where ẽ = {ẽ1, . . . , ẽs} is a path

ordered matching that is not right-extendable and is such that ẽ1 = e1, . . . , ẽr = er.
If |E(G)| ⩽ 3, then IG = ⟨0⟩ as there are no primitive closed even walks in G, so

the result holds trivially.
If G has a leaf, then by Lemma 5.6, there is an edge y and a path ordered match-

ing e′ in G ∖ y such that IG
e = IG∖y

e′ . By induction on the number of edges in the
graph, IG∖y

e′ is geometrically vertex decomposable, hence so is IG
e .

So, assume that G has no leaves. If s − r = 0, then e is not right extendable. Then,
by Lemma 5.5, there is an indeterminate z ∈ MG

e such that

IG
e = IG∖z

e + ⟨z⟩.

By Lemma 5.5, e is a path ordered matching on G ∖ z, so again by induction on the
number of edges in the graph, we have the IG∖z

e is geometrically vertex decomposable,
hence so is IG

e .
Now suppose that e is right extendable, so that s−r > 0 and e∗ = {e1, . . . , er+1} is

a path ordered matching. By Lemma 5.4, we have the geometric vertex decomposition

iner+1(IG
e ) = (IG∖er+1

e + ⟨er+1⟩) ∩ IG
e∗ .

By Lemma 5.1, e is a path ordered matching on G ∖ er+1. So, by induction on
the number of edges, I

G∖er+1
e is geometrically vertex decomposable. By induction

on s − r, IG
e∗ is geometrically vertex decomposable. Hence, IG

e is geometrically vertex
decomposable.

The final conclusion now follows from the fact that IG = IG
e when e = ∅. □

5.2. Alternate proofs in special cases. In this section, we apply results from
the literature to give alternate proofs of geometric vertex decomposability for some
well-studied families of bipartite graphs. These proofs illustrate that in some cases, we
can prove that a family of ideals is geometrically vertex decomposable directly from
the definition. Moreover, these examples do not require the full strength of the ma-
chinery of Section 5.1; in particular, these families of examples have the property that
the ideals Cy,I and Ny,I usually do not leave the family of ideals we are considering,
thus giving us nice inductive proofs.
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y1 y2 y3 y4 y5

x1 x2 x3 x4

Figure 3. The graph Tλ for λ = (5, 3, 2, 1)

We define the relevant families of graphs. A Ferrers graph is a bipartite graph on the
vertex set X = {x1, . . . , xn} and Y = {y1, . . . , ym} such that {xn, y1} and {x1, ym}
are edges, and if {xi, yj} is an edge, then so are all the edges {xk, yl} with 1 ⩽ k ⩽ i
and 1 ⩽ l ⩽ j. We associate a partition λ = (λ1, λ2, . . . , λn) with λ1 ⩾ λ2 ⩾ · · · ⩾ λn

to a Ferrers graph where λi = deg xi. Some of the properties of the toric ideals of
these graphs were studied by Corso and Nagel [4]. Following Corso and Nagel, we
denote a Ferrers graph as Tλ where λ denotes the associated partition.

As an example, consider the partition λ = (5, 3, 2, 1) which can be visualized as

y1 y2 y3 y4 y5
x1 • • • • •
x2 • • •
x3 • •
x4 •

We have labelled the rows with the xi vertices and the columns with the yj

vertices. From this representation, the graph Tλ is the graph on the vertex set
{x1, . . . , x4, y1, . . . , y5} where {xi, yj} is an edge if and only if there is dot in the
row and column indexed by xi and yj respectively. Figure 3 gives the corresponding
bipartite graph Tλ for λ.

Next we consider the graphs studied in Galetto, et al. [10] as our second family of
graphs. For integers r ⩾ 3 and d ⩾ 2, we let Gr,d be the graph with vertex set

V (Gr,d) = {x1, x2, y1, . . . , yd, z1, . . . , z2r−3}

and edge set

E(Gr,d) = {{xi, yj} | 1 ⩽ i ⩽ 2, 1 ⩽ j ⩽ d} ∪
{{x1, z1}, {z1, z2}, {z2, z3}, . . . , {z2r−4, z2r−3}, {z2r−3, x2}}.

Observe that Gr,d is the graph formed by taking the complete bipartite graph K2,d

(defined below), and then joining the two vertices of degree d by a path of length 2r−2.
As an example, see Figure 4 for the graph G3,5. We label the edges so that ai = {x1, yi}
and bi = {x2, yi} for i = 1, . . . , d, and e1 = {x1, z1}, e2r−2 = {z2r−3, x2} and ei+1 =
{zi, zi+1} for 1 ⩽ i ⩽ 2r − 4.

Using the above labelling, we can describe the universal Gröbner basis of IGr,d
.

Theorem 5.9 ([10, Corollary 3.3]). Fix integers r ⩾ 3 and d ⩾ 2. A universal Gröbner
basis for IGr,d

is given by

{aibj − biaj | 1 ⩽ i < j ⩽ d} ∪ {aie2e4 · · · e2r−2 − bie1e3e5 · · · e2r−3 | 1 ⩽ i ⩽ d}.

The next result provides many examples of toric ideals which are geometrically
vertex decomposable. Recall that the complete bipartite graph Kn,m is the graph with
vertex set V = {x1, . . . , xn, y1, . . . , ym} and edge set {{xi, yj} | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m}.
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a5
a1

b1

a2 a3 a4

b2 b3 b4 b5

e1

e2 e3

e4

y1 y2 y3 y4 y5

x1 x2

z1 z3

z2

Figure 4. The graph G3,5

Theorem 5.10. The toric ideals of the following families of graphs are geometrically
vertex decomposable:

(1) G is a cycle;
(2) G is a Ferrers graph Tλ for any partition λ;
(3) G is a complete bipartite graph Kn,m; and
(4) G is the graph Gr,d for any r ⩾ 3, d ⩾ 2.

Proof. (1) Suppose that G is a cycle with 2n edges. Then IG = ⟨e1e3 · · · e2n−1 −
e2e4 · · · e2n⟩, so the result follows from Lemma 2.6 (2). If G is an odd cycle, then
IG = ⟨0⟩, and so it is geometrically vertex decomposable by definition.
(2) As shown in the proof of [4, Proposition 5.1], the toric ideal of Tλ is generated
by the 2 × 2 minors of a one-sided ladder. The ideal generated by the 2 × 2 minors
of a one-sided ladder is an example of Schubert determinantal ideal (e.g., see [23]).
The conclusion now follows from [21, Proposition 5.2] which showed that all Schubert
determinantal ideals are geometrically vertex decomposable.(1)

(3) Apply the previous result using the partition λ = (m, m, . . . , m)︸ ︷︷ ︸
n

.

(4) Let I = IGr,d
. Since it is a prime ideal, it is unmixed. We first show that the

statement holds if d = 2 and for any r ⩾ 3. Let y = a2, and consider the lexicographic
order on K[E(Gr,d)] = K[a1, a2, b1, b2, e1, . . . , e2r−2] with a2 > a1 > b2 > b1 > e2r−2 >
· · · > e1. This monomial order is y-compatible.

By using the universal Gröbner basis of Theorem 5.9, we have

Cy,I = ⟨b1, e2e4 · · · e2r−2, a1e2 · · · e2r−2 − b1e1e3 · · · e2r−3⟩ = ⟨b1, e2e4 · · · e2r−2⟩

and Ny,I = ⟨a1e2 · · · e2r−2 −b1e1 · · · e2r−3⟩. Note that each binomial in U(I) is doubly
square-free, so we can use Lemma 2.3 to deduce that

iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩)

is a geometric vertex decomposition. To complete this case, note that Cy,I is a mono-
mial complete intersection in K[a1, b1, b2, e1, . . . , e2r−2], so this ideal is geometrically

(1)It is not necessary to use the connection to Schubert determinantal ideals. Indeed, it is known
from the ladder determinantal ideal literature that (mixed) ladder determinantal ideals from (two-
sided) ladders possess initial ideals which are Stanley–Reisner ideals of vertex decomposable simplicial
complexes (see [12] and references therein). Then, an analogous proof to our proof of Theorem 5.8
can be given to show that these ideals are geometrically vertex decomposable.
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vertex decomposable by Corollary 2.12. The ideal Ny,I is a principal ideal gener-
ated by a1e2 · · · e2r−2 − b1e1 · · · e2r−3, so it is geometrically vertex decomposable by
Lemma 2.6 (2). So, for all r ⩾ 3, the toric ideal IGr,2 is geometrically vertex decom-
posable.

We proceed by induction on d. Assume d > 2 and let r ⩾ 3. Let y = ad, and consider
the lexicographic order on K[E(Gr,d)] = K[a1, . . . , ad, b1, . . . , bd, e1, . . . , e2r−2] with
ad > · · · > a1 > bd > · · · > b1 > e2r−2 > · · · > e1. This monomial order is y-
compatible.

By again appealing to Theorem 5.9, we have

Cy,I = ⟨b1, . . . , bd−1, e2e4 · · · e2r−2⟩ + ⟨aibj − biaj | 1 ⩽ i < j ⩽ d − 1⟩ +
⟨aie2e4 · · · e2r−2 − bie1e3e5 · · · e2r−3 | 1 ⩽ i ⩽ d − 1⟩

= ⟨b1, . . . , bd−1, e2e4 . . . e2r−2⟩,

where the last equality comes from removing redundant generators. On the other
hand, by Lemma 3.5, Ny,I = IK where K = Gr,d ∖ ad. Note that in this graph, the
edge bd is a leaf, and consequently, Ny,I = IGr,d−1 since K ∖ bd = Gr,d−1.

We can again use Lemma 2.3 to deduce that

iny(I) = Cy,I ∩ (Ny,I + ⟨y⟩)

is a geometric vertex decomposition.
To complete the proof, note that in the ring K[a1, . . . , ad−1, b1, . . . , bd, e1, . . . , e2r−2],

the ideal Cy,I is geometrically vertex decomposable by Corollary 2.12 since this ideal
is a complete intersection monomial ideal. Also, the ideal Ny,I = IGr,d−1 is geo-
metrically vertex decomposable by induction. Thus, IGr,d

is geometrically vertex
decomposable for all d ⩾ 2 and r ⩾ 3. □

As we will see in the remainder of the paper, there are many non-bipartite graphs
which have geometrically vertex decomposable toric ideals.

6. Toric ideals with a square-free degeneration
As mentioned in the introduction, an important question in liaison theory asks if every
arithmetically Cohen-Macaulay subscheme of Pn is glicci (e.g., see [22, Question 1.6]).
As shown by Klein and Rajchgot (see Theorem 4.9), if a homogeneous ideal I is a
geometrically vertex decomposable ideal, then I defines an arithmetically Cohen-
Macaulay subscheme, and furthermore, this scheme is glicci. It is therefore natural to
ask if every toric ideal IG of a finite graph G that has the property that K[E(G)]/IG

is Cohen-Macaulay is also geometrically vertex decomposable. If true, then this would
imply that the scheme defined by IG is glicci.

Instead of considering all toric ideals of graphs such that K[E(G)]/IG is Cohen-
Macaulay, we restrict ourselves to ideals IG which possess a square-free Gröbner
degeneration with respect to some monomial order <. By Theorem 3.4, K[E(G)]/IG

is Cohen-Macaulay. Furthermore, if in<(IG) defines a vertex decomposable simpli-
cial complex via the Stanley–Reisner correspondence, then IG would be geometrically
vertex decomposable with respect to a lexicographic monomial order < (see [21, Propo-
sition 2.14]). We propose the conjecture below. Note that this conjecture would imply
that any toric ideal of a graph with a square-free initial ideal is glicci.

Conjecture 6.1. Let G be a finite simple graph with toric ideal IG ⊆ K[E(G)].
If in<(IG) is square-free with respect to a lexicographic monomial order <, then IG is
geometrically vertex decomposable.
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By Theorem 5.8, Conjecture 6.1 is true in the bipartite setting. In this section, we
build a framework for proving Conjecture 6.1. In particular, we reduce Conjecture 6.1
to checking whether certain related ideals are equidimensional, and we prove Conjec-
ture 6.1 for the case where the generators in the universal Gröbner basis U(IG) are
quadratic.

6.1. Framework for the conjecture. Suppose that G is a labelled graph with n
edges e1, . . . , en and toric ideal IG ⊆ K[E(G)]. Let <G be the lexicographic monomial
order induced from the ordering of the edges coming from the labelling. That is,
e1 > e2 > · · · > en.

We define a class of ideals of the form IG
E,F such that E ∪ F = Ek = {e1, . . . , ek}

for some 0 ⩽ k ⩽ n with E ∩ F = ∅. Here E0 = ∅. Define
IG

E,F := IG∖(E∪F ) + MG
E,F

where IG∖(E∪F ) is the toric ideal of the graph G with the edges E ∪ F removed,
and where MG

E,F is the ideal of K[e1, . . . , en] generated by those monomials m with
mℓ − p ∈ U(IG) such that:

(1) in<G
(mℓ − p) = mℓ,

(2) ℓ is a monomial only involving some non-empty subset of variables in E, and
(3) no f ∈ F divides mℓ and no e ∈ E divides m.

If there are no monomials m which satisfy conditions (1), (2), and (3), we set MG
E,F =

⟨0⟩. Therefore MG
∅,F = ⟨0⟩ and IG

∅,F = IG∖F (which is generated by those primitive
closed even walks in G which do not pass through any edge of F = Ek). On the other
hand, if there is an ℓ − p ∈ U(IG) with in<G

(ℓ − p) = ℓ where ℓ is a monomial only
involving the variables in E, then we take m = 1, and so MG

E,F = ⟨1⟩.
There is a natural set of generators for IG

E,F using the primitive closed even walks
of IG. In particular, the ideal IG

E,F is generated by the set

U(IG∖(E∪F )) ∪ U(MG
E,F ),

where U(IG∖(F ∪E)) is the set of binomials defined by primitive closed even walks of
the graph G∖(E ∪F ), and U(MG

E,F ) are those monomials m appearing in a generator
of U(IG) and satisfying conditions (1), (2), and (3) above. Because MG

E,F is a monomial
ideal, its minimal generators form a universal Gröbner basis, so our notation makes
sense. Going forward, we restrict our attention to the case where in<G

(IG) is square-
free (this setting includes families of graphs like gap-free graphs [7] for certain choices
of <G).

To illustrate some of the above ideas, we consider the case that E ∪F = E1 = {e1}.
This example also highlights a connection to the geometric vertex decomposition of IG

with respect to e1.

Example 6.2. Assume that in<G
(IG) is square-free. Then we can write

U(IG) = {e1m1 − p1, . . . , e1mr − pr, t1, . . . , ts}
where e1 does not divide mi, pi or any term of ti. This set defines a universal Gröbner
basis for IG = IG

∅,∅. Since IG∖e1 = ⟨t1, . . . , ts⟩ (by Lemma 3.5), we can write

ine1(IG
∅,∅) = ⟨e1m1, . . . , e1mr, t1, . . . , ts⟩

= ⟨e1, t1, . . . , ts⟩ ∩ ⟨m1, . . . , mr, t1, . . . , ts⟩
= (⟨e1⟩ + IG∖e1) ∩ (MG

{e1},∅ + IG∖e1)

= (⟨e1⟩ + IG∖e1 + MG
∅,{e1}) ∩ IG

{e1},∅

= (⟨e1⟩ + IG
∅,{e1}) ∩ IG

{e1},∅.
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IG
∅,∅

IG
∅,{e1}

IG
∅,{e1,e2}

IG
∅,{e1,e2,e3}IG

{e3},{e1,e2}

IG
{e2},{e1}

IG
{e2},{e1,e3}IG

{e2,e3},{e1}

IG
{e1},∅

IG
{e1},{e2}

IG
{e1},{e2,e3}IG

{e1,e3},{e2}

IG
{e1,e2},∅

IG
{e1,e2},{e3}IG

{e1,e2,e3},∅

Figure 5. The relation between the ideals IG
E,F

Note that IG∖e1 = IG∖e1 + MG
∅,{e1} since MG

∅,{e1} = ⟨0⟩.
Note that if we take y = e1 and I = IG

∅,∅, then we get Cy,I = IG
{e1},∅ and Ny,I =

IG
∅,{e1}. That is, y = e1 defines a geometric vertex decomposition of IG. Therefore,

when E ∪ F = E1 = {e1}, either e1 ∈ E or e1 ∈ F , and each case appears in the
geometric vertex decomposition. □

If we continue the process by taking ine2(·) of IG
{e1},∅ and of IG

∅,{e1}, we get one
of four possible Cy,I and Ny,I ideals, each corresponding to a possible distribution
of {e1, e2} into the disjoint sets E and F such that E ∪ F = E2. Figure 5 shows the
relationship between the ideals IG

E,F for the cases E ∪ F = Ei for i = 0, . . . , 3.
One strategy to verify Conjecture 6.1 is to prove the following three statements:
(A) Given I = IG

E,F such that E ∪ F = Ek−1 and I ̸= ⟨0⟩ or ⟨1⟩, then y = ek

defines a geometric vertex decomposition. Furthermore, Ny,I and Cy,I must
also be of the form IG

E′,F ′ where E′ ∪ F ′ = Ek.
(B) If E ∪ F = En, then IG

E,F = ⟨0⟩ or ⟨1⟩.
(C) For any E ∪ F = Ek, the ideal IG

E,F must be unmixed.
Indeed, the next theorem verifies that proving (A), (B), and (C) suffices to show that
IG is geometrically vertex decomposable.

Theorem 6.3. Let G be a finite simple graph with toric ideal IG ⊆ K[E(G)], and
suppose that in<(IG) is square-free with respect to a lexicographic monomial order <.
If statements (A), (B), and (C) are true, then IG is geometrically vertex decomposable.

Proof. Let n be the number of edges of G. We show that for all sets E and F such that
E ∪ F = Ek, the ideal IG

E,F is geometrically vertex decomposable, and in particular,
IG
∅,∅ = IG is geometrically vertex decomposable. We do descending induction on

|E ∪ F |. If |E ∪ F | = n, then E ∪ F = En, and so by statement (B), IG
E,F = ⟨0⟩ or ⟨1⟩,

both of which are geometrically vertex decomposable by definition.
For the induction step, assume that all ideals of the form IG

E,F with E ∪ F = Eℓ

with ℓ ∈ {k, . . . , n} are geometrically vertex decomposable. Suppose that E and F are
two sets such that E ∪F = Ek−1. The ideal IG

E,F is unmixed by statement (C). If IG
E,F

is ⟨0⟩ or ⟨1⟩, then it is geometrically vertex decomposable by definition. Otherwise,
by statement (A), the variable y = ek defines a geometric vertex decomposition
of I = IG

E,F , i.e.,
iny(IG

E,F ) = Cy,I ∩ (Ny,I + ⟨y⟩).
Moreover, also by statement (A), the ideals Cy,I and Ny,I have the form IG

E′,F ′ with
E′ ∪ F ′ = Ek. By induction, these two ideals are geometrically vertex decomposable.
So, IG

E,F is geometrically vertex decomposable. □
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We now show that (A) and (B) are always true. Thus, to prove Conjecture 6.1, one
needs to verify (C). In fact, we will show that it is enough to show that K[E(G)]/IE,F

is equidimensional for all ideals of the form IG
E,F .

We begin by proving that statement (A) holds if in<G
(IG) is a square-free monomial

ideal. In fact, we prove some additional properties about the ideals IG
E,F .

Theorem 6.4. Let IG be the toric ideal of a finite simple graph G such that in<G
(IG)

is square-free. For each k ∈ {1, . . . , n}, let E, F be disjoint subsets of {e1, . . . , en}
such that E ∪ F = Ek−1 = {e1, . . . , ek−1}. Then

(1) The natural generators U(IG∖(E∪F ))∪U(MG
E,F ) of IG

E,F form a Gröbner basis
for IG

E,F with respect to <G. Furthermore, in<G
(IG

E,F ) is a square-free mono-
mial ideal.

(2) IG
E,F is a radical ideal.

(3) The variable y = ek defines a geometric vertex decomposition of IG
E,F .

(4) If I = IG
E,F and y = ek, then Cy,I = IG

E∪{ek},F and Ny,I = IG
E,F ∪{ek}; in

particular,

inek
(IG

E,F ) = IG
E∪{ek},F ∩ (IG

E,F ∪{ek} + ⟨ek⟩).

Proof. (1) We will proceed by induction on |E ∪F | = r = k−1. If r = 0, then E ∪F =
∅ and IG

E,F = IG. In this case the natural generators are U(IG) ∪ U(MG
∅,∅) = U(IG),

and this set defines a universal Gröbner basis consisting of primitive closed even walks
of G. Its initial ideal is square-free by the assumption on <G.

Now suppose that |E ∪ F | = r ⩾ 1 and assume the result holds for r − 1. There
are two cases to consider:
Case 1: Assume that er ∈ E. By induction, the natural generators

U(IG∖((E∖{er})∪F )) ∪ U(MG
E∖{er},F )

of IG
E∖{er},F is a Gröbner basis with respect to <G and has a square-free initial ideal

with respect to <G. For the computations that follow, we can restrict to a minimal
Gröbner basis by removing elements of this generating set which do not have a square-
free lead term.

Since er cannot divide both terms of a binomial defined by a primitive closed even
walk, we must have that this minimal Gröbner basis is square-free in y = er (any er

that appears in a binomial must appear in the lead term by definition of <G, because
none of the generators of IG

E∖{er},F involve e1, . . . , er−1). Therefore, IG
E∖{er},F has a

geometric vertex decomposition with respect to y by Lemma 2.3 (2).
The ideal Cy,IG

E∖{er},F
is therefore generated by:

• Binomials corresponding to primitive closed even walks not passing through
any edge of Er. That is, elements of U(IG∖Er

).
• Monomials m which appear as the coefficient of er in mer − p ∈ U(IG∖Er−1).
• Monomials m which appear as the coefficient of er in U(MG

E∖{er},F ). In this
case, m is part of a binomial mer

∏
i∈I

ei −p ∈ U(IG), where I indexes a subset

of E ∖ {er}.
The last two types of monomials are exactly those monomials defining U(MG

E,F ).
Therefore

Cy,IG
E∖{er},F

= IG
E,F .

Furthermore, the generators listed above for Cy,IG
E∖{er},F

are a Gröbner basis with
respect to <G by Lemma 2.3 (1) and are a subset of the natural generators of IG

E,F .
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Its initial ideal is also square-free since we restricted to a minimal Gröbner basis before
computing Cy,IG

E∖{er},F
.

Case 2: Assume that er ∈ F . We argue similarly to Case 1 and omit the details. By in-
duction U(IG

E,F∖{er}) is a Gröbner basis with respect to <G and defines a square-free
initial ideal. We can once again restrict to a minimal Gröbner basis, both ensuring
that all lead terms are square-free and that y = er defines a geometric vertex decom-
position. In this case, Ny,IG

E,F∖{er}
= IG

E,F , and U(IG
E,F∖{er}) is a Gröbner basis by

Lemma 2.3 (1) with respect to <G. As in Case 1, the initial ideal of IG
E,F is square-free

with respect to this monomial order since we restricted to a minimal Gröbner basis
when computing Ny,IG

E,F∖{er}
.

For statement (2), the ideal IG
E,F is radical because it has a square-free degenera-

tion. Statements (3) and (4) were shown as part of the proof of statement (1). □

We now verify that statement (B) holds.

Theorem 6.5. Let IG be the toric ideal of a finite simple graph G such that in<G
(IG)

is square-free. If E ∪ F = En, then IG
E,F = ⟨0⟩ or ⟨1⟩.

Proof. Let U(IG) be the universal Gröbner basis of IG defined in Theorem 3.1. Since
in<G

(IG) is square-free, we can take a minimal Gröbner basis where each lead term
is square-free. We can write each element in our Gröbner basis as a binomial of the
form mℓ − p with in<G

(mℓ − p) = mℓ where ℓ is a monomial only in the variables
in E. Suppose that there is a binomial mℓ − p ∈ U(IG) such that mℓ = ℓ, i.e., the
lead term only involves variables in E. Then 1 ∈ MG

E,F , and so IG
E,F = ⟨1⟩, since the

monomials of MG
E,F form part of the generating set of IG

E,F .
Otherwise, for every mℓ−p ∈ U(IG), there is a variable ej ̸∈ E such that ej |m. Since

E ∪ F = En, we must have ej ∈ F . But then m is not in MG
E,F since it fails to satisfy

condition (3) of being a monomial in MG
E,F , and thus MG

E,F = ⟨0⟩. Since G∖ (E ∪ F )
is the graph G with all of its edges removed, IG∖(E∪F ) = ⟨0⟩. Thus IG

E,F = ⟨0⟩. □

To prove Conjecture 6.1, it remains to verify statement (C); that is, each ideal IG
E,F

must be unmixed. This has proven difficult to show in general without specific restric-
tions on G. Nonetheless, the framework presented above leads to the next theorem
which reduces statement (C) to showing that K[E(G)]/IG

E,F is equidimensional. Recall
that a ring R/I is equidimensional if dim(R/I) = dim(R/P ) for all minimal primes P
of AssR(R/I).

Theorem 6.6. Let IG be the toric ideal of a finite simple graph G such that in<G
(IG)

is square-free. If K[E(G)]/IG
E,F is equidimensional for every choice of E, F, ℓ such that

E ∪ F = Eℓ and 0 ⩽ ℓ ⩽ n, then IG is geometrically vertex decomposable.

Proof. In light of Theorems 6.3, 6.4, and 6.5, we only need to check that each IG
E,F is

unmixed. However, by Theorem 6.4 (3), each ideal IG
E,F is radical, so being unmixed

is equivalent to being equidimensional. □

Remark 6.7. The definition of IG
E,F is an extension of the setup of Constantinescu

and Gorla in [3] and is also used in Section 5. It is designed to utilize known results
about geometric vertex decomposition. In [3], G is a bipartite graph, and techniques
from liaison theory are employed to prove that IG is glicci. Using a similar argument
for general G, we can use

in<G
(IG

E,F ) = ekin<G
(IG

E∪{ek},F ) + in<G
(IG

E,F ∪{ek})
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to show that in<G
(IG

E,F ) can be obtained from in<G
(IG

E∪{ek},F ) via a Basic Double G-
link (see [3, Lemma 2.1 and Theorem 2.8]), and so in<G

(IG
E,F ) being Cohen-Macaulay

implies that in<G
(IG

E∪{ek},F ) is too (see Lemma 4.6). Through induction, we could
then prove that some (but not all) of the IG

E,F in the tree following Example 6.2 are
Cohen-Macaulay.

On the other hand, to produce G-biliaisons as in [3, Theorem 2.11], we would need
specialized information about the graph G, something which is not a straightforward
extension of the bipartite case.
6.2. Proof of the conjecture in the quadratic case. In the case that U(IG)
contains only quadratic binomials, we are able to verify that Conjecture 6.1 is true,
that is, IG is geometrically vertex decomposable. We first show that when U(IG)
contains only quadratic binomials, it has the property that in<G

(IG) is a square-
free monomial ideal for any monomial order. In the statement below, recall that a
binomial m1 −m2 is doubly square-free if both monomials that make up the binomial
are square-free.
Lemma 6.8. Suppose that G is a graph such that IG has a universal Gröbner basis
U(IG) of quadratic binomials. Then these generators are doubly square-free.
Proof. By Theorem 3.1, a quadratic element of U(IG) comes from a primitive closed
walk of length four of G. Since consecutive edges cannot be equal, all primitive walks
of length four are actually cycles, so no edge is repeated, or equivalently, the generator
is doubly square-free. □

As noted in the previous subsection, to verify the conjecture in this case, it suffices
to show that K[E(G)]/IG

E,F is equidimensional for all E, F, ℓ with E ∪F = Eℓ. In fact,
we will show a stronger result and show that all of these rings are Cohen-Macaulay.

We start with the useful observation that the natural set of generators of IG
E,F

actually defines a universal Gröbner basis for the ideal.
Lemma 6.9. Under the assumptions of Theorem 6.4, U(IG∖Eℓ

) ∪ U(MG
E,F ) is a uni-

versal Gröbner basis of IG
E,F .

Proof. We will proceed by induction on |E ∪ F |. The result is clear when |E ∪ F | = 0.
For the induction step, observe that IG

E,F is either Ny,IG
E,F∖y

or Cy,IG
E∖y,F

for some
variable y = ei. Suppose towards a contradiction that there is some monomial order
< on K[e1, . . . , ŷ, . . . en] for which U(IG

E,F ) is not a Gröbner basis. Extend < to a
monomial order <y on K[e1, . . . , en] which first chooses terms with the highest degree
in y and breaks ties using <. Clearly <y is a y-compatible order. By [23, Theorem 2.1],
U(IG

E,F ) is a Gröbner basis with respect to <y. But <y=< on K[e1, . . . , ŷ, . . . en], a
contradiction. □

Lemma 6.10. Let R = K[E(G)], and suppose that G is finite simple graph such that IG

has a universal Gröbner basis U(IG) of quadratic binomials. Then R/IG
E,F is Cohen-

Macaulay for every choice of E, F and ℓ such that E ∪ F = Eℓ.
Proof. Fix some E and F such that E ∪ F = Eℓ. By definition IG

E,F = IG∖Eℓ
+

MG
E,F . Since U(IG) consists of quadratic binomials, then MG

E,F is either ⟨1⟩, ⟨0⟩,
or ⟨ei1 , . . . , eis⟩ with s > 0.

The statement of the theorem clearly holds if MG
E,F = ⟨1⟩. If MG

E,F = ⟨0⟩, then
IG

E,F = IG∖Eℓ
. Then IG∖Eℓ

is generated by quadratic primitive binomials and there-
fore possesses a square-free degeneration. By Theorem 3.4 these are toric ideals of
graphs that are Cohen-Macaulay. We are left with the case that MG

E,F is generated
by s indeterminates.
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We first show that each IG
E,F is actually equal to ĨG

E,F := IG∖(Eℓ∪{ei1 ,...,eis )}+MG
E,F .

We certainly have ĨG
E,F ⊂ IG

E,F . Let <E,F be the monomial order ei1 > · · · > eis
and

eis
> f for all f ∈ E(G)∖ (Eℓ ∪ {ei1 , . . . , eis

)}. By Lemma 6.9, U(IG∖Eℓ
) ∪ U(MG

E,F )
is a universal Gröbner basis for IG

E,F . A similar statement holds for ĨG
E,F since no

variable of U(MG
E,F ) is used to define IG∖(Eℓ∪{ei1 ,...,eis )}.

Clearly in<E,F
(ĨG

E,F ) ⊂ in<E,F
(IG

E,F ). On the other hand, if there is some u − v ∈
U(IG∖Eℓ

) where u or v is in the ideal MG
E,F , then in<E,F

(u − v) is a multiple of
some eij

for j ∈ {1, . . . , s}. Therefore, in<E,F
(ĨG

E,F ) = in<E,F
(IG

E,F ) which in turn
implies that ĨG

E,F = IG
E,F (e.g., see [8, Problem 2.8]).

Therefore, we can show that R/IG
E,F is Cohen-Macaulay by proving that R/ĨG

E,F

is. Recall that if a ring S is Cohen-Macaulay and graded and x is a non-zero-divisor
of S, then S/⟨x⟩ is also Cohen-Macaulay.

Now it is easy to see that ei1 + IG∖(Eℓ∪{ei1 ,...,eis )}, . . . , eis + IG∖(Eℓ∪{ei1 ,...,eis )}
is a regular sequence on R/IG∖(Eℓ∪{ei1 ,...,eis )}. This follows from the fact that
IG∖(Eℓ∪{ei1 ,...,eis )} is Cohen-Macaulay since it possesses a square-free degenera-
tion, and from the fact that U(IG∖(Eℓ∪{ei1 ,...,eis )}) is not defined using the vari-
ables {ei1 , . . . , eis}. □

The previous lemma provides the unmixed condition needed to use Theorem 6.6.
In summary, we have the following result:

Theorem 6.11. Let IG be the toric ideal of a finite simple graph G such that U(IG)
consists of quadratic binomials. Then IG is geometrically vertex decomposable and
glicci.

Proof. By Lemma 6.8, any lexicographic order on the variables will determine a
square-free degeneration of IG. By Lemma 6.10 the rings K[E(G)]/IG

E,F are Cohen-
Macaulay for all E, F, and ℓ such that E ∪ F = Eℓ. In particular, all of these rings
are equidimensional. Thus, by Theorem 6.6, IG is geometrically vertex decomposable,
and therefore glicci by Theorem 4.9. □

Remark 6.12. Although the condition that U(IG) consists of quadratic binomials is
restrictive, it is worth noting that there are families of graphs for which this is true
(e.g., certain bipartite graphs). See [28, Theorem 1.2] for a characterization of when
IG can be generated by quadratic binomials, and [18, Proposition 1.3] for the case
where the Gröbner basis is quadratic.
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