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Analysing flag-transitive point-imprimitive
2-designs

Alice Devillers & Cheryl E. Praeger

Abstract In this paper we develop several general methods for analysing flag-transitive point-
imprimitive 2-designs, which give restrictions on both the automorphisms and parameters of
such designs. These constitute a tool-kit for analysing these designs and their groups. We
apply these methods to complete the classification of flag-transitive, point-imprimitive 2-(v, k, λ)
designs with λ at most 4.

1. Introduction
A 2-(v, k, λ) design D = (P, B) consists of a set P of v points and a set B of blocks
such that each block is a k-subset of P and each pair of distinct points is contained
in λ blocks. To avoid degenerate cases we assume that 2 < k < v; such designs are
called nontrivial. In general, the number of blocks b := |B| is at least v by Fisher’s
inequality (see [5, 1.3.8]) and D is said to be symmetric if b = v. We study (not
necessarily symmetric) 2-designs D possessing a high degree of symmetry, namely
they admit a subgroup G of automorphisms (permutations of P preserving B) that
acts transitively on the set of flags (incident point-block pairs), and moreover leaves
invariant a nontrivial partition of the point set P, that is to say, G is flag-transitive
and point-imprimitive. We develop several general purpose methods for analysing flag-
transitive point-imprimitive 2-designs, and then we test their effectiveness by applying
them to complete the classification of the flag-transitive, point-imprimitive 2-(v, k, λ)
designs with λ ⩽ 4.

For a flag-transitive, point-imprimitive 2-(v, k, λ) design, the parameter λ ̸= 1 by
the celebrated work of Higman and McLaughlin [9, Proposition 3]. Moreover the
classification of such designs with λ = 2 was completed in [6, Theorem 1.1], showing
that there are exactly two examples up to isomorphism. The classification for λ ∈
{3, 4} with v < 100 was given in [7, Theorem 2], identifying nine designs up to
isomorphism, and here we complete that work (solving [7, Problem 3]) and proving
that there are no examples with 100 points or more.

Theorem 1.1. Let D = (P, B) be a 2-(v, k, λ) design with λ ⩽ 4, which ad-
mits a flag-transitive, point-imprimitive subgroup of automorphisms. Then v ∈
{15, 16, 36, 45, 96}, and D is one of the eleven designs listed in [7, Theorem 2].
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A number of papers have appeared recently providing classifications of flag-
transitive, point-imprimitive 2-designs under various parameter constraints. We
give a brief survey of such results in Subsection 1.1, where we also introduce the
relevant parameters we will use to describe the point-imprimitivity system, notably
Hypothesis 1.2.

1.1. Survey and parameters. As we mentioned above, if G ⩽ Aut(D) is flag-
transitive and point-imprimitive on a nontrivial 2 − (v, k, λ) design D = (P, B), then
λ ⩾ 2 by [9, Proposition 3]. This condition was sharpened by Dembowski [5, 2.3.7(a)]
in his 1968 book, where he proved that each of the following conditions must hold,
where r is the (constant) number of blocks containing a given point, and (s, t) denotes
the greatest common divisor gcd(s, t) for integers s, t.

(1) (λ, r) ⩾ 2, λ ⩽ (λ, r)((λ, r)−1), (r−λ, k) ⩾ 2, r ⩽ λ(k−3) and (v−1, k−1) ⩾ 3.

We mention in passing that, very recently, the fourth inequality was strengthened
by Zhao and Zhou [19, Lemma 1.3] to r ⩽ (r, λ)(k − 3). After Dembowski’s work
the next significant breakthrough was due to Davies [4] in 1987. Davies showed by
example that there are flag-transitive point-imprimitive designs with arbitrarily large
λ, and also showed that, for a given λ, both the block-size k and the number v of
points are bounded in terms of λ, and hence there are only finitely many flag-transitive
point-imprimitive designs for each λ. Unfortunately Davies did not give upper bonds
for k, v as explicit functions of λ.

The first such explicit bounds were due to O’Reilly–Regueiro [18] in 2005 in the case
of symmetric designs, for example, she showed that k ⩽ λ(λ + 1). These bounds were
improved by Zhou and Praeger in [17, Theorem 1.1], and were expressed in terms of
additional parameters, namely the number d of classes of a nontrivial point-partition
C, the size c of each class ∆ ∈ C, and the (constant) size ℓ of each non-empty intersec-
tion ∆∩B of a block B and a class ∆. The bounds were sufficiently good to show that
for λ ⩽ 10, there are exactly 22 feasible parameter tuples (v, k, λ, c, d, ℓ) meeting these
bounds, [17, Corollary 1.3 and Table 1]. In 2022, Mandić and Šubašić [12, Proposition
12] made small improvements in the bounds for symmetric designs in [17] (see also
Proposition 2.8) and, building on classifications in [11, 15, 17] of the examples with
λ ⩽ 4, they were able to identify all examples with parameter tuples in [17, Table 1]
except for two parameter sequences. Even more recently, Montinaro [13, 14] classified
all flag-transitive, point-imprimitive symmetric designs for which k > λ(λ−3)/2, and
thereby ruled out these two parameter sequences. This completes the classification of
flag-transitive, point-imprimitive symmetric designs with λ ⩽ 10 [14, Theorem 2.3]:
there are eight such designs up to isomorphism (corresponding to four parameter se-
quences) all with λ ⩽ 4 and v < 100. These examples are also the eight designs from
[7, Theorem 2] that are symmetric.

For general (not necessarily symmetric) flag-transitive point-imprimitive designs
with a given λ, explicit upper bounds for k and v were obtained in [7, Theorem
1]. In this general case the upper bound on k is cubic, namely k ⩽ 2λ2(λ − 1); the
parametric restrictions obtained were sufficiently strong to list in [7, Proposition 8] all
parameter sequences (v, k, λ, c, d, ℓ) meeting these restrictions with λ ∈ {3, 4}, noting
that the examples with λ = 2 were classified in [6, Theorem 1.1]. In this paper, after
discussing a number of general methods in Section 2, we complete the classification
of all examples arising from these parameter tuples in Section 3.

We formalise the conditions we have been discussing in Hypothesis 1.2. We will use
these assumptions throughout the paper. A summary reference for the conditions in
Hypothesis 1.2 may be found in [7, Section 2]. Note that we make no restrictions on
the parameter λ in Hypothesis 1.2.
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Hypothesis 1.2. (a) D = (P, B) is a 2-(v, k, λ) design, with point-set P of size
v, block-set B of size b, each block a k-subset of P, and each point-pair lying
in λ blocks. Let b = |B|, the number of blocks, and let r be the number of
blocks containing a given point.

(b) D admits a group G of automorphisms such that G is transitive on flags, and
is imprimitive on points, preserving a point-partition C = {∆1, . . . , ∆d} of
size d ⩾ 2 with classes ∆i of size c ⩾ 2. Let D = GC and L = (G∆)∆ denote
the induced permutation groups on C and ∆, for ∆ ∈ C. We may (see [16,
Theorem 5.5]), and will, assume that G ⩽ L ≀ D. Let K := G(C), the kernel of
the G-action on C.

(c) For B ∈ B intersecting a class ∆ ∈ C nontrivally, the size ℓ = |B ∩ ∆| is
independent of the choices of B, ∆; and ℓ ⩾ 2.

The general results presented in Section 2 about flag-transitive, point-imprimitive
designs, include also various properties of the groups L and D. Together these con-
stitute a tool-kit of general methods for analysing these designs and their groups. We
are in particular interested in the case λ = 3 or 4 with v ⩾ 100 and in Section 3 we
apply these methods to prove Theorem 1.1.

We present the methods in Section 2 to draw attention to the strategies we employ
in the analysis in Section 3. We would be glad if this encouraged others to strengthen
the methods in Section 2, or obtain more extensive classifications of flag-transitive
designs. In particular we wonder if these considerations might lead to improvements
in the general upper bounds derived in [7]. With these potential later applications
in mind we offer, in Table 1, a summary of the constraints arising from the general
results in Section 2.

Constraints on Reference
The parameter tuple (v, k, λ, c, d, ℓ) Lemma 2.1
The order of GC Proposition 2.2
Some (GB)C-orbit lengths and on |GC : (GB)C | Proposition 2.3
The multiple transitivity of G∆ on ∆ Proposition 2.4
Existence of a complete subdesign of D admitting NG(P ) as an Propositions 2.5 - 2.7
automorphism group, for certain Sylow subgroups P of G(C)
Generalisation of some results from [12, 13, 17] on related designs Proposition 2.8

Table 1. Summary of the constraints provided by results in Sec-
tion 2

2. General methods
In this section we assume that Hypothesis 1.2 holds and we use the notation intro-
duced there. We begin by giving in Lemma 2.1 a summary of basic restrictions on
the parameters in Hypothesis 1.2, which are in addition to the conditions in (1).
Lemma 2.1 is a simplification of the statements of [7, Lemmas 4 and 5], together with
an extra part (iii) which follows from an argument to be found in the proof of [12,
Proposition 9] (see also Proposition 2.8 below). Our proof of part (iii) is essentially
the first part of the proof of [12, Proposition 9].

Lemma 2.1. The following equalities, inequalities and divisibility conditions hold:
(i) bk = vr and r(k − 1) = λ(v − 1)
(ii) ℓ | k and 1 < ℓ < k;
(iii) ℓ2 | c2λ
(iv) ℓ − 1 ⩽ (k − 1 − d(ℓ − 1)) (ℓ − 1) ⩽ λ − 1;
(v) λ(c − 1) = r(ℓ − 1);
(vi) k | λℓ(ℓ − 1)2d(d − 1).
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Proof. Part (i) is standard, see for example [7, Lemma 4]. Parts (ii) and (v) are [7,
Lemma 5(ii) and (iii)], respectively. For part (iv), the first inequality follows from
the assertion in [7, Lemma 5] that the quantity x = k − 1 − d(ℓ − 1) is a positive
integer, and the second inequality follows from [7, Lemma 5(viii)] on substituting for
x. Part (vi) follows from [7, Lemma 5(vii)] on substituting for x.

Finally for part (iii), we choose distinct classes ∆, ∆′ ∈ C, and determine the
cardinality of the set Π := {(B, α, α′) | B ∈ B, α ∈ B ∩ ∆, α′ ∈ B ∩ ∆′}. On the one
hand there are c2 choices for a pair (α, α′) ∈ ∆ × ∆′ and each pair lies in exactly λ
blocks B, so |Π| = c2λ. On the other hand each of the, say n, blocks B meeting both
∆ and ∆′ nontrivially meets each of these classes in exactly ℓ points, so |Π| = nℓ2. It
follows that c2λ = nℓ2, and hence the number of these blocks n = c2λ/ℓ2. Part (iii)
follows since n is an integer. □

Next we derive restrictions on the group D in Hypothesis 1.2.

Proposition 2.2. Assume that Hypothesis 1.2 holds, and suppose that p is a prime
such that:

(i) 0 ⩽ d − p < k
ℓ < p, and

(ii) p does not divide b = vr
k .

Then p does not divide |D|.

Proof. Suppose p divides |D| and p satisfies the two stated conditions. Note the first
condition implies d < 2p. Let P be a Sylow p-subgroup of G. Since p divides |D| and
hence |G|, P is not trivial. Moreover, the index of GB in G is b, which is not divisible
by p. Therefore there exists a block B such that P ⩽ GB . Since p divides |D|, P acts
non-trivially on C. The condition d < 2p implies that P C must have one orbit of size
p and d − p fixed classes. If B contains a point in a class in the orbit of size p, then
k ⩾ ℓp since P fixes B, contradicting k

ℓ < p. Thus each point in B lies in one of the
d − p fixed classes. This implies k ⩽ ℓ(d − p), contradicting d − p < k

ℓ . This final
contradiction proves that p does not divide |D|. □

Proposition 2.3. Assume that Hypothesis 1.2 holds. Let B ∈ B and X := (GB)C,
a subgroup of D. Also let c0 be the (constant) length of the K-orbits in P, and let
x := c0/ gcd(c0, ℓ). Then X has an orbit of length k/ℓ in C and

(a) if c0 = 1 (or equivalently, if K = 1), then |D : X| = b; while
(b) if c0 > 1, then c0 divides c, x divides b, and |D : X| divides b/x.

Proof. Since GB is transitive on B, X is transitive on the set of k/ℓ classes intersecting
B non-trivially, proving the first assertion. Also, since X = GBK/K and D = G/K,
it follows that |D : X| = |G : GBK|. In particular, if K = 1, or equivalently, c0 = 1,
then |D : X| = |G : GB | = b and part (a) holds.

Assume now that K ̸= 1, or equivalently that c0 > 1. Since K∆ ◁ G∆
∆ = L, it

follows that c0 divides c. Since G is block-transitive, its normal subgroup K has orbits
of equal length, say b0, in B, so b0 = |K : KB | divides b. Let ∆ ∈ C be such that
B ∩ ∆ ̸= ∅, and let α ∈ B ∩ ∆. Since GB is transitive on B it follows that B ∩ ∆
is a GB,∆-orbit of size ℓ, and as KB ⊴ GB,∆, the KB-orbits in B ∩ ∆ have equal
length, say ℓ0, Thus ℓ0 | ℓ, and |K : KB,α| = b0ℓ0 is divisible by |K : Kα| = c0. Let
ℓ′ := gcd(c0, ℓ0). Then ℓ′ | gcd(c0, ℓ) and c0/ℓ′ divides b0. Since

c0

ℓ′ = c0

gcd(c0, ℓ) · gcd(c0, ℓ)
ℓ′ = x · gcd(c0, ℓ)

ℓ′
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it follows that x divides b0 which, in turn, divides b. Finally

|D : X| = |G : GBK| = |G : GB |
|GBK : GB |

= |G : GB |
|K : KB |

= b

b0
= b

x
· 1

b0/x
,

and it follows that |D : X| divides b/x, and part (b) holds, completing the proof. □

Now we turn our attention to restrictions on the group L in Hypothesis 1.2.

Proposition 2.4. Assume that Hypothesis 1.2 holds, and let ∆ ∈ C and α, β ∈ ∆ be
distinct points.

(a) If ℓ = 2, then L is 2-transitive on ∆ of degree c.
(b) If ℓ ⩾ 3, then L{α,β} has an orbit in ∆ ∖ {α, β} of size at most (ℓ − 2)λ. In

particular, if c > 2 + (ℓ − 2)λ then L is not 3-transitive.

Proof. (a) Assume that ℓ = 2 and let (α′, β′) be a second pair of distinct points of ∆.
Let B, B′ ∈ B be such that α, β ∈ B and α′, β′ ∈ B′. Since G is flag-transitive, there
exists g ∈ G mapping (α, B) to (α′, B′). Then since α′ = αg ∈ ∆ ∩ ∆g it follows that
g fixes ∆, so g∆ ∈ L. Also, since Bg = B′ and ℓ = 2, the element g must map β to
β′. It follows that L is 2-transitive.

(b) Let B(α, β) = {B1, . . . , Bλ} be the set of λ blocks containing {α, β}. Then
G{α,β} leaves B(α, β) invariant, and hence leaves invariant the union X := ∪λ

i=1Bi∩∆.
Thus X ∖ {α, β} is a subset of ∆ ∖ {α, β} of size at most (ℓ − 2)λ, it is non-empty
since ℓ ⩾ 3, and it is preserved by G{α,β}. Any G{α,β}-orbit in X ∖ {α, β} (which
is also an L{α,β}-orbit) has size at most (ℓ − 2)λ. If L were 3-transitive, then L{α,β}
would be transitive on ∆ ∖ {α, β}, and hence c ⩽ 2 + (ℓ − 2)λ. □

We now explore properties of certain p-subgroups of G.

Proposition 2.5. Assume that Hypothesis 1.2 holds, and suppose that p is a prime
dividing |G| such that p does not divide λ. Suppose also that a nontrivial p-subgroup
P of G fixes at least two distinct points α, β, and let ∆ ∈ C such that α ∈ ∆.

(a) Then P fixes at least one block B containing {α, β} and hence leaves invariant
the ℓ-subset B ∩ ∆ of ∆ and the k/ℓ-subset C(B) := {∆′ ∈ C | B ∩ ∆′ ̸= ∅}
of C.

(b) Moreover, if p > λ then P fixes setwise each block containing {α, β}.

Proof. Let B(α, β) be the set of λ blocks containing {α, β}. Then P leaves B(α, β)
invariant. Since P is a p-group, all its orbits on B(α, β) are p-powers. Since p does
not divide λ, it follows that P fixes at least one block B ∈ B(α, β). Part (a) follows.
It also follows that if p > λ then P must fix setwise each block in B{α, β}. □

Our next results concern a subdesign of a design D = (P, B). This is a pair D0 =
(P0, B0) where P0 ⊂ P and B0 is a collection of k0-subsets of P0 such that each
B0 ∈ B0 is contained in some block of B; and such that D0 is a 2-design (or sometimes
only a 1-design). A subdesign is called complete if k0 = k, and in this case B0 ⊂ B,
see for example [10, p. 31]. Subdesigns provide useful information about the structure
of a design. For example the design of points and lines of a projective space PGn(q)
is a flag-transitive 2 − ( qn−1

q−1 , q + 1, 1) design and for each proper subspace, the set
of lines it contains forms a complete subdesign. Similar complete subdesigns arise
for the designs of points and lines of a Desarguesian affine space, and in both cases
these subdesigns inherit a flag-transitive action from the automorphism group of the
original design. In these examples the designs are point-primitive.

Question 2.6. Do there exist 2-designs admitting a flag-transitive, point-imprimitive
group of automorphisms and containing a complete subdesign?
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In Proposition 2.7 we show that under additional assumptions, there is a point-
transitive complete subdesign associated with a Sylow subgroup of K. This gives a
strong restriction on the parameters which we exploit in Section 3 to exclude certain
parameter tuples. However we do not know of any examples satisfying Hypothesis 1.2
where conditions (a)–(c) of Proposition 2.7 hold.

Proposition 2.7. Assume that Hypothesis 1.2 holds and that there exists a prime p
satisfying the following conditions:

(a) p divides |K|, (b) p does not divide c, (c) p > λ.

Then D has a complete point-transitive subdesign which is a 2−(df, k, λ) design, where
f satisfies

ℓ < f < c and c ≡ f (mod p).
In particular, k − 1 divides λ(df − 1).

Proof. Let P be a Sylow p-subgroup of K, and let P0 = fixP(P ) and B0 = {B ∈ B |
B ⊆ P0}. We show that (P0, B0) is a complete subdesign of D, and is a 2 − (df, k, λ)
design for some integer f as in the statement, and that NG(P ) induces a point-
transitive automorphism group.

By condition (a), P is non-trivial. Since P is a Sylow p-subgroup of K, each G-
conjugate of P is also a Sylow p-subgroup of K and hence is K-conjugate to P . It
follows from this that G = NG(P )K. Thus, as K is the kernel of the G-action on C,
NG(P )C = GC = D, and in particular NG(P ) is transitive on C.

Now P ∆ ̸= 1 for some ∆ ∈ C, since P ̸= 1. By condition (b), the set fix∆(P ) of
fixed points of P in ∆ is non-empty, and is a proper subset of ∆ since P ∆ ̸= 1. Hence
f := |fix∆(P )| satisfies 0 < f < c and c ≡ f (mod p). Let α ∈ fix∆(P ) and note that
P is a Sylow p-subgroup of Kα. If g ∈ G is such that P g ⩽ Gα, then P g is contained
in Kg ∩ Gα = Kα so P g is also a Sylow p-subgroup of Kα and hence P g = P x for
some x ∈ Kα. Thus P g is conjugate to P in Gα and hence, by [16, Corollary 2.24],
NG(P ) is transitive on fixP(P ). It follows that P fixes the same number f of points
in each class of C, and hence |P0| = |fixP(P )| = df .

Let α, β ∈ fixP(P ) with α ̸= β, and let B be a block containing {α, β}. By Propo-
sition 2.5(b), P fixes B setwise. Hence P fixes setwise each non-trivial intersection
B∩∆′, for ∆′ ∈ C, and each such intersection has size ℓ. Now λ ⩾ ℓ by Lemma 2.1(iv),
and therefore, by condition (c), p > ℓ. Thus each non-trivial intersection B ∩ ∆′ is
fixed pointwise by P , and hence f ⩾ ℓ and P fixes B pointwise, that is, B ⊆ fixP(P ).
This implies that each of the λ blocks containing {α, β} lies in B0, and it follows that
(P0, B0) is a 2 − (df, k, λ) design, and hence a complete subdesign of D, admitting
NG(P ) acting as a point-transitive automorphism group. In particular k − 1 divides
λ(df − 1), see for example [7, Lemma 4(i)].

It remains to prove that f > ℓ. Suppose to the contrary that f = ℓ. Then whenever
B ∩ ∆ ̸= ∅ we have B ∩ ∆ = fix∆(P ) of size ℓ. Thus each block B containing at least
two points of fixP(P ) is the disjoint union of the subsets fix∆(P ) over all classes ∆ ∈ C
such that B ∩ ∆ ̸= ∅. Fix ∆ ∈ C, choose distinct points α, β ∈ fix∆(P ), and let N
be the number of pairs (B, ∆′) such that B ∈ B, ∆′ ∈ C ∖ {∆}, and B ∩ ∆, B ∩ ∆′

are both non-empty. The blocks B occurring are precisely the λ blocks containing
{α, β} and each such block B occurs in pairs (B, ∆′) for exactly k/ℓ − 1 classes ∆′,
so N = λ(k/ℓ − 1). On the other hand, for each of the d − 1 classes ∆′ ̸= ∆, choosing
γ ∈ fix∆′(P ), we see that ∆′ occurs in pairs (B, ∆′) for precisely the λ blocks B
containing {α, γ}, so N = λ(d − 1). We conclude that k/ℓ = d, However, this implies
that each of the λ blocks containing {α, β} is equal to fixP(P ) which, in turn, implies
that λ = 1, contradicting [9]. Thus f > ℓ. □
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There are also flag-transitive subdesigns (not complete ones) and ‘quotient designs’
arising from flag-transitive, point-imprimitive designs, see Proposition 2.8 below and
the design construction in [2, Construction 3.1]. Their natural definition involves the
possibility of ‘repeated blocks’, that is distinct blocks incident with exactly the same
subset of points, so we use a more formal incidence structure in their definition. Given
the assumptions in Hypothesis 1.2, let ∆ ∈ C, and define D(∆) = (∆, B(∆), I(∆)),
where

B(∆) = {B ∩ ∆ | B ∈ B, B ∩ ∆ ̸= ∅}
I(∆) = {(α, B ∩ ∆) | α ∈ B ∩ ∆, B ∩ ∆ ∈ B(∆)},

and D(C) = (C, C(B), I(C)), with C(B) the set of all C(B) for B ∈ B, where

C(B) = {∆ ∈ C | B ∩ ∆ ̸= ∅}, and I(C) = {(∆, C(B)) | ∆ ∈ C(B)}.

The notion of a 2-design carries over to these point-block incidence structures (each
pair of points incident with the same number of blocks), and automorphisms are
permutations of the point set and the block set which preserve the incidence relation.
The group G∆ or G acts as a flag-transitive group of automorphisms on D(∆) or D(C),
respectively. This means in particular that, for each design, each block occurs with the
same block-multiplicity (the number of blocks incident with the same subset of points).
In the following proposition, part (a) was proved in both [12, Propositions 6 and 8] and
[13, Corollary 2.2 and Theorem 2.3]; and part (b) is proved in [12, Propositions 7 and
9] (and in both parts the block multiplicities may be greater than 1). In both papers
these observations were applied to strengthen the results of [17] (see [12, Propositions
12 and 9] and [13, Theorem 2.4]). Note that although the applications in [12, 13] are
to symmetric designs, Proposition 2.8 is valid for all flag-transitive point-imprimitive
designs.

Proposition 2.8. Assume that Hypothesis 1.2 holds, let ∆ ∈ C, and consider the
incidence structures D(∆) = (∆, B(∆), I(∆)) and D(C) = (C, C(B), I(C)) as defined
above. Then

(a) D(∆) is a 2−(c, ℓ, λ) design with L = G∆
∆ acting flag-transitively, and the block

multiplicity θ equals θ = |Gα,B∩∆ : Gα,B | and divides λ, where B ∩ ∆ ∈ B(∆)
and α ∈ B ∩ ∆;

(b) D(C) is a 2 − (d, k/ℓ, c2λ/ℓ2) design with D = GC acting flag-transitively.

3. Ruling out designs with λ small
In this section we assume that Hypothesis 1.2 holds with λ = 3 or 4 and v ⩾ 100.
As mentioned in the introduction, a list of all feasible parameters satisfying these
conditions was compiled by the authors in [7]. Unfortunately two cells in the table of
[7, Proposition 8] which recorded these parameters contained errors – they were typos
which did not match the (correct) proof given for the result. We record formally the
details in Remark 3.1.

Remark 3.1. In [7, Proposition 8], it was shown that the parameter tuple
(λ, v, k, r, b, c, d, ℓ) must belong to a list of 18 possibilities. Unfortunately there
were two mistakes in that table: the parameter tuple (4, 435, 32, 42, 15, 29, 2)
should have read (4, 435, 32, 56, 15, 29, 2) and should have been excluded be-
cause b = v · r/k is not an integer (see Lemma 2.1(i)). Secondly the tuple
(λ, v, k, r, c, d, ℓ) = (4, 196, 16, 42, 14, 14, 2) should have read (4, 196, 16, 52, 14, 14, 2).
In addition, one of the remaining tuples does not satisfy Lemma 2.1(iii), namely the
tuple (λ, v, k, r, c, d, ℓ) = (3, 561, 36, 48, 17, 33, 2).

Algebraic Combinatorics, Vol. 6 #4 (2023) 1047



A. Devillers & C. E. Praeger

Line λ v k r b c d ℓ Result
1 3 100 12 27 32 · 52 10 10 2 Lemma 3.10
2 3 120 18 21 22 · 5 · 7 8 15 2 Lemma 3.7
3 3 120 18 21 22 · 5 · 7 15 8 3 Lemma 3.7
4 3 256 18 45 27 · 5 16 16 2 Lemma 3.5
5 3 561 36 48 22 · 11 · 17 33 17 3 Lemma 3.6
6 3 1156 36 99 11 · 172 34 34 2 Lemma 3.4
7 4 100 12 36 22 · 3 · 52 10 10 2 Lemma 3.10
8 4 196 16 52 72 · 13 14 14 2 Lemma 3.5
9 4 231 24 40 5 · 7 · 11 11 21 2 Lemma 3.9
10 4 231 24 40 5 · 7 · 11 21 11 3 Lemma 3.5
11 4 280 32 36 32 · 5 · 7 10 28 2 Lemma 3.10
12 4 280 32 36 32 · 5 · 7 28 10 4 Lemma 3.11
13 4 484 24 84 2 · 7 · 112 22 22 2 Lemma 3.5
14 4 1976 80 100 2 · 5 · 13 · 19 26 76 2 Lemma 3.4
15 4 1976 80 100 2 · 5 · 13 · 19 76 26 4 Lemma 3.6
16 4 2116 48 180 3 · 5 · 232 46 46 2 Lemma 3.4

Table 2. Remaining parameter sets for flag-transitive imprimitive
designs with λ ⩽ 4

Thus we have 16 parameter tuples to consider, and we list these in Table 2. We
will apply the results from Section 2 to show that there are no designs for any of these
parameter tuples. In the last column of Table 2 we record the results in this section
which rule out each of these parameter tuples. In our statements, Line numbers refer
to Table 2. Moreover, in our proofs we frequently mention use of the computational
algebra package Magma [1], and we comment briefly in Remark 3.2 on the main ways
in which this is used.

Remark 3.2. We make some comments here on our use of computation in analysing
the possibilities for flag-transitive 2 − (v, k, λ) designs, for some specified parameters
v, k, λ, noting that these parameters determine the number b of blocks since bk(k−1) =
v(v − 1)λ.
(a) At many stages in our proofs we have information about a primitive permutation

group of a given degree (usually c or d where v = cd), and we use the library of
primitive groups in Magma [3] to determine a list of possibilities for the group
with the required properties. Much of this information could equally be obtained
by consulting [8, Table B.4].

(b) Occasionally in our proofs we have specified the point set P of size v, and a
transitive permutation group G ⩽ Sym(P) as a candidate for the flag-transitive
group G. Moreover we have specified a candidate subgroup H of index b in G for
the stabiliser H = GB of a block B. Since G should be flag-transitive, the block B
should be an H-orbit in P of length k. We use Magma [1] to identify all H-orbits
of length k in P. These will be the possibilities for the block B left invariant by
H. If the set B of G-images of such a subset B forms the block set of a 2-design,
then the group G will act flag-transitively on this design, giving an example. To
determine whether this is the case for a given H-orbit B of length k, we need to
confirm whether or not each pair of points is contained in exactly λ blocks in B.
Since G is transitive on P it is sufficient to test this for point-pairs {α, β}, where
α ∈ P is a fixed chosen point, and β runs over a set of representative points, one
from each Gα-orbit in P ∖{α}.This check is carried out computationally using [1].
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Line d − p k/ℓ p b
6 3 18 31 11 · 172

14 3 40 73 2 · 5 · 13 · 19
16 3 24 43 3 · 5 · 232

Table 3. Table for the proof of Lemma 3.4

Line d k/ℓ b
10 11 8 5 · 7 · 11
13 22 12 2 · 7 · 112

Table 4. Table for the proof of Lemma 3.5

First we observe that in each Line the groups L, D are primitive permutation
groups.

Lemma 3.3. If Hypothesis 1.2 is satisfied with λ ∈ {3, 4}, then D and L are primitive.

Proof. Note that, in Table 2, there is no pair of parameter tuples with the same
(λ, v, k) and with the class size c in one tuple a multiple of the class size in the other.
It follows that L is primitive of degree c, and also D is primitive of degree d. □

Proposition 2.2 directly allows us to rule out three Lines of Table 2.

Lemma 3.4. There are no examples with parameter tuple in Line 6, 14 or 16 of Table 2.

Proof. Assume that Hypothesis 1.2 holds with parameter tuple as in one of Lines 6,
14 or 16 of Table 2. By Lemma 3.3, D is primitive of degree d = 34, 76, 46 respectively.
Checking the possibilities for such groups using Magma [3], we find that D = Ad or
Sd. Let p be the largest prime less than d. Then p divides |D| and also p satisfies
conditions (i) and (ii) of Proposition 2.2 (see details in Table 3). This contradicts
Proposition 2.2. Thus there are no examples.

□

Next we use Proposition 2.3 to rule out three more Lines of Table 2.

Lemma 3.5. There are no examples with parameter tuple in Line 4, 8, 10 or 13 of
Table 2.

Proof. The argument for Lines 10 and 13 requires only the first assertion of Proposi-
tion 2.3, so we deal with these Lines first. The parameters d, k/ℓ, b in Lines 10 and 13
are given in Table 4. There are eight primitive groups of degree 11 (Line 10), and four
primitive groups of degree 22 (Line 13). An exhaustive search (with Magma [3]) of all
subgroups of index dividing b for each of these primitive groups shows that none has
an orbit of size k/ℓ. This contradicts Proposition 2.3.

Now we consider Line 4 of Table 2, where we have (c, d, ℓ, k/ℓ) = (16, 16, 2, 9), and
b = 27 · 5 = 640. In particular 5 divides |G| since G is block-transitive. Note that
p = 5 > λ = 3, and that p does not divide c. Suppose first that 5 divides |K|, so that
Proposition 2.7 applies with p = 5. Then there exists an integer f such that ℓ < f < c,
c ≡ f (mod p), and k − 1 divides λ(df − 1), which is a contradiction. Thus |K| is not
divisible by 5. Since 5 divides |G| = |D| · |K|, it follows that 5 divides |D|. There are
18 primitive groups D of degree d = 16 with order divisible by 5, so D must be one
of these by Lemma 3.3. Let X = (GB)C ⩽ D. By Proposition 2.3, X has an orbit of
size 9.

If K ̸= 1 then, since L is primitive, the K-orbits in P have size c = 16, so |D : X|
divides b/8 = 24 · 5 = 80 by Proposition 2.3. However, an exhaustive search using
Magma [3] shows that none of the 18 possibilities for D has a subgroup of index
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dividing 80 with an orbit of size 9. Thus K = 1, so G ∼= D has order divisible by the
number f = bk = 640 · 18 of flags, and the index |D : X| = 640. Again a computer
search using Magma [3] shows that the only primitive group D of degree d = 16 such
that |D| is divisible by f , and D has a subgroup of index 640 with an orbit of size 9, is
the affine group [24] : S6. Thus G = [24] : S6 and G∆ = S6. However Gα is a subgroup
of G∆ with index c = 16, and S6 has no such subgroup, which is a contradiction.

Finally we consider Line 8 of Table 2, where we have (c, d, ℓ, k/ℓ) = (14, 14, 2, 8),
and b = 72 · 13 = 637. Suppose that 13 divides |K|. Since 13 does not divide c = 14
and 13 > λ = 4, we may apply Proposition 2.7 with p = 13. So there exists an integer
f such that 2 = ℓ < f < c and c = 14 ≡ f (mod 13), which is a contradiction. Thus
|K| is not divisible by 13. Now L is primitive of degree c = 14 by Lemma 3.3, and so
L is one of
(2) PSL(2, 13), PGL(2, 13), A14, S14.

Since K∆◁L and all non-trivial normal subgroups of all these possible groups L have
order divisible by 13, we conclude that K∆ = 1. Thus the length of the K-orbits in P
is c0 = 1, and hence, by Proposition 2.3, D has a subgroup X with index b = 72 · 13.
Now D is primitive of degree d = 14, by Lemma 3.3, and so D is also one of the
groups in (2). However, none of these groups has a subgroup of index b, which is a
contradiction. □

We rule out two more Lines of Table 2 with Proposition 2.4.

Lemma 3.6. There are no examples with parameter tuple in Line 5 or 15 of Table 2.

Proof. In Line 5, ℓ = 3, and L is primitive of degree c = 33 by Lemma 3.3, but L is not
3-transitive by Proposition 2.4, since c = 33 > 2+(ℓ−2)λ = 5. However each primitive
group of degree c = 33, namely PSL(2, 32), PΓL(2, 32), A33, or S33, is 3-transitive. In
Line 15, ℓ = 4, c = 76, and the only primitive groups of degree c are A76 and S76, so
L is 3-transitive, contradicting Proposition 2.4, since c = 76 > 2 + (ℓ − 2)λ = 10. □

In the next lemma we rule out Lines 2 and 3 of Table 2 using a combination of
Propositions 2.3 and 2.7.

Lemma 3.7. There are no examples with parameter tuple in Line 2 or 3 of Table 2.

Proof. In Line 2 or 3 we have (c, d, ℓ, k/ℓ) = (8, 15, 2, 9) or (15, 8, 3, 6), respectively,
and b = 22 · 5 · 7 = 140. In particular 7 divides |G|. Note that p = 7 > λ = 3, and that
p does not divide c. If 7 divides |K|, then Proposition 2.7 applies with p = 7, so there
exists an integer f such that ℓ < f < c, c ≡ f (mod p), and k − 1 divides λ(df − 1).
However there is no such integer in either case. Hence |K| is not divisible by 7. Since
7 divides |G| = |D| · |K|, it follows that 7 divides |D|.

First consider Line 2. By Lemma 3.3, D is a primitive group of degree d = 15, and
also |D| is divisible by 7. There are four such groups, namely A7, PSL(4, 2), A15 and
S15, so D is one of these. Let X = (GB)C ⩽ D. By Proposition 2.3, X has an orbit
of size 9. If K ̸= 1 then, since L is primitive, the K-orbits in P have size c = 8, so
|D : X| divides 140/4 = 35 by Proposition 2.3. However, an exhaustive search using
Magma [3] shows that none of the four possibilities for D has a subgroup of index
dividing 35 with an orbit of size 9. Thus K = 1 and |D : X| = 140. Again a computer
search shows that the only primitive group of degree d = 15 that has a subgroup of
index 140 with an orbit of size 9 is A7, so D = A7.

Thus G ∼= D = A7, G∆ = PSL(2, 7) and, for α ∈ ∆, Gα is a Frobenius subgroup
F21 of order 21. Now A7 has a unique conjugacy class of subgroups F21, and we may
identify the point-set P with the set of right cosets of such a subgroup Gα. A block
stabiliser GB is a subgroup of index 140 with an orbit of size k = 18 on points. Using
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Line λ k b c d ℓ possible groups D
1 3 12 32 · 52 10 10 2 A5, S5, PSL(2, 9), S6 (out of 9)
7 4 12 22 · 3 · 52 10 10 2 A5, S5, PSL(2, 9), S6, PGL(2, 9), M10, PΓL(2, 9)

(out of 9)
9 4 24 5 · 7 · 11 11 21 2 A7, S7 (out of 9)
11 4 32 32 · 5 · 7 10 28 2 PSU(3, 3), PΓU(3, 3), PSp(6, 2) (out of 14)
12 4 32 32 · 5 · 7 28 10 4 PGL(2, 9), M10, PΓL(2, 9), A10, S10 (out of 9)

Table 5. Possibilities for the primitive group D

[1], we checked that there is a unique conjugacy class of subgroups of G = A7 of
index 140 and that a subgroup GB in this class has six orbits of length 18 on points.
However, a further computation with [1] showed that, for each of these 18-subsets B,
the set of G-images of B is not the block-set of a 2-design.

Consider now Line 3. As we showed above, |D| is divisible by 7 while |K| is not
divisible by 7. Thus a Sylow 7-subgroup P of G is non-trivial and P ∼= P C , a Sylow
7-subgroup of D. Since d = 8, P fixes one class ∆ ∈ C and acts transitively on the
other 7 classes. Suppose that 7 does not divide |L|. Then P fixes ∆ pointwise and, by
Proposition 2.5(b), P fixes setwise each block intersecting ∆ nontrivially. Let B be
such a block. Then P fixes setwise the 6-subset C(B) of C (defined in Proposition 2.5),
a contradiction. Hence 7 divides |L|.

Thus L is a primitive subgroup of S15 with order divisible by 7, and L is not
3-transitive by Proposition 2.4(b), since c = 15 > 2 + (ℓ − 2)λ = 5. Checking with
[3], we see that L must be either A7 or PSL(4, 2), and in particular L is simple.
Since K∆ ◁ L and 7 does not divide |K|, it follows that K∆ = 1 and hence K = 1.
Therefore G ∼= D ⩽ S8. Thus 8! ⩾ |G| = 8 · |G∆| ⩾ 8 · |L| and it follows that L = A7
and G ∼= D = A8 or S8. By Proposition 2.3, D has subgroup X of index b = 140 such
that X has an orbit of size 6 in C. Thus X is contained in the setwise stabiliser in D
of a 6-element subset (which is isomorphic to S6 or S6 × S2), and hence |D : X| is
divisible by |S8 : S6 × S2| = |A8 : S6| = 28, which is a contradiction. □

There are just five lines of Table 2 still to be resolved, namely Lines 1, 7, 9, 11,
12. We consider these together to obtain restrictions on the groups D and K. For a
group H and prime p, Op(H) denotes the largest normal p-subgroup of H.

Lemma 3.8. Assume that Hypothesis 1.2 holds, and that the parameters are as in one
of the Lines 1, 7, 9, 11, 12 of Table 2. Then

(a) the kernel K of the G-action on C is nontrivial;
(b) the group D = GC is one of those listed in Table 5;
(c) either K∆ is primitive, or Line 12 holds with L = PGL(2, 7) and K∆ =

PSL(2, 7);
(d) K acts faithfully on each ∆ ∈ C.

Proof. (a) In order to prove that K ̸= 1, we assume to the contrary that K = 1.
Then G is isomorphic to D, a primitive group of degree d. The fact that the number
of flags vr = bk must divide |D| implies that D = Ad or Sd for Lines 1, 7, 9. Applying
Proposition 2.2 with the prime p = 7 for Lines 1 and 7, or p = 13 for Line 9 leads to
contradictions. We deal with Lines 11, 12 separately, considering the stabilisers G∆
and Gα, for α ∈ ∆.

In Line 12, G ∼= D, a primitive subgroup of S10 of order divisible by bk = 25.32.5.7,
and this implies that G = A10 or S10. Thus G∆ is A9 or S9, respectively, and G∆ has
a subgroup Gα of index c = 28, but neither A9 nor S9 has such a subgroup.

Finally, in Line 11, G ∼= D is a primitive subgroup of S28 of order divisible by
25.32.5.7 but not by p = 17 (by Proposition 2.2). Hence, using [3] we see that G = A8,
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S8 or PSp(6, 2), and so G∆ = S6, S6 × 2, or PSU(4, 2) : 2, respectively (in each case
there is a unique conjugacy class of these subgroups of index d = 28), and G∆ has a
subgroup Gα of index c = 10. However in the third case there is no such subgroup,
so G = A8 or S8, and Gα = 32 : D8 or (32 : D8) × 2, respectively, (again unique
up to conjugacy), and we identify the point set with the set of right cosets of Gα in
G. Also a block stabiliser GB lies in a unique conjugacy class of subgroups of index
b = 315, and a computation with [1] shows that GB has 3 or 2 orbits of length k = 32
on points, according as D = A8 or S8 respectively. However a further computation
with [1] (as described in Remark 3.2) shows that, for each of these 32-subsets X, the
set of G-images of X is not the block-set of a 2-design. Thus in all cases we conclude
that K ̸= 1.

(b) Since L is primitive, the K-orbits on points have size c. We computationally
exploit Proposition 2.3(b) with the appropriate x := c/ gcd(c, ℓ) to find the possibil-
ities for D listed in Table 5; in each line of Table 5 we record the total number of
primitive groups of degree d (to indicate how many have been eliminated by these
restrictions).

(c) By Lemma 3.3, L is primitive. Since K∆ ̸= 1, it follows that K∆ is transitive and
contains Soc(L). For c = 10 or c = 11, all primitive groups of degree c have a primitive
socle, so K∆ is primitive in Lines 1, 7, 9, 11. In Line 12, we have c = 28, and there is
a single primitive group of degree c with an imprimitive socle, namely PGL(2, 7). So
K∆ is primitive also in Line 12, except if L = PGL(2, 7) and K∆ = PSL(2, 7).

(d) Note that the group G permutes the set {K(∆) | ∆ ∈ C} by conjugation.
For ∆′ ̸= ∆, since K∆′ is transitive and (K(∆))∆′

⊴ K∆′ , it follows that either
(K(∆))∆′ ̸= 1 with equal length orbits, or K(∆) fixes ∆′ pointwise, and in the latter
case K(∆) = K(∆′) (since these subgroups are G-conjugate). For a given ∆, the subset
{∆′ ∈ C | K(∆) = K(∆′)} is a block of imprimitivity for GC = D containing ∆, and
since D is primitive, it follows that either the subgroups K(∆) are all equal and hence
are trivial K(∆) = 1, or the subgroups K(∆) are pairwise distinct and the set of fixed
points of K(∆) is precisely ∆. Thus it is sufficient to prove that K(∆) = 1 for some
∆ ∈ C.

Suppose, in order to derive a contradiction, that K(∆) ̸= 1. Then as explained
above, for all ∆′ ̸= ∆, the normal subgroup K∆′

(∆) of K∆′ is nontrivial. Since K∆′

is either primitive or a nonabelian simple group, by part (c), this implies that K∆′

(∆)
is transitive. This leads to a contradiction as follows: each pair {α, β} ⊆ ∆ is fixed
by K(∆), and hence K(∆) leaves invariant the set of λ blocks containing {α, β}. Let
∆′ ̸= ∆ be a class intersecting non-trivially at least one of these blocks. Then K(∆)
leaves invariant the (non-empty) union of the subsets B ∩ ∆′ over the λ blocks B
containing {α, β}. This non-empty union is a subset of size at most λℓ < c = |∆′|,
and this contradicts the fact that K∆′

(∆) is transitive. Hence K(∆) = 1, and part (d) is
proved. □

We now give ad hoc arguments, involving many of the results from Section 2, to
deal with the five remaining Lines of Table 2, namely the Lines of Table 5.

Lemma 3.9. There are no examples with parameter tuple in Line 9 of Table 2.

Proof. In Line 9 we have (c, d, ℓ) = (11, 21, 2) and λ = 4. Note that p = 5 > λ and
5 does not divide c. If 5 divides |K|, then by Proposition 2.7, there exists an integer
f such that 2 < f < 11, f ≡ 11 ≡ 1 (mod 5), and k − 1 = 23 divides λ(df − 1),
which is a contradiction. Hence 5 does not divide |K|. Now by Lemma 3.8, K ∼= K∆

is a non-trivial normal subgroup of L, so K∆ contains the socle of L. Moreover, by
Proposition 2.4(a), L is 2-transitive of degree c = 11. The socles of such groups are
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C11, PSL(2, 11), M11, or A11, and the only one with order coprime to 5 is C11. Thus
C11 ⊴K∆ ⊴L = AGL(1, 11). Since 5 does not divide |K|, we have K ∼= K∆ = C11 or
C11 ⋊ C2.

Let K0 := O11(K) ∼= C11, and let C := CG(K0). By Lemma 3.8(b), D = G/K is A7
or S7. Since the conjugation action of G on K0 induces a subgroup of Aut(K0) ∼= C10,
it follows that CC = CK/K contains A7. Thus |G : CK| ⩽ 2, and as C ∩ K = K0,
we also have |CK : C| = |K : C ∩ K| ⩽ 2. Hence |G : C| divides 4. However this is a
contradiction since, on the one hand, G/C is isomorphic to the subgroup of Aut(K0)
induced by G, and on the other hand, G∆

∆ = AGL(1, 11) induces the whole group
Aut(K0) ∼= C10 on K0. □

Lemma 3.10. There are no examples with parameter tuple in Line 1, 7 or 11 of Table 2.

Proof. In these Lines, (c, ℓ) = (10, 2), and the triple (λ, d, k) is (3, 10, 12), (4, 10, 12) or
(4, 28, 32) in Line 1, 7 or 11, respectively. By Lemma 3.8, for a class ∆ ∈ C, K∆ ∼= K
is primitive of degree c = 10, and the possibilities for Soc(K) are A5, A6 and A10.
Also Soc(L) ⊴ K∆ ⊴ L, and L is 2-transitive by Proposition 2.4(a), so only A6 and
A10 are possible for Soc(K). In particular Soc(K∆) is 2-transitive. Let P be a Sylow
3-subgroup of K. Since K∆ is 2-transitive, it follows that P ∆ has orbits of lengths 1, 9.
It follows that P fixes a unique point in each of the classes of C. Let α, β be distinct
points fixed by P with α ∈ ∆. Suppose first that λ = 4. Then by Proposition 2.5, since
λ ≡ 1 (mod 3), P fixes setwise at least one block containing {α, β}, say P fixes B
setwise. This implies that P fixes setwise the ℓ-subset B ∩ ∆, which is a contradiction
since ℓ = 2 and P fixes a unique point of ∆. Thus we are in Line 1 with λ = 3, and
from the argument just given we may assume that P fixes none of the three blocks
B1, B2, B3 containing {α, β}. Thus P permutes these three blocks cyclically. Noting
that ℓ = 2, let Bi ∩ ∆ = {α, αi}. Then P fixes {α1, α2, α3} setwise, contradicting the
fact that P ∆ has orbits of lengths 1, 9. This contradiction completes the proof. □

Lemma 3.11. There are no examples with parameter tuple in Line 12 of Table 2.

Proof. Here (c, d, λ, ℓ, k) = (28, 10, 4, 4, 32) and the number of blocks is b = 32 ·
5 · 7. By Lemma 3.3, the groups L, D are primitive of degree c, d respectively. By
Proposition 2.4(b), for distinct α, β ∈ ∆, the setwise stabiliser L{α,β} has an orbit in
∆ ∖ {α, β} of size at most (ℓ − 2)λ = 8. Checking with [3] we find that, of the 14
primitive groups L of degree 28, this property holds for only 7 of them. Thus L is one
of

PGL(2, 7), PSL(2, 8), PΓL(2, 8), PSU(3, 3), PΓU(3, 3), A8, S8.

In all cases Soc(L) is a nonabelian simple group, and is not regular, and the centraliser
CSym(∆)(Soc(L)) = 1. Also, by Lemma 3.8, K∆ ∼= K ̸= 1 and hence Soc(L) ⩽ K∆⊴L.

Let C := CG(K). Then C∩K ⩽
∏

∆∈C CSym(∆)(K∆), and it follows that C∩K = 1.
Now the conjugation action of G on K induces a subgroup of Aut(K) isomorphic to
G/C, and the subgroup CK/C ∼= K induces the group of inner automorphisms of K.
Hence G/CK is isomorphic to a section of the outer automorphism group of Soc(L),
which in all cases is a group of order at most 3. Thus CC = CK/K has index at
most 3 in D = GC = G/K, and we note that CC = CK/K ∼= C. It follows that
Soc(D) ⩽ CC ⊴ D, and by Lemma 3.8(b), Soc(D) ∈ {A6, A10}.

We claim that C has c = 28 orbits of length d = 10 in P. Since C ◁ G, C has
equal length orbits in P, and since CC contains Soc(D), CC is transitive. Thus the
length of the C-orbits is 10 · c0, where c0 is the (constant) length of the C∆-orbits
in ∆. Now C∆

∆ is a normal subgroup of the primitive group G∆
∆ of degree c = 28. If

C∆
∆ ̸= 1 then C∆

∆ is transitive and in particular 7 divides |C∆|, which divides |D|.
Thus Soc(D) = A10, and hence C∆ = A9 or S9. Checking with Magma [1] we find
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that C∆ has no subgroup of index 28. Thus C∆
∆ = 1, and this implies that the C-orbits

have length 10 · c0 = 10, proving the claim. The C-orbits form a G-invariant partition
of P consisting of 28 classes of size 10. Therefore the design (if it existed) would also
arise as a design with the parameters of Line 11. However there are no examples for
Line 11 by Lemma 3.10. □

The collection of lemmas in this section together prove Theorem 1.1.
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