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On the anisotropy theorem of Papadakis
and Petrotou

Kalle Karu & Elizabeth Xiao

Abstract We study the anisotropy theorem for Stanley-Reisner rings of simplicial homol-
ogy spheres in characteristic 2 by Papadakis and Petrotou. This theorem implies the Hard
Lefschetz theorem as well as McMullen’s g-conjecture for such spheres. Our first result is
an explicit description of the quadratic form. We use this description to prove a conjecture
stated by Papadakis and Petrotou. All anisotropy theorems for homology spheres and pseudo-
manifolds in characteristic 2 follow from this conjecture. Using a specialization argument, we
prove anisotropy for certain homology spheres over the field Q. These results provide another
self-contained proof of the g-conjecture for homology spheres in characteristic 2.

1. Introduction
McMullen’s g-conjecture [10] characterizes all possible face numbers of simplicial poly-
topes ∆. The sufficiency part of the conjecture was proved by Billera and Lee [5].
Stanley [13] proved the necessity by applying the Hard Lefschetz theorem to the co-
homology ring H(∆). The Hard Lefschetz theorem is traditionally proved together
with the Hodge-Riemann bilinear relations, which state that a quadratic form is pos-
itive definite on the primitive cohomology. Since the ground field is assumed to be R,
this is equivalent to the quadratic form on the primitive cohomology being anisotropic
with the positive sign.

When trying to generalize the g-conjecture from simplicial polytopes to simpli-
cial homology spheres, one is faced with the fact that there is no convexity and
hence no positivity for the Hodge-Riemann relations. Proving Hard Lefschetz with-
out Hodge-Riemann relations is very hard (e.g. see [1]). However, in order to deduce
Hard Lefschetz from Hodge-Riemann relations, one does not need positivity. Indeed,
anisotropy of the quadratic form is sufficient. Papadakis and Petrotou [11] prove a
very strong version of anisotropy of the quadratic form on not just the primitive co-
homology but the whole middle degree cohomology. This theorem is the motivation
for all results in the current article.

The theorem of Papadakis and Petrotou applies to simplicial homology spheres ∆
over a field k of characteristic 2. The Stanley-Reisner ring A(∆) and the cohomology
ring H(∆) = A(∆)/(θ1, . . . , θn) are defined over a larger field K = k(ai,j) of rational
functions in the variables ai,j . The variables ai,j here are the coefficients of the linear
parameters θ1, . . . , θn in the definition of H(∆).
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Theorem 1.1 (Papadakis, Petrotou). Let ∆ be a simplicial homology sphere of di-
mension n − 1 = 2m − 1 over a field k of characteristic 2. Let H(∆) be defined over
the field of rational functions K = k(ai,j). Then the quadratic form defined on the
middle degree cohomology Hm(∆) by multiplication

Q(g) = g2 ∈ Hn(∆) ≃ K

is anisotropic.

Papadakis and Petrotou used Theorem 1.1 to prove the Hard Lefschetz theorem for
all simplicial homology spheres in characteristic 2, in both even and odd dimensions.
The Hard Lefschetz theorem then implies the g-conjecture for such spheres.

Our first result in this article is an explicit description of the quadratic form Q that
holds in any characteristic (Theorem 3.4 below). We use this description to prove in
Theorem 4.1 a conjecture stated in [11] that generalizes the main ingredient in the
proof of Theorem 1.1. As an application of the conjecture, we prove anisotropy in all
degrees m ⩽ n/2.

One can define the Hodge-Riemann type quadratic form in any degree. Let

l = x1 + x2 + · · · + xN ∈ H1(∆),

where ∆ has N vertices and x1, . . . , xN are the corresponding variables in the Stanley-
Reisner ring. The quadratic form Ql on Hm(∆) for m ⩽ n/2 is defined by

Ql(g) = ln−2mg2 ∈ Hn(∆) ≃ K.

Theorem 1.2. Let ∆ be a simplicial homology sphere of dimension n − 1 over a field
k of characteristic 2, and let H(∆) be defined over the field of rational functions
K = k(ai,j). Then the quadratic form Ql is anisotropic on Hm(∆) for any m ⩽ n/2.

Theorem 1.2 can be deduced from Theorem 1.1 using induction on the dimension
of the sphere and Hard Lefschetz theorem [11]. However, Theorem 1.2 is also a simple
application of the conjecture in [11]. Note also that Theorem 1.2 directly implies the
Hard Lefschetz theorem, which is equivalent to the form Ql being nondegenerate on
Hm(∆) for m ⩽ n/2.

The explicit description of the quadratic form allows us to use a specialization
argument to show that anisotropy in characteristic 2 implies the same in characteristic
0 over the field k = Q.

Theorem 1.3. Let ∆ be a simplicial homology sphere over the field F2. Then Theo-
rem 1.2 holds when H(∆) is defined over the field K0 = Q(ai,j).

Let us denote by HS(R) the set of simplicial homology spheres over a coefficient
ring R (see Section 2 for definition). Then we have a sequence of inclusions

{Topological spheres} ⊂ HS(Z) ⊂ HS(F2) ⊂ HS(Q).

All theorems stated above apply to homology spheres over F2, hence they also apply
to topological spheres and integral homology spheres. The cohomology ring H(∆)
defined over a field K0 of characteristic 0 is well-behaved when ∆ is a homology
sphere over Q, but the anisotropy problem in this case remains open.

The conjecture in [11] and the anisotropy theorems are more naturally stated for
pseudo-manifolds ∆. Theorem 1.1 for pseudo-manifolds in characteristic 2 was proved
by Adiprasito, Papadakis and Petrotou [2]. We will work everywhere below in the
generality of pseudo-manifolds.
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1.1. Outline of the article. Our main tool in the proofs of anisotropy is the
mixed volume W∆. This is the linear function on the space of degree n homogeneous
polynomials:

W∆ : K[x1, x2, . . . , xN ]n → Hn(∆) ≃−→ K.

The mixed volume determines the ring H(∆) if ∆ is a simplicial homology sphere,
and in particular it determines the quadratic form Ql on K[x1, x2, . . . , xN ]m:

Ql(g) = W∆(ln−2mg2).

In Section 3 we prove a decomposition theorem for mixed volumes. If ∆ decomposes
as a connected sum, ∆ = ∆1#∆2, then the mixed volume also decomposes,

W∆ = W∆1 + W∆2 .

We decompose ∆ = #M
i=1Πi into a connected sum where each Πi is the boundary

sphere of an n-simplex. This decomposition provides an explicit diagonal formula for
the quadratic form Ql that is valid in any characteristic. In Section 5 we use the
formula to specialize the quadratic form from characteristic 0 to characteristic 2.

The decomposition of the mixed volume is compatible with the conjecture of Pa-
padakis and Petrotou, reducing the conjecture to the case of Πi. We prove the con-
jecture and the anisotropy theorems in Section 4.

We start the next section by recalling the definitions of simplicial homology spheres,
Stanley-Reisner rings, and Brion’s construction of the isomorphism Hn(∆) ≃ K.

2. Stanley-Reisner rings
We work over a field k of any characteristic in this section. Let ∆ be a (finite, abstract)
simplicial complex of dimension n − 1. We write ∆d for the set of d-dimensional
simplices of ∆. The complex ∆ is called pure if all its maximal simplices have the
same dimension n − 1, which we call the dimension of ∆.

2.1. Homology spheres. A pure simplicial complex ∆ of dimension n − 1 is a
homology sphere over a coefficient ring R if for every simplex τ ∈ ∆ the link of τ has
the same reduced homology as a sphere of dimension n − 2 − dim τ :

H̃i(Link τ ; R) =
{

R if i = n − 2 − dim τ ,

0 otherwise.

The homology here is the simplicial homology with coefficients in the ring R. The
condition also needs to hold for the empty simplex that has dimension −1.

Stanley-Reisner rings are defined over a field, and the theory works best for ho-
mology spheres ∆ over the same field (in this case the algebra H(∆) is Gorenstein
by Reisner’s theorem). The condition for a simplicial complex ∆ to be a homology
sphere over a field k only depends on the characteristic of the field and not on the
field itself. We clarify here the relationship between homology spheres over different
coefficient rings. The following result is elementary.

Lemma 2.1. Let ∆ be a pure simplicial complex of dimension n − 1.
(1) If ∆ is a homology sphere over Z, then it is a homology sphere over any ring

R.
(2) If ∆ is a homology sphere over Fp for some prime p, then it is a homology

sphere over Q.

Proof. We will consider the homology Hi(Link τ ; R) when τ = ∅, Link τ = ∆. The
case of general τ is similar.
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The first statement follows from the universal coefficient theorem which gives an
exact sequence

0 → H̃i(∆;Z) ⊗ R
ν→ H̃i(∆; R) → Tor1(H̃i−1(∆;Z), R) → 0.

If ∆ is a homology sphere over Z, then the Tor1 term vanishes for all i. Hence ν is an
isomorphism.

For the second statement, consider the exact sequence

0 → C̃·(∆;Z) µ→ C̃·(∆;Z) → C̃·(∆;Fp) → 0,

where C̃·(∆; R) is the augmented simplicial chain complex with coefficients in R, and
the map µ is multiplication by p. The short exact sequence of complexes gives a long
exact sequence of homology groups. For i < n − 2 we get an isomorphism

H̃i(∆;Z) µ→ H̃i(∆;Z).

Since the homology groups are finitely generated abelian groups, it follows that
H̃i(∆;Z) is a finite group with no p-torsion.

For i = n − 1 we get an exact sequence

0 → H̃i(∆;Z) µ→ H̃i(∆;Z) → H̃i(∆;Fp) → H̃i−1(∆;Z) µ→ H̃i−1(∆;Z) → 0.

The right map µ being surjective implies that H̃i−1(∆;Z) is a finite abelian group with
no p-torsion. In particular, the right map µ is an isomorphism. The group H̃i(∆;Z)
is a subgroup of the free abelian group C̃i(∆,Z), and hence is itself a free abelian
group. Since H̃i(∆;Fp) = Fp, we get H̃i(∆;Z) = Z. In summary, the integral reduced
homology of ∆ is Z in top degree and a finite abelian group in lower degrees. Now
the universal coefficient theorem shows that the homology groups with Q coefficients
are as required. □

2.2. Pseudo-manifolds. Homology spheres are a special case of pseudo-manifolds.
A pseudo-manifold is a pure simplicial complex of dimension n − 1 such that

(a) Every (n − 2)-simplex lies in exactly two (n − 1)-simplices.
(b) ∆ is strongly connected: the geometric realization of ∆ remains connected

after we remove its (n − 3)-skeleton.
If we allow every (n − 2)-simplex to lie in either one or two (n − 1)-simplices, then we
obtain a pseudo-manifold with boundary. The (n − 2)-simplices that lie in only one
(n − 1)-simplex generate a subcomplex ∂∆ called the boundary. In the following, by
a pseudo-manifold we always mean a pseudo-manifold with empty boundary.

For a pseudo-manifold (with or without boundary) it makes sense to talk about
orientability. An orientation on a simplex is an ordering of its vertices, up to changing
the ordering by an even permutation. An orientation vj1 , vj2 , . . . , vjn on a simplex
induces the orientation vj2 , . . . , vjn

on its facet. An orientation on a pseudo-manifold
is an orientation on all its maximal simplices of dimension n − 1 such that for every
(n − 2)-simplex that lies in two (n − 1)-simplices, the orientations induced from the
two (n − 1)-simplices are opposite.

A pseudo-manifold (with or without boundary) of dimension n − 1 is orientable if
and only if the relative homology group H̃n−1(∆, ∂∆; R) = R for some ring R in which
−1 ̸= 1 (equivalently, for all such rings R). We will use this homological condition to
define when ∆ is orientable over the field k. Then over a field of characteristic 2 every
pseudo-manifold is orientable, with an orientation consisting of an arbitrary ordering
of vertices of each maximal simplex.

Every homology sphere over k is orientable over k, because the condition
H̃n−1(∆; k) = H̃n−1(Link∅; k) = k is part of the definition of homology sphere.
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Oriented pseudo-manifolds over a field k are the most general simplicial complexes
that we will consider below. We will state all results for such complexes and sometimes
mention the special case of homology spheres.

2.3. Stanley-Reisner rings. Let ∆ be a simplicial complex of dimension n − 1
with vertices v1, . . . , vN . The Stanley-Reisner ring of ∆ over a field K is

A(∆) = K[x1, . . . , xN ]/I∆,

where I∆ is the ideal generated by all square-free monomials
∏

i∈S xi such that the
set {vi}i∈S is not a simplex in ∆. The ring A(∆) is a graded K-algebra. Given
homogeneous degree 1 elements θ1, . . . , θn ∈ A1(∆), we define the cohomology ring

H(∆) = A(∆)/(θ1, . . . , θn).

To remove dependence on the choice of θi, we work with generic parameters

θi = ai,1x1 + ai,2x2 + · · · + ai,N xN , i = 1, . . . , n,

where ai,j are indeterminates and the field K is the field of rational functions K =
k(ai,j). We will only consider this generic case.

If ∆ is a homology sphere over k and the parameters are generic as above, then
the ring H(∆) is a standard graded, Artinian, Gorenstein K-algebra of socle degree
n. The Poincaré pairing defined by multiplication

Hm(∆) × Hn−m(∆) −→ Hn(∆) ≃ K

is a nondegenerate bilinear pairing. If ∆ is only an oriented pseudo-manifold over k,
then we still have Hn(∆) ≃ K, but the pairing may be degenerate.

2.4. Piecewise polynomial functions. It follows from a result of Billera [4, The-
orem 3.6] that the Stanley-Reisner ring A(∆) defined over the field R is isomorphic
to the ring of piecewise polynomial functions on a fan. The fan here is the simplicial
fan with each simplex in ∆ replaced by a convex cone generated by the simplex. A
piecewise polynomial function on the fan ∆ is a collection of polynomial functions fσ

on maximal cones σ that agree on the intersections of cones.
The isomorphism between the Stanley-Reisner ring and the ring of piecewise poly-

nomial functions is given as follows. The rays (1-dimensional cones) of the fan are
generated by the vertices vj of ∆. The vertices vj define marked points on the rays
they generate. Each variable xi defines a piecewise linear function on the fan that is
uniquely determined by its values xi(vj) = δi,j . This defines a morphism from the
algebra R[x1, . . . , xN ] to the R-algebra of piecewise polynomial functions. The kernel
of this morphism is the Stanley-Reisner ideal I∆.

The parameters θ1, . . . , θn (with coefficients ai,j ∈ R) are piecewise linear functions
on the fan. They define a piecewise linear map ∆ → V = Rn. We assume that this map
is injective on every cone. If σ is an n-dimensional cone, then a polynomial function on
σ is the same as a polynomial function on V . Hence for a pure n-dimensional fan and
fixed parameters θ1, . . . , θn, an element f ∈ A(∆) is a collection {fσ} of polynomials
on V ,

fσ ∈ R[t1, . . . , tn]
such that fσ1 and fσ2 agree on the image of σ1 ∩ σ2.

The above isomorphism between the Stanley-Reisner ring and the ring of piecewise
polynomial functions carries over to the case where the rings are defined over an
arbitrary field K. The fan is replaced by the affine scheme Spec A(∆). This scheme
consists of linear n-dimensional spaces, one for each maximal simplex σ, glued along
subspaces. The linear parameters θi define a finite morphism from this scheme to the
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n-space V = Spec K[t1, . . . , tn], and for a pure complex ∆ we may again view an
element f ∈ A(∆) as a collection of polynomials, one for each maximal simplex σ,

f = {fσ}, fσ ∈ K[t1, . . . , tn].
The pullback of ti is θi. This turns A(∆) into a graded K[t1, . . . , tn]-module, where
ti acts by multiplication with θi.

Let us find the piecewise polynomial function {fσ} defined by a polynomial f ∈
K[x1, . . . , xN ]. Let σ = {vj1 , . . . , vjn} be a maximal simplex in ∆. The piecewise linear
map θ gives an isomorphism

K[t1, . . . , tn] ≃ K[xj1 , . . . , xjn
](1)

ti 7→ ai,j1xj1 + · · · + ai,jn
xjn

.

(This is the isomorphism between polynomial functions on V and polynomial functions
on the n-plane corresponding to σ.) Now given a polynomial f(x1, . . . , xN ), we first
map it to K[xj1 , . . . , xjn

] by setting all other variables xj equal to zero. Then we apply
the inverse of the isomorphism to get a polynomial fσ(t1, . . . , tn). This construction
defines an isomorphism from the Stanley-Reisner ring of ∆ to the ring of piecewise
polynomial functions.

2.5. Brion’s integration map. Brion in [7] defined the isomorphism
Hn(∆) → K

in terms of piecewise polynomial functions on the fan ∆. We describe this map in the
more general case where the field K is not necessarily R, and ∆ is a pseudo-manifold.

The isomorphism depends on a fixed volume form
t1 ∧ t2 ∧ · · · ∧ tn ∈ ΛnV ∗,

and an orientation on ∆ over the field K.
Let σ be a maximal simplex in ∆, and let vj1 , . . . , vjn

be an ordering of its vertices
given by the orientation. (If the characteristic of K is 2, then any ordering is allowed.)
Using the isomorphism (1), define the polynomial χσ ∈ K[t1, . . . , tn] as

χσ = cσxj1xj2 · · · xjn
,

where the constant cσ ∈ K is such that
cσxj1 ∧ xj2 ∧ · · · ∧ xjn

= t1 ∧ t2 ∧ · · · ∧ tn.

One can compute that

(2) cσ = det σ = det

a1,j1 a1,j2 . . . a1,jn

...
...

. . .
...

an,j1 an,j2 . . . an,jn

 .

The following lemma was proved in [7, Theorem 2.2] in the case where the field
is R and ∆ is a complete fan. The proof for an arbitrary field K and an oriented
pseudo-manifold ∆ is the same, so we recall it.

Lemma 2.2. Let ∆ be an oriented pseudo-manifold of dimension n−1 over k. Consider
π∆ : A(∆) → K(t1, . . . , tn)(3)

f 7→
∑

σ∈∆n−1

fσ

χσ
.

Then the image of π∆ lies in K[t1, . . . , tn] and the induced map
π∆ : A(∆) → K[t1, . . . , tn]
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is a degree −n homomorphism of graded K[t1, . . . , tn] modules. The map π∆ in degree
n defines an isomorphism

π∆ : Hn(∆) → K.

Proof. We start by proving the last statement of the lemma. Recall that ti act on
A(∆) by multiplication with θi. It follows that π∆ maps (θ1, . . . , θn)An−1(∆) to zero
because it maps An−1(∆) to elements of degree −1 in K[t1, . . . , tn]. Hence π∆ in degree
n factors through Hn(∆). This map is nonzero because the piecewise polynomial
function {fσ} such that fσ0 = χσ0 and fσ = 0 for σ ̸= σ0 for some fixed σ0 maps to
1 ∈ K.

The map π∆ is clearly a homomorphism of K[t1, . . . , tn]-modules: when we multiply
f = {fσ} with θi, we multiply each fσ(t1, . . . , tn) with ti. The map decreases degree
by n because all χσ are homogeneous polynomials of degree n. It remains to show
that the image of π∆ lies in the polynomial ring.

Each χσ is a product of linear functions that vanish on the n hyperplanes in V
spanned by the facets of σ. This implies that the rational function fσ/χσ can have
at worst simple poles along these hyperplanes. Fix one (n − 2)-dimensional simplex τ
and let H be the hyperplane it spans. Let σ1 and σ2 be the two (n − 1)-dimensional
simplices containing τ . Now it suffices to prove that the residues of fσ1/χσ1 and
fσ2/χσ2 along the hyperplane H sum to zero. This implies that all poles cancel and
the image of π∆ is a polynomial.

Consider χσ1 = (det σ1)xj1xj2 · · · xjn
, where we take t = (det σ1)xj1 as the param-

eter that vanishes on H. The residue of fσ1/χσ1 with respect to the parameter t is
then

fσ1

xj2 · · · xjn

(mod t).

Working mod t means that we restrict the rational function to the hyperplane H.
Now consider χσ2 = (det σ2)xj′

1
x′

j2
· · · x′

jn
, where (det σ2)xj′

1
vanishes on H and

x′
j2

, . . . , x′
jn

are equal to xj2 , . . . , xjn
when restricted to the hyperplane H. From the

normalization condition

(det σ1)xj1 ∧ xj2 ∧ · · · ∧ xjn = −(det σ2)xj′
1

∧ x′
j2

∧ · · · ∧ x′
jn

= −(det σ2)xj′
1

∧ xj2 ∧ · · · ∧ xjn
,

it follows that
t = (det σ1)xj1 = −(det σ2)xj′

1
.

The residue of fσ2/χσ2 with respect to the parameter t is

− fσ2

x′
j2

· · · x′
jn

≡ − fσ2

xj2 · · · xjn

(mod t).

This is equal to the negative of the residue of fσ1/χσ1 because fσ1 and fσ2 restrict to
the same polynomial on H. □

Remark 2.3. The map π∆ can also be viewed as an evaluation map on piecewise
polynomial functions. Choose a point v0 ∈ V general enough such that χσ(v0) ̸= 0 for
any σ. We may now represent an element f ∈ An(∆) as a vector of values (fσ(v0))σ ∈
KM . The map π∆ is then defined as a weighted sum of these values:

(fσ(v0))σ 7−→
∑

σ

fσ(v0)
χσ(v0) .

Expressing cohomology classes as vectors of values is a special case of a theorem by
Carrell and Lieberman [8].
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2.6. Connected sums. Consider the decomposition of an (n − 1)-dimensional
pseudo-manifold ∆ as the connected sum of two pseudo-manifolds

∆ = ∆1#D∆2.

Here D is a common (n − 1)-dimensional subcomplex of ∆1 and ∆2 that is a pseudo-
manifold with boundary. We remove the interior of D from ∆1, ∆2, and glue the
remaining complexes along their common boundary. We assume that ∆, ∆1 and ∆2
are oriented compatibly. This means that if a maximal simplex lies in both ∆ and ∆i,
then it has the same orientation in both.

Figure 1. Connected sum of 1-dimensional spheres ∆1 and ∆2 along D.

Let us also denote the simplicial complexes ∆1 and ∆2 glued along D by
∆̃ = ∆1 ∪D ∆2.

Let θ̃i ∈ A1(∆̃) be linear parameters for ∆̃. These parameters, viewed as piecewise
linear functions on ∆̃, restrict to linear parameters on ∆, ∆1 and ∆2. Similarly, a
piecewise polynomial function f̃ ∈ An(∆̃) restricts to piecewise polynomial functions
f̃ |∆ ∈ An(∆), f̃ |∆1 ∈ An(∆1) and f̃ |∆2 ∈ An(∆2). The latter two agree on D.

Lemma 2.4. Let f̃ ∈ An(∆̃). Then
π∆(f̃ |∆) = π∆1(f̃ |∆1) + π∆2(f̃ |∆2).

Proof. The maximal simplices of D appear in ∆1 and ∆2 with opposite orientations.
Hence these terms cancel on the right hand side. The remaining terms give the left
hand side. □

Remark 2.5. The previous lemma was used in [9, 6, 3]. Its meaning as integration over
a connected sum was realized by Karl-Heinz Fieseler. The lemma says that Brion’s
integration map behaves like ordinary integration. One can decompose the domain of
integration into pieces and sum the integrals over the pieces.

We next consider a more general connected sum. Let v0 be a new vertex and let
C(∆) = {v0} ∗ ∆

be the cone over ∆ with vertex v0. Let πi = {v0} ∗ σi, i = 1, . . . , M be the maximal
simplices in C(∆), and let Πi = ∂πi be the simplicial (n − 1)-spheres. Then

∆ = #M
i=1Πi.

Here we use a more general notion of connected sum. We assume that ∆ and Πi are
oriented compatibly. Then an (n − 1)-simplex σ ∈ ∆ appears in the disjoint union
⊔M

i=1Πi exactly once and with the same orientation as in ∆. All other (n−1)-simplices
of ⊔M

i=1Πi appear there twice with opposite orientations.
As before, we let ∆̃ be the union of Πi. A system of linear parameters θ̃i on ∆̃

restricts to a system of parameters on ∆ and all Πi.
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Figure 2. Decomposition of a 1-sphere as a connected sum.

Lemma 2.6. Let f̃ ∈ An(∆̃). Then

π∆(f̃ |∆) =
M∑

i=1
πΠi

(f̃ |Πi
).

The parameters θ̃i have extra variables ai,0 corresponding to the new vertex v0.
We may include these in the field K,

K = k(ai,j)i=1,...,n;j=0,...,N .

However, the map π∆ does not depend on the variables ai,0. If f ∈ An(∆) has
coefficients in k(ai,j)i=1,...,n;j=1,...,N then π∆(f) also lies in the same field.

An alternative connected sum decomposition would be to take one of the existing
vertices, say v1, as the cone point and replace C(∆) with

{v1} ∗ (∆ ∖ Star◦ v1).

3. Mixed volumes
Let H be a standard graded, Artinian, Gorenstein K-algebra of socle degree n,

H = K[x1, . . . , xN ]/I.

It is well-known that H is determined by the linear function

W : K[x1, . . . , xN ]n → Hn ≃−→ K.

(We have denoted by subscript n the degree n homogeneous part of K[x1, . . . , xN ].)
Indeed, one recovers the ideal I from W using the property that f ∈ K[x1, . . . , xN ]m
lies in I if and only if W (fg) = 0 for any g of degree n − m. More generally, any
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Figure 3. Alternative decomposition of a 1-sphere as a connected sum.

nonzero linear function W : K[x1, . . . , xN ]n → K determines a standard graded,
Artinian, Gorenstein K-algebra H of socle degree n.

For an oriented pseudo-manifold ∆, let the function W = W∆ be the composition

W∆ : K[x1, . . . , xN ]n → An(∆) π∆−→ K.

When ∆ is a homology sphere over K, then W∆ determines the algebra H(∆). When
∆ is an oriented pseudo-manifold over K, then W∆ determines an algebra that we
denote H(∆). This algebra in general is a quotient of the algebra H(∆).

In the theory of polytopes and toric varieties the function W∆ is known as the
mixed volume.

3.1. The case of Π. Let π be an n-simplex and Π = ∂π the (n − 1)-dimensional
sphere. We compute here the mixed volume WΠ.

Let v0, v1, . . . , vn be the vertices of Π, and σj = {v0, . . . , v̂j , . . . , vn} the maximal
simplices. We choose the orientation on Π so that v1, . . . , vn is positively oriented on
the simplex σ0. Denote by

A = (ai,j)i,j

the n × (n + 1) matrix of variables, where the columns are indexed by 0, 1, . . . , n and
the rows by 1, . . . , n. Let Xj ∈ K be (−1)j times the determinant of the matrix A with
its j-th column removed. Then Xj = det σj as defined in Equation (2) on page 1318.

Lemma 3.1. Let f ∈ K[x0, . . . , xn]n. Then

WΠ
(
f(x0, x1, . . . , xn)

)
= f(X0, X1, X2, X3, . . . , Xn)

X0X1 · · · Xn
.

Proof. We first check that WΠ(θig) = 0 for any g of degree n − 1 and i = 1, . . . , n. It
suffices to show that θi evaluated at X0, . . . , Xn is zero. From the definition,

θi(X0, . . . , Xn) =
n∑

j=0
ai,jXj .

This sum is the expansion of the determinant of the matrix A with a copy of its i-th
row added as the first row. Since the matrix has two repeated rows, its determinant
is zero.

The previous argument shows that the map WΠ factors through Hn(∆). Let us
check that its value on the monomial χσ0 = (det σ0)x1 · · · xn is 1 as required:

WΠ((det σ0)x1 · · · xn) = X0X1 · · · Xn

X0X1 · · · Xn
= 1. □
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To simplify notation, let us write the mixed volume as

WΠ = 1
cΠ

evΠ,

where cΠ = X0X1 · · · Xn ∈ K and evΠ : K[x0, . . . , xn] → K is the evaluation map
that sets xj = Xj . The evaluation map is a K-algebra homomorphism.

Recall that in Section 2.6 we decomposed an oriented pseudo-manifold ∆ as a
connected sum

∆ = #M
i=1Πi.

The following result now follows from Lemma 2.6 and Lemma 3.1:

Theorem 3.2. Let ∆ be an oriented pseudo-manifold. Then

W∆ =
M∑

i=1
WΠi

=
M∑

i=1

1
cΠi

evΠi
.

In the theorem the map evΠi
acts on K[x1, . . . , xN ] as a composition

K[x1, . . . , xN ] → K[xj1 , . . . , xjn
]

evΠi−→ K,

where the first map, the restriction to Πi, sets xj = 0 if vj does not lie in Πi. When
vj = vjl

is a vertex of Πi, then evΠi
maps xj to Xj . However, the constants Xj ∈ K

depend not only on j but also on all vertices of Πi and the orientation on Πi.

Remark 3.3. It is not too difficult to see that the previous theorem is nothing more
than the integration π∆ viewed as an evaluation map (see Remark 2.3). Indeed, when
we evaluate the summands of the map π∆ (formula (3) on page 1318) at the generic
point v0, we get the summands in the theorem.

3.2. The quadratic form Ql. Let ∆ be an oriented pseudo-manifold of dimension
n − 1 over K, and let l = x1 + x2 + · · · + xN . We define the quadratic form Ql on
K[x1, . . . , xN ]m for m ⩽ n/2:

Ql(g) = W∆(ln−2mg2).
This form descends to a form on Hm(∆), and in the case where ∆ is not a homology
sphere, to a form on the quotient space Hm(∆).

Theorem 3.4. The quadratic form Ql on K[x1, . . . , xN ]m is

Ql(g) =
M∑

i=1
WΠi(ln−2mg2) =

M∑
i=1

1
cΠi

[
evΠi(l)

]n−2m[
evΠi(g)

]2
.

Proof. The second equality follows from the fact that the evaluation maps are K-
algebra homomorphisms. □

The theorem provides a diagonalization of the quadratic form Ql. Each map evΠi

defines a linear function on K[x1, . . . , xN ]m. Let us call this function zi. The quadratic
form Ql is then ∑

i

diz
2
i ,

where the coefficients are

di =
[
evΠi(l)

]n−2m

cΠi

∈ K.

This expression of the quadratic form holds in any characteristic. It can be used, for
example, to specialize the form from characteristic zero to characteristic p, assuming
that ∆ is oriented the same way in both characteristics. All coefficients in the form
(the numerator and denominator of di, the coefficients of zi) are polynomials in the
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variables ai,j with integer coefficients. If g ∈ Z[ai,j ][x1, . . . , xN ]m is a polynomial such
that Ql(g) = 0 in Q(ai,j), then Ql(g) = 0 in Fp(ai,j), where g = g (mod p).

The summands of the quadratic form Ql in Theorem 3.4 are defined over the field
K that includes the variables ai,0. However, the form itself does not depend on these
variables and can be defined over the field k(ai,j)i=1,...,n;j=1,...,N . The anisotropy of
the form does not depend on which of the two fields we use.

4. The conjecture of Papadakis and Petrotou
We assume that the field K = k(ai,j) has characteristic 2 throughout this section.
Papadakis and Petrotou study the values of the quadratic form Ql in K and partial
derivatives of these values with respect to ai,j .

Consider partial derivatives ∂ai,j acting on K = k(ai,j). Because of the character-
istic 2 assumption, these derivatives satisfy for any f, g ∈ K

∂2
ai,j

f = 0, ∂ai,j
f2 = 0, ∂ai,j

f2g = f2∂ai,j
g.

We will use capital letters I, J, L to denote vectors of non-negative integers. Let |J |
be the number of components in the vector J . For I = (i1, . . . , in) with n components
we let

∂I = ∂a1,i1
∂a2,i2

· · · ∂an,in
.

For J = (j1, . . . , js), let xJ be the degree s monomial

xJ = xj1xj2 · · · xjs
.

Note that I and J may contain repeated elements and s may be larger than n. There
is some redundancy in this notation because xJ only depends on J up to permutation
of components. However, ∂I does depend on the order of components in I. We write√

xJ for the monomial whose square is xJ if such a monomial exists.
The following was stated in [11] as Conjecture 14.1 in case of homology spheres

∆. We generalize it to the case of pseudo-manifolds, which by the characteristic 2
assumption are automatically oriented.

Theorem 4.1 (Conjecture of Papadakis and Petrotou). Let ∆ be a pseudo-manifold
of dimension n − 1 over K. For any integer vectors I, J with n components

∂IW∆(xJ) =
{

(W∆(√xIxJ))2 if √
xIxJ exists,

0 otherwise.

We will prove the conjecture below. Let us first see that it implies Theorem 1.2.
The argument here is similar to the proof of Theorem 1.1 in [11]. In fact, it is very
natural to extend this theorem to the case of pseudo-manifolds ∆ as in [2]. Recall
that in Section 3 we defined for any oriented pseudo-manifold ∆ the algebra H(∆).
This is equal to the algebra H(∆) if ∆ is a homology sphere.

Corollary 4.2. Let h ∈ K[x1, . . . , xN ]m for some 0 ⩽ m ⩽ n/2, and let I, J have
n, n − 2m components, respectively. Then

∂IW∆(h2xJ) = (W∆(h
√

xIxJ))2

if √
xIxJ exists, and is otherwise zero.

Proof. Write h as a linear combination of monomials, h =
∑

L bLxL. Then

W∆(h2xJ) = W∆(
∑

L

b2
Lx2

LxJ) =
∑

L

b2
LW∆(x2

LxJ).
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Applying the derivative ∂I to this and using Theorem 4.1, we get∑
L

b2
L∂IW∆(x2

LxJ) =
∑

L

b2
L(W∆(xL

√
xIxJ))2 = (W∆(

∑
L

bLxL
√

xIxJ))2

if the square root exists, and zero otherwise. □

The previous corollary shows why Theorem 4.1 is well suited for proving anisotropy
theorems in characteristic 2. The expression W∆(h√

xIxJ) on the right hand side is
the Poincaré pairing between h and √

xIxJ . If W∆(h2xJ) on the left hand side is zero,
then h is orthogonal to √

xIxJ for all I.

Corollary 4.3. Let ∆ be a pseudo-manifold of dimension n − 1 over K. Consider
g ∈ K[x1, . . . , xN ]m such that

lpg2 = 0 in Hp+2m(∆)
for some 0 ⩽ p ⩽ n − 2m. Let q = ⌊ p

2 ⌋. Then

lqg = 0 in Hq+m(∆).

Proof. If lpg2 = 0 in Hp+2m(∆), then for any integer vectors I and J with respectively
n and n − 2m − p components,

∂IW∆(lpg2xJ) = 0.

If p is even, then p/2 = q and by Corollary 4.2,
∂IW∆(lpg2xJ) = ∂IW∆((lqg)2xJ) = (W∆(lqg

√
xIxJ))2 = 0

if the square root exists, and so
W∆(lqg

√
xIxJ) = 0.

Since I and J can be chosen such that xIxJ = x2
L for any of the monomials xL

generating Hn−q−m(∆), we conclude that lqg = 0 in Hq+m(∆).
If p is odd, then lpg2 = (lqg)2 · l = (lqg)2 ∑N

i=1 xi. Applying Corollary 4.2, we have

∂IW∆(lpg2xJ) =
N∑

i=1
(W∆(lqg

√
xixIxJ))2

if the square root exists. Let L have n − q − m components, and let j be one of these
components of L. Choose I and J such that xIxJ = x2

L/xj . Then √
xjxIxJ = xL and√

xixIxJ does not exist when i ̸= j, so in this case

∂IW∆(lpg2xJ) = (W∆(lqgxL))2 = 0.

Hence,
W∆(lqgxL) = 0

for any xL. We conclude again that lqg = 0 in Hq+m(∆). □

We now prove a generalization of Theorem 1.2 in the case of pseudo-manifolds.

Theorem 4.4. Let ∆ be a pseudo-manifold of dimension n − 1 over K. Then the
quadratic form Ql on Hm(∆) is anisotropic for any m ⩽ n/2.

Proof. Let g ∈ Hm(∆) be an isotropic element for Ql,
ln−2mg2 = 0.

Corollary 4.3 implies that lqg = 0, where q = ⌊ n−2m
2 ⌋. In particular, lqg2 = 0.

Continuing this way we reduce the power of l to zero and hence g = 0. □

The rest of this section consists of the proof of Theorem 4.1.
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4.1. Reductions. We start by reducing Theorem 4.1 to simpler cases. First notice
that all expressions in Theorem 4.1 are defined over the field F2. Hence we may assume
that k = F2.

Recall that we wrote W∆ =
∑

i WΠi in Theorem 3.2.

Lemma 4.5. Theorem 4.1 for all Πi implies it for ∆.

Proof. This follows directly from the statement of the theorem using the characteristic
2 assumption and the observation that if a monomial xIxJ restricts to a nonzero
monomial on Πi, then the monomial is a square if and only if its restriction is a
square. □

From now on we will assume that ∆ = Π as in Section 3.1. Assume that Π has
vertices v0, v1, . . . , vn. The matrix A = (ai,j) has size n×(n+1), with columns indexed
by 0, 1, . . . , n and rows by 1, . . . , n. We use the notation Xj , j = 0, 1, . . . , n, for the
determinant of A with its j-th column removed. If J = (j1, . . . , js) is a vector with
entries in {0, 1, . . . , n}, we let

XJ = Xj1Xj2 · · · Xjs
.

Theorem 4.1 for Π can be further reduced to the following:

Theorem 4.6. Let I and J be vectors with entries in {0, 1, . . . , n}. Assume that |I| = n
and |J | is odd. Then

∂IXJ =
{

(XL)2 if XIXJ = X2
LX(0,1,...,n),

0 otherwise.

Lemma 4.7. Theorem 4.6 implies Theorem 4.1 for Π.

Proof. Let I and J be as in the statement of Theorem 4.1, and let J ′ be such that
XJ′ = XJX(0,1,...,n). Note that |J ′| = 2n + 1 is odd. We claim that Theorem 4.1 for
I, J is equivalent to Theorem 4.6 for I, J ′.

Using that
WΠ(xJ) = XJ

cΠ
= XJ

X(0,1,...,n)
,

the statement of Theorem 4.1 for Π, I, J is

∂I
XJ

cΠ
=

{
XI XJ

c2
Π

if √
xIxJ exists,

0 otherwise.

The statement of Theorem 4.6 for I, J ′ is

∂I(XJcΠ) =
{

XIXJ if
√

XIXJ exists,
0 otherwise.

These two equations differ by a factor of c2
Π. □

We will prove Theorem 4.6 below after some preparations.

4.2. SL(n, k)-invariance. Let A = (ai,j) be the n × (n + 1) matrix of variables.
For a matrix B ∈ SL(n, k), consider the linear change of variables from A to BA.
This defines an action of SL(n, k) on the polynomial ring k[ai,j ]. The first funda-
mental theorem of invariant theory for SL(n, k) states that if k is an infinite field of
any characteristic, then the k-algebra of invariants under this action is generated by
X0, X1, . . . , Xn. When the field k is finite, the same result holds if we consider abso-
lute invariants. These are polynomials in k[ai,j ] that are invariant under the action of
SL(n, k), where k is the algebraic closure of k. The first fundamental theorem states
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that absolute invariants are again polynomials in X0, X1, . . . , Xn with coefficients in k.
(See [12], Theorem 13.5.5 and the discussion of absolute invariants in Section 13.6.1.)

Lemma 4.8. Let I and J be as in Theorem 4.6. Then the polynomial ∂IXJ ∈ k[ai,j ]
is SL(n, k)-invariant for any field k of characteristic 2. In particular, ∂IXJ ∈ F2[ai,j ]
is an absolute SL(n,F2)-invariant.

Proof. The group SL(n, k) is generated by elementary matrices. An elementary matrix
acts on the matrix of variables by adding a constant c times row r to row s. It suffices
to prove invariance under this change of variables.

We may assume without loss of generality that r = 2 and s = 1. Consider the new
variables

a′
i,j =

{
ai,j + ca2,j if i = 1,
ai,j otherwise.

For a polynomial f(a) = f(ai,j), let us denote by f(a′) the result of substituting a′
i,j

in ai,j . Similarly, let us write ∂I(a′) for the partial derivative where we replace ∂ai,j

with ∂a′
i,j

. We need to prove that

(∂IXJ)(a′) = (∂IXJ)(a).
We claim that if ∂I = ∂a1,i1

∂a2,i2
∂a3,i3

· · · ∂an,in
, then

(4) (∂IXJ)(a′) = (∂IXJ)(a) − c(∂a1,i1
∂a1,i2

∂a3,i3
· · · ∂an,in

XJ)(a).
The next lemma shows that ∂a1,i1

∂a1,i2
XJ = 0, hence the second summand vanishes.

For any polynomial f(ai,j), by replacing all symbols a with a′, we have
(∂If)(a′) = ∂I(a′)f(a′).

If f is SL(n, k)-invariant, then
f(a′) = f(a) = f(a′

1,j − ca′
2,j , a′

2,j , . . . , a′
n,j).

Let us now prove Equation (4). Since XJ is SL(n, k)-invariant,
(∂IXJ)(a′) = ∂I(a′)XJ(a′) = ∂a′

1,i1
∂a′

2,i2
· · · ∂a′

n,in
XJ(a′

1,j − ca′
2,j , a′

2,j , . . . , a′
n,j).

Using the chain rule, this derivative is(
∂IXJ − c∂a1,i1

∂a1,i2
∂a3,i3

· · · ∂an,in
XJ

)
(a′

1,j − ca′
2,j , a′

2,j , . . . , a′
n,j).

Changing back to the variables ai,j gives the right hand side of (4). □

Lemma 4.9. If |J | is odd then ∂ar,i1
∂ar,i2

XJ = 0 for any r, i1, i2.

Proof. It is enough to consider the case where J contains no repeating indices, since
any square factors of XJ can be factored out of the partial derivatives. Under a
suitable relabelling of rows and columns of A, we can assume that r = 1, i1 = 1 and
i2 = 2, so that the derivative under consideration is ∂a1,1∂a1,2XJ .

Let us denote by Yi,j = Yj,i the determinant of the matrix A with its first row and
columns i, j removed. Then

∂a1,i
Xj = Yi,j .

The polynomials Xi and Yi,j satisfy the following relations. For any distinct indices
i, j, p, q in increasing order
(5) Yi,jYp,q − Yi,pYj,q + Yi,qYj,p = 0,

and for any distinct indices i, j, p in increasing order
(6) Yi,jXp − Yi,pXj + Yj,pXi = 0.

These equations hold in any characteristic. In characteristic 2 the signs in the equa-
tions are not important. The equations come from the Plücker embedding of the
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Grassmannian. Rows 2, 3, . . . , n of the matrix A span an (n − 1)-plane in the (n + 1)-
space and hence define a point in the Grassmannian Gr(n−1, n+1). The polynomials
Yi,j are the Plücker coordinates on this Grassmannian. These coordinates satisfy the
Plücker relations in Equation (5). Similarly, the n rows of the matrix A define a point
in Gr(n, n + 1) with coordinates Xi. The relations in Equation (6) state that the
(n − 1)-plane with coordinates Yi,j lies in the n-plane with coordinates Xi.

Using the product rule we have

∂a1,1∂a1,2XJ =
∑ XJ

XiXj
Y1,iY2,j .

Here the sum runs over all vectors (i, j) where i, j are distinct entries of J such that
i ̸= 1 and j ̸= 2. We claim that this sum is equal to∑ XJ

XiXj
Y1,2Yi,j ,

where the sum now runs over all two element subsets {i, j} of entries in J . To see
this, first consider the case where i and j are both distinct from 1 and 2. In this case
we apply the Plücker relation to get

Y1,iY2,j + Y2,iY1,j = Y1,2Yi,j .

The cases where i = 2 or j = 1 are simpler and do not require any relation.
We are now reduced to proving that∑

{i,j}

XJ

XiXj
Y1,2Yi,j = XJY1,2

∑
{i,j}

Yi,j

XiXj
= 0.

Using Equation (6) we have for any distinct i, j, p

Yi,j

XiXj
+ Yi,p

XiXp
+ Yj,p

XjXp
= 0.

Now consider all three element subsets {i, j, p} of entries in J . Then∑
{i,j,p}

(
Yi,j

XiXj
+ Yi,p

XiXp
+ Yj,p

XjXp

)
= 0.

Since every pair {i, j} occurs in an odd number of triples {i, j, p}, this sum is equal
to ∑

{i,j}

Yi,j

XiXj
. □

4.3. Proof of Theorem 4.6. Lemma 4.8 implies that ∂IXJ is a polynomial in
X0, X1, · · · , Xn with coefficients in F2. Consider the grading by Zn+1 on the ring
F2[ai,j ] such that ai,j has degree ej . Here e0, . . . , en is the standard basis for Zn+1.
Let 1 = (1, . . . , 1). Then Xi, i = 0, . . . , n, is homogeneous with

deg Xi = 1 − ei.

Since the vectors 1 − ei are linearly independent, there can be at most one monomial
XL in each degree. The partial derivative ∂ai,j applied to a homogeneous polynomial
reduces its degree by ej (or is zero). Since XJ is homogeneous, so is ∂IXJ , hence ∂IXJ

is equal to a constant c times a monomial XM . Here c ∈ F2, hence ∂IXJ is either XM

or 0. Computing the degrees, the monomial XM must satisfy XIXJ = XM X(0,1,...,n).
Theorem 4.6 has two cases depending on whether

√
XM exists or not.

Lemma 4.10. If ∂IXJ ̸= 0, then
√

XM exists.
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Proof. Suppose that ∂IXJ = XM . By Lemma 4.9, all partial derivatives

∂ai,j
XM = ∂ai,j

∂IXJ

vanish. This implies that XM is the square of a polynomial in F2[ai,j ]. Since XM is
the product of irreducible polynomials Xi, it follows that XM must be the square of
a monomial XL. □

Lemma 4.11. If
√

XM exists, then ∂IXJ ̸= 0.

Proof. We will prove that ∂IXJ ̸= 0 by induction on n. The base of the induction is
n = 0. In this case ∂IXJ = XJ = 1.

Consider now n > 0. Let I = (i1, . . . , in) and J = (j1, . . . , js), where s is odd. By
assumption, there exists a monomial XL such that XIXJ = X2

LX(0,1,...,n). To prove
that ∂IXJ ̸= 0, we may factor out squares in XJ and assume that J has no repeated
entries.

There exists an entry in J , say j1, such that j1 ̸= ir for r = 1, . . . , n. This follows
from the fact that X(0,1,...,n) of degree n + 1 divides XIXJ , but XI has degree n.
Define the monomial

µ = a1,i1as−1
1,j1

.

Then the coefficient of µ in XJ = Xj1 · · · Xjs
is

Yj1,i1Yj2,j1 · · · Yjs,j1 .

Indeed, Xj1 does not contain a1,j1 . Hence as−1
1,j1

must come from the factors
Xj2 , . . . , Xjs and a1,i1 from the factor Xj1 . As before, we have denoted by Yi,j

the coefficient of a1,j in Xi.
Notice that the coefficient of as−1

1,j1
in ∂IXJ is

∂a2,i2
∂a3,i3

· · · ∂an,in
Yj1,i1Yj2,j1 · · · Yjs,j1 .

If this coefficient is nonzero then also ∂IXJ is nonzero. We claim that this coefficient
being nonzero follows by induction from the case of dimension n−1. From the matrix
(ai,j) we have removed row 1 and column j1, the derivative ∂I is replaced with ∂I′ ,
where I ′ = (i2, . . . , in), and XJ is replaced (using a similar notation in dimension
n − 1) with XJ′ , where J ′ = (i1, j2, . . . , js).

Let us check that we can apply the induction assumption to prove that ∂I′XJ′ ̸= 0.
The vectors I ′ and J ′ satisfy

XI′XJ′ = XI

Xi1

· Xi1XJ

Xj1

=
X2

LX(0,1,...,n−1,n)

Xj1

Since we assumed that J does not contain repeated entries, Xj1 appears in the nu-
merator of the fraction to the first power. If we suppose that j1 = n, then

XI′XJ′ = X2
LX(0,1,...,n−1),

where Xj1 = Xn does not appear in any monomial. By induction, ∂I′XJ′ ̸= 0. □

5. Anisotropy in characteristic 0
In this section we prove Theorem 1.3. Let K = F2(ai,j) and K0 = Q(ai,j). We write
H(∆)K and H(∆)K0 for the algebras defined over the fields K and K0, respectively.
Similarly for A(∆)K and A(∆)K0 .

Lemma 5.1. Let ∆ be a homology sphere over K, and let B be a set of monomials
in xi that forms a basis for the vector space H(∆)K . Then B also forms a basis for
H(∆)K0 .
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Proof. Since A(∆)K is a graded free K[θ1, . . . , θn]-module, the product of elements
of B with monomials in θi gives a basis for A(∆)K . We claim that the same set of
products of elements of B with monomials in θi is also a basis for A(∆)K0 . For this it
suffices to prove linear independence, because the dimension of A(∆) in each degree is
independent of the field. If there is a relation between these elements with coefficients
in K0, we may clear denominators and assume that the coefficients lie in Z[ai,j ] so
that not all coefficients are divisible by 2. Such a relation gives a nontrivial relation
mod 2. This proves that A(∆)K0 is a free K0[θ1, . . . , θn]-module with basis B. Hence
B gives a basis for H(∆)K0 . □

Proof of Theorem 1.3. Let Bm be a basis of monomials for Hm(∆)K as in the lemma.
Suppose g ∈ Hm(∆)K0 is nonzero and Ql(g) = 0. We may clear denominators and as-
sume that g is a linear combination of monomials in Bm with coefficients in Z[ai,j ], not
all coefficients divisible by 2. This g (mod 2) gives a nonzero element g ∈ Hm(∆)K .
Moreover, Ql(g) = Ql(g) (mod 2) = 0. This contradicts Theorem 1.2. □

Theorem 1.3 does not extend to arbitrary orientable pseudo-manifolds ∆. An ex-
ample where the specialization argument fails is where ∆ is a homology sphere over
Q but not over F2. In this case ∆ is still an orientable pseudo-manifold over F2, but
anisotropy for H(∆)K does not imply anisotropy for H(∆)K0 = H(∆)K0 .
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