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Jacobi–Trudi formulas and determinantal
varieties

Steven V Sam & Jerzy Weyman

Abstract Gessel gave a determinantal expression for certain sums of Schur functions which
visually looks like the classical Jacobi–Trudi formula. We explain the commonality of these
formulas using a construction of Zelevinsky involving BGG complexes and use this explanation
to generalize this formula in a few different directions.

1. Introduction
In this paper we attempt to understand and generalize some results of Gessel [1]
which bear some visual similarities to the classical Jacobi–Trudi formulas in symmetric
function theory. First, we recall the statement: given an integer partition λ with at
most k parts, we have the determinantal formula for the Schur function

sλ = det(hλi−i+j)i,j=1,...,k

where h denotes the complete homogeneous symmetric function. The representation-
theoretic significance of this formula is that it supplies a recipe for constructing the
Schur functor from tensor products of symmetric power functors. Namely, the expan-
sion of the above determinant has a natural interpretation as the Euler characteristic
of an acyclic chain complex. Gessel’s formula replaces sλ with the sum∑

λ
ℓ(λ)⩽k

sλ(x)sλ(y)

in two sets of variables x and y, and replaces hn with the sum

Hn =
∑
d⩾0

hd(x)hd+n(y).

The significance of this formula for us, and the starting point of this paper, is that
the first expression is the character of the coordinate ring of the determinantal variety
of generic matrices of rank ⩽ k, while the Hn are characters of certain equivariant
modules supported on the variety of rank ⩽ 1 matrices. Naturally, we want to interpret
this formula as a recipe for constructing the variety of rank ⩽ k matrices from these
more basic modules.
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In this article, we reprove this formula using representation theory, and in partic-
ular, interpret it as the Euler characteristic of an acyclic chain complex. This chain
complex is quite interesting and it would be worthwhile to further investigate them
from a geometric perspective. Moreover, from our approach we deduce several simi-
lar formulas: one for the character of the coordinate ring of determinantal variety of
skew-symmetric matrices of rank ⩽ 2k, one for a ring very closely related to the coor-
dinate ring of the determinantal of symmetric matrices of rank ⩽ k, and a companion
formula for the symmetric case involving spinor representations.

Our approach involves an old construction of Zelevinsky [10] involving BGG com-
plexes. He used this method to construct an acyclic complex of GLn-representations
whose Euler characteristic gives the Jacobi–Trudi formula for Schur polynomials.
Zelevinsky’s approach takes as input a representation V of a semisimple Lie alge-
bra g and a weight λ, and outputs an acyclic complex whose terms are certain weight
spaces of V and which resolves the space of highest weight vectors of weight λ in V .
If V carries an action of another algebra H which commutes with g, then the resulting
complex is also compatible with the H-action.

We apply Zelevinsky’s result to various infinite-dimensional representations arising
from Howe dual pairs. In many of the cases the weight λ we use is the trivial weight.
However, we will work in the context of a general weight since the formulas are quite
similar, and hence we will get quite a vast generalization of the original formula.

The paper is organized as follows. In Section 2 we recall Zelevinsky’s formula. In
Section 3 we deal with generic matrices. To get Gessel’s result on the coordinate ring
of determinantal varieties we apply Zelevinsky’s formula to the space

V = Sym(E ⊗ U∗) ⊗ Sym(U ⊗ F ∗)

where dim(U) = k and g = gl(U). The commuting action is the action of H =
gl(E) × gl(F ).

In Sections 4 and 5 we deal with skew-symmetric and symmetric matrices, respec-
tively. We use the space

V = Sym(E ⊗ U)

where U is equipped with either a symplectic or orthogonal form. The original action
is that of g = sp(U) or g = so(U) and the commuting action is that of H = gl(E).
As far as we know, the determinantal formulas obtained in these sections have not
appeared in the literature before.

Finally in Section 6 we apply Zelevinsky’s result to the space

V = Sym(E ⊗ U) ⊗ ∆

where again U is equipped with an orthogonal form, and ∆ is the spinor representa-
tion. This allows us to deduce determinantal formulas for the sums∑

λ
ℓ(λ)⩽k

sλ

which recover some formulas from [1].
For all of the above results, one can use exterior algebras in place of symmetric

algebras. However, this does not give anything essentially new because of the existence
of the involution ω on symmetric functions that sends sλ to its transpose sλ† . We
briefly remark on this in Remark 3.8 in the first case and do not discuss it any
further.
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Notation. We use Symd to denote the dth symmetric power functor and Sym =⊕
d⩾0 Symd to denote the symmetric algebra construction. Similarly,

∧d is the dth
exterior power and

∧
=

⊕
d⩾0

∧d is the exterior algebra construction.
For symmetric function notation, we follow [8, Chapter 7] except that the transpose

of a partition is denoted with † rather than a prime.

Related work. Determinantal expressions for variations of these sums obtained by
restricting representations of orthogonal and symplectic Lie algebras to the general
linear Lie algebra can be obtained from [3]. Jacobi–Trudi formulas can also be used to
give formulas for minimal affinizations in the study of representations of loop algebras,
see [5] and the references there.

Acknowledgements. We thank Christian Krattenthaler and Claudiu Raicu for
helpful discussions.

2. The setup
Let g be a reductive complex Lie algebra. We will assume that we have fixed the data
of a Cartan subalgebra and set of positive roots. Let W be its Weyl group and let ρ
be 1

2 times the sum of all of the positive roots. Let V be a locally finite g-representation
(i.e., V is isomorphic to a direct sum of finite-dimensional g-representations). Given
a dominant weight λ, let V [λ] be the space of highest weight vectors of weight λ in V
and given any weight χ, let Vχ be the χ-weight space.

The following theorem of Zelevinsky [10] is crucial for this article:

Theorem 2.1 (Zelevinsky). There is a (finite) exact sequence

· · · → F1 → F0 → V [λ] → 0

where
Fi =

⊕
w∈W

ℓ(w)=i

Vλ+ρ−w−1(ρ).

We will denote this complex either by Fλ
• or F• depending on the context.

We note that Zelevinsky uses w(ρ) rather than w−1(ρ), but this does not affect the
statement since ℓ(w) = ℓ(w−1). We use this modification to simplify some notation.

We will be interested in the case when an algebra H acts on V so that it commutes
with g. Then V [λ] is an H-module and the complex F• is H-equivariant. In all of our
cases of interest, H is a reductive Lie algebra. The equivariant Euler characteristic
of F• equals the character of V [λ], and we will interpret it as a determinant.

3. Generic matrices
Let E, F, U be finite-dimensional vector spaces with

dim(E) = e, dim(F ) = f, dim U = k,

and set
V = Sym(E ⊗ U∗) ⊗ Sym(U ⊗ F ∗).

We set g = gl(U). There is a commuting action of H = gl(E) × gl(F ) on V .

Remark 3.1. In fact, we get a commuting action of a larger Lie algebra H ′ = gl(E⊕F )
so that V is a direct sum of irreducible g×H ′ representations (for the explicit formulas
for the action, see [2, §5.6.6, Exercise 1]).
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The gl(U)-equivariant inclusion E ⊗ F ∗ ⊂ (E ⊗ U∗) ⊗ (U ⊗ F ∗) extends to an
algebra homomorphism

Sym(E ⊗ F ∗) → V.

It is well-known that the image of this map is V gl(U), the space of gl(U)-invariants [2,
Theorem 5.2.1], and if we interpret E ⊗ F ∗ as the linear functions on Hom(E, F ),
then the kernel is the ideal generated by the minors of size k +1 [2, Theorem 12.2.12].

We identify weights with k-tuples of complex numbers and under this identification
we can take

ρ = (k, k − 1, . . . , 1).

We remark that shifting this choice of ρ by any multiple of (1, 1, . . . , 1) will not affect
any of the formulas below, so we merely make this particular choice for convenience.

If dim U = 1, then for each integer n, the n-weight space of V is

Ln =
⊕
d⩾0

Symd(E) ⊗ Symd+n(F ∗).

Proposition 3.2. For general k, we have

Vχ = Lχ1 ⊗ · · · ⊗ Lχk
.

Proof. Pick a weight space decomposition U = U1 ⊕ · · · ⊕ Uk. Then we have

V ∼=
k⊗

i=1
(Sym(E ⊗ U∗

i ) ⊗ Sym(Ui ⊗ F ∗)).

Then the χ-weight space of V is the tensor product over i of the χi-weight space of
Sym(E ⊗ U∗

i ) ⊗ Sym(Ui ⊗ F ∗). □

Remark 3.3. Ln is an irreducible representation of gl(E ⊕ F ), though the restriction
of this action to gl(E) × gl(F ) must be modified so that it is the usual action twisted
by the character (A, B) 7→ 1

2 Tr(A) − 1
2 Tr(B).

Now we consider the general setup. If X is a representation of g, we use [X] as
notation for its character.

Proposition 3.4. Given a decreasing sequence λ ∈ Zk, the character of V [λ] is

det([Lλi−i+j ])i,j=1,...,k.

Proof. We have W = Sk and for w ∈ W , w(ρ)i = k + 1 − w−1(i) and (−1)ℓ(w) =
sgn(w), so the equivariant Euler characteristic of Fλ

• is given by∑
w∈Sk

sgn(w)[Lλ1−1+w(1)] · · · [Lλk−k+w(k)].

which is the Laplace expansion of the claimed determinantal expression. □

When λ = 0, this can be used to recover the formula of Gessel in [1, Theorem 16],
which was stated in the language of symmetric functions. To be precise, V [0] = V gl(U)

is the coordinate ring of the variety of rank ⩽ k matrices of size e × f . Its character is
a polynomial in x1, . . . , xe, y1, . . . , yf which is separately symmetric in the x variables
and the y variables and has the expression∑

λ
ℓ(λ)⩽k

sλ(x1, . . . , xe)sλ(y1, . . . , yf )
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where sλ denotes the Schur polynomial indexed by λ and the sum is over all partitions
with at most k rows. Letting hn = s(n), the result above says that this sum is given
by the determinant

det

∑
d⩾0

hd(x1, . . . , xe)hd+j−i(y1, . . . , yf )


i,j=1,...,k

.

The specialization of a Schur function sλ to n variables is zero if and only if n < ℓ(λ).
Hence if we take e, f ⩾ k, then all of the Schur polynomials above can be replaced
by Schur functions in countably many variables, and we get precisely the claimed
formula from [1, Theorem 16]. This discussion of the difference between symmetric
polynomials in finitely many variables and symmetric functions in infinitely many
variables is equally applicable in all later cases, so we will not make any further
comment on it.

Remark 3.5. Actually, Zelevinsky [10] gives a more general result that utilizes two
weights λ, µ. Using this more general formula, the skew Jacobi–Trudi determinant

det([Lλi−µj−i+j ])i,j=1,...,k

computes the character of
∑

ν V [ν]⊕cλ
µ,ν . We do not know if this representation carries

any significance. This applies to all cases to follow, but we will not make any further
mention of it.

Example 3.6. Consider the case dim U = 2. Then Zelevinsky’s theorem gives a com-
plex

0 → L1 ⊗ L−1 → L0 ⊗ L0

which “resolves” the coordinate ring of rank ⩽ 2 matrices.

Remark 3.7. We can express a highest weight λ as a pair (µ, µ′) where ℓ(µ) +
ℓ(µ′) ⩽ dim U and this means (µ, 0, . . . , 0, −µ′op), where if µ′ = (µ′

1, µ′
2, . . . , µ′

r), then
−µ′op = (−µ′

r, . . . , −µ′
2, −µ′

1). The module V [λ] is an irreducible H ′-representation;
this is Bµ,µ′ = Mµ,µ′ in [7, §5.5], where it is shown to have the following geometric
construction (see [9] for general information on this type of construction). If ℓ(µ) ⩽ a
and ℓ(µ′) ⩽ b, define X = Gr(e − a, E) × Gr(f − b, F ∗) and consider the trivial bun-
dle E = (E∗⊗F )×X. Let R1 ⊂ E×X denote the pullback of the tautological subbun-
dle on Gr(e−a, E) and similarly define R2. Also define Q1 = E/R1 and Q2 = F ∗/R2.
Then ξ = R1 ⊗ R2 gives linear equations for a subbundle Spec(Sym(η)) where

η = (E ⊗ F ∗)/ξ.

Let π : E → E∗ ⊗ F denote the projection. Then we have
V [λ] = π∗(Sµ(Q1) ⊗ Sµ′(Q2) ⊗ Sym(η))

and in fact the higher direct images vanish. We do not know of a simple formula for
its character which is not an alternating sum.

Remark 3.8. We could instead use the representation
V =

∧
(E ⊗ U∗) ⊗

∧
(U ⊗ F ∗).

However, this does not give anything substantially new: on the level of characters,
it just amounts to applying the ω involution to the previous case for both gl(E)
and gl(F ).

The same remark applies to the representation
V =

∧
(E ⊗ U∗) ⊗ Sym(U ⊗ F ∗).
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However, in this case, the commutator of gl(U) is the Lie superalgebra gl(E|F ), so we
get some interesting determinantal expressions for the characters for a certain class
of its representations.

4. Skew-symmetric matrices
Let E be a finite-dimensional vector space with dim(E) = e and let U be a 2k-
dimensional symplectic space and set

V = Sym(E ⊗ U).
We set g = sp(U). There is a commuting action of H = gl(E) on V .

Remark 4.1. There is a natural orthogonal form on E ⊕E∗ and there is a commuting
action of the larger Lie algebra H ′ = so(E⊕E∗) so that V is a direct sum of irreducible
g × H ′ representations (for the explicit formulas for the action, see [2, §5.6.5]).

The symplectic form on U gives a sp(U)-equivariant inclusion
2∧

E ⊂
2∧

E ⊗
2∧

U ⊂ Sym2(E ⊗ U)
(the second inclusion comes from taking 2 × 2 determinants: if we pick ordered bases
{v1, . . . , ve} for E and {w1, . . . , w2k} for V , then E ⊗U is the space of linear functions
on e×2k matrices, and (va ∧vb)⊗ (wc ∧wd) maps to the determinant of the 2×2 sub-
matrix with rows a, b and columns c, d) which extends to an algebra homomorphism

Sym(
2∧

E) → V.

It is well-known that the image of this map is V sp(U), the space of sp(U)-invariants [2,
Theorem 5.2.2], and if we interpret

∧2
E as the linear functions on the space of skew-

symmetric matrices
∧2(E∗), then the kernel is the ideal generated by the Pfaffians of

size 2(k + 1) [2, Theorem 12.2.15].
We identify weights of sp(U) with k-tuples of complex numbers and under this

identification, we have
ρ = (k, k − 1, . . . , 1).

If dim U = 2, then for each integer n, the n-weight space of V is
Ln =

⊕
d⩾0

Symd(E) ⊗ Symd+n(E).

We remark that by swapping the tensor factors, we get a gl(E)-equivariant isomor-
phism Ln

∼= L−n.

Proposition 4.2. For general k, we have
Vχ = Lχ1 ⊗ · · · ⊗ Lχk

.

Proof. Pick a weight space decomposition U = (U1 ⊕ U∗
1 ) ⊕ · · · ⊕ (Uk ⊕ U∗

k ). Then we
have

V ∼=
k⊗

i=1
(Sym(E ⊗ (Ui ⊕ U∗

i ))).

Then the χ-weight space of V is the tensor product over i of the χi-weight space of
Sym(E ⊗ (Ui ⊕ U∗

i )). □

Remark 4.3. Ln is an irreducible representation of so(E ⊕E∗), though the restriction
of this action to gl(E) must be modified so that it is the usual action twisted by the
character A 7→ − Tr(A).

Now we consider the general setup. If X is a representation of g, we use [X] as
notation for its character.
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Proposition 4.4. Given a partition λ with ℓ(λ) ⩽ k, the character of V [λ] is
det([Lλi−i+j ] − [Lλi−i+2k+2−j ])i,j=1,...,k.

Proof. Every element of W can be factored as αw where α ∈ {±1}k and w ∈ Sk;
since negation in the last entry is a Coxeter generator and all negations in a single
entry are conjugate, we get ℓ(αw) = |α| + ℓ(w) (mod 2) where |α| is the number of
negative signs of α. So the Euler characteristic of the complex Fλ

• is∑
α∈{±1}k

(−1)|α|
∑

w∈Sk

sgn(w)[Lλ1+k−α1(k+1−w(1))] · · · [Lλk+1−αk(k+1−w(k))]

=
∑

w∈Sk

sgn(w)([Lλ1−1+w(1)] − [Lλ1+2k+1−w(1)]) · · · ([Lλk−k+w(k)] − [Lλk+k+2−w(k)])

= det([Lλi−i+j ] − [Lλi−i+2k+2−j ])i,j=1,...,k. □

This gives an analogue of Gessel’s determinantal formula for the coordinate ring
of skew-symmetric matrices of rank ⩽ 2k by taking λ = 0 and applying the substitu-
tion i 7→ k + 1 − i and j 7→ k + 1 − j, which we record as the following theorem, where
below, 2λ = (2λ1, 2λ2, . . . ).

Theorem 4.5. For each k, we have∑
λ

λ1⩽k

s(2λ)† = det([Lj−i] − [Li+j ])i,j=1,...,k.

Remark 4.6. The module V [λ] is an irreducible H ′-representation; this is Bλ = Mλ

in [7, §3.5], where it is shown to have the following geometric construction. Define
X = Gr(e − k, E∗) and consider the trivial bundle E =

∧2
E∗ × X. Let R ⊂ E∗ × X

denote the tautological subbundle on Gr(e − k, E∗) and define Q = E∗/R. Then
ξ =

∧2 R gives linear equations for a subbundle Spec(Sym(η)) where

η =
2∧

E∗/ξ.

Let π : E →
∧2

E∗ denote the projection. Then we have
V [λ] = π∗(SλQ ⊗ Sym(η))

and in fact the higher direct images vanish. We do not know of a simple formula for
its character which is not an alternating sum.

Example 4.7. For dim U = 2, Zelevinsky’s theorem gives a complex
0 → L−2 → L0

which “resolves” the coordinate ring of rank ⩽ 2 skew-symmetric matrices.

Example 4.8. If dim U = 4, we get

0 → L4 ⊗ L2 → L4 ⊗ L0
L3 ⊗ L3

→ L3 ⊗ L−1
L1 ⊗ L3

→ L0 ⊗ L2
L1 ⊗ L−1

→ L0 ⊗ L0

which “resolves” the coordinate ring of the rank ⩽ 4 skew-symmetric matrices.

5. Symmetric matrices
Let E be a finite-dimensional vector space with dim(E) = e and let U be an m-
dimensional orthogonal space and set

V = Sym(E ⊗ U).
We set g = so(U). There is a commuting action of H = gl(E) on V .

Algebraic Combinatorics, Vol. 6 #5 (2023) 1169
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Remark 5.1. There is a natural symplectic form on E ⊕E∗ and there is a commuting
action of the larger Lie algebra H ′ = sp(E⊕E∗) so that V is a direct sum of irreducible
O(U) × H ′ representations (for the explicit formulas for the action, see [2, §5.6.3]).

The orthogonal form on U gives a O(U)-equivariant inclusion

Sym2 E ⊂ Sym2 E ⊗ Sym2 U ⊂ Sym2(E ⊗ U)

which extends to an algebra homomorphism

Sym(Sym2 E) → V.

It is well-known that the image of this map is V O(U), the space of O(U)-invariants [2,
Theorem 5.2.2], and if we interpret Sym2 E as the linear functions on the space of
symmetric matrices Sym2(E∗), then the kernel is the ideal generated by the minors
of size m + 1 [2, Theorem 12.2.14].

There is a subtle difference when compared to the previous cases: the invariants
for the group O(U) and the subgroup SO(U) (or equivalently, the Lie algebra so(U))
are not the same. In fact, the invariant space V so(U) is a rank 2 module (not free in
general) over the determinantal ring V O(U). All of our results will be about the action
of so(U).

We will treat the cases of m odd and m even separately.

5.1. Even case. First suppose that m = 2k is even. We identify weights of so(U)
with k-tuples of complex numbers. Then

ρ = (k − 1, k − 2, . . . , 0).

First consider the case dim U = 2. For each integer n, the n-weight space of V is

Ln =
⊕
d⩾0

Symd(E) ⊗ Symd+n(E).

Proposition 5.2. For general k, we have

Vχ = Lχ1 ⊗ · · · ⊗ Lχk
.

Proof. Pick a weight space decomposition U = (U1 ⊕ U∗
1 ) ⊕ · · · ⊕ (Uk ⊕ U∗

k ). Then we
have

V ∼=
k⊗

i=1
(Sym(E ⊗ (Ui ⊕ U∗

i ))).

Then the χ-weight space of V is the tensor product over i of the χi-weight space of
Sym(E ⊗ (Ui ⊕ U∗

i )). □

Remark 5.3. For n ̸= 0, Ln is an irreducible representation of sp(E ⊕ E∗), though
the restriction of this action to gl(E) must be modified so that it is the usual action
twisted by the character A 7→ − Tr(A). For n = 0, L0 is a direct sum of two irreducible
representations which can be described as⊕

d⩾0
Sym2(Symd E),

⊕
d⩾0

2∧
(Symd E).

Proposition 5.4. Given a partition λ with ℓ(λ) ⩽ k, the character of V [λ] is
1
2 det([Lλi−i+j ] + [Lλi−i+2k−j ])i,j=1,...,k.

Proof. Let {±1}k
0 be the subgroup of {±1}k consisting of elements with an even

number of entries equal to −1. Every element of the Weyl group can be factored
as αw where α ∈ (Z/2)k

0 and w ∈ Sk; since negating the last 2 entries and swapping

Algebraic Combinatorics, Vol. 6 #5 (2023) 1170
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them is a Coxeter generator, we get ℓ(αw) = ℓ(w) (mod 2). So the Euler characteristic
of the complex Fλ

• is∑
α∈{±1}k

0

∑
w∈Sk

sgn(w)[Lλ1+k−1−α1(k−w(1))] · · · [Lλk−αk(k−w(k))]

Given w ∈ Sk, let i = w−1(k). Then for either choice of αi ∈ {±1}, we get the same
term [Lλi+k−i]. In particular, we may sum over all choices of α ∈ {±1}k if we divide
by 2:

1
2

∑
α∈{±1}k

∑
w∈Sk

sgn(w)[Lλ1+k−1−α1(k−w(1))] · · · [Lλk−αk(k−w(k))]

=1
2

∑
σ∈Sk

sgn(w)([Lλ1−1+w(1)] + [Lλ1+2k−1−w(1)]) · · · ([Lλk−k+w(k)] + [Lλk+k−w(k)])

=1
2 det([Lλi−i+j ] + [Lλi−i+2k−j ])i,j=1,...,k. □

Remark 5.5. The module V [λ] is Bλ = Mλ in [7, §4.6], where it is shown to have the
following geometric construction. Define X = Gr(e − k, E∗) and consider the trivial
bundle E = Sym2 E∗ × X. Let R ⊂ E∗ × X denote the tautological subbundle on
Gr(e − k, E∗) and define Q = E∗/R. Then ξ = Sym2 R gives linear equations for a
subbundle Spec(Sym(η)) where

η = Sym2 E∗/ξ.

Let π : E → Sym2 E∗ denote the projection. Then we have

V [λ] = π∗(SλQ ⊗ Sym(η))

and in fact the higher direct images vanish. Note that Spec(V [0]) is a double cover
of a determinantal variety and that each V [λ] is in fact supported on it. We do not
know of a simple formula for its character which is not an alternating sum.

The so(U) representation Sν(U) has nonzero invariants if and only if, writing ν =
(ν1, . . . , ν2k), we have that all νi are even, or all νi are odd. Furthermore, when this
holds, the space of so(U)-invariants is always 1-dimensional (this follows from [4,
§11.2.1, Theorem]). Hence, when λ = 0, we get the following special case of the
previous result:∑

µ
ℓ(µ)⩽2k

(s(1+2µ1,...,1+2µ2k) + s2µ) = 1
2 det([Lj−i] + [L2k−i−j ])i,j=1,...,k.

5.2. Odd case. Suppose m = 2k + 1 is odd. Then

ρ = (k − 1
2 , k − 3

2 , . . . ,
1
2).

Proposition 5.6. For general k, we have

Vχ = Sym(E) ⊗ Lχ1 ⊗ · · · ⊗ Lχk
.

Proof. Pick a weight space decomposition U = C⊕ (U1 ⊕U∗
1 )⊕· · ·⊕ (Uk ⊕U∗

k ). Then
we have

V ∼= Sym(E) ⊗
k⊗

i=1
(Sym(E ⊗ (Ui ⊕ U∗

i ))).

Then the χ-weight space of V is the tensor product over i of the χi-weight space of
Sym(E ⊗ (Ui ⊕ U∗

i )). □
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Proposition 5.7. Given a partition λ with ℓ(λ) ⩽ k, the character of V [λ] is
[Sym(E)] det([Lλi−i+j ] − [Lλi+2k+1−i−j ])i,j=1,...,k.

Proof. Every element of the Weyl group can be factored as αw where α ∈ {±1}k

and w ∈ Sk; since negation in the last entry is a Coxeter generator and all negations
in a single entry are conjugate, we get ℓ(αw) = |α| + ℓ(w) (mod 2) where |α| is the
number of entries of α equal to −1. So the Euler characteristic of this complex becomes∑

α∈{±1}k

(−1)|α|
∑

w∈Sk

sgn(w)[Sym(E)][Lλ1+k− 1
2 −α1(k+ 1

2 −w(1))] · · · [Lλk+ 1
2 −αk(k+ 1

2 −w(k))]

=[Sym(E)]
∑

w∈Sk

sgn(w)([Lλ1−1+w(1)] − [Lλ1+2k−w(1)]) · · · ([Lλk−k+w(k)] − [Lλk+k+1−w(k)])

=[Sym(E)] det([Lλi−i+j ] − [Lλi+2k+1−i−j ])i,j=1,...,k. □

As in the previous case with m even, when λ = 0, we get the following special case
of the previous result:∑

µ
ℓ(µ)⩽m

(s(1+2µ1,...,1+2µm) + s2µ) = [Sym(E)] det([Lj−i] − [L2k+1−i−j ])i,j=1,...,k.

Since m is odd, the element −1 is in the center of O(U) and hence acts on the
complex F• and each V [λ], so we can further refine it by taking isotypic components
of the corresponding Z/2-action. Let V [λ]+ denote the space of invariants under −1
and V [λ]− denote the space of skew-invariants. Define

M0 =
⊕
d⩾0

Sym2d E, M1 =
⊕
d⩾0

Sym2d+1 E,

where the indices 0, 1 are to be thought of as elements of Z/2.
Proposition 5.8. The character of V [λ]+ is given by∑

α∈{±1}k

(−1)|α|
∑

w∈Sk

sgn(w)[M|λ|+|α|][Lλ1+k− 1
2 −α1(k+ 1

2 −w(1))] · · · [Lλk+ 1
2 −αk(k+ 1

2 −w(k))],

and the character of V [λ]− is given by∑
α∈{±1}k

(−1)|α|
∑

w∈Sk

sgn(w)[M|λ|+|α|+1][Lλ1+k− 1
2 −α1(k+ 1

2 −w(1))] · · · [Lλk+ 1
2 −αk(k+ 1

2 −w(k))].

We unfortunately could not find a compact determinantal expression for the above
sums.

Proof. The element −1 acts on Symd(E) by (−1)d, so it acts on Ln by (−1)n and
hence

V +
χ =

{
M0 ⊗ Lχ1 ⊗ · · · ⊗ Lχk

if |χ| = χ1 + · · · + χk is even
M1 ⊗ Lχ1 ⊗ · · · ⊗ Lχk

otherwise
,

and the opposite holds for V −
χ . Also, |λ + ρ − αw(ρ)| ≡ |λ| + |α| (mod 2) for any

α ∈ {±1}k and w ∈ Sk, so the result follows. □

Example 5.9. For dim U = 3, Zelevinsky’s theorem gives a complex
0 → Sym E ⊗ L1 → Sym E ⊗ L0

which “resolves” the double cover of the coordinate ring of rank ⩽ 3 symmetric
matrices. Taking invariants under Z/2 gives the resolution for the coordinate ring
itself:

0 → M1 ⊗ L1 → M0 ⊗ L0.

Remark 5.10. For the pushforward construction, see [7, §4.7].
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6. “Non-commutative” matrices via spinors
Let E be a finite-dimensional vector space with dim(E) = e and let U be an m-
dimensional orthogonal space, let ∆ be the spinor representation (this is irreducible
if m is odd and is the direct sum of both half-spinor representations if m is even) and
set

V = Sym(E ⊗ U) ⊗ ∆.

We set g = so(U). There is a commuting action of H = gl(E).

Remark 6.1. There is a natural symplectic form on E ⊕ E∗ and a symmetric form
on C, and there is a commuting action of the orthosymplectic Lie superalgebra H ′ =
osp(C|E ⊕ E∗) so that V is a direct sum of irreducible Pin(U) × H ′ representations
where Pin(U) denotes the natural double cover of the orthogonal group O(U).

The ∆-covariants (the sum of the subrepresentations isomorphic to ∆) for
the action of Pin(U) is the quotient of Sym(E) ⊗

∧
(Sym2 E) which is like a non-

commutative version of the coordinate ring of a determinantal variety. This particular
vector space appears because it is the underlying space of the universal enveloping
algebra of the free 2-step nilpotent Lie superalgebra E ⊕ Sym2 E generated by E,
see [6, §4.1]. More specifically,

Sym(E) ⊗
∧

(Sym2 E) ∼=
⊕
λ

Sλ(E)

and we take the quotient by all Sλ(E) with ℓ(λ) > m.
Again define

Ln =
⊕
d⩾0

Symd(E) ⊗ Symd+n(E).

We will treat the cases of m odd and m even separately.
Let Ik be the set of 0-1 vectors of length k. Recall that the set of weights for ∆

are v − ( 1
2 , . . . , 1

2 ) for v ∈ Ik if k = ⌊m/2⌋.

6.1. Odd case. Suppose m = 2k + 1 is odd. Then

ρ = (k − 1
2 , k − 3

2 , . . . ,
1
2).

Proposition 6.2.
Vχ = Sym(E) ⊗

⊕
v∈Ik

Lχ1+v1− 1
2

⊗ · · · ⊗ Lχk+vk− 1
2
.

Proof. This is similar to the proof of Proposition 5.6 except we need to also take into
account the weight space decomposition of ∆. □

Proposition 6.3. If λ − ( 1
2 , . . . , 1

2 ) is a partition, then the character of V [λ] is
[Sym(E)] det([Lλk+1−i− 1

2 −i+j ] − [Lλk+1−i− 1
2 +i+j ])i,j=1,...,k.

Proof. Every element of the Weyl group can be factored as αw where α ∈ {±1}k

and w ∈ Sk; since negation in the last entry is a Coxeter generator and all negations
in a single entry are conjugate, we get ℓ(αw) = |α| + ℓ(w) (mod 2) where |α| is the
number of entries of α equal to −1. So the Euler characteristic of this complex becomes∑

α∈{±1}k

(−1)|α|
∑

w∈Sk

sgn(w)[Sym(E)]
∑
x∈Ik

[L
λ1+k−1−α1(k+ 1

2 −w(1))+x1
] · · · [L

λk−αk(k+ 1
2 −w(k))+xk

]

=[Sym(E)]
∑

w∈Sk

sgn(w)
k∏

i=1

([L
λi−i− 1

2 +w(i)]−[L
λi+2k−i+ 1

2 −w(i)]+[L
λi−i+ 1

2 +w(i)]−[L
λi+2k−i+ 3

2 −w(i)])

=[Sym(E)] det([L
λi−i− 1

2 +j
] − [L

λi+2k−i+ 1
2 −j

] + [L
λi−i+ 1

2 +j
] − [L

λi+2k−i+ 3
2 −j

])i,j=1,...,k.
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We can further simplify as follows. First note that if j = k, then the middle two
terms cancel. In general, the inner two terms for any j < k match the outer two
terms for j + 1, so subtract column j + 1 from column j (starting with j = k − 1 and
decreasing the index). Then we get

[Sym(E)] det([Lλi−i− 1
2 +j ] − [Lλi+2k−i+ 3

2 −j ])i,j=1,...,k.

Now do the change of indices i 7→ k + 1 − i and j 7→ k + 1 − j to get
[Sym(E)] det([Lλk+1−i− 1

2 −i+j ] − [Lλk+1−i− 1
2 +i+j ])i,j=1,...,k. □

Remark 6.4. For the pushforward construction, see [6, §6.3].

When λ = ( 1
2 , . . . , 1

2 ), then V [λ] =
⊕

ℓ(λ)⩽m Sλ(E) (see [6, Proposition 4.1]), and
its character is given by the determinant

[Sym(E)] det([Lj−i] − [Li+j ])i,j=1,...,k.

This is the formula given in [1, Theorem 14, Equation 22], noting that [Ln] = [L−n].

6.2. Even case. Now suppose that m = 2k is even. Then
ρ = (k − 1, k − 2, . . . , 0).

Proposition 6.5.
Vχ =

⊕
v∈Ik

Lχ1+v1− 1
2

⊗ · · · ⊗ Lχk+vk− 1
2
.

Proof. This is similar to the proof of Proposition 5.2 except we need to also take into
account the weight space decomposition of ∆. □

Proposition 6.6. If µ = λ − ( 1
2 , . . . , 1

2 ) is a weakly decreasing integer sequence and
satisfies µk−1 ⩾ |µk|, then the character of V [λ] is

det([Lλk+1−i−i+j− 1
2
] + [Lλk+1−i+i+j− 3

2
])i,j=1,...,k.

Proof. Let {±1}k
0 be the subgroup of {±1}k consisting of elements that have an even

number of entries equal to −1. Every element of the Weyl group can be factored as αw
where α ∈ {±1}k

0 and w ∈ Sk; since negating the last 2 entries and swapping them
is a Coxeter generator, we get ℓ(αw) = ℓ(w) (mod 2). So the Euler characteristic of
this complex becomes∑

α∈{±1}k
0

∑
w∈Sk

sgn(w)
∑
x∈Ik

[Lλ1+k−1−α1(k−w(1))+x1− 1
2

] · · · [Lλk−αk(k−w(k))+xk− 1
2

]

=
1
2

∑
α∈{±1}k

∑
w∈Sk

sgn(w)
∑
x∈Ik

[Lλ1+k−1−α1(k−w(1))+x1− 1
2

] · · · [Lλk−αk(k−w(k))+xk− 1
2

]

=
1
2

∑
w∈Sk

sgn(w)
k∏

i=1

([Lλi−i+w(i)− 1
2

] + [Lλi+2k−i−w(i)− 1
2

] + [Lλi−i+w(i)+ 1
2

] + [Lλi+2k−i−w(i)+ 1
2

])

=
1
2

det([Lλi−i+j− 1
2

] + [Lλi−i−j+2k− 1
2

] + [Lλi−i+j+ 1
2

] + [Lλi−i−j+2k+ 1
2

])i,j=1,...,k

where the first equality follows from the fact that if w(i) = k, then either choice of
αi ∈ {±1} gives the same result. We can simplify this determinant further. If j = k,
then the first two terms agree and the last two terms agree, so we can pull out a factor
of 2. For j < k, the inner two terms match the outer two terms for j + 1, so we can
do column operations to get the following result:

det([Lλi−i+j− 1
2
] + [Lλi−i−j+2k+ 1

2
])i,j=1,...,k.

Finally, do the change of indices i 7→ k + 1 − i and j 7→ k + 1 − j to get
det([Lλk+1−i−i+j− 1

2
] + [Lλk+1−i+i+j− 3

2
])i,j=1,...,k. □
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Remark 6.7. For the pushforward construction, see [6, §6.2].

If we take the ∆-covariants of V (as a representation of Pin(U)), we get⊕
ℓ(λ)⩽m Sλ(E) (see [6, Proposition 4.1]). Since we are working with the Lie

algebra so(U), we can instead take the sum of the coinvariants for the two
weights λ± = ( 1

2 , . . . , 1
2 , ± 1

2 ) to get twice the desired representation (since
dim Endso(U)(∆) = 2). In particular, we get the following formula for the char-
acter of

⊕
ℓ(λ)⩽2k Sλ(E):

det([Lj−i] + [Li+j−1])i,j=1,...,k.

Again, this agrees with [1, Theorem 14].
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