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Supercharacter theories of type A unipotent
radicals and unipotent polytopes

Nathaniel Thiem

Abstract Even with the introduction of supercharacter theories, the representation theory of
many unipotent groups remains mysterious. This paper constructs a family of supercharacter
theories for normal pattern groups in a way that exhibit many of the combinatorial properties of
the set partition combinatorics of the full uni-triangular groups, including combinatorial index-
ing sets, dimensions, and computable character formulas. Associated with these supercharacter
theories is also a family of polytopes whose integer lattice points give the theories geometric
underpinnings.

1. Introduction
Supercharacter theory has infused the representation theory of unipotent groups with
the combinatorics of set partitions. Specifically, set partitions index the superchar-
acters of the maximal unipotent upper-triangular subgroup UT of the finite general
linear group GL [3, 17], and similar theories exist for the maximal unipotent sub-
groups of other finite reductive groups [4, 5]. However, while there are supercharacter
theories for other unipotent groups, they do not generally exhibit this computable
and combinatorial nature. This paper seeks to define a natural family of superchar-
acter theories for the normal pattern subgroups of UT. As an added bonus, we not
only obtain a combinatorial description for these theories, but also gain geometric
underpinnings coming from a family of integral polytopes.

Diaconis–Isaacs defined a supercharacter theory of a finite group G as a direct ana-
logue of its character theory, where they replacing conjugacy classes with superclasses
and irreducible characters with supercharacters [12]. Their approach is based on An-
dré’s adaption of the Kirillov orbit method to study UT, and the underlying axioms
are calibrated to preserve as many properties of irreducible characters and conjugacy
classes as possible. For example, the supercharacters are an orthogonal (but not gen-
erally orthonormal) basis for the space of functions that are constant on superclasses.
This definition has given us new approaches to groups whose representation theories
are known to be difficult (eg. unipotent groups). Not only can these new theories be
combinatorially striking [1], but they can also be used in place of the usual character
theory [6] in applications, they give a starting point in studying difficult theories [13],
or give character theoretic foundations for number theoretic identities (eg. [8, 14]).
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The supercharacter theories of this paper are fundamentally based on André’s
original construction for UT [3] and Diaconis–Isaacs’ later generalization to algebra
groups [12]. These constructions use two-sided orbits in the dual space ut˚ of the cor-
responding Lie algebra ut to construct the supercharacters. In the algebra group case
the group UT acts on ut˚ by left and right multiplication (technically pre-composition
by left and right multiplication on ut). In this paper we modify this construction by
instead acting by parabolic subgroups of GL. The resulting theory is coarser but far
more combinatorial in nature. In particular, we obtain statistics such as dimension,
nestings and crossings that generalize the corresponding set partition statistics [10],
and in Theorem 5.7 we give a character formulas with a “factorization” analogous to
the well-known UT-cases.

For each supercharacter theory there is an associated polytope whose integer lattice
points index the supercharacters of the theory. Thus, the supercharacter theories could
in principle give a categorified version of the Ehrhart polynomials of these polytopes.
These polytopes include all transportation polytopes [11], and may be viewed as a
family of subfaces of transportation polytopes. This point of view not only gives
a geometric approach to these supercharacter theories, but it also re-interprets set
partitions as vertices of a polytope. Since I am unaware of other contexts where these
polytopes may have been studied, I will refer to them as unipotent polytopes. At
present we do not understand the significance of this geometry in the representation
theory of unipotent groups, and this seems to be a promising direction for future
work.

Section 2 reviews some of the background material on unipotent groups and su-
percharacter theories. Section 3 defines the particular unipotent groups we will focus
on. Pattern groups arise naturally in context of groups of Lie type, since they are
unipotent groups invariant under conjugation by a maximal split torus. The unipo-
tent groups we consider are effectively a block-analogue to pattern groups where we
define a notion of invariance under the action of a fixed Levi subgroup. Section 4
shows how to use this Levi subgroup to construct supercharacter theories for the
group, and shows how the supercharacters (and superclasses) are indexed by the
Zě0-lattice points of a polytope. Section 5 computes the supercharacter formulas for
these theories, and discusses some consequences of these results.

In addition to teasing out the geometric implications of the underlying polytopes,
this paper also gives a framework for studying random walks on the integer lattice
points of unipotent polytopes, and representation theoretic Hopf structures on them.
However, both these directions are beyond the scope of this paper.

2. Preliminaries
This paper is primarily concerned with unipotent subgroups of the finite general linear
groups. It is standard to index the rows and columns of the corresponding matrices by
the set t1, 2, . . . , Nu in the usual total order, but recent work [2] has suggested that
it is better to instead allow an arbitrary set of size N to index the rows and columns
and fix a total order N on that set. However, the paper may be easily read with N
as the total order 1 ă 2 ă ¨ ¨ ¨ ă N .

This section reviews the relevant unipotent groups, a combinatorial interpretation
of normality, and some of the standard supercharacter theories for these groups. The
last section gives a quick refresher of q-binomial coefficients.

2.1. Subgroups of Lie type. Let N be a fixed total order of a finite set with N
elements and fix a finite field Fq with q elements. Let GLN denote the finite general
linear group on matrices with rows and columns indexed by our finite set in the order
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dictated by N . If charpFqq “ p, then a Sylow p-subgroup of GLN is the subgroup of
unipotent upper-triangular matrices

UTN “ tg P GLN | pg ´ IdN qij ‰ 0 implies i ăN ju.

The normalizer in GLN of UTN is the Borel subgroup

BN “ tg P GLN | gij ‰ 0 implies i ĺN ju “ NGLN pUTN q.

Let
utN “ UTN ´ IdN

denote the corresponding nilpotent Fq-algebra. If n Ď utN is any subalgebra, then we
obtain a subgroup IdN ` n Ď UTN called and algebra subgroup. If P is a subposet of
N on the same underlying set, then we call the algebra subgroup

UTP “ IdN ` utP Ď UTN , where utP “ tx P utN | xij ‰ 0 implies i ăP ju,

a pattern subgroup of UTN . Note that transitivity in the poset P exactly implies that
this UTP is closed under multiplication.

2.2. Normal posets. In general, a subposet P of a poset Q does not give a normal
subgroup UTP of UTQ. However, there is a straight-forward condition on the poset
that characterizes this group theoretic condition: a subposet P Ď Q is normal if
j ăP k implies i ăP k and j ăP l for all i ăQ j and k ăQ l. In this case, we write
P ŸQ.

Alternatively, if sIntpQq is the strict interval poset on the set tpi, jq | i ăQ ju given
by pj, kq ĺsIntpQq pi, lq if and only if i ĺQ j ăQ k ĺQ l, then P is normal in Q if and
only if sIntpPq is a dual order ideal of sIntpQq. In fact, in this case, sIntpPq exactly
gives the coordinates of the Ferrer’s shape F or the coordinates allowed to be nonzero
in UTP . For example,

1

23

4 5

Ď

1

2

3

4

5

in interval posets is

p1, 2q

p1, 3q

p1, 4q

p1, 5q

p2, 3q

p2, 4q

p2, 5q

p3, 4q

p3, 5q

p4, 5q

where the boxed entries are correspond to the subposet.
There are a number of combinatorial interpretations of normal posets of the total

order N . For N P Zě0, let DN denote the Ferrer’s shape pN ´ 1, N ´ 2, . . . , 1q, where
we right justify the rows. For example,

D5 “ .

Proposition 2.1. There are bijections
"

Dyck paths from
p0, 0q to p2N,´2Nq

*

ÐÑ

"

normal sub-
posets of N

*

ÐÑ

"

sub-Ferrers
shapes of DN

*

dP Ð[ P ÞÑ FP .

where p2i´1, 2j´1q is NorthEast of dP if and only if i ăP j if and only if pi, jq P FP .
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Example. For example, if 2N “ 10, then
‚ ‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚ ‚

‚

‚

‚

‚

‚

‚

‚

‚

1

2

3

4

5

ÐÑ

1

23

4 5

ÐÑ

where the shaded region accentuates the relevant points NorthEast of the Dyck path.

2.3. Supercharacter theories of unipotent groups. Supercharacter theories
for finite groups were first defined in [12], generalizing work by André studying repre-
sentations of UTN (a series of papers starting with [3]). There are numerous equivalent
formulations of a supercharacter theory, but the following seems most suitable for the
purposes of this paper.

A supercharacter theory pK,X q of a finite group G is a pair, where K is a partition
of G and X is a set of characters, such that
(SC0) The number of blocks of K is the same as the number of elements in X .
(SC1) Each block K P K is a union of conjugacy classes.
(SC2) The set

X Ď tθ : GÑ C | θpgq “ θphq, g, h P K,K P Ku.
(SC3) Each irreducible character of G is the constituent of exactly one element in X .
We refer to the blocks of K as superclasses and the elements of X as supercharacters.
While we have many ways of constructing supercharacter theories, general con-

structions are not well-understood. That is, given a finite groups, it is a hard problem
to determine its supercharacter theories. Some groups have remarkably few super-
character theories, such as the symplectic group Sp6pF2q with exactly 2 [9], and some
groups have surprisingly many, such as C3ˆC6 with 297 distinct supercharacter the-
ories. However, for this paper we follow the basic strategy laid out by [12] for algebra
groups.

Let IdN ` n Ď UTN be an algebra subgroup. Then IdN ` n acts on both n and its
vector space dual n˚ by left and right multiplication, where

pa ¨ y ¨ bqpxq “ ypa´1xb´1q, for a, b P IdN ` n, x P n, y P n˚.
Fix a nontrivial homomorphism ϑ : F`q Ñ GL1pCq – Cˆ. In this situation [12] define
a supercharacter theory given by

‚ AG-superclasses of IdN ` n: The set partition tIdN ` pIdN ` nqxpIdN ` nq |
x P nu of IdN ` n.

‚ AG-supercharacters of IdN ` n: The set of characters
!

χyAG “
|pIdN ` nqy|

|pIdN ` nqypIdN ` nq|

ÿ

zPpIdN`nqypIdN`nq

ϑ ˝ z | y P n˚
)

.

Remark 2.2. In the case where n “ utN , this supercharacter theory gives a nice
combinatorial theory developed algebraically by André [3] and more combinatorially
by Yan [17]. However, in general even this supercharacter theory may be wild for
algebra subgroups. In fact, we do not even understand it for pattern subgroups.

For the purposes of our generalization, there is a slight coarsening of the AG-
supercharacter theory for UTN called the BN -supercharacter theory that exists be-
cause utN and ut˚N are in fact permuted by left and right multiplication by BN .
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‚ BN -superclasses of UTN : The set partition tIdN ` BNxBN | x P utN u of
UTN .

‚ BN -supercharacters of UTN : The set of characters
!

χyN “
ÿ

zPBN yBN

ϑ ˝ z | y P ut˚N

)

.

In this case, the supercharacters and superclasses are indexed by set partitions of the
underlying set. In the following sections it is best to view set partitions as functions
λ : sIntpN q Ñ t0, 1u such that for λik “ 1 “ λjl, we have i “ j if and only if k “ l (or
placements of non-attacking rooks on a triangular chessboard). The primary purpose
of this paper is to generalize this set-up to nice families of pattern groups.

Remark 2.3. This version of the supercharacters is scaled slightly from the conven-
tional choice. That is, usually each character χyN is multiplied by

|UTN y|

|UTN yUTN |
.

This scaling removes some excessive multiplicities. However, in this paper the “best"
scaling factor for the supercharacters below is not clear, so the paper is written with
them removed entirely. This choice implies that in fact

χyN “
ÿ

ψPXy

ψp1qψ

for some set of irreducible characters Xy.

2.4. q-Binomials and weights. The symbol q will generally be the size of a finite
field, but for this section may treat q as an indeterminate. For n, k P Zě0, let
„

n

k



q

“
rns!

rks!rn´ ks! , where rns! “ rnsrn´ 1s ¨ ¨ ¨ r2sr1s and rns “
qn ´ 1
q ´ 1 .

In this subsection, we review some other interpretations and results associated with
these q-binomial coefficients.

Let Sn be the symmetric group on n letters. Then

rns! “
ÿ

wPSn

qinvpwq, where invpwq “ #t1 ď i ă j ď n | wpiq ą wpjqu.

In particular, it will be useful to note that since rns! is palindromic of degree
`

n
2
˘

,

(1)
ÿ

wPSn

1
qinvpwq “

1
qp
n
2q
rns!.

Let B Ď C, where C is a set with a total order C. Let

wtÒB : tA Ď Cu ÝÑ Zě0
A ÞÑ #tpa, bq P AˆB | a ăC bu,

and for A,B Ď C, let
wtÓBpAq “ wtÒApBq.

Then

(2)
„

n

k



q

“ qp
k
2q

ÿ

AĎt1,...,nu
|A|“k

q
wtÒ
t1,...,nupAq “ qp

k
2q

ÿ

AĎt1,...,nu
|A|“k

q
wtÓ
t1,...,nupAq.
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3. A parabolic generalization of pattern subgroups
In this section, we build a family of pattern subgroups of UTN ; they will all be normal,
and each will have a family of supercharacter theories, defined in Section 4. The choice
of a subgroup with an associated supercharacter theory will determine a polytope,
giving the theory a geometric foundation.

3.1. Parabolic posets and UTβ. We begin by defining a family of unipotent
groups that appear naturally in the theory of reductive groups, the unipotent radi-
cals of parabolic subgroups. It turns out that for GLN , these unipotent groups are
pattern groups and their associated posets are easy to characterize. In the Section 4,
each unipotent radical UTβ will determine a family of supercharacter theories.

A subposet Q is parabolic in N if there exists a set composition pQ1,Q2, . . . ,Q`q

of the underlying set such that a ăQ b if and only if a P Qi and b P Qj with i ă j.
These subposets are necessarily normal, where the corresponding Dyck path always
returns down to the diagonal before moving right again. We will write QŸpb N . For
example, if N is 1 ă 2 ă 3 ă 4, then the parabolic subposets (with associated set
compositions) are

1
2
3
4

,

1 2
3
4

,

1
2 3

4
,

1
2

3 4
,

1 2 3
4 ,

1
2 3 4 , 1 2 3 4 .

pt1u,t2u,t3u,t4uq pt1,2u,t3u,t4uq pt1u,t2,3u,t4uq pt1u,t2u,t3,4uq pt1,2,3u,t4uq pt1u,t2,3,4uq pt1,2,3,4uq

Since given a total order N the sizes of the blocks of the set composition completely
determines Q, we deduce the following proposition.

Proposition 3.1. There is a bijection

bdry :
"

Parabolic sub-
posets of N

*

ÝÑ

"

integer com-
positions of N

*

Q ÞÑ p|Q1|, . . . , |Q`|q.

For an integer composition β ( N and an underlying total order N , define

UTβ “ UTbdry´1pβq

(note that bdry´1
pβq makes no sense without N ).

Every parabolic subposet Q in N with β “ bdrypQq has a corresponding Levi
subgroup

Lβ “

»

—

—

—

—

–

GLβ1 0 ¨ ¨ ¨ 0

0 GLβ2

. . .
...

...
. . . . . . 0

0 ¨ ¨ ¨ 0 GLβ`

fi

ffi

ffi

ffi

ffi

fl

,

such that UTβ is the unipotent radical of the parabolic subgroup

Pβ “ Lβ ˙UTβ “ NGLN pqqpUTβq.

Remark 3.2. The Lie theoretic language of parabolics, Levis and unipotent radicals
is merely given for context. The reader is welcome to ignore the terminology and focus
on the definitions.
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3.2. Levi compatible posets and UTpβ,Pq. This section defines a family of sub-
groups of UTβ in a way that gives a “block" analogue to pattern groups. In the ensuing
sections we will primarily be interested in the subgroups of this nature that are in
fact normal in UTβ .

A Levi compatible subposet P of QŸpb N is a subposet such that

LbdrypQq Ď NGLN pqqpUTPq.

In this case, we write P Ďlc Q.

Proposition 3.3. If Q is parabolic with set composition pQ1,Q2, . . . ,Q`q and β “
bdrypQq, then there is a bijection

fatβ :
"

Subposets of
1 ă 2 ă ¨ ¨ ¨ ă `

*

ÝÑ

"

Levi compatible
subposets of Q

*

P ÞÑ fatβpPq.

where
a ăfatβpPq b if and only if a P Qi, b P Qj with i ăP j.

For fatβpPq Ďlc bdry´1
pβq, let

UTpβ,Pq “ UTfatβpPq,

so that UTβ “ UTpβ,Lq where L is the usual total order on t1, 2, . . . , `u.

Examples.
(E1) All subposets are Levi compatible with the total order N . This notion there-

fore gives a generalization of “pattern subgroups" to arbitrary unipotent radicals of
parabolics.

(E2) If N is 1 ă 2 ă 3 ă 4, then

1 2 3 4 , 1 2 3
4

,
1

2 3 4
,

and

1
2 3

4
,

1 2 3
4

,
1 2 3

4
Ďlc

1
2 3

4

.

where the shaded elements are treated as a single element.

3.3. Unipotent polytopes. Fix an integer composition β “ pβ1, . . . , β`q ( N and
let P be a normal subposet of 1 ă 2 ă ¨ ¨ ¨ ă ` with corresponding Ferrer’s shape F .
The unipotent polytope pβ,Pq is the convex polytope in the positive quadrant R|F |ě0
determined by the inequalities

!

ÿ

iăPj

xij ď βj ,
ÿ

jăPk

xjk ď βj

ˇ

ˇ

ˇ
1 ď j ď `

)

.

Remark 3.4. If F is the Ferrer’s shape corresponding to P, then one may view the
unipotent polytope as possible fillings of the boxes of F by non-negative real numbers
such that the row and column sums are bounded by β. Thus, the dimension of the
polytope is the number of boxes in F .
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Examples.
(E1) If β “ p2, 3, 1, 1, 5q, and

P “

‚1 ‚2 ‚3 ‚4

‚5
ÐÑ

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨

¨ ¨

¨

‚ ‚ ‚ ‚

‚ ‚ ‚

‚ ‚

‚

1

2

3

4

5

ÐÑ

then the equations x15 ď 2, x25 ď 3, x35 ď 1, x15 ` x25 ` x35 ď 5 give the polytope

‚

‚

‚
‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

x15

x25

x35

(E2) In general, the unipotent polytopes pβ,Pq where the corresponding Ferrer’s
shape F is a rectangle have transportation polytopes as distinguished faces (points
where row and column sums all equal their bound). They are a subfamily correspond-
ing to abelian unipotent groups. In this case, the bounds on the row sums and and
the bounds on the column sums are independent.

Unipotent polytopes match up with Levi compatible sub-posets in the following
way.

Proposition 3.5. Let N be a total order on a set with N elements and let β ( N .
Then the following are equivalent:

(P1) pβ,Pq is a unipotent polytope,
(P2) fatβpPq Ÿlc bdry´1

pβq,
(P3) Pβ Ď NGLN pqqpUTpβ,Pqq.

Proof. Let Q “ bdry´1
pβq, and let L be the usual total order on t1, . . . , `pβqu.

If pβ,Pq is a unipotent polytope, then by definition PŸL. But then by Proposition
3.3, fatβpPq Ďlc fatβpLq “ Q, and fatβ preserves normality.

If fatβpPq Ÿlc Q, then UTpβ,Pq ŸUTβ and Lβ Ď NGLN pqqpUTpβ,Pqq. Thus,

Pβ “ Lβ ˙UTβ Ď NGLN pqqpUTpβ,Pqq.

If Pβ Ď NGLN pqqpUTpβ,Pqq, then UTpβ,Pq Ÿ UTβ , so fatβpPq Ÿ Q “ fatβpLq and
since fatβ preserves normality, P Ÿ L. �

Remark 3.6. For a fixed total order N with N elements, the function
"

unipotent polytopes
pβ,Pq with |β| “ N

*

ÝÑ

"

normal sub-
groups of UTN

*

pβ,Pq ÞÑ UTpβ,Pq
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is not injective, since, for example,

UT
pp14q,

1 2

3 4
q

“

»

—

—

–

1 0 ˚ ˚
0 1 ˚ ˚
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

“ UT
pp2,2q,

1

2
q

.

On the other hand, for a fixed β ( N
"

unipotent poly-
topes pβ,Pq

*

ÝÑ

"

normal sub-
groups of UTN

*

pβ,Pq ÞÑ UTpβ,Pq
is injective. Note that UTN has many normal subgroups that are not pattern sub-
groups, so this function is not surjective; for example, any proper nontrivial subgroup
of the center (– F`q ) is not a pattern subgroup.

4. Families of parabolic supercharacter theories
The data in a unipotent polytope pβ,Pq also gives a natural supercharacter theory
to a corresponding unipotent group UTpβ,Pq. This section describes this theory, and
shows that the supercharacters/superclasses are indexed by the integer lattice points
contained in the polytope pβ,Pq.

4.1. Supercharacter theory definition. Let pβ,Pq be a unipotent polytope
with β ( N . Then

utpβ,Pq “ UTpβ,Pq ´ IdN
is an Fq-vector space with basis

teij | i ăfatβpPq ju, where peijqkl “ δpi,jq,pk,lq.

The dual space
ut˚
pβ,Pq “ HomFq putpβ,Pq,Fqq

has dual basis
"

e˚ij : utpβ,Pq Ñ Fq
x ÞÑ xij

ˇ

ˇ

ˇ

ˇ

i ăfatβpPq j

*

.

The group Pβ acts on both utpβ,Pq and ut˚
pβ,Pq by left and right multiplication,

where
pa ¨ y ¨ bqpxq “ ypa´1xb´1q, for x P utpβ,Pq, y P ut˚pβ,Pq, a, b P Pβ .

These actions give a natural supercharacter theory for UTpβ,Pq.
‚ Pβ-superclasses of UTpβ,Pq: The set partition tPβxPβ ` IdN | x P utpβ,Pqu of

UTpβ,Pq.
‚ Pβ-supercharacters of UTpβ,Pq: The characters

(3) tχyβ | PβyPβ P Pβzut
˚
pβ,Pq{Pβu, where χyβ “

ÿ

zPPβyPβ

ϑ ˝ z.

Proposition 4.1. If pβ,Pq is a unipotent polytope, then the Pβ-superclasses and the
Pβ-supercharacters form a supercharacter theory of UTpβ,Pq.

Proof. The following conditions are straight-forward to check:
(SC0) The fact that the number of G orbits on a vectors space V is the same as the

number of G-orbits on V ˚ shows that there are an equal number of super-
classes and supercharacters (see [12, Lemma 4.1] for an analogous argument).

(SC1) The superclasses are unions of conjugacy classes.
(SC2) The supercharacters are constant on superclasses.
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It therefore suffices to show that Pβ-supercharacters are in fact orthogonal characters
(rather than just class functions) that collectively have the irreducibles of UTpβ,Pq as
constituents. By definition,

χyβ “
ÿ

zPPβyPβ

ϑ ˝ z

“
ÿ

UTpβ,Pqz1UTpβ,PqPPβpUTpβ,PqyUTpβ,PqqPβ

ˆ

ÿ

zPUTpβ,Pqz1UTpβ,Pq

ϑ ˝ z

˙

“
ÿ

UTpβ,Pqz1UTpβ,PqPPβpUTpβ,PqyUTpβ,PqqPβ

|UTpβ,Pqz1UTpβ,Pq|
|UTpβ,Pqz1|

χz
1

AG.(4)

Thus, χyβ is a Zě0-linear combination of characters and so is also a character. Fur-
thermore, since each AG-supercharacter appears in a unique Pβ-supercharacter, the
Pβ-supercharacters are orthogonal and collectively have all the irreducibles as con-
stituents. �

Remarks 4.2.
(R1) The unipotent polytope pp1N q,N q recovers the BN -supercharacter theory of

UTN from Section 2.3 (also studied in [7]).
(R2) Since BN “ Pp1N q Ď Pβ , we can coarsen (4) to get

(5) χyβ “
ÿ

P
p1N qz

1P
p1N qĎPβyPβ

χz
1

p1N q.

This formula will be more useful below since the χz1
p1N q have nicer character formulas.

(R3) In practice, one often scales the supercharacters by some factor that divides
the multiplicities of the irreducible constituents. In this case, there does not seem to
be an obvious choice, so we have omitted the scaling factor. However, (4) implies that
one may divide by

|UTpβ,PqyUTpβ,Pq|
|UTpβ,Pqy|

and still have characters.
(R4) An advantage of our definition of the supercharacters (without any scaling)

is that it is easy to construct the corresponding modules. For y P ut˚
pβ,Pq, define the

UTpβ,Pq-module My by a C-basis

t z | z P PβyPβu

with an action

u ¨ z “ ϑ ˝ zpu´1 ´ Id|β|q uz for u P UTpβ,Pq, z P PβyPβ .

(R5) The paper [16] observes that when a pattern subgroup UTP is normal in
UTN , then it is in fact a union of AG-superclasses (in some sense “supernormal"). In
this sense, the Pβ-supercharacter theory makes UTpβ,Pq a supernormal subgroup of
UTβ .

4.2. The combinatorics of the indexing sets. For a unipotent polytope pβ,Pq
with FP as in Proposition 2.1, let

T β
P “

!

λ : FP Ñ Zě0
pi, jq ÞÑ λij

ˇ

ˇ

ˇ

ÿ

k
pj,kqPFP

λjk,
ÿ

i
pi,jqPFP

λij ď βj , 1 ď j ď `
)

be the set of Zě0-lattice points contained in or on pβ,Pq.
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Examples.
(E1) The set

T p4,1,2q
1 2

3 “

$

&

%

4
1

2

0
0 ,

4
1

2

1
0 ,

4
1

2

0
1 ,

4
1

2

1
1 ,

4
1

2

2
0 ,

,

.

-

where the entries shaded in gray give the bounds for each row and column.
(E2) If β “ p1m, nq with m ď n and

P “

1 2 m

m`1

¨ ¨ ¨

then T β
P is the set of vertices of the m-dimensional hypercube.

(E3) If N “ 2m, and

P “

1 2 m

m`1 m`2 N

¨ ¨ ¨

¨ ¨ ¨

then T p1
N
q

P is the usual basis for the rook monoid.
(E4) If N is a total order of a set A, then the set T p1

N
q

N is in bijection with the set
of set partitions of A. Specifically, λ P T p1

N
q

N we have λab P t0, 1u for all coordinates
a ă b; the corresponding set partition is obtained the transitive closure of the relation
placing a, b P A in the same block whenever λab “ 1.

Remark 4.3. Given a unipotent polytope pβ,Pq, we may in fact identify T p1
N
q

fatβpPq
with subsets of utpp1N q,fatβpPqq and ut˚

pp1N q,fatβpPqq. In particular, fix injections

(6)
T p1

N
q

fatβpPq ÝÑ utpp1N q,fatβpPqq

µ ÞÑ eµ “
ÿ

iăPj

µijeij
and

T p1
N
q

fatβpPq ÝÑ ut˚
pp1N q,fatβpPqq

λ ÞÑ e˚λ “
ÿ

iăPj

λije
˚
ij .

The following theorem establishes the connection between Pβ-supercharacter the-
ories and Zě0-lattice points in unipotent polytopes.

Theorem 4.4. For pβ,Pq a unipotent polytope,
"

Pβ-superclasses
of UTpβ,Pq

*

ÐÑ T β
P ÐÑ

"

Pβ-supercharacters
of UTpβ,Pq

*

.

Proof. The number of Pβ-supercharacters and Pβ-superclasses is the same, so this
proof focuses on the left bijection.

Let N be the underlying total order and let Q “ bdry´1
pβq with corresponding set

composition pQ1, . . . ,Q`q. Since BN “ Pp1|β|q Ď Pβ , every Pβ-superclass is a union of
BN -superclasses (which are indexed by set partitions, as described in the last remark
of Section 2.3). That is, for each u P UTpβ,Pq, there exists a subset Au Ď T p1

N
q

fatβpPq,
such that

Pβpu´ IdN qPβ “
ğ

µ̃PAu

BN eµ̃BN .

If x is a matrix with row/column set S, then let ResRpxq denote the submatrix
obtained by using only the rows and columns in the subset R Ď S. The remainder of
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the proof shows that

(7)
rk :

"

Pβ-superclasses
of UTpβ,Pq

*

ÝÑ T β
P

Pβpu´ IdN qPβ ÞÝÑ
rkAu : FP Ñ Zě0

pi, jq ÞÑ rank
´

ResQiYQj
peµ̃q

¯

gives a well-defined (does not depend on the choice of µ̃ P Au), bijective function.
To see well-defined, suppose µ̃, ν̃ P Au. Since UTβ Ď UTN , we have that eµ̃ “ aeν̃b

for some a, b P Lβ “ GLβ1 ˆGLβ2 ˆ ¨ ¨ ¨ ˆGLβ` . Thus,

rank
´

ResQiYQj peµ̃q
¯

“ rank
´

ResQiYQj
paeν̃bq

¯

“ rank
´

ResQiYQi
paqResQiYQj

peν̃qResQjYQj
pbq

¯

“ rank
´

ResQiYQj
peν̃q

¯

.

To see injectivity, fix ν̃ P T p1
N
q

fatβpPq, and let µ P T β
P be given by

µij “ rank
´

ResQiYQj
peν̃q

¯

.

Define eµ P utpβ,Pq by

(8) ResQiYQk
peµq “

»

—

—

—

—

–

0 ¨ Idβi´řiăjďk µij 0 0 0 0
0 0 0 wµik 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ¨ Idβk´řiďjăk µjk

fi

ffi

ffi

ffi

ffi

fl

where

wn “

»

—

–

0 1

. .
.

1 0

fi

ffi

fl

P GLn.

Then
rank

´

ResQiYQj peµq
¯

“ rank
´

ResQiYQj peν̃q
¯

for all i ăP j.
Since each set Qi of rows and Qk of columns has the same number of ones for eµ

and eν̃ , there exist permutation matrices lk, rk P GLQk
pFqq such that

eµ “

¨

˚

˝

l1 0
. . .

0 l`

˛

‹

‚

eν̃

¨

˚

˝

r1 0
. . .

0 r`

˛

‹

‚

.

Thus, eµ̃ and eν are in fact in the same superclass, and each superclass has a distin-
guished element eµ. �

Remarks 4.5.
(R1) The construction (8) gives us a superclass representative eµ P utpβ,Pq for each

superclass. If µ̃ P Au Ď T p1
N
q

fatβpPq is the element such that eµ “ eµ̃, then µ̃ is the unique
element Au minimal first with respect to

ÿ

iăN jăNkăN l

µ̃ikµ̃jl
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and then with respect to

#ti ăN j ăN k | µ̃ik “ 1u.

(R2) By Theorem 4.4, the set T β
P also indexes the Pβ-supercharacters of UTpP,βq.

Thus, if y P ut˚
pβ,Pq is in the orbit corresponding to λ P T β

P , then we will write

χλβ “ χyβ .

For the purpose of this paper it will not be necessary to fix a specific representative
e˚λ P ut

˚
pβ,Pq of the orbit corresponding to λ.

Example. For β “ p3, 2, 1, 4q and

P “
‚ ‚

‚‚
3 4

1 2

the superclass label
3

2
1

4

0 2
1 1

corresponds to the superclass
$

’

’

&

’

’

%

»

—

—

–

Id3 0 B D
0 Id2 A C
0 0 Id1 0
0 0 0 Id4

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

rankpAq “ 1, rank rBA s “ 1, rank rAC s “ 2, rank rB D
A C s “ 4

,

/

/

.

/

/

-

with representative
»

—

—

—

–

Id3 0 0
0
0

0 0 1 0
0 1 0 0
0 0 0 0

0 Id2 1
0

0 0 0 0
0 0 0 1

0 0 Id1 0
0 0 0 Id4

fi

ffi

ffi

ffi

fl

.

5. Supercharacter formulas
This section works out character formulas for all the supercharacter theories described
above. Fundamentally, it involves weaving together two basic families of examples:

(E1) BN -supercharacter theories of UTP for P ŸN .
(E2) The case where the unipotent polytope pβ,Pq is a line segment (or where β

has exactly two parts).
We first introduce some combinatorial statistics that will appear throughout the

formulas, and then prove a result that shows how to compare Pβ-supercharacter the-
ories between different group (but for the same β). Then we show how to compute
supercharacter values for examples (E1) and (E2). The main result then follows fairly
quickly.

5.1. Representation theoretic statistics. Fix β “ pβ1, . . . , β`q and note that
fat´1

β ˝ bdry´1
pβq gives the usual order 1 ă 2 ă ¨ ¨ ¨ ă ` on t1, . . . , `u. There are

a number of statistics that arise naturally in the Pβ-supercharacter theories. They
naturally generalize their set partition analogues in the Pp1N q-supercharacter theory
of UTN (see [10] for a more general algebraic framework for these statistics).
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For λ P T β
P , there are a number of ways to measure the “size” of a λ. For example,

|λ| “
ÿ

iăPj

λij

measures the lattice distance to the origin of the lattice point in the unipotent poly-
tope. However, geometric interpretations of the other statistics are unknown (at least
to me). Having more to do with the dimension of the corresponding modules,

dimLpλq “
ÿ

iăPjăk

λikβj and dimRpλq “
ÿ

iăjăPk

λikβj

give the left and right dimensions of λ (respectively). Note that if P “ Q, then
dimRpλq “ dimLpλq. To account for over-counting, we also require the crossing num-
ber

crspλq “
ÿ

iăjăPkăl

λikλjl

of λ. Lastly, if µ P T β
P , the nestings of µ in λ are

nstλµ “
ÿ

iăPjăPkăP l

λilµjk.

Example. if β “ p3, 6, 3, 4, 5, 1q,

λ “
3

6
3

4
5

1

2 0 1 0
0 0 1 1

0 1 0

and µ “
3

6
3

4
5

1

0 1 0 1
1 0 2 0

1 2 0

then

|λ| “ 6 ¨ 0` 4 ¨ 1` 1 ¨ 2

dimLpλq “

1 ¨ p3` 4q ` 1 ¨ p3` 4q ` 1 ¨ 4 ` 1 ¨ p3` 4` 5q

3
4

2 0 1 0
0 0 1 1

0 1 0 3
4

2 0 1 0
0 0 1 1

0 1 0
4

2 0 1 0
0 0 1 1

0 1 0 3
4

5

2 0 1 0
0 0 1 1

0 1 0

dimRpλq “ 2 ¨ 6` 1 ¨ p6` 3q ` 1 ¨ 3` 1 ¨ 3
nstλµ “ 1 ¨ 1` 3 ¨ 1 ¨ 1` 2 ¨ 1

crspλq “

2 ¨ 1 ` 2 ¨ 1 ` 1 ¨ 1
2 0 1 0
0 0 1 1

0 1 0

2 0 1 0
0 0 1 1

0 1 0

2 0 1 0
0 0 1 1

0 1 0

The following lemma gives an algebraic foundation for most of these statistics. If
one uses the standard representatives coming from the BN -supercharacter theory the
proof is relatively straight-forward, and the details are left to the reader.

Lemma 5.1. Let λ P T β
P with λ̃ P T p1

N
q

P such that e˚
λ̃
P ut˚

pβ,Pq is in the λ-orbit. Then

|λ| “ rankpeλ̃q, qdimLpλq “ |UTβe˚λ̃|

qdimRpλq “ |e˚
λ̃
UTβ | and qcrspλq “ |UTβe˚λ̃ X e

˚

λ̃
UTβ |.
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5.2. Comparing Pβ-supercharacter theories. Fix a unipotent polytope pβ,Pq
and let Q “ bdry´1

pβq. Then we have an injective function ExtQ
P : T β

P ÝÑ T β
Q given

by

ExtQ
P pλqij “

"

λij if i ăfatβpPq j,
0 otherwise.

This gives a way to compare supercharacter values between the two theories. The
following proposition shows that the representation theory mirrors the combinatorics
as well as can be expected.

Proposition 5.2. Let pβ,Pq be a unipotent polytope with Q “ bdry´1
pβq. For λ P T β

P ,

χλβ
χλβp1q

“
ResUTβ

UTpβ,Pqpχ
ExtQ

P pλq

β q

χ
ExtQ

P pλq

β p1q
.

Proof. Fix e˚
λ̃
P ut˚

pβ,Pq in the orbit corresponding to λ. Then since ut˚
pβ,Pq is invariant

under left and right multiplication by Pβ , we also have e˚
λ̃
P ut˚Q is in the orbit

corresponding to ExtQ
P pλq. Let u ´ Id|β| P utpβ,Pq Ď utQ. Then by definition (3) and

the invariance of ut˚
pβ,Pq under Pβ ,

ResUTQ
UTpβ,Pqpχ

ExtQ
P pλq

β qpuq

χ
ExtQ

P pλq

β p1q
“

1
|Pβe

˚

λ̃
Pβ |

ÿ

e˚ν̃ PPβe
˚

λ̃
Pβ

ϑ ˝ e˚ν̃ pu´ Id|β|q “
χλβpuq

χλβp1q
,

as desired. �

5.3. Example: BN -supercharacter theories. In the case that Q “ N , then all
normal pattern subgroups are also normal Levi compatible subgroups. Here the BN -
supercharacter formula for UTpβ,Pq are obtained by restricting the BN -supercharacter
formulas for UTN .

Up to scaling, the following character formula appears in [7], but does not have an
explicit published proof. For λ, µ P T p1

N
q

N , let λX µ P T p1
N
q

N be given by

pλX µqij “ λijµij .

Proposition 5.3. For λ, µ P T p1
N
q

N ,

χλp1N qpuµq “

$

’

’

’

&

’

’

’

%

qdimLpλq`dimRpλqpq´1q|λ|
qcrspλq

1
q

nstλµ p1´qq|λXµ|

if λikµij “ λikµjk “ 0
for i ăN j ăN k,

0 otherwise.

From Proposition 5.2 we get the following corollary.

Corollary 5.4. For P ŸN and λ, µ P T p1
N
q

P ,

χλp1N qpuµq “

$

’

’

’

&

’

’

’

%

qdimLpλq`dimRpλqpq´1q|λ|
qcrspλq

1
q

nstλµ p1´qq|λXµ|

if λikµij “ λikµjk “ 0
for i ăN j ăN k,

0 otherwise.

Proof. By Proposition 5.3,

χ
ExtN

P pλq

p1N q p1q “ qdimLpExtN
P pλqq`dimRpExtN

P pλqqpq ´ 1q|λ|

qcrspExtN
P pλqq

.
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Let e˚λ P ut˚pp1N q,Pq be in the λ-orbit. Then by (3),

χλp1N qp1q “ |BN e
˚
λBN |

“ pq ´ 1q|λ||UTN e
˚
λUTN |

“ pq ´ 1q|λ|
|UTN e

˚
λ||e

˚
λUTN |

|UTN e
˚
λ X e

˚
λUTN |

“ pq ´ 1q|λ| q
dimLpλq`dimRpλq

qcrspλq ,

where the last equality follows from Lemma 5.1. Apply Proposition 5.2 to Proposition
5.3 to obtain the formula. �

5.4. The basic building block: the line. Let

β “ pm,nq, Q “ bdry´1
pβq “

‚
1

‚
2

‚
m

‚
m`1

‚
m`2

‚
m`n

¨ ¨ ¨

¨ ¨ ¨
where N “

‚ 1

‚ 2

‚m`n

...
.

For P “ t1 ă 2u,

UTpβ,Pq “
"„

Idm A
0 Idn


ˇ

ˇ

ˇ

ˇ

A PMmˆnpFqq
*

– pF`q qmn.

In this case, the indexing set for the supercharacters and superclasses is given by

T pm,nq
‚

‚ “ t0, 1, . . . ,mintm,nuu

where the superclass of
„

Idm A

0 Idn



is labelled by rankpAq.

Theorem 5.5. If 0 ď j, l ď mintm,nu and upjq “ Idm`n ` epjq P UTpβ,1ă2q, then

χ
plq
pm,nqpup0qq “ |GLlpFqq|

„

m

l



q

„

n

l



q

“
# mˆ n matrices

of rank l ,

and

χ
plq
pm,nqpupjqq “

ÿ

pa,bq(l

p´1qaqbj`p
a
2q

„

j

a



q

χ
pbq
pm´j,n´jqpup0qq.

Remark 5.6. Note that in the sum not all compositions pa, bq of l give nonzero terms.
We use the convention that |GL0pFqq| “ 1.

Proof. Fix e˚
plq P ut

˚
Q in the orbit corresponding to l, and let

upjq “

»

–

Idm
0 0
wj 0

0 Idn

fi

fl , where wj “

»

—

–

0 1

. .
.

1 0

fi

ffi

fl

P GLj ,

be the usual representative (as in (8)). By (5),

χ
plq
pm,nqpupjqq “

ÿ

BN e
˚
ν̃BN PPQe

˚

plq
Pβ

χ
e˚ν̃
p1N qpupjqq “

ÿ

νPT p1
N q

Q
|ν|“l

χνp1N qpupjqq.
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Let

A “ tpm´ j ` i,m` j ` 1´ iq | 1 ď i ď ju

B “ t1, . . . ,m´ ju ˆ tm` j ` 1, . . . ,m` nu

or visually, the coordinates
»

—

—

—

—

—

—

—

—

—

—

—

—

–

Idm´j 0 0
B ¨ ¨ ¨ B
...
. . .

...
B ¨ ¨ ¨ B

0 Idj
0 A

. .
.

A 0
0

0 0 Idj 0
0 0 0 Idn´j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that χν
p1N qpupjqq “ 0 unless

νik ‰ 0 implies pi, kq P AY B.

For ν P T p1
N
q

Q , let νA, νB P T p1
N
q

Q be given by

pνAqij “

"

νij if pi, jq P A,
0 otherwise, pνBqij “

"

νij if pi, jq P B,
0 otherwise.

Then by Corollary 5.4,

χ
plq
pm,nqpupjqq “

ÿ

ν“νA`νBPT p1
N q

Q
|ν|“l

qdimLpνq`dimRpνqpq ´ 1ql

qcrspνBq

1
qnstνA

A `|νB|j

ˆ

1
1´ q

˙|νA|

(9)

“ pq ´ 1ql
ÿ

α,γPT p1
N q

Q
αA“α,γB“γ,|α`γ|“l

qdimLpγq`dimRpγq

qcrspγq`|γ|j
qdimLpαq`dimRpαq

qnstαA

ˆ

1
1´ q

˙|α|

“ pq ´ 1ql
ÿ

pa,bq(l
aďj

bďm´j

ˆ

1
1´ q

˙a
ÿ

α,γPT p1
N q

Q
αA“α,γB“γ,
|α|“a,|γ|“b

qdimLpγq`dimRpγq

qcrspγq`bj
qdimLpαq`dimRpαq

qnstαA
.

Note that choice of γ with γB “ γ and |γ| “ b is determined by a triple pR, C, wq
where RˆC Ď B with |R| “ |C| “ b and w : R Ñ C is a bijection (then γik “ 1 if and
only if i P R and k “ wpiq). For such a triple pR, C, wq corresponding to γ we have

qdimpγq

qbj
“ q

wtÒ
r1,m´jspRq`wtÓ

rm`j`1,m`nspCq`bj , and crspγq “ invpw ˝ wbq.

A choice of α with αA “ α and |α| “ a is completely determined by D Ď tm `

1, . . . ,m` ju with |D| “ a. In this case,

qdimpαq

qnstαA
“ q

wtÓ
rm`1,m`jspDq.
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For fixed a, b, C and R we can sum over choices of w, D independently. Then (1) and
(2) give

χ
plq
pm,nqpupjqq “pq ´ 1qlˆ

ÿ

pa,bq(l
aďj

bďm´j

qp
a
2q

„

j

a



q

ˆ

1
1´ q

˙a
ÿ

RˆCĎB
|R|“|C|“b

q
wtÒ
r1,m´jspRq`wtÓ

rm`j`1,m`nspCq`bj rbs!
qp
b
2q
.

Finally, sum over C and R independently and apply (2) to get

χ
plq
pm,nqpupjqq “ pq ´ 1ql

ÿ

pa,bq(l
aďj

bďm´j

qp
a
2q

„

j

a



q

ˆ

1
1´ q

˙a

qbj`2pb2q
„

m´ j

b



q

„

n´ j

b



q

rbs!
qp
b
2q

“
ÿ

pa,bq(l

p´1qaqbj`p
a
2q

„

j

a



q

|GLbpFqq|
„

m´ j

b



q

„

n´ j

b



q

,

as desired. �

5.5. General supercharacter formula. Let pβ,Pq be a unipotent polytope with
sIntpPq as in Section 2.2. For λ, µ P T β

P , let

locλµ : sIntpPq ÝÑ Zě0 ˆ Zě0

pj, lq ÞÑ

´

βj ´
ÿ

jăPkăl

µjk ´
ÿ

lăPm

λjm, βl ´
ÿ

jăkăP l

µkl ´
ÿ

iăPj

λil

¯

.

For example, if β “ p3, 6, 3, 4, 5, 1q,

λ “
2 0 1 0
0 0 1 1

0 1 0

and µ “
0 1 0 1
1 0 2 0

1 2 0

then

locλµp2, 5q “
ˆ

β2 ´
0 1 0 1
1 0 2 0

1 2 0

´
2 0 1 0
0 0 1 1

0 1 0

, β5 ´
0 1 0 1
1 0 2 0

1 2 0

´
2 0 1 0
0 0 1 1

0 1 0

˙

“ p6´ p1` 0q ´ 1, 5´ 2´ 1q
“ p4, 2q.

Theorem 5.7. For λ, µ P T β
P and uµ “ 1` eµ,

χλβpuµq “
qdimLpλq`dimRpλq

qnstλµ ` crspλq

ź

jăP l

χ
pλjlq

locλµpj,lq
pupµjlqq.

Remark 5.8. The following proof is designed to directly construct the above “fac-
torization.” Alternatively, it is perhaps more straightforward (though with even more
tedious book-keeping) to follow the proof of Theorem 5.5, and then to retroactively
observe the desired factorization.

Proof. Let λ̃ “ ExtN
P pλq. Then by (5),

χλβpuµq “
ÿ

ν̃PT p1
N q

P
e˚
ν̃
PPβe

˚

λ̃
Pβ

χν̃p1N qpuµq.
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Let Q “ bdry´1
pβq with associated set composition pQ1, . . . ,Q`q. By a dual analogue

to Theorem 4.4, e˚ν̃ P Pβe˚λ̃Pβ with ν̃ P T p1
N
q

fatβpPq if and only if

rank
´

ResQiYQj
peν̃q

¯

“ rank
´

ResQiYQj
peλ̃q

¯

“ λij for all i ăP j.

Let eµ “ eµ̃ for µ̃ P T p1
N
q

fatβpPq. By Corollary 5.4,

χλβpuµq “
ÿ

ν̃PT p1
N q

fatβpPq

prankpResQiYQj peν̃ qqq“λ

δν̃µ̃
qdimLpν̃q`dimRpν̃q

qcrspν̃q`nstν̃µ̃
p´1q|ν̃Xµ̃|pq ´ 1q|ν̃|´|ν̃Xµ̃|,

where
δν̃µ̃ “

ź

iăjăk

δν̃ikµ̃ij ,0δν̃ikµ̃jk,0

keeps track of which terms are zero (from Corollary 5.4).
Note that for each set of choices of made for the blocks,

tγjl P T p1
N
q

fatβpPq | 1 ď j ăP l ă `,ResQiˆQk
pγjlq “ δpi,kqpj,lqγjl, rankpγjlq “ λjlu,

such that no two γjl have 1’s in the same row or column, then
ÿ

jăP l

γjl P T p1
N
q

fatβpPq.

Given a total order ă on the coordinates in FP , we can iteratively construct an element
ν̃ P T p1

N
q

fatβpPq by choosing each Qj ˆQl according to ă. We will use the FP -total order
induced by the FQ-total order

p1, `q ă p1, `´1q ă p2, `q ă p1, `´2q ă ¨ ¨ ¨ ă p`´1, `q or

¨

. . .

1

2

3

...
`´1

`´1

`

.

Then we obtain a sequence

tν̃pjlq P T p1
N
q

fatβpPq | j ăP lu, where ν̃pjlq “ γjl `
ÿ

pi,kqăpj,lq

γik.

At each step there will be limits on what rows and columns γjl can have nonzero
entries to be compatible with the previous choices, but we will obtain all possible ν̃
in this way. If we only choose ν̃ such that χν̃puµ̃q ‰ 0, then the nonzero entries of γjl
can only be in rows and columns such that

(a) there are no nonzero entries in ν̃pjlq ´ γjl in that column or row,
(b) there is no nonzero entry of µ̃ strictly below in that column or strictly to the

left in that row.
That is, we have

βj ´
ÿ

jăPkăl

µjk ´
ÿ

lăPm

λjm rows and βl ´
ÿ

jăkăP l

µkl ´
ÿ

iăPj

λil columns
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to choose from for the nonzero entries of γjl. Let rsppγjlq Ď Qj be the rows in γjl
with nonzero entries, and csppγjlq Ď Ql be the columns with nonzero entries. Let
δ
pjlq
λ P T β

P be given by pδpjlqλ qik “ δpi,kq,pj,lqλjl, and let λpjlq P T β
P label the orbit

containing e˚
ν̃pjlq

P ut˚P . Then we have recursions,

dimLpν̃
pjlqq ` dimRpν̃

pjlqq “dimLpν̃
pjlq ´ γjlq ` dimRpν̃

pjlq ´ γjlq ` dimLpδ
pjlq
λ q

` dimRpδ
pjlq
λ q ` wtÒQj

prsppγjlqq ` wtÓQl
pcsppγjlqq

and

nstν̃
pjlq

µ̃ “nstν̃
pjlq
´γjl

µ̃ `nstpδ
pjlq

λ
q

µ `#ti1 ă j1 ă k1 ă l1 | j1 P Qj , pγjlqi1l1 µ̃j1k1 “ 1u`
`#ti1 ă j1 ă k1 ă l1 | j1 R Qj , k

1 P Ql, pγjlqi1l1 µ̃j1k1 “ 1u

crspν̃pjlqq “ crspν̃pjlq ´ γjlq ` crspλpjlqq ´ crspλpjlq ´ δpjlqλ q ` crspγjlq

` wtÒrsppν̃pjlqqXQj´rsppγjlq
prsppγjlqq ` wtÓcsppν̃pjlqqXQl´csppγjlq

pcsppγjlqq.

Iterating these recursions gives

dimLpν̃q ` dimRpν̃q “ dimLpλq ` dimRpλq `
ÿ

jăP l

wtÒQj
prsppγjlqq ` wtÓQl

pcsppγjlqq

and
nstν̃µ̃ “nstλµ`

ÿ

jăP l

´

#ti1 ă j1 ă k1 ă l1 | j1 P Qj , pγjlqi1l1 µ̃j1k1 “ 1u

`#ti1 ă j1 ă k1 ă l1 | j1 R Qj , k
1 P Ql, pγjlqi1l1 µ̃j1k1 “ 1u

¯

crspν̃q “ crspλq `
ÿ

jăP l

´

crspγjlq ` wtÒrsppν̃pjlqqXQj´rsppγjlq
prsppγjlqq

` wtÓcsppν̃pjlqqXQl´csppγjlq
pcsppγjlqq

¯

.

Let
Rjl “ Qj ´ ti

1 P Qj | pµ̃qi1l1 ‰ 0, for some l1 P Qk, k ă lu ´ prsppν̃pjlq ´ γjlq XQjq

Cjl “ Ql ´ tk
1 P Ql | pµ̃qj1k1 ‰ 0, for some j1 P Qk, k ą ju ´ pcsppν̃pjlq ´ γjlq XQlq,

denote the rows and columns in which γjl may have nonzero entries. Let µ̃jl “
ResQjˆQl

pµ̃q and γ˝jl “ γjl ´ γjl X µ̃jl. Then since crspγjlq “ crspγ˝jlq for δ
γjl
µjl ‰ 0,

χλβpuµq “
qdimLpλq`dimRpλq

qcrspλq`nstλµ

ź

jăP l

ÿ

γjl,ν̃
pjlqPT p1

N q

P
χν̃
pjlq

puµ̃q‰0

pq ´ 1qλjlqwtÒRjl prsppγjlqq`wtÓCjl pcsppγjlqq

p1´ qq|γjlXµ̃jl|qcrspγ˝
jl
q`nst

γjlXµ̃jl
µ̃jl

`|γ˝
jl
||µ̃jl|

“
qdimLpλq`dimRpλq

qcrspλq`nstλµ

ź

jăP l

χ
pλjlq

locλµpj,lq
pupµjlqq,

where the second equality comes by letting νA “ γjlXµ̃jl and νB “ γ˝jl, and comparing
with (9). �

We also easily obtain a number of consequences (some of which no doubt have
more direct proofs).

Corollary 5.9. For ν P T β
P with corresponding e˚ν̃ P ut˚P ,

|Pβe
˚
ν̃Pβ | “

qdimLpλq`dimRpλq

qcrspλq

ź

jăP l

|GLλjlpFqq|
„

βj ´
ř

lăPm
λjm

λjl



q

„

βl ´
ř

iăPj
λil

λjl



q

.
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Proof. By (3) and Theorem 5.7,

|Pβe
˚
ν̃Pβ | “ χνβp1q “

qdimLpλq`dimRpλq

qcrspλq

ź

jăP l

|GLλjlpFqq|

ˆ

„

βj ´
ř

lăPm
λjm

λjl



q

„

βl ´
ř

iăPj
λil

λjl



q

,

as desired. �

Recall that the C-vector space of functions fpGq “ tψ : GÑ Cu of a group G has
a canonical inner product given by

xψ, θy “
1
|G|

ÿ

gPG

ψpgqθpgq;

with respect to this inner product, the irreducible characters are an orthonormal basis
for the subspace of class functions. While supercharacters are still orthogonal, they
are generally no longer orthonormal. In our case, using a similar argument to [12],

xχνβ , χ
µ
βy “ δνµχ

ν
βp1q for ν, µ P T β

P ,

so we may deduce the following result.

Corollary 5.10. For ν, µ P T β
P ,

xχνβ , χ
µ
βy “ δνµ

qdimLpλq`dimRpλq

qcrspλq

ź

jăP l

|GLλjlpFqq|

ˆ

„

βj ´
ř

lăPm
λjm

λjl



q

„

βl ´
ř

iăPj
λil

λjl



q

.

Recall, that if ptconjugacy classesu, IrrpGqq is the usual character theory of G, then
"

Normal sub-
groups of G

*

“ tKA | A Ď IrrpGqu, where KA “
⋂
χPA

tg P G | χpgq “ χp1qu.

It is therefore natural to ask which normal subgroups are obtained from a given
supercharacter theory; I believe this has been largely unexplored. However, for the
case of UTβ , the answer to this question is particularly pleasing.

Corollary 5.11. Fix an integer composition β “ pβ1, . . . , β`q and let Lβ the usual
total order 1 ă 2 ă ¨ ¨ ¨ ă `,

tKA | A Ď T Lβ
β u “

"

UTpβ,Pq
ˇ

ˇ

ˇ

ˇ

P Ÿ Lβ
*

where KA “
⋂
µPA

tg P UTpβ,Pq | χµβpgq “ χµβp1qu.

Proof. Let A Ď T Lβ
β , and let PA be the subposet of Lβ given by

j ăPA k if and only if i ď j ă k ď l implies λil “ 0 for all λ P A.
To check that PA is a poset it suffices to check transitivity. Suppose j ăPA k ăPA l.
Then λim “ 0 for all i ď j ă k ď m and i ď k ă l ď m, so also for all i ď j ă l ď m.
Thus, j ăPA l.

Next we prove that KA “ UTpβ,PAq. Let µ P T Lβ
β . By Theorem 5.7,

χλβpuµq “ χλβp1q for all λ P A,
if and only if i ď j ă k ď l implies µjk ‰ 0 only if λil “ 0 for all λ P A. Thus,
uµ P KA if and only if uµ P UTpβ,PAq.
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Let pβ,Pq be a unipotent polytope. Let M be the set of elements maximal in
sIntpLβq ´ sIntpPq. Then let AP “ tλu Ď T Lβ

β be given by

λjk “

"

1 if pj, kq PM,
0 otherwise.

Then UTpβ,Pq “ UTpβ,PAP q and by the previous argument UTpβ,PAP q “ KAP . Note
that while the functions A ÞÑ PA and P ÞÑ AP do not invert one-another the cor-
responding group maps KA ÞÑ UTpβ,PAq and UTpβ,Pq ÞÑ KAP do invert one an-
other. �

Remark 5.12.
(R1) In the case of β “ p1N q, this result says that the normal pattern subgroups are

exactly the normal subgroups identified by the BN -supercharacter theory (perhaps
justifying their existence from a slightly different point of view).

(R2) Marberg explored this notion in the case of algebra groups and showed that a
normal subgroups is an intersection of kernels if and only if it is a union of superclasses
[15, Proposition 2.1]. From this point of view, the UTpβ,Pq are the only subgroups of
UTβ that are unions of superclasses.

Acknowledgements. The author would like to thank H. Hausmann for pointing out the
connection between the combinatorics of bounded row and column sums and integer
polytopes, and to K. Meszaros for directing me to transportation polytopes. Also,
thanks to M. Aguiar for (a) helping work out the corresponding monoid structure
and (b) convincing me it is too involved for this paper.
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