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The Grassmannian of 3-planes in C8 is schön

Daniel Corey & Dante Luber

Abstract We prove that the open subvariety Gr0(3, 8) of the Grassmannian Gr(3, 8) deter-
mined by the nonvanishing of all Plücker coordinates is schön, i.e. all of its initial degenerations
are smooth. Furthermore, we find an initial degeneration that has two connected components,
and show that the remaining initial degenerations, up to symmetry, are irreducible. As an ap-
plication, we prove that the Chow quotient of Gr(3, 8) by the diagonal torus of PGL(8) is the
log canonical compactification of the moduli space of 8 lines in P2, resolving a conjecture of
Hacking, Keel, and Tevelev. Along the way we develop various techniques to study finite inverse
limits of schemes.

1. Introduction
A closed subvariety of an algebraic torus is schön if all of its initial degenerations—flat
degenerations arising via Gröbner theory—are smooth. This notion was introduced
by Tevelev in his influential paper [45], and admits this characterization by Helm and
Katz [19]. Schön subvarieties of tori satisfy many desirable properties. Their tropi-
cal compactifications are schön compactifications, in particular they are normal and
have toroidal singularities. Notions from birational geometry, like log minimality and
ampleness of the log canonical divisor, admit tropical characterizations for schön sub-
varieties and their schön compactifications, respectively [17]. Some notable examples
include nondegenerate hypersurfaces [47, 48] (whose study predates the notion of
schönness), complements of hyperplane arrangements, open del Pezzo surfaces, and
moduli spaces of marked del Pezzo surfaces [17].

Consider the Grassmannian Gr(r, n) of r-planes in Kn, where K is an algebraically
closed field, and let Gr0(r, n) be the open locus of Gr(r, n) defined by the nonvanish-
ing of all Plücker coordinates. Its tropicalization TGr0(r, n) parameterizes all tropical
linear spaces realizable over a valued field extension of K [34, Theorem 4.3.17], so
TGr0(r, n), and therefore the initial degenerations of Gr0(r, n), depend on the charac-
teristic of K. For this reason, we assume that K = C throughout. The Grassmannian
Gr0(r, n) is known to be schön when (r, n) = (2, n) [45], (3, 6) [32] and (3, 7) [6].

Theorem 1.1. The Grassmannian Gr0(3, 8) is schön.
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Remark 1.2. The initial degenerations of Grassmannian Gr0(3, 8) are isomorphic, up
to a torus factor, to those of the moduli space X(3, 8) parameterizing isomorphism
classes of 8 hyperplanes in P2 lying in general position. See Formula 18. In particular,
Gr0(3, 8) is schön if and only if X(3, 8) is schön. In [41], Schock develops a theory
of quasilinear varieties. Schock proves that a quasilinear variety X is schön and the
strata of any schön compactification of X are irreducible. Schock also proposes a proof
that X(3, 8) is quasilinear, and hence schön, but this argument contains a critical gap.
By Theorem 1.3, X(3, 8) has an initial degeneration that is disconnected, and hence
X(3, 8) is not quasilinear.

The tropical Grassmannian TGr0(r, n) lies in a larger space Dr(r, n) called the
Dressian, which parameterizes all tropical linear spaces [21, 42]. Initially studied by
Lafforgue [30], to a w ∈ Dr(r, n) is associated a finite inverse limit Gr(w) of thin Schu-
bert cells parameterized by the induced matroidal subdivision of the hypersimplex.
When w ∈ TGr0(r, n), we may also form the w–initial degeneration inw Gr0(r, n).
We use in an essential way the main theorem of [6], which asserts that, for any
w ∈ TGr0(r, n), there is a closed immersion

inw Gr0(r, n) ↪→ Gr(w).
We deduce Theorem 1.1 from a stronger result, that when (r, n) = (3, 8), the above
maps are isomorphisms, and the limits Gr(w) are smooth. While the statement of this
theorem is geometric, the proof relies on techniques from matroid theory, commutative
algebra (computing the coordinate rings of thin Schubert cells and morphisms between
them) and polyhedral complexes (regular subdivisions of the hypersimplex and their
tight-spans). In a recent paper [8], the authors prove that Gr0(3, n) is not schön
for n ⩾ 12.

Figure 1. The matroid Qmk

Next, we study the connectedness properties of the initial degenerations of
Gr0(3, 8). Interestingly, they are not all connected. Let Qmk be the rank-3 matroid
from Figure 1, i.e. each 3-element set not connected by a (possibly curved) line is a
basis. This matroid appears frequently in the literature [4, 15, 16, 36], and is referred
to as the Möbius–Kantor or MacLane matroid. Denote by Cmk the cone of TGr0(3, 8)
containing the corank vector of Qmk in its relative interior (see §5).

Theorem 1.3. For any w in the relative interior of a cone in the S8–orbit of Cmk,
the initial degeneration inw Gr0(3, 8) has 2 connected components.

Up to S8–symmetry, this is the only non-connected initial degeneration of Gr0(3, 8).

Theorem 1.4. If w ∈ TGr0(3, 8) is not in the relative interior of a cone in the S8–
orbit of Cmk, then inw Gr0(3, 8) is irreducible.
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We apply these results to study the Chow quotient compactification of X(r, n),
the moduli space of projective equivalence classes of n marked hyperplanes of Pr−1 in
linear general position. The diagonal torus of GL(n) acts on Cn by scaling coordinates,
and this induces an action of the diagonal torus H ⊂ PGL(n) on Gr(r, n). This action
is free on Gr0(r, n), and X(r, n) is identified with the quotient Gr0(r, n)/H by the
Gelfand–MacPherson correspondence [13]. The space X(2, n) is also known as M0,n,
the moduli space of smooth rational n-marked curves.

A natural candidate to compactify X(r, n) is given by the Chow quotient
Gr(r, n)//H, studied by Kapranov [25], where he demonstrates that the Grothendieck–
Knudsen moduli space of genus 0, stable, n-marked curves M0,n is isomorphic to
Gr(2, n)//H. This is also the log-canonical compactification of M0,n [27]. Keel
and Tevelev show that Gr(r, n)//H is usually not log canonical, failing already
for (r, n) = (3, 9) [28]. With Hacking, they conjecture [28, Conjecture 1.6] that it is
log canonical when (r, n) = (2, n), (3, 6), (3, 7), and (3, 8). The conjecture is known
in the first 3 cases, by Keel and McKernan (mentioned above), Luxton [32], and
the first author [6], respectively. Using Theorems 1.1, 1.3 and 1.4, together with a
convexity result on TGr0(3, 8), we prove the (3, 8) case.

Theorem 1.5. The normalization of the Chow quotient Gr(3, 8)//H is the log canon-
ical compactification of X(3, 8).

Here is an outline of the paper. In §2, we review the relationship between initial
degenerations of Gr0(r, n) and finite inverse limits of thin Schubert cells induced
by a matroidal subdivision of the hypersimplex. We consider the general setup of
diagrams of schemes in §3, and develop various strategies to determine when their
inverse limits are smooth and irreducible. While not all morphisms between thin
Schubert cells of Gr(3, 8) are smooth and dominant, we develop general criteria in §4
to detect when they are smooth and dominant with connected fibers. The disconnected
initial degeneration of Theorem 1.3 is studied in §5. Theorems 1.1 and 1.4 are proved
in §6. We use the techniques from §§3–4 to prove that each inverse limit Gr(w)
smooth of dimension 15 and, excluding the case from Theorem 1.3, irreducible. For any
individual w, once one has the regular subdivision, one may carry out this verification
by hand, as we illustrate in several examples throughout that section. As there are
57 344 cases to consider, we must use software. Finally, we discuss the Chow quotient
in §7 and prove Theorem 1.5.

Code. For Proposition 4.3 and throughout §6, we use polymake.jl [11, 23] and
OSCAR [10, 38], both of which run using julia [3]. The code can be found at the
following github repository:

https://github.com/dcorey2814/Gr38Schoen

The data for TGr0(3, 8), computed in [2], can be found at the link:
https://www.mathematik.uni-kl.de/~boehm/singulargpispace/tropical.htm

2. Inverse limits of thin Schubert cells
2.1. Matroidal subdivisions. We assume that the reader is familiar with matroids;
a good general reference is [39]. While there are many ways of characterizing matroids,
the definition via bases is most relevant. A matroid of rank r on [n], called an (r, n)–
matroid, is a nonempty subset Q of

([n]
r

)
that satisfies the basis-exchange axiom.

Let N = Zn/⟨1⟩ and M = Hom(N,Z). We use the standard abbreviations MA =
M⊗ZA and NA = N⊗ZA where A is a Z-module. Denote by ϵ1, . . . , ϵn ∈ N the images
of the standard basis vectors under the projection Zn → N , and ϵλ = ϵi1 + · · · + ϵir
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whenever λ = {i1, . . . , ir} ∈
([n]

r

)
. Let ϵ∗1, . . . , ϵ∗n ∈ M be the dual basis and ϵ∗λ =

ϵ∗i1
+ · · ·+ ϵ∗ir

.
Given Q ⊂

([n]
r

)
, set

∆(Q) = conv{ϵ∗λ : λ ∈ Q} ⊂MR.

When Q is a matroid, ∆(Q) is the matroid polytope of Q. An important special case
is the uniform matroid Q =

([n]
r

)
, and its polytope ∆(Q) is the (r, n)–hypersimplex

which we denote ∆(r, n).
Let N(Q) = ZQ/⟨1⟩ and M(Q) = Hom(N(Q),Z). Denote by {eλ : λ ∈ Q} the

images of the standard basis vectors under ZQ → N(Q). For w ∈ N(Q)R := N(Q)⊗ZR,
denote by Q(w) the regular subdivision of ∆(Q) induced by w; this is the polyhedral
complex obtained by lifting, for each λ ∈ Q, the vertex ϵ∗λ of ∆(Q) to height wλ

in MR × R, then projecting the lower faces of this lifted polytope back down to MR.
See [9, Chapter 2] for a precise treatment.

If Q is a matroid, then the subdivision Q(w) is matroidal if each cell in Q(w) is a
matroid polytope. The Dressian of Q [21] is the set

Dr(Q) = {w ∈ N(Q)R : Q(w) is matroidal}.

This is the support of a polyhedral fan in N(Q).

2.2. Tropicalization. Consider a pair of finite-rank lattices M,N with a perfect
pairing

(u, v)→ ⟨u, v⟩.
Let T = Spec(C[M ]) be the torus whose character and cocharacter lattices are M
and N , respectively. Denote by xu ∈ C[M ] the monomial corresponding to u ∈ M .
Suppose X ⊂ T is a closed subvariety defined by a prime ideal I ⊂ C[M ]. Given
w ∈ NR, the w–initial form of f ∈ C[M ] is

inwf =
∑
⟨u,w⟩

is minimal

cux
u where f =

∑
u
cux

u.

The w–initial ideal of I is inwI = ⟨inwf : f ∈ I⟩. The tropicalization of X is

Trop(X) = {w ∈ NR : inwI ̸= ⟨1⟩}.

This set is the support of a rational polyhedral fan in NR. Given w ∈ Trop(X), the
w–initial degeneration of X, denoted inwX, is the subscheme of T defined by the
ideal inwI.

2.3. The Grassmannian. As a set, the Grassmannian Gr(r, n) consists of all r-
dimensional linear subspaces of Cn. It may be realized as a projective variety by the
Plücker embedding:

Gr(r, n) ↪→ P(∧rCn) ∼= P(n
r)−1 F 7→ ∧rF = [ζλ(F ) : λ ∈

([n]
r

)
].

The homogeneous coordinates ζλ(F ) are called the Plücker coordinates of F . Con-
cretely, if F ⊂ Cn is the row span of the full-rank (r × n)–matrix A, then ζλ(F ) is
the determinant of the (r × r)–submatrix of A whose columns are indexed by λ.

Given a matroid Q ⊂
([n]

r

)
, its thin Schubert cell is the scheme-theoretic intersection

Gr(Q) = Gr(r, n) ∩ T (Q)

where T (Q) = GQ
m/Gm is the locally-closed coordinate stratum of P(n

r)−1 whose
nonzero coordinates are exactly those belonging to Q. Of particular interest is the
thin Schubert cell of the uniform matroid Q =

([n]
r

)
, which we denote by Gr0(r, n);
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this is the open locus of Gr(r, n) determined by the nonvanishing of all Plücker coor-
dinates. The decomposition of the Grassmannian into thin Schubert cells refines the
decomposition by Schubert cells, see [29, §1.1] for a nice discussion on this.

Throughout, we use the abbreviations

TGr(Q) = Trop(Gr(Q)) and TGr0(r, n) = Trop(Gr0(r, n)).

The set TGr(Q) ⊂ N(Q)R is preserved under translation by the (n− 1)–dimensional
linear subspace LR, where L ⊂ N(Q) is the subgroup

(1) L =
〈 ∑

i∈λ∈Q
eλ,

∑
i/∈λ∈Q

eλ : i ∈ [n]
〉
.

We have an inclusion TGr(Q) ⊂ Dr(Q) by [42, Proposition 2.2] in the uniform matroid
case and [34, Lemma 4.4.6] in general. Of particular importance is that Q(w) is
matroidal for any w ∈ TGr(Q).

Denote by G (r, n) the Gröbner fan structure of TGr0(r, n) and Smat(r, n) the
secondary fan structure on Dr(r, n). By [45, Theorem 5.4], G (r, n) is a subfan of a
refinement of Smat(r, n). For (r, n) = (2, n), (3, 6) [43], (3, 7) [21], or (3, 8) [2], there
is a subfan Strop(r, n) of Smat(r, n) whose support is TGr0(r, n).

The face order on the set of (r, n)–matroids is defined by P ⩽ Q whenever ∆(P) is
a face of ∆(Q). For each pair P ⩽ Q, the coordinate projection T (Q)→ T (P) induces
a morphism φQ,P : Gr(Q) → Gr(P) [30, Proposition I.6]. Given w ∈ TGr(Q), the
regular subdivision Q(w) of ∆(Q) is matroidal in the sense of §2.1. The assignment

P 7→ Gr(P) P′ ⩽ P 7→ φP,P′ : Gr(P)→ Gr(P′)

defines a diagram of type Q(w) in the category of affine C-schemes, and therefore we
may form its inverse limit:

Gr(w) := lim←−
Q(w)

Gr .

The following theorem [6, Theorem 1.1] is fundamental to the proofs of the main
theorems in this paper.

Theorem 2.1. For any w ∈ TGr0(r, n), there is a closed immersion

inw Gr0(r, n) ↪→ Gr(w).

We thus obtain the following.

Corollary 2.2. Suppose w ∈ TGr0(r, n). If Gr(w) is smooth and irreducible of di-
mension r(n− r), then inw Gr0(r, n) is also smooth and irreducible.

Proof. Being a limit of a flat degeneration of Gr0(r, n), the initial degeneration
inw Gr0(r, n) is an affine scheme of dimension r(n − r). The inverse limit Gr(w) is
also an affine scheme, so if it is smooth, irreducible, and has the same dimension
as inw Gr(r, n), then the closed immersion from Theorem 2.1 is an isomorphism [6,
Proposition A.8]. □

In the course of proving Theorems 1.1, 1.3, and 1.4, we show that the closed
immersion in Theorem 2.1 is an isomorphism for each w ∈ TGr0(3, 8). This pro-
vides a conceptual explanation of [2, Theorem 4.9], which states that two vectors
w1,w2 ∈ TGr0(3, 8) lie in the same cone of Strop(3, 8) if and only if inw1 Gr0(3, 8) =
inw2 Gr0(3, 8). In contrast, the cones in the Gröbner fan parameterize the various
initial ideals of the homogeneous Plücker ideal.

Algebraic Combinatorics, Vol. 6 #5 (2023) 1277
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2.4. Limits over graphs and tight spans. Computing the inverse limit Gr(w)
seems like an unmanageable task given the size of the full face poset of Q(w). It
turns out that the codimension 0 and 1 cells that meet the relative interior of ∆(Q)
are sufficient to compute this limit. For added flexibility, we describe a collection of
subposets of Q(w) that carry enough information to determine the inverse limit Gr(w).

Let Q(w) be a regular subdivision of a lattice polytope ∆(Q) ⊂ MR induced by
the lifting function w ∈ N(Q). The dual graph of Q(w), denoted by Γ(w), is the graph
that has a vertex vP for each codimension-0 face P ∈ Q(w), and the vertices vP, vP′

are connected by an edge if and only if P and P′ meet along a common codimension-1
face.

The tight span of Q(w), denoted TS(w), is the polyhedral complex that has a cell
of dimension dim ∆(Q) − k for each k-dimensional cell of Q(w) meeting the relative
interior of ∆(Q), and with face identifications opposite those of Q(w). See [20] for a
precise treatment. The dual graph is exactly the 1-skeleton of the tight-span. Given
any polyhedral complex Σ with Γ(w) ⊂ Σ ⊂ TS(w), we may view Σop as a subposet
of Q(w), and hence we may form the limits of thin Schubert cells over this diagram.
We denote such a limit by lim←−Σ Gr.

Proposition 2.3. Given any polyhedral complex Σ with Γ(w) ⊂ Σ ⊂ TS(w), the
natural morphisms

Gr(w) Φ−→ lim←−
Σ

Gr Ψ−→ lim←−
Γ(w)

Gr

are isomorphisms.

Proof. The composition Ψ ◦ Φ is an isomorphism by a result of Cueto [6, Proposi-
tion C.12]; denote by Θ : lim←−Γ(w) Gr → Gr(w) its inverse. One readily verifies that
Φ ◦Θ is the inverse to Ψ. □

3. Tools to study finite inverse limits of schemes
We gather in this section a number of techniques that will allow us to study in-
verse limits of diagrams of schemes coming from contractible polyhedral complexes,
e.g. tight-spans of matroidal subdivisions of the hypersimplex. More precisely, we want
techniques to prove that a finite inverse limit is smooth and irreducible just by un-
derstanding the spaces and maps in the inverse limit system. With these techniques
in hand, we avoid the necessity to directly compute the inverse limit.

The key facts underlying most arguments in this section are contained in the follow-
ing proposition. Recall that an SDC–morphism of C-schemes is a morphism of schemes
φ : X → Y that is smooth, dominant, and its nonempty fibers are connected.

Proposition 3.1. Suppose we have morphisms of equidimensional C-schemes X →
W and Y →W .

(1) If Y is smooth and irreducible, and X → W is an SDC–morphism, then
X ×W Y , if nonempty, is smooth and irreducible.

(2) If Y is smooth with k connected components, and X → W is smooth and
surjective with connected fibers, then X ×W Y is smooth with k connected
components.

In either case, the dimension of X ×W Y is
dimX ×W Y = dimX + dim Y − dimW.

Proof. Part (1) is [6, Proposition A.2], so consider (2). Smoothness, surjectivity, and
connectivity of fibers are all preserved by base change, so X ×W Y → Y has these
properties. The fiber product X×W Y is a smooth C-scheme as X×W Y → SpecC is
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the composition of two smooth morphisms. By [44, Tag 0378], the morphism X ×W

Y → Y induces a bijection between the connected components of these spaces, and
hence X×W Y has k connected components. The dimension formula is standard, see,
e.g. [18, §III.9] □

Throughout this section, let Σ be a finite connected polyhedral complex, and Γ its
1-skeleton. We regard Σ as a quiver induced by its face order. Thus, we have an arrow
C′ → C whenever C′ is a facet of C in Σ. A diagram of type Σ in C –sch, the category
of C-schemes, is simply a functor Z : Σ→ C –sch. As finite inverse limits exist in the
category C –sch (indeed, it is enough to have fiber products and a terminal object,
see [1, Proposition 5.21]), we may form the inverse limit lim←−Σ Z.

Proposition 3.2. Suppose Z : Γ→ C –sch is a diagram over a tree Γ, and that Z(v)
is smooth and irreducible for all v ∈ V (Γ). Furthermore, suppose that Z(v → e) is an
SDC–morphism for all v ∈ V (Γ) and e ∈ E(Γ) adjacent to v, except for possibly one
vertex v0. Then lim←−Γ Z is smooth and irreducible of dimension

(2) dim lim←−
Γ
Z = −

∑
e∈E(Γ)

dimZ(e) +
∑

v∈V (Γ)

dimZ(v).

Proof. We proceed by induction on the number of edges. The proposition is trivial
if Γ has no edges, so assume that Γ has n edges and that the proposition is true
for graphs with fewer than n edges. Suppose v ̸= v0 is connected to v0 by the edge
e. Then Z(v) ×Z(e) Z(v0) is smooth and irreducible by Proposition 3.1. Let Z ′ be
the diagram on Γ/e where Z ′(v) = Z(v) ×Z(e) Z(v0) at the contracted vertex, and
Z ′ = Z otherwise. By [6, Proposition A.5] we have that lim←−Γ Z

∼= lim←−Γ/e
Z ′. As Z ′ is a

diagram on a graph with fewer edges and satisfies the hypotheses of the proposition,
the limit lim←−Γ/e

Z ′ is smooth and irreducible by the inductive hypothesis. □

3.1. Removing leaves. A leaf of Σ is a vertex v of Σ that is a leaf vertex of Γ. A
leaf-pair is a pair (v, e) such that v is a leaf and e is its adjacent edge. Let ΣL ⊂ Σ be
the subcomplex obtained by removing all leaf-pairs from Σ.

Proposition 3.3. If lim←−ΣL
Z is smooth and irreducible and Z(v → e) is an SDC–

morphism for each leaf pair (v, e) then lim←−Σ Z is smooth and irreducible of dimension

(3) dim lim←−
Γ
Z = dim lim←−

ΣL

Z −
∑

e leaf
edge

dimZ(e) +
∑

v leaf
vertex

dimZ(v).

Proof. Let Γ′ be the star-shaped graph obtained by contracting ΣL to a point. Let Z ′

be the diagram on Γ′ defined by Z on all leaf-pairs, and lim←−ΣL
Z on the newly-formed

vertex. Set
YLeaf =

∏
v leaf
vertex

Z(v) Y ′
Leaf =

∏
e leaf
edge

Z(e)

and note that YLeaf → Y ′
Leaf is an SDC–morphism since each Z(v → e) is an SDC–

morphism. By [6, Proposition A.5] and Proposition 2.3, we have
lim←−

Σ
Z ∼= lim←−

Γ′

Z ′.

The proposition now follows from Proposition 3.2. □

Observe that ΣL ⊂ Σ may still have leaves. The process of iteratively removing leaf-
pairs must terminate, and the result is the subcomplex ΣBr ⊂ Σ, which is nonempty
provided Σ is not a tree. This is similar to the split prime remainder in the sense
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Figure 2. A fin and the corresponding quiver. The vertices v1, v2
and edges e15, e12, e23 are exposed

of [22]. A maximal connected subgraph of Σ∖ΣBr is called a branch of Σ. Any vertex
in a branch is called a branch vertex and any edge contained in a branch, or connecting
a branch to the rest of Σ, is called a branch edge. The following proposition follows
from Proposition 3.3 and induction.

Proposition 3.4. If lim←−ΣBr
Z is smooth and irreducible and Z(v → e) is an SDC–

morphism for each pair (v, e) of a branch vertex v and adjacent edge e, then lim←−Σ Z

is smooth and irreducible of dimension

(4) dim lim←−
Γ
Z = dim lim←−

ΣBr

Z −
∑

e branch
edge

dimZ(e) +
∑

v branch
vertex

dimZ(v).

3.2. Removing fins. Suppose F is a closed 2-dimensional cell of Σ with k vertices
(k ⩾ 3). We say that F is a fin if its intersection with Σ ∖ F is a path of edge-length
ℓ with 1 ⩽ ℓ ⩽ k − 2; this path is called the connecting path of F. See Figure 2 for an
illustration. Denote by V (F) the vertices of F and E(F) its edges. A vertex v ∈ V (F),
resp. an edge e ∈ E(F), is exposed if v /∈ Σ ∖ F, resp. e ̸⊂ Σ ∖ F. Denote by

Evert(F) = {v ∈ V (F) : v is exposed} Eedge(F) = {e ∈ E(F) : e is exposed}.
Order the vertices of F cyclically v1, . . . , vk so that the first k− ℓ− 1 are the exposed
vertices. Let ei,i+1 be the edge between vi and vi+1 (where the indices are taken
modulo k). Denote by ZE (F) the fiber product
(5) ZE (F) = Z(v1)×Z(e1,2) Z(v2)×Z(e2,3) · · · ×Z(ek−ℓ−2,k−ℓ−1) Z(vk−ℓ−1)

and let φF : ZE (F) → Z(e1,k) ×Z(F ) Z(ek−ℓ−1,k−ℓ) be the morphism induced by
Z(v1 → e1,k) and Z(vk−ℓ−1 → ek−ℓ−1,k−ℓ).

Proposition 3.5. Suppose Z : Σ → C –sch is a diagram, F is a fin of Σ, and Σ′ =
Σ ∖ F. Then we have a pullback diagram

lim←−Σ Z ZE (F)

lim←−Σ′ Z Z(e1,k)×Z(F ) Z(ek−ℓ−1,k−ℓ).

φF

The proof amounts to showing that lim←−Σ Z satisfies the universal property of fiber
products. It is similar to [6, Proposition A.5], so we omit the proof.
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Given a collection of fins F, let Σ(F) ⊂ Σ be the subcomplex obtained by removing,
for each F ∈ F, the relatively open cell F◦ and the exposed vertices and edges of F.
Proposition 3.6. If lim←−Σ(F) Z is smooth and irreducible and φF is an SDC–morphism
for each F ∈ F, then lim←−Σ Z is smooth and irreducible of dimension

(6) dim lim←−
Σ

Z = dim lim←−
Σ(F)

Z +
∑
F∈F

dim Z(F)−
∑

e∈Eedge(F)

dim Z(e) +
∑

v∈Evert(F)

dim Z(v)

 .

Proof. This follows from Propositions 3.1 and 3.5 applied to each fin F ∈ F. □

4. Computations on thin Schubert cells
By the Mnëv universality theorem (see [30, 31]), the collection of schemes Gr(Q),
as Q runs through the C-realizable (3, n)–matroids, satisfies Murphy’s law in the
sense of Vakil [46]. Nevertheless, for small values of n, many such Gr(Q) are smooth
and irreducible; in fact Gr(Q) is smooth and irreducible for all (3, n)–matroid with
n ⩽ 7 [6, Proposition 4.2]. In this section, we show that Gr(Q) are smooth for all C-
realizable (3, 8)–matroids, but there is one Gr(Q) that has 2 connected components.

4.1. Affine coordinates for thin Schubert cells. We recall the affine coordi-
nate ring construction of Gr(Q), following [6, Construction 2.2]. Given any r× n (for
r ⩽ n) matrix A, denote by coli(A) the i-th column of A. With λ = {i1 < · · · < is}
define the r × s submatrix Aλ = [coli1A, . . . , colis

A].
Define B to be the polynomial ring

B = C[xij : i ∈ [r], j ∈ [n− r]].

Given µ = {j1 < · · · < jr} ∈
([n]

r

)
, let A(µ) be the B–valued matrix such that (A(µ))µ

is the r×r identity matrix, and (A(µ))[n]∖µ is the r×(n−r) matrix [xij ]. Of particular
importance is the case µ = [r], where we write A := A(µ), which is

(7) A =


1 0 · · · 0 x11 x12 · · · x1,n−r

0 1 · · · 0 x21 x22 · · · x2,n−r

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 1 xr1 xr2 · · · xr,n−r


Let Q be an (r, n)–matroid, µ a basis of Q, and aµ : [n − r] → [n] ∖ µ the unique

order-preserving bijection. When µ = [r], this function is aµ(j) = r + j. Let
Bµ

Q = C[xij : µ∆{i, aµ(j)} ∈ Q]
where ∆ denotes the symmetric difference, and define the quotient ring map

πQ : B → B/⟨xij : µ∆{i, aµ(j)} ∈
([n]

r

)
∖ Q⟩ ∼= Bµ

Q.

Define the ideal Iµ
Q and multiplicative semigroup Sµ

Q by

(8) Iµ
Q = ⟨πQ(detA(µ)

λ ) : λ ∈
([n]

r

)
∖ Q⟩ Sµ

Q = ⟨πQ(detA(µ)
λ ) : λ ∈ Q⟩semigp.

The affine coordinate ring of Gr(Q) is isomorphic to
Rµ

Q := (Sµ
Q)−1Bµ

Q/I
µ
Q.

To simplify notation, when µ = [r], we write BQ = Bµ
Q, IQ = Iµ

Q, SQ = Sµ
Q, and

RQ = Rµ
Q.

Given (r, n)–matroids P,Q with P ⩽ Q in the face order (see §2.3) and µ a basis
of P (and therefore a basis of Q), the morphism φQ,P : Gr(Q) → Gr(P) is defined by
the ring map [6, Proposition 3.2]
(9) (φQ,P)# : Rµ

P → Rµ
Q xij → xij .
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Remark 4.1. There is a further simplification one can make to compute the coordinate
ring of Gr(Q). We describe this in the case when Q is connected. Recall from the intro-
duction that the diagonal torus H ⊂ PGL(n) acts on Gr(r, n). For any C-realizable
(r, n)–matroid, this restricts to an action H ↷ Gr(Q). Since Q is connected, this ac-
tion is free. Let X(Q) := Gr(Q)/H. As Gr(Q) is affine, we have Gr(Q) ∼= X(Q)×H.

Suppose there is a (r+1)–element subset λ of [n] such that each r-element subset of
λ is a basis. Applying a suitable permutation, we may assume that λ = {1, . . . , r+1}.
Let A′ be the matrix obtained from the matrix A in Formula (7) by turning the
(r + 1)–st column into the column [1, · · · , 1]T . Consider the polynomial ring

B′ = C[x12, . . . , xr2]⊗C · · · ⊗C C[x1,n−r, . . . , xr,n−r]

with the Zn−r−1
⩾0 –grading induced by the n − r − 1 tensor-components. Define IQ

and SQ in a way analogous to Formula (8), with A′ and B′ in place of A and B,
respectively. Then X(Q) is the locally-closed subscheme of the multiprojective space
(Pr)n−r−1 cut out by the multihomogeneous ideal IQ and localized at SQ. See [5]
for scheme-theoretic treatments of multiprojective schemes. For each 2 ⩽ j ⩽ n − r,
there is an i ∈ [r] such that [r]∆{i, r + j} is a basis of Q, and so we may set xij = 1.
Dehomogenizing in this way produces the affine coordinate ring of X(Q).

4.2. The (3,8) case. Let Qmk be the matroid from Figure 1, i.e. it is the (3, 8)–
matroid whose bases are the elements of

([8]
3

)
other than

(10) 126, 145, 178, 235, 248, 347, 368, 567.

Proposition 4.2. The thin Schubert cell Gr(Qmk) is a smooth affine scheme with two
connected components of dimension 7.

Proof. As Gr(Qmk) ∼= X(Qmk) ×H and dimH = 7, it suffices to show that X(Qmk)
consists of two reduced points. Any r×n matrix representing Qmk is in the (GL(r)×
H)–orbit of

(11) A′ =

1 0 0 1 0 1 1 1
0 1 0 1 1 a 1 a
0 0 1 1 1 0 1− a 1


where a is one of the 2 solutions of x2 − x+ 1 = 0. This amounts to the fact that the
affine coordinate ring of X(Q) is isomorphic to

C[a]/⟨a2 − a+ 1⟩ ∼= C× C.

which may be verified using Remark 4.1. □

The realization space X(Qmk) has been computed previously, see e.g. [4, p. 33].

Proposition 4.3. If Q is a C-realizable (3, 8)–matroid other than Qmk, then Gr(Q) is
smooth and irreducible.

Proof. The (3, 8)–matroids have been enumerated by [35]. Up to S8–symmetry, there
are 325 such matroids, 68 of which are simple. Of the simple matroids, all but the
ones isomorphic to Qmk have the following property: there exists an i ∈ [8] that is
contained in 2 or fewer rank-2 cyclic flats. In fact, every element of [8] is contained in
exactly 3 rank-2 cyclic flats of Qmk. Thus the proposition follows from [6, 4.1-2]. □

Remark 4.4. The irreducibility statement of Proposition 4.3 follows from Theo-
rems 3.11, 3.15, and Proposition 4.6 of [36], which does not rely on computer com-
putations. It is expected that their techniques may be used to prove the smoothness
statement.
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4.3. Maps between thin Schubert cells. Given a connected (r, n)–matroid Q
and P ⩽ Q (i.e. ∆(P) is a face of ∆(Q)), we say that P is internal if ∆(P) is contained
in the interior of ∆(r, n). If P ⩽ Q are (3, n)–matroids for n ⩽ 6, or if P ⩽ Q are (3, 7)–
matroids such that Q is connected and P is internal, then Gr(Q)→ Gr(P) is an SDC–
morphism [6, Propositions 5.4,5.5]. In general, the morphisms φQ,P : Gr(Q)→ Gr(P)
are not expected to be smooth or dominant when P ⩽ Q, and we see this when n = 8.

One such example is depicted in Figure 3. In the matroid on the left, the points
labeled 1, 2, 3, 4 all lie on a P1, and the cross-ratio (1, 3; 2, 4) equals −1, see [12, §5.2].
However, there is no such constraint for the matroid on the right. So the morphism
φQ,P is not dominant, nor is it smooth (as it is not open). Nevertheless, enough of the
morphisms between (3, 8)–matroid strata are smooth and dominant with connected
fibers to allow us to prove Theorem 1.1. We record some observations to simplify our
analysis in the following two sections.

Figure 3. An example of a non-smooth, non-dominant morphism
of thin Schubert cells

Let Q be a loopless (r, n)–matroid whose rank-1 flats are η1, . . . , ηk. Choose a1 ∈
η1, a2 ∈ η2, . . . , ak ∈ ηk and set S = {a1, . . . , ak}. Then Q|S is a simple matroid, and
is called a simplification of Q. Such a set S is called a simplifying set of Q. Given a
vector v ∈ NR, denote by facev Q the matroid

facev Q = {ξ ∈ Q : ⟨e∗
ξ , v⟩ ⩽ ⟨e∗

ξ′ , v⟩ for all ξ′ ∈ Q};
this is the matroid of the face of ∆(Q) ⊂ MR normal to v ∈ NR. Now suppose Q
is connected. A subset λ ⊂ [n] is a nondegenerate subset of Q if Q|λ and Q/λ are
connected. Recall from [14, § 2.5] that face−ϵλ

Q ∼= Q|λ×Q/λ and λ 7→ ∆(face−ϵλ
Q)

defines a bijection between the nondegenerate subsets of Q and the facets of ∆(Q).
Now suppose Q has rank 3. A subset λ ⊂ [n] is a line if λ is a rank-2 flat and λ∩S

is a cyclic flat of Q|S; equivalently, λ is a rank-2 flat such that |λ ∩ S| ⩾ 3. If Q is
simple, then a line is simply a rank-2 cyclic flat, but in general being a line is a slightly
stronger condition than being a rank-2 cyclic flat.

Proposition 4.5. Suppose Q is a connected (3, n)–matroid with 2 or fewer lines. Then
Gr(Q) is smooth and irreducible, and φQ,P : Gr(Q) → Gr(P) is an SDC–morphism
for any internal P ⩽ Q.

The analog of the second part for matroids Q with 3 or more lines is false by [6,
Example 8.4].

Proof. That Gr(Q) is smooth and irreducible follows from [6, 4.1-2]. Suppose P ⩽ Q
is internal. Given a simplifying set S of Q, we have that P|S ⩽ Q|S and Gr(Q) →
Gr(P) is an SDC–morphism provided Gr(Q|S) → Gr(P|S) is an SDC–morphism [6,
Lemma C.5] (Appendix by Cueto). However, P|S ⩽ Q|S may no longer be internal.
Therefore, it suffices to prove that φQ,P is an SDC–morphism if Q is simple with fewer
than 2 lines, and P ⩽ Q such that ∆(P) is a (not necessarily internal) facet of ∆(Q).
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By [6, Proposition 5.1], P = face−ϵλ
Q where |λ| ∈ {1, n− 1} or λ is a line. If λ is

a line or |λ| = n− 1, then φQ,P is an SDC–morphism by [6, 4.1,5.3-4]. We are left to
consider the case |λ| = 1, say λ = {a}. Suppose Q has 2 lines λ1, λ2, which meet at a
point.

Case 1: a ∈ λ2 ∖ λ1. Say a = 3, λ1 = {1, 2, 4, . . . , k + 3} and λ2 = {1, 3, k +
4, . . . , ℓ+ 3}. Then Gr(Q)→ Gr(P) is an SDC–morphism because

RQ ∼= S−1
Q RP[x±

3,k+1, . . . , x
±
3n].

Case 2: a ∈ λ1 ∩ λ2. We may assume λ1 and λ2 are as in the previous case, and
that a = 1. Then Gr(Q)→ Gr(P) is an SDC–morphism because

RQ = S−1
Q RP[x±

11, . . . , x
±
1n].

Case 3: a /∈ λ1∪λ2. Suppose a = 1, λ1 = {2, 3, . . . , k+3}, λ2 = {3, k+4, . . . , ℓ+3}.
RQ = S−1

Q RP[x±
1,k+1, . . . , x

±
1n]/⟨x1cx2ℓ − x2cx1ℓ : k < c < ℓ⟩.

As x1c ≡ x2cx1ℓ/x2ℓ for k < c < ℓ in RQ, we see that RQ ∼= S−1
Q RP[x±

1ℓ, . . . , x
±
1n], and

so Gr(Q)→ Gr(P) is an SDC–morphism.
Now suppose λ1 ∩ λ2 = ∅.
Case 1: a ∈ λ1. Say a = 3, λ1 = {3, 4, . . . , k + 3} and λ2 = {1, 2, k + 4, . . . , ℓ+ 3}.

Then
RQ = S−1

Q RP[x±
3,k+1, . . . , x

±
3,n].

Case 2: a /∈ λ1∪λ2. Say a = 3, λ1 = {1, 4, . . . , k+3} and λ2 = {2, k+4, . . . , ℓ+3}.
Then Gr(Q)→ Gr(P) is an SDC–morphism since

RQ = S−1
Q RP[x±

31, . . . , x
±
3n]

/〈
x2cx3k − x3cx2k 1 ⩽ c < k
x1cx3ℓ − x3cx1ℓ k < c < ℓ

〉
∼= S−1

Q RP[x±
31, x

±
3k, x

±
3ℓ, x

±
3,ℓ+1, . . . , x

±
3n].

The cases where Q has 0 or 1 lines are handled in a similar fashion (and in fact, are
easier). □

Figure 4. The matroids U,U′,V,W

For many examples in this paper, we must isolate a few types of matroids. Given
a partition of [n] into λ1, λ2, λ3, λ4, let U(λ1, λ2, λ3, λ4) be the matroid on the left in
Figure 4; i.e. this is the unique matroid whose rank-1 flats are the λi’s and whose sim-
plification is the uniform (3, 4)–matroid. Define in a similar fashion U′(λ1, λ2, λ3;λ4),
V(λ1, λ2, λ3;λ4, λ5) and W(λ1;λ2, λ3;λ4, λ5) the remaining matroids in Figure 4.
When clear from the context, we simply write U,U′,V,W for these matroids. We
record the following computation.
Proposition 4.6. The thin Schubert cells of the matroids U, U′, V, and W are smooth
and irreducible. Their dimensions are

dim Gr(U) = |λ1|+ |λ2|+ |λ3|+ |λ4| − 1 dim Gr(U′) = |λ1|+ |λ2|+ |λ3|+ |λ4| − 2
dim Gr(V) = |λ1|+ |λ2|+ |λ3|+ |λ4|+ |λ5| dim Gr(W) = |λ1|+ |λ2|+ |λ3|+ |λ4|+ |λ5| − 1.

Furthermore, for any pair Q′ ⩽ Q with Q ∼= U,V,W, the map φQ,Q′ is an SDC–
morphism.
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Proof. The statements on smoothness and irreducibility of the thin Schubert cells,
and that the maps are SDC–morphisms, follow from Proposition 4.5. To compute
their dimensions, we can apply [6, Lemmas C.2,C.5] (Appendix by Cueto) to reduce
to the simple-matroid case. For example, consider the matroid Q = W(1; 2, 4; 3, 5).
The ring RQ is

RQ = C[x±
11, x

±
21, x

±
21, x

±
23]

and therefore dim Gr(Q) = 4. The remaining cases may be handled in a similar
fashion. □

4.4. B–maximality. Given an (r, n)–matroid Q and a basis µ ∈ Q, define
(12) d(Q, µ) = |{λ ∈ Q : |λ∆µ| = 2}| .
Observe that d(Q, µ) is the Krull dimension of Bµ

Q, and so d(Q, µ) ⩾ dim Gr(Q).
Intuitively, a smaller d(Q, µ) produces a simpler ideal Iµ

Q. We say that Q is (B,µ)–
maximal if dim Gr(Q) = d(Q, µ), and Q is B–maximal if there is a µ ∈ Q such that Q
is (B,µ)–maximal.
Proposition 4.7. Suppose Q is a (B,µ)–maximal matroid for some µ ∈ Q.

(1) The thin Schubert cell Gr(Q) is an open subscheme of (Gm)d(Q,µ), and there-
fore smooth and irreducible.

(2) If P ⩽ Q, then P is an open subscheme of (Gm)d(P,µ), and φQ,P : Gr(Q) →
Gr(P) is an SDC–morphism.

Proof. Without loss of generality, assume that µ = [r], in particular P and Q have [r]
as a basis. The equality dim Gr(Q) = d(Q, µ) implies that IQ = ⟨0⟩; this proves (1).

Given the nature of the map (φQ,P)# : RQ → RP as described by Formula 9 we
also have that IP = ⟨0⟩. With a = d(P, µ) and b = d(Q, µ), we have that Gr(P)
and Gr(Q) are open subschemes of Ga

m and Gb
m, respectively. The morphism φQ,P :

Gr(Q)→ Gr(P) is induced by a coordinate projection Ga
m → Gb

m, and therefore it is
an SDC–morphism. This completes the proof of (2). □

Suppose w ∈ N(Q) such that Q(w) is matroidal, Σ ⊂ TS(w) a connected sub-
complex (in most applications, Σ is the subcomplex ΣL obtained by removing all leaf
vertices and edges from TS(w)), and F is a fin of Σ. Assume that the vertices and
edges of F are labeled as in §3.2, and let Qi, Qi,i+1, QF be the matroids correspond-
ing to the vertex vi, edge ei,i+1, and fin F, respectively. Denote by GrE (F) the fiber
product from Formula (5) applied to Z = Gr. The morphisms Gr(Q1) → Gr(Q1,k)
and Gr(Qk)→ Gr(Qk−ℓ,k−ℓ+1) induce a morphism

φF : GrE (F)→ Gr(Q1,k)×Gr(QF) Gr(Qk−ℓ,k−ℓ+1).
We say that the fin F is B–maximal if there is a µ ∈ QF such that d(Qi, µ) =
dim Gr(Qi) for i = 1, . . . , k − ℓ.
Proposition 4.8. If F is B–maximal, then φF is an SDC–morphism.
Proof. Without loss of generality, assume that µ = [r]; in particular each Qi, Qi,i+1,
and QF has [r] as a basis. By Proposition 4.7, we have that

Gr(Qi) ⊂ (Gm)d(Qi,µ) Gr(Qi,i+1) ⊂ (Gm)d(Qi,i+1,µ) Gr(QF) ⊂ (Gm)d(QF,µ)

as open subschemes, and the morphisms
Gr(Qi)→ Gr(Qi,i+1) Gr(Q1,k)→ Gr(QF) Gr(Qk−ℓ,k−ℓ+1)→ Gr(QF)

are induced by coordinate projections of tori. This implies that the schemes GrE (F)
and Gr(Q1,k)×Gr(QF) Gr(Qk−ℓ,k−ℓ+1) may be realized as open subschemes of tori, and
the morphism φF is induced by a coordinate projection of tori. Therefore, φF is an
SDC–morphism. □
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5. A reducible initial degeneration
Recall from the introduction and §4.2 that Qmk is the (3, 8)–matroid with nonbases
as in (10). Given a (r, n)–matroid Q, its corank vector is the vector w in ∧dRn ∼= R(n

r)
where wλ is the corank of λ ⊂ [n] in Q. Let wmk be the corank vector of Qmk. The cone
of Strop(3, 8), the secondary fan structure of TGr0(3, 8) described in 2.3, containing
wmk in its relative interior is

Cmk = R⩾0⟨e126, e145, e178, e235, e248, e347, e368, e567⟩+ LR.

The tight-span TS(wmk) is a star-shaped tree. The matroid of the center node is Qmk.
There are 8 leaves, one corresponding to each nonbasis of Qmk. The matroids of the
leaf vertices and adjacent edges are

Q(ijk) = U(i, j, k, [8] ∖ ijk), and Q′(ijk) = U′(i, j, k; [8] ∖ ijk),

respectively, where U and U′ are the left 2 matroids in Figure 4, and ijk run through
the nonbases of Qmk.

Proposition 5.1. Let C be any cone of Strop(3, 8) in the S8–orbit of Cmk, and w
in the relative interior of C . The inverse limit Gr(w) is smooth, 15-dimensional, and
has 2 connected components.

Proof. It suffices to consider only w = wmk. With

YLeaf =
∏
ijk

Q(ijk) and Y ′
Leaf =

∏
ijk

Q′(ijk).

we have
Gr(w) ∼= Gr(Qmk)×Y ′

Leaf
YLeaf .

As the morphism YLeaf → Y ′
Leaf is smooth and surjective with connected fibers, its

pullback φ : Gr(w) → Gr(Qmk) is also smooth and surjective with connected fibers.
The thin Schubert cell Gr(Qmk) is smooth and 7-dimensional with 2 connected com-
ponents by Proposition 4.2. Therefore, Gr(w) is smooth and 15-dimensional with 2
connected components by Proposition 3.1. □

We prove Theorem 1.3 in the following form.

Theorem 5.2. Let C be any cone of Strop(3, 8) in the S8–orbit of Cmk, and w in the
relative interior of C . The initial degeneration inw Gr0(3, 8) is smooth and has two
connected components.

Proof. It suffices to consider the case w = wmk. Being the limit of a flat degeneration
of Gr0(3, 8), the initial degeneration inw Gr0(3, 8) is 15-dimensional. As Gr(w) is a
smooth and 15-dimensional affine scheme with 2 connected components, the closed
immersion from Theorem 2.1 is an isomorphism if its image meets the two components
of Gr(w). Denote by ψ : inw Gr0(3, 8)→ X(Qmk) the composition

inw Gr0(3, 8) φw−−→ Gr(w)→ Gr(Qmk)→ X(Qmk)

where the middle morphism is φ from the proof of Proposition 5.1 and the right
morphism is the quotient by the diagonal torus H ⊂ PGL(8); both morphisms are
surjective with connected fibers. Consider the C(t)–valued matrix

At =

1 0 0 1 t 1 + 4t 1− t 1− t2
0 1 0 1 + t 1 + t a+ t 1− 2t a− t
0 0 1 1 + 2t 1 + 3t 2t 1− a+ t 1 + t2
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where a ∈ C is a solution of x2−x+1 = 0. Denote by p⃗(At) the vector of homogeneous
Plücker coordinates of At. The tropicalization (i.e. coordinatewise valuation with re-
spect to the t-adic valuation on C(t)) of p⃗(At) is w, so its exploded tropicalization
x⃗(At) = Trop(p⃗(At)) (in the sense of [40]) lies in inw Gr0(3, 8). By [6, Remark 3.6] the
morphism ψ takes x⃗(At) to p⃗(A), where A is the matrix from Formula (11). Switching
between the two solutions a of x2 − x+ 1 = 0, this shows that ψ is surjective. As the
composition Gr(w)→ X(Qmk) is continuous and surjective and φw is continuous, the
image of φw meets the two connected components of Gr(w), as required. □

6. Proofs of Theorem 1.1 and 1.4
In this section we prove Theorems 1.1 and 1.4. We do so by showing that, except
for w contained in the relative interior of a cone in the S8–orbit of Cmk, the inverse
limits Gr(w) of (3, 8)–matroid strata are smooth and irreducible of dimension 15,
and therefore so are inw Gr0(3, 8) by Corollary 2.2. We begin by describing how to
compute the coordinate ring of an inverse limit of thin Schubert cells using the affine
coordinates from §4.1.

6.1. Coordinate rings for finite inverse limits of thin Schubert cells.
First, consider the more general setup. Let ∆ ⊂ MR be any lattice polytope with
vertex-set Q. For w ∈ N(Q)R, let Q(w) be the corresponding regular subdivision of ∆,
and TS(w) its tight-span. Given a cell C of TS(w), denote by ∆C the corresponding
cell of Q(w). Let Σ ⊂ TS(w) be a connected subcomplex, and ∆ ⊂ Q(w) its dual
(i.e. the union of cells ∆C for C ⊂ Σ). We say that Σ is vertex-intersecting if⋂

v∈V (Σ)
∆v ̸= ∅

and Σ is vertex-connecting for each vertex x of ∆, the subcomplex of Σ formed by
the cells C with x ∈ ∆C is connected.

Proposition 6.1. Suppose (v, e) is a leaf pair of Σ, and Σ′ is the subcomplex obtained
by removing v and e. If Σ is vertex-connecting then Σ′ is vertex-connecting.

Proof. This follows from the fact that there is a hyperplane in MR that separates ∆v

from the rest of ∆ along ∆e. □

Proposition 6.2. Suppose F is a fin of Σ whose connecting path has length 1, and Σ′

is the subcomplex obtained by removing F◦ and all of its exposed vertices and edges.
If Σ is vertex-connecting then Σ′ is vertex-connecting.

Proof. Suppose C and C′ are two cells of Σ′ such that x ∈ ∆C ∩∆C′ . As Σ is vertex-
connecting, there is a sequence C∗ = (C1,C2, . . . ,Ck−1,Ck) of distinct cells in Σ such
that

- C = C1 and C′ = Ck,
- Ci is a face of Ci+1 (or vice versa), and
- x ∈ ∆Ci

for each i = 1, . . . , k.
If C∗ passes through F, then x ∈ ∆F and therefore x ∈ ∆e where e is the connecting
edge. So one may modify C∗ so that it misses F, as well as its exposed vertices and
edges. If C∗ does not pass through F but does pass through an exposed vertex or edge,
then it must pass through all exposed vertices and edges, as well as the vertices of
the connecting edge e. This implies again that x ∈ ∆e, so we may modify C∗ to be a
path entirely in Σ′. □

Now suppose Q is a matroid, w ∈ Dr(Q), and Σ ⊂ TS(w) is a connected sub-
complex. Given a cell C of Σ, let QC be its corresponding matroid. Suppose Σ is
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vertex-intersecting; this means that there is a basis common to the Qv for v ∈ V (Σ).
For simplicity, assume that the common basis is [r]. Define

BΣ = C[xij : [r]∆{i, r + j} ∈ Qv for some v ∈ V (Σ)].

Next, define the ideal and multiplicative semigroup

IΣ =
∑

v∈V (Σ)

IQv
·BΣ and SΣ = ⟨SQv

: v ∈ V (Σ)⟩semigp;

note that we may view each SQv as a subset of BΣ under the inclusion BQv ⊂ BΣ.
Finally, set

(13) RΣ = (SΣ)−1BΣ/IΣ.

Proposition 6.3. If Σ is vertex-intersecting and vertex-connecting, then the coordi-
nate ring of the inverse limit lim←−Σ Gr is isomorphic to RΣ.

Proof. The proof is similar to that of [7, Proposition 6.5], so we only provide a sketch.
The coordinate ring of lim←−Σ Gr is lim−→Σ RQ (indeed, Spec is right-adjoint to the global-
sections functor, and hence takes direct limits to inverse limits). For each cell C of Σ,
the inclusion BQC ⊂ BΣ induces a ring morphism RQC → RΣ. By the universal
property, these induce a ring map Φ : lim−→Σ RQ → RΣ. Now let us define the inverse
Ψ : RΣ → lim−→Σ RQ. Suppose xij ∈ BΣ, and C is a cell such that xij ∈ BQC . Set
Ψ(xij) = αC(xij) where αC : RQC → lim−→Σ RQ is the structure map. Suppose xij also
lies in BQC′ ; as Σ is vertex-connecting, we may reduce to the case where C′ is a face
of C. Then αC′(xij) = (φQC,QC′ )# ◦αC(xij), and so Ψ : BΣ → lim−→Σ RQ is well-defined.
All that is left is to show that Ψ passes to the localization and quotient RΣ, which is
a verification we leave to the reader. □

6.2. Combinatorial classification of diagrams. The secondary fan structure
of the tropical Grassmannian TGr0(3, 8) is computed in [2]. It has a 7-dimensional
lineality space, and its f -vector is

f(TGr0(3, 8)) = (f7, . . . , f15) ≡ (1, 12, 155, 1149, 5013, 12 736, 18 798, 14 714, 4766) mod S8.

A combinatorial type is a S8–orbit of a cone in Strop(3, 8), and we typically record
a combinatorial type by a vector w in the relative interior of a cone in an S8–orbit.
There are 57 344 combinatorial types of Strop(3, 8). Consider the following conditions
(see §3.1 for the definitions of ΣL and ΣBr):

(1) The tight-span TS(w) is vertex-intersecting.
(2) The dual graph Γ(w) is a tree.
(3) The subcomplex ΣL of TS(w) is vertex-intersecting.
(4) The subcomplex ΣBr of TS(w) is vertex-intersecting.
(5) The subcomplex of ΣL obtained by removing all fins of ΣL whose connecting

path (see §2.4) has length 1 is vertex-intersecting.
(6) The subcomplex of ΣL obtained by removing all fins of ΣL (of any connecting

path length) is a tree.
While these conditions are not mutually exclusive, we can still use this to separate
all the subdivisions into 6 sets: set Gj consists of those subdivisions that satisfy
condition (j) but not (i) for i < j.
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6.3. Case G1. There are 13 641 subdivisions belonging to the set G1.

Proposition 6.4. If w ∈ G1, then Gr(w) is smooth and irreducible of dimension 15.

This is a direct consequence of the following proposition.

Proposition 6.5. Suppose w ∈ TGr0(r, n) and TS(w) is vertex-intersecting. Then
Gr(w) is isomorphic to an open subvariety of Ar(n−r). In particular, inw Gr0(r, n) and
Gr(w) are smooth and irreducible of dimension r(n− r).

Proof. The tight-span TS(w) is basis-connecting by [6, Proposition C.11] (Appen-
dix by Cueto). By Proposition 6.3, we have that Gr(w) is a locally-closed sub-
scheme of Ar(n−r), in particular dim Gr(w) ⩽ r(n − r). By Theorem 2.1, we have
that dim Gr(w) ⩾ r(n − r) as the dimension of inw Gr0(r, n) is r(n − r). Therefore,
dim Gr(w) = r(n− r), and so it is isomorphic to an open subvariety of Ar(n−r). The
last statement in the proposition follows from Corollary 2.2. □

6.4. Case G2. There are 215 subdivisions belonging to the set G2.

Proposition 6.6. Suppose Γ ⊂ Γ(w) is a tree, and Qv is B–maximal for all v ∈ V (Γ)
except (possibly) one, say Qv0 . If Gr(Qv0) is smooth and irreducible, then so is lim←−Γ Gr.

Proof. The diagram Gr : Γ → C –sch satisfies the hypotheses of Proposition 3.2 by
Proposition 4.7, and so the limit lim←−Γ Gr is smooth and irreducible. □

Proposition 6.7. If w represents a combinatorial type in G2 other than Cmk, then
Gr(w) is smooth and irreducible of dimension 15.

Proof. There are 210 combinatorial types w so that Γ = Γ(w) satisfies the hypothesis
of Proposition 6.6, and so Gr(w) is smooth and irreducible in these cases. For the 4
remaining cases, all Qv have 2 or more parallel elements for all but at most one v ∈
V (Γ). These diagrams satisfy the conditions of Proposition 3.2 by [6, Proposition 5.4,
Lemma C.5] (Appendix by Cueto). Finally, we compute the dimensions of each limit
Gr(w) using Formula 2, and verify that each dimension is 15. □

Example 6.8. Here we use an explicit example as a demonstration of Proposition 6.6.
Let w ∈ TGr0(3, 8) be
w = e126 + e234 + e237 + 2 e238 + e247 + e248 + e278 + e347 + e348 + e378 + 2 e478 + e568.

The tight-span TS(w) of the subdivision Q(w) is the tree given in Figure 5.
The matroids Q2 and Q3 are illustrated in the middle of Figure 5. The remaining Qi

are
Q1 = U(34578, 1, 2, 6), Q4 = U(14567, 2, 3, 8),
Q5 = U(12347, 5, 6, 8), Q6 = U(12356, 4, 7, 8).

Denote by Qi,j the matroid of the edge between the vertices corresponding to Qi and
Qj . The matroid Q2,3 is illustrated by the right picture in Figure 5, and the remaining
matroids Qi,j for (i, j) ̸= (2, 3) are isomorphic to U′(a, b, c; [8]∖ abc). The dimensions
of the thin Schubert cells Gr(Qi) and Gr(Qi,j) are

dim Gr(Qi) =

7 if i ∈ {1, 4, 5, 6}
10 if i = 2
9 if i = 3

dim Gr(Qi,j) =
{

6 if (i, j) ∈ {(1, 2), (2, 5), (3, 4), (3, 6)}
8 if (i, j) = (2, 3)

With µ1 = {2, 6, 8} and µ2 = {1, 4, 7}, the matroids Q1,Q2,Q4,Q5 are (B,µ1)–
maximal and Q6 is (B,µ2)–maximal, but Q3 is not B–maximal. As Q3 is not iso-
morphic to Qmk, we see that Gr(Q3) is smooth and irreducible. Therefore, Gr(w) is
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Figure 5. Dual graph of Q(w) and the matroids corresponding to
Q2,Q3 and Q2,3

smooth and irreducible of dimension 15 by Proposition 3.2, and so inw Gr0(3, 8) is
smooth and irreducible by Corollary 2.2.

6.5. Case G3. There are 28 227 subdivisions belonging to the set G3. Given such
a combinatorial type w, let Σ = TS(w), and ΣL ⊂ Σ the subcomplex obtained by
removing all leaf-vertices of Σ together with their adjacent edges. Set

(14) YLeaf =
∏

v leaf
vertex

Gr(Qv), Y ′
Leaf =

∏
e leaf
edge

Gr(Qe).

Then

(15) Gr(w) ∼= lim←−
Σ

Gr ∼= lim←−
ΣL

Gr×Y ′
Leaf
YLeaf .

Proposition 6.9. If lim←−ΣL
Gr is smooth and irreducible, then Gr(w) is smooth and

irreducible of dimension

(16) dim Gr(w) = dim lim←−
ΣL

Gr −
∑

e leaf
edge

dim Gr(Qe) +
∑

v leaf
vertex

dim Gr(Qv).

Proof. For each leaf-pair (v, e), the morphism Gr(Qv)→ Gr(Qe) is smooth and dom-
inant with connected fibers by Proposition 4.5, and therefore YLeaf → Y ′

Leaf also an
SDC–morphism. The proposition now follows from Proposition 3.2. □

Proposition 6.10. For any combinatorial type w, the subcomplex ΣL is vertex-
connecting.

Proof. The complex TS(w) is vertex-connecting by [6, Lemma C.11] (Appendix by
Cueto). Now apply Proposition 6.1. □

By Propositions 6.3 and 6.10, the coordinate ring of lim←−ΣL
RQ is isomorphic to RΣL .

Thus, we need some techniques for determining when a ring of the form RΣ is a regular
(i.e. its local rings are regular) integral domain. We work in the following more general
context. Let M = Zb with standard basis ϵ∗1, . . . , ϵ∗b , let xi ∈ C[M ] be the variable
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corresponding to ϵ∗i . More generally, let xu ∈ C[M ] be the monomial corresponding
to u ∈M . Let B = C[x1, . . . , xb]. Given f ∈ B, let u(f) be

u(f) =
∑
cu ̸=0

u where f =
∑

u
cux

u.

Let S ⊂ B a finitely generated multiplicative semigroup whose saturation contains
the variables x1, . . . , xb, and I ⊂ B an ideal generated by distinct nonzero elements
f1, . . . , fa; assume that a ⩽ b (a = 0 if I = ⟨0⟩). Set R = S−1B/I. Let A(f1, . . . , fa)
be the a× b matrix with rows u(f1), . . . , u(fa).

Lemma 6.11. If, after a permutation of the rows, the matrix A(f1, . . . , fa) has an
upper-triangular (a× a)–submatrix whose diagonal entries equal 1, then S−1B/I is a
regular integral domain of Krull dimension b− a.

Proof. We proceed by induction on a. If a = 0, then I = ⟨0⟩, and the conclusion
is clear. Now suppose that the lemma is true for values strictly less than a. After
permuting the rows and columns (equivalently, permuting the fi’s and xj ’s), we may
assume that the first a columns form an upper triangular matrix whose diagonal
entries equal 1. This means that

f1 = g · x1 − h where g = c
∏
i>1

xui
i , and h ∈ C[x2, . . . , xb].

Here, c is a nonzero constant and the ui are nonnegative. Therefore, the assignment
x1 7→ h/g, and xi 7→ xi for i > 1 defines a ring isomorphism

R→ S̄−1C[x2, . . . , xb]/⟨f2, . . . , fb⟩

where S̄ is the image of S under the above substitution. The lemma now follows from
the inductive hypothesis. □

Lemma 6.11 suffices to determine that RΣL is a regular integral domain for most
cases in G3. For the remaining, we use the following Algorithm. Given f ∈ B, denote
by degk(f) the degree of xk in f , i.e. the highest power of xk appearing in f . If
degk(f) = 1, then denote by coef(f ;xk) the coefficient of xk in f . We say that f is
reduced if f has no unit other than elements of C∗ as a factor. Because B is a unique
factorization domain, if f ∈ S−1B is not a unit, then there is a unique expression (up
to a factor lying in C∗) f = g · f̄ such that g ∈ S and f̄ lie in B and has no unit
(other than an element of C∗) as a factor.

Algorithm 6.12.
Input: The polynomial ring B = C[x1, . . . , xb], S ⊂ B a multiplicative semigroup
containing all monomials, and F ⊂ B a finite set of reduced generators of I ⊂ S−1B.
Set R = S−1B/I.

Output: A new presentation of R, say R ∼= S̄−1B̄/Ī, and a finite set F̄ ⊂ B̄ of reduced
generators of Ī ⊂ S̄−1B̄ such that

- B̄ is a polynomial ring on a subset of the x1, . . . , xb,
- for each xk ∈ B̄ and f ∈ F̄ , we have degk f ̸= 1 or degk f = 1 but

coef(f ;xk) /∈ S.
In particular, if Ī = ⟨0⟩, then R is a regular integral domain.
Find f ∈ F and xk ∈ B such that degk f = 1 and coef(f ;xk) ∈ S. This means that

f = g · xk − h
for some g ∈ S and h ∈ B such that degk g = 0 and degk h = 0. Then perform the
substitution xk 7→ h/g followed by a reduction for all elements of F , and just the
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substitution for the elements of S; this produces new sets F̄ and S̄. Set B̄ = C[xj :
j ̸= k]. Now repeat this procedure with F ← F̄ , S ← S̄ and B ← B̄.
Once no such pair (f, xk) exists, this function returns F and the presentation R =
S−1B/I.
Proposition 6.13. If w ∈ G3, then Gr(w) is smooth and irreducible of dimension 15.
Proof. For 26 187 combinatorial types w ∈ G3, there is a presentation of the ideal IΣL

that satisfies the conditions of Lemma 6.11. So lim←−ΣL
Gr is smooth and irreducible. For

the remaining 2040 combinatorial types, we apply Algorithm 6.12. In each case, this
function returns a presentation of RΣL whose ideal is ⟨0⟩, whence RΣL , and therefore
RΣ, is a regular integral domain. In either case, we get that Gr(w) is smooth and
irreducible by Proposition 6.9.

Finally, we compute the dimensions of each Gr(w) using Formula (16), verify that
each dimension is 15. □

6.6. Case G4. There are 483 combinatorial types belonging to the set G4.
Proposition 6.14. If w ∈ G4, then Gr(w) is smooth and irreducible of dimension 15.
Proof. For any w ∈ G4, it happens to be the case that any branch of TS(w) is a
path, and so each of its vertices has 2 or fewer neighbors. For such a vertex v, its
dual polytope ∆v has 2 or fewer internal facets. Thus, each such Gr(Qv) is smooth
and irreducible and the maps from Gr(Qv) corresponding to the edges adjacent to v
are SDC–morphisms by Proposition 4.5. By Proposition 3.4, to show that Gr(w) is
smooth and irreducible, it suffices to show that lim←−ΣBr

Gr is smooth and irreducible.
For 15 combinatorial types, there is a presentation of the ideal IΣBr that satisfies
the conditions of Lemma 6.11. For the remaining 468 combinatorial types, we apply
Algorithm 6.12, which always returns the ideal ⟨0⟩. In either case, we see that RΣBr is
a regular integral domain, as required. Finally, we verify that the dimensions of the
Gr(w) are all 15 using the formula

dim Gr(w) = dim lim←−
ΣBr

Gr−
∑

e branch
edge

dim Gr(Qe) +
∑

v branch
vertex

dim Gr(Qv)

which follows from Formula 4. □

6.7. Case G5. There are 14 389 combinatorial types belonging to the set G5. Similar
to the case G3, given a combinatorial type w, let Σ = TS(w) and ΣL ⊂ Σ the subcom-
plex obtained by removing all leaf-vertices of Σ together with their adjacent edges.
Let YLeaf and Y ′

Leaf be the schemes in Formula 14. Formula 15 holds, but now lim←−ΣL
Gr

cannot be evaluated using a presentation provided by Proposition 6.3 since ΣL is not
vertex-intersecting.

Recall that a fin F is B–maximal if there is a µ ∈ QF such that Q is B–maximal for
all Q ∈ Evert(F). Given a collection of fins F of ΣL, let ΣL(F) ⊂ ΣL be the subcomplex
obtained by removing the fins F ∈ F.
Proposition 6.15. If lim←−ΣL(F) Gr is smooth and irreducible and each fin F ∈ F is
B–maximal, then Gr(w) is smooth and irreducible of dimension

dim Gr(w) = dim lim←−
ΣL(F)

Gr −
∑

e leaf
edge

dim Gr(Qe) +
∑

v leaf
vertex

dim Gr(Qv)

+
∑
F∈F

dim Gr(QF)−
∑

e∈Eedge(F)

dim Gr(Qe) +
∑

v∈Evert(F)

dim Gr(Qv)

 .(17)
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Figure 6. Dual graph of Q(w) and the matroid corresponding to
Q3

Proof. By Propositions 3.5 and 4.8, we have that lim←−ΣL
Gr is smooth and irreducible

of dimension

dim lim←−
ΣL

Gr = dim lim←−
ΣL(F)

Gr +
∑
F∈F

dim Gr(QF)−
∑

e∈Eedge(F)

dim Gr(Qe) +
∑

v∈Evert(F)

dim Gr(Qv)

 .

Now apply Propositions 6.9. □

Proposition 6.16. If w ∈ G5, then Gr(w) is smooth and irreducible of dimension 15.

Proof. Fix w ∈ G5, Σ = TS(w), and ΣL ⊂ Σ the subcomplex obtained by removing
all leaf vertices and edges. Let F be the set of fins of ΣL that have connecting path
length 1. We verify that each F ∈ F is B–maximal. In this case, the set ΣL(F) is vertex-
connecting by Proposition 6.2 and vertex-intersecting by hypothesis, and therefore we
may compute the coordinate ring of lim←−ΣL(F) Gr using Proposition 6.3. We verify that
these rings are smooth integral domains as in the proof of Proposition 6.13. Finally,
we verify that dim Gr(w) = 15 using Formula (17). The proposition now follows from
Corollary 2.2. □

Example 6.17. Let
w = e124 + e125 + 2e126 + 2e134 + 3e137 + e145 + e146 + 2e147 + e148

+ e156 + 2e235 + 2e237 + e245 + e246 + e256 + 2e257 + e258

+ 3e347 + 2e357 + 2e367 + 2e368 + 2e378 + 2e456 + 3e678.

The tight span TS(w) of Q(w) is given in Figure 6. We also see the matroid corre-
sponding to the node v2 of TS(w) that did not appear in Figure 4.

The matroids Qi corresponding to the vertices vi of Γ(w) are
Q1 = U(1, 2568, 37, 4) Q2 = U(1, 2, 34578, 6) Q4 = W(37; 1, 4; 256, 8)
Q5 = W(2568; 1, 4; 3, 7) Q6 = W(1468; 2, 5; 3, 7) Q7 = W(37; 146, 8; 2, 5)
Q8 = W(6; 14, 25; 37, 8) Q9 = U(1468, 2, 37, 5) Q10 = U(14, 2568, 3, 7)
Q11 = W(14; 25, 68; 3, 7) Q12 = W(7; 1245, 3; 6, 8) Q13 = U(12345, 6, 7, 8)
Q14 = U(12378, 4, 5, 6)

When vi and vj share an edge, the matroid of the edge is denoted by Qi,j ; in each
case, Qi,j is isomorphic to a matroid of the form U′. Then Proposition 4.6, and direct
computation for the i = 3 case, tells us the dimensions of the thin Schubert cells
corresponding to the vertices and edges of TS(w) are given by

dim Gr(Qi) = 7 for 1 ⩽ i ⩽ 14 dim Gr(Qi,j) = 6 for (vi, vj) ∈ E(Γ(w)).
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Moreover, one can check that dim Gr(QF) = 5 for the unique fin F = ⟨v8, v11, v12⟩
of ΣL. Finally, we compute RΣL(F), to obtain the dimension of lim←−Σ(F). We compute

BΣL(F) = C[x11, x12, x13, x14, x15, x21, x22, x23, x24, x25, x31, x32, x34, x35]

the ideal is

IΣL(F) = ⟨x13x25 − x23x15, x11x32x25 + x31x22x15, x11x32x23 + x31x22x13⟩,

and SΣL(F) is the semigroup of all monomials of BΣL(F). One can check that the
condition of Lemma 6.11 does not hold. Thus we apply Algorithm 6.12. Let f1, f2, f3
denote the generators of IΣL(F). The relations fi ≡ 0 mod IΣL(F) (for i = 1, 2) yield

x13 ≡
x23x15

x25
and x32 ≡ −

x31x22x15

x11x25
mod IΣL(F).

Observe that with these substitutions, we have f3 = 0, and that the coordinate ring
of lim←−Σ(F) Gr reduces to C[x11, x12, x14, x15, x21, x22, x23, x24, x25, x31, x34, x35]. So we
have that lim←−Σ(F) Gr is smooth, irreducible and of dimension 12.

We also have the fin F is B–maximal, in the sense that Q12 is (B,µ)–maximal where
µ = {1, 7, 8} ∈ QF. By Proposition 6.15 Gr(w) is smooth and irreducible. One may
use Formula (17) to verify that dim Gr(w) = 15. Hence, by Corollary 2.2, inw Gr0(3, 8)
is smooth and irreducible.

6.8. Case G6. There are 389 combinatorial types in G6. For each combinatorial type
w ∈ G6, the dual graph Γ(w) has a star-tree subgraph T with 4 leaves; the matroid C
of the center node is isomorphic to U(12, 34, 56, 78), and the matroids L1, L2, L3, L4 of
the 4 leaves are isomorphic to either V(12, 34, 56; 7, 8) or W(12; 34, 56; 7, 8). The set
G6 splits further into 5 groups H0,H1,H2,H3,H4 where w ∈ Hk if

|{m : Lm
∼= V(12, 34, 56; 7, 8)}| = k.

The sizes of the Hk’s are

|H0| = 233 |H1| = 127 |H2| = 25 |H3| = 3 |H4| = 1.

Proposition 6.18. If w ∈ Hk, then the limit lim←−T Gr is smooth and irreducible of
dimension 11 + k.

Proof. The matroid Cm corresponding to the edge between C and Lm is isomorphic
to U′(12, 34, 56; 78), see Figure 4. By Proposition 4.6, the thin Schubert cells Gr(C),
Gr(Cm), Gr(Lm) are smooth, irreducible, and their dimensions are dim Gr(C) = 7,
dim Gr(Cm) = 6 and

dim Gr(Lm) = 8 if Lm
∼= V(12, 34, 56; 7, 8); dim Gr(Lm) = 7 if Lm

∼= W(12; 34, 56; 7, 8).

Furthermore, the morphisms Gr(Lm) → Gr(Cm) are smooth and dominant with
connected fibers by Proposition 4.6. The proposition now follows from Proposition 3.2.

□

Proposition 6.19. If w ∈ G6, then Gr(w) is smooth and irreducible of dimension 15.

Proof. Suppose w ∈ Hk, and let Σ = TS(w). As usual, let ΣL ⊂ Σ be the subcomplex
obtained by removing all leaf vertices and edges from Σ. By a direct verification,
ΣL consists of the tree T, and 6 fins, each of which has contact-length 2. In fact,
there is a fin attached to T at each pair of edges. We verify that each fin is B–
maximal. Thus Gr(w) is smooth and irreducible by Propositions 3.6 and 4.8. Finally,
we verify that dim Gr(w) = 15 using Formula (17). The proposition now follows from
Corollary 2.2. □
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Q1 = W(5678; 1, 3; 2, 4) Q2 = W(78; 1, 3; 24, 56)
Q3 = U(1, 24568, 3, 7) Q4 = W(7; 1, 3; 2456, 8)
Q5 = U(13, 2, 4, 5678) Q6 = W(1378; 2, 4; 5, 6)
Q7 = W(78; 13, 24; 5, 6) Q8 = W(2478; 1, 3; 5, 6)
Q9 = U(13, 24, 56, 78) Q10 = W(13; 2, 4; 56, 78)
Q11 = W(1356; 2, 4; 7, 8) Q12 = U(1234, 56, 7, 8)
Q13 = U(1234, 5, 6, 78) Q14 = W(1234; 5, 6; 7, 8)
Q15 = W(56; 13, 24; 7, 8)

Figure 7. Left: the tight span TS(w); right: the matroids corre-
sponding to the nodes of TS(w)

Example 6.20. The vector

w = 2 e123 + 2 e124 + 2 e134 + 2 e135 + 2 e136 + 4 e137 + 3 e138 + e156

+ e178 + 2 e234 + e245 + e246 + e247 + e248 + e256 + e278 + e356

+ e378 + e456 + e478 + 2e567 + 2e568 + 2e578 + 2e678

represents a combinatorial type in H0, the tight span TS(w) is shown in Figure 7,
together with the matroids corresponding to the nodes of TS(w). The tree T consists
of the vertices v2, v7, v9, v10, v15, and lim←−T Gr is smooth and irreducible of dimension 11
by Proposition 6.18. The subcomplex ΣL ⊂ TS(w) obtained by removing all leaves is
obtained by removing the vertex v3 and its adjacent edge. The fins of ΣL are:

F1 = ⟨v2, v4, v9, v15⟩ F2 = ⟨v2, v7, v8, v9⟩ F3 = ⟨v6, v7, v9, v10⟩
F4 = ⟨v9, v10, v11, v15⟩ F5 = ⟨v1, v2, v5, v9, v10⟩ F6 = ⟨v7, v9, v12, v13, v14, v15⟩.

With µ1 = {1, 5, 7} and µ2 = {1, 2, 5}, the fins F1, F4, F6 are (B,µ1)–maximal, and
the fins F2, F3, F5 are (B,µ2)–maximal. Therefore, Gr(w) is smooth and irreducible
by Propositions 3.6 and 4.8. Using this and Proposition 4.6, one may verify that
dim Gr(w) = 15, and therefore inw Gr0(3, 8) is smooth and irreducible by Corollary 2.2.

6.9. Completion of the proofs. The following is a compilation of Proposi-
tions 5.1, 6.4, 6.7, 6.13, 6.14, 6.16, 6.19, and Corollary 2.2.

Theorem 6.21. Suppose w ∈ TGr0(3, 8).
(1) The inverse limit Gr(w) is smooth of dimension 15.
(2) If w is contained in the relative interior of any cone in the S8–orbit of Cmk,

then Gr(w) has 2 connected components. Otherwise, Gr(w) is irreducible.
(3) The closed immersion inw Gr0(3, 8) ↪→ Gr(w) is an isomorphism.

Proofs of Theorems 1.1 and 1.4. These follow from Theorem 6.21. □
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7. The Chow quotient Gr(3, 8)//H
Recall that X(r, n) is the moduli space of projective configurations of n hyperplanes
in Pr−1 in linear general position. In this final section, we prove Theorem 1.5, and
therefore resolve [28, Conjecture 1.6] by Hacking, Keel, and Tevelev. There are two
key inputs in the proof: that X(3, 8) is schön and that the secondary fan structure
on TropX(3, 8) is convexly disjoint, in the sense of [17, Definition 1.15]. If the initial
degenerations of X(3, 8) were also all connected, then these two facts suffice to prove
Theorem 1.5, however, X(3, 8) has a S8–orbit of reducible initial degenerations (this
follows from Theorem 1.3, see §7.2 below). In the final subsection, we provide a work-
around to this slight difficulty.

Schönness of X(3, 8) follows from Theorem 1.1 (see §7.2 below). Convexly disjoint-
ness of the secondary fan of TropX(3, 8) follows from [41, Proposition 7.9], but we
provide an independent proof of this fact in the following subsection.

7.1. Convexity properties of the Dressian. Recall that the Dressian Dr(r, n)
is the set

Dr(r, n) = {w ∈ (∧rRn)/⟨1⟩ : Q(w) is matroidal} ⊂ (∧rRn)/⟨1⟩

and is the support of a subfan, denoted by Smat(r, n), of the secondary fan of ∆(r, n).
The fan Smat(r, n) has an (n− 1)–dimensional lineality space LR consisting of those
vectors w induced by a linear function on the vertices of ∆(r, n). The Dressian may
also be realized as the tropical prevariety defined by the 3-term Plücker relations,
i.e. w ∈ ∧rRn ∼= R([n]

r ) lies in Dr(r, n) if and only if, for every η ∈
( [n]

r−2
)

and distinct
i, j, k, ℓ /∈ η, the minimum of the numbers

wijη + wkℓη, wikη + wjℓη, wiℓη + wjkη

is achieved at least twice. We use the standard shorthand that, e.g. ijη = {i, j} ∪
η. This endows Dr(r, n) with another fan structure called the Plücker fan. By [37,
Theorem 14], this coincides with the secondary fan structure on Dr(r, n).

A convex polyhedral fan Σ is convexly disjoint if every convex subset S ⊂ Σ is
contained in a single closed cone of Σ.

Proposition 7.1. The fan Smat(r, n) is convexly disjoint. In particular, the secondary
fan structure on TGr0(r, n) is convexly disjoint for (r, n) = (2, n), (3, 6), (3, 7), (3, 8).

We are indebted to Benjamin Schröter for supplying the main idea in the following
proof.

Proof. Suppose x and z lie in distinct closed cones of Smat(r, n). By the equivalence
of the Plücker and secondary fan structures on Dr(r, n) discussed above, there is a
η ∈

( [n]
r−2

)
and distinct i, j, k, ℓ /∈ η, such that

xijη + xkℓη = xikη + xjℓη < xiℓη + xjkη and zijη + zkℓη > zikη + zjℓη = ziℓη + zjkη.

Given a real number t, define y(t) = (1− t) · x + t · z. For any 0 < t < 1, the quantity
y(t)

ikη + y(t)
jℓη is strictly smaller than y(t)

ijη + y(t)
kℓη and y(t)

iℓη + y(t)
jkη. Therefore, the line

segment from x to z is not contained in Dr(r, n), as required.
The last statement follows from the facts that TGr0(r, n) has a fan struc-

ture that is a subfan of the secondary fan structure of Dr(r, n) when (r, n) =
(2, n), (3, 6), (3, 7), (3, 8) (as mentioned in §2.3), and the fact that a subfan of a
convexly disjoint fan is convexly disjoint. □
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7.2. Ampleness of the log canonical divisor of X(3, 8). Recall from the in-
troduction that the diagonal torus of GL(n) acts on Cn by scaling the coordinates, and
this induces an action of the diagonal torus H ⊂ PGL(n) on Gr(r, n). This restricts
to a free action on Gr0(r, n), and under the Gelfand–MacPherson correspondence,
the quotient X(r, n) := Gr0(r, n)/H coincides with the moduli space of projective-
equivalence classes of n hyperplanes in Pr−1 in linear general position.

Throughout this section, let Q =
([n]

r

)
be the uniform (r, n)–matroid. Let L ⊂ N(Q)

be the saturated subgroup from Formula (1), and TL ⊂ T (Q) its corresponding torus.
Then TL

∼= H and the action of TL on P(∧rCn) through T (Q) restricts to the action
of H on Gr(r, n). Thus, we have an inclusion of Chow quotients

Gr(r, n)//H ↪→ P(∧rCn)//H.

By [24], the normalization (P(∧rCn)//H)norm of the Chow quotient P(∧rCn)//H is
the toric variety of the pointed fan S (r, n)/LR, where S (r, n) is the secondary fan
of ∆(r, n).

Recall that Strop(3, 8) is the subfan of S (3, 8) whose support is TGr0(3, 8).
As TropX(3, 8) is TGr0(3, 8)/LR, the closure of X(3, 8) in the toric variety
X(Strop(3, 8)/LR) coincides with its closure in (P(∧rCn)//H)norm by [45, Propo-
sition 2.3], and we denote this by X(3, 8). This space has the same normalization
as Gr(3, 8)//H.

By Theorem 1.1 and the fact that (see [6, Lemma 7.1]) inw Gr0(r, n) ∼= inw̄X(r, n)×
H (where w̄ is the image of w under the quotient N(Q)R → (N(Q)/L)R), we conclude
that X(3, 8) is schön, and hence X(3, 8) is a schön compactification of X(3, 8) [33,
Theorem 1.5]. In particular, the boundary B := X(3, 8) ∖ X(3, 8) is a divisor, and
X(3, 8) is normal with toroidal singularities by [45, Theorem 1.4]. Theorem 1.5 follows
from the following theorem.

Theorem 7.2. The log-canonical divisor KX +B of X = X(3, 8) is ample. In partic-
ular, X(3, 8) is the log-canonical compactification of X(3, 8).

Proof. We follow the argument in [33, Theorem 4.9], but with language adapted for
our situation. By [17, Theorem 9.1], it suffices to show that each irreducible stratum
is log minimal. As X(3, 8) is a schön compactification, its strata are also schön by
Formula (18) and [34, Corollary 4.2.10]. By [17, Theorem 3.1], a schön very affine
variety X ⊂ T is log minimal if and only if it is not preserved under translation by a
subtorus of T . This last property holds if and only if Trop(X) ⊂ NR is not preserved
under translation by a rational subspace of NR [26, Lemma 5.2].

Given a cone C of Strop(3, 8)/LR, denote by XC the intersection of X(3, 8) with
the torus orbit of X(Strop(3, 8)/LR) corresponding to C . By [19, Lemma 3.6], there
is an isomorphism

(18) inwX(3, 8) ∼= XC × (Gm)dim C

where w is any point in the relative interior of C . The fan Strop(3, 8)/LR is convexly
disjoint by Proposition 7.1. This proves that the strata XC of X(3, 8) which are
irreducible, i.e. for cones C not in the S8–orbit of Cmk by Theorem 1.4, are log
minimal. But the strata XC for C in the S8–orbit of Cmk each consists of two disjoint
points, which are individually log minimal, as required. □
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