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Automorphisms of the double cover of a
circulant graph of valency at most 7

Ademir Hujdurović, Ðorđe Mitrović & Dave Witte Morris

Abstract A graph X is said to be unstable if the direct product X × K2 (also called the
canonical double cover of X) has automorphisms that do not come from automorphisms of its
factors X and K2. It is nontrivially unstable if it is unstable, connected, and non-bipartite, and
no two distinct vertices of X have exactly the same neighbors.

We find all of the nontrivially unstable circulant graphs of valency at most 7. (They come in
several infinite families.) We also show that the instability of each of these graphs is explained by
theorems of Steve Wilson. This is best possible, because there is a nontrivially unstable circulant
graph of valency 8 that does not satisfy the hypotheses of any of Wilson’s four instability
theorems for circulant graphs.

1. Introduction
Let X be a circulant graph. (All graphs in this paper are finite, simple, and undi-
rected.)

Definition 1.1 ([15]). The canonical bipartite double cover of X is the bipartite
graph BX with V (BX) = V (X) × {0, 1}, where

(v, 0) is adjacent to (w, 1) in BX ⇐⇒ v is adjacent to w in X.

Letting S2 be the symmetric group on the 2-element set {0, 1}, it is clear that the
direct product Aut X × S2 is a subgroup of Aut BX. We are interested in cases where
this subgroup is proper:

Definition 1.2 ([12, p. 160]). If Aut BX ̸= Aut X × S2, then X is unstable.

It is easy to see (and well known) that if X is disconnected, or is bipartite, or
has “twin” vertices (see Definition 2.5 below), then X is unstable (unless X is a
bipartite graph with trivial automorphism group). The following definition rules out
these trivial examples:

Definition 1.3 (cf. [16, p. 360]). If X is connected, nonbipartite, twin-free, and un-
stable, then X is nontrivially unstable.

S. Wilson found the following interesting conditions that force a circulant graph
to be unstable. (See Definition 2.1 for the definition of the “Cayley graph” nota-
tion Cay(G, S).)

Manuscript received 18th August 2021, revised 17th May 2022 and 3rd October 2022, accepted
12th February 2023.
Keywords. circulant, double cover, automorphism group.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.303
http://algebraic-combinatorics.org/


Ademir Hujdurović, Ðorđe Mitrović & Dave Witte Morris

Theorem 1.4 (Wilson [16, Appendix A.1] (and [14, p. 156])). Let X = Cay(Zn, S) be
a circulant graph, such that n is even. Let Se = S ∩ 2Zn and So = S ∖ Se. If any of
the following conditions is true, then X is unstable.

(C.1) There is a nonzero element h of 2Zn, such that h + Se = Se.
(C.2′) n is divisible by 4, and there exists h ∈ 1 + 2Zn, such that

(a) 2h + So = So, and
(b) for each s ∈ S, such that s ≡ 0 or −h (mod 4), we have s + h ∈ S.

(C.3′) There is a subgroup H of Zn, such that the set

R = { s ∈ S | s + H ̸⊆ S },

is nonempty and has the property that if we let d = gcd
(
R ∪ {n}

)
, then n/d

is even, r/d is odd for every r ∈ R, and either H ⊈ dZn or H ⊆ 2dZn.
(C.4) There exists m ∈ Z×

n , such that (n/2) + mS = S.

Remark 1.5. As explained in [7, Rem. 3.14], the two statements (C.2′) and (C.3′) are
slightly corrected versions of the original statements of Theorems C.2 and C.3 that
appear in [16]. The correction (C.2′) is due to Qin-Xia-Zhou [14, p. 156].

Definition 1.6. We say that X has Wilson type (C.1), (C.2′), (C.3′), or (C.4),
respectively, if it satisfies the corresponding condition of Theorem 1.4.

Remark 1.7. The Wilson type of a graph need not be unique; i.e., a graph may satisfy
more than one condition from Theorem 1.4. For example, for every odd integer k with
gcd(k, 3) = 1, the graph

Cay(Z8k, {±2k, ±3k})
has Wilson type (C.1) (with h = 4k) as well as Wilson types (C.3′) (with H = {0, 4k},
R = {±3k} and d = k) and (C.4) (with m = 3).

Additionally, the graph Cay(Z12, {±1, ±2, ±4, ±5, 6}) has Wilson type (C.2′)
(with h = 3) and Wilson type (C.3′) (with H = ⟨3⟩, R = {6} and d = 6).

In this terminology (modulo the corrections mentioned in Remark 1.5), Wilson [16,
p. 377] conjectured that every nontrivially unstable circulant graph has a Wilson type.
Unfortunately, this is not true: other conditions that force a circulant graph to be
unstable are described in [7, §3] (and these produce infinitely many counterexamples).
Prior to the work in [7], the following counterexample (which is the smallest) had been
published:

Example 1.8 (Qin-Xia-Zhou [14, p. 156]). The circulant graph

Cay
(
Z24, {±2, ±3, ±8, ±9, ±10}

)
is nontrivially unstable, but does not have a Wilson type.

The main result of this paper establishes that Wilson’s conjecture is true for graphs
of valency at most 7:

Theorem 1.9. Every nontrivially unstable circulant graph of valency at most 7 has
Wilson type (C.1), (C.2′), (C.3′), or (C.4).

We actually prove more precise (but more complicated) results, which show that
all of the graphs in Theorem 1.9 belong to certain explicit families (and it is easy to
see that the graphs in each family have a specific Wilson type).

The following example shows that the constant 7 in Theorem 1.9 cannot be in-
creased:
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Example 1.10 ([7, Example 3.10]). Let n := 3 · 2ℓ, where ℓ ⩾ 4 is even, and let

S :=
{

±3, ±6, ± n

12 ,
n

2 ± 3
}

.

Then the circulant graph X := Cay(Zn, S) has valency 8 and is nontrivially unstable,
but does not have a Wilson type.

Here is an outline of the paper. After this introduction come two sections of pre-
liminaries: Section 2 presents material from the theory of normal Cayley graphs and
some other miscellaneous information that will be used; Section 3 lists some condi-
tions that imply X is not unstable. The remaining sections each find the nontrivially
unstable circulant graphs of a particular valency (or valencies). Namely, Section 4
considers valencies ⩽ 4, whereas Sections 5 to 7 each consider a single valency (5, 6,
or 7, respectively). The main results are Proposition 4.2 (valency ⩽ 3), Theorem 4.3
(valency 4), Theorem 5.1 (valency 5), Theorem 6.1 and Corollary 6.2 (valency 6), and
Theorem 7.1 (valency 7).

2. Preliminaries
For ease of reference, we repeat a basic assumption from the first paragraph of the
introduction:

Assumption 1. All graphs in this paper are finite, undirected, and simple (no loops
or multiple edges).

2.1. Basic definitions and notation. For simplicity (and because it is the only
case we need), the following definition is restricted to abelian groups, even though the
notions easily generalize to nonabelian groups.

Definition 2.1. Let S be a subset of an abelian group G, such that −s ∈ S for all
s ∈ S.

(1) The Cayley graph Cay(G, S) is the graph whose vertices are the elements
of G, and with an edge from v to w if and only if w = v + s for some s ∈ S
(cf. [10, §1]).

(2) For (g, 1) ∈ G × Z2, we let g̃ = (g, 1).
(3) Note that if X = Cay(G, S), and we let S̃ = { s̃ | s ∈ S }, then

BX = Cay
(
G × Z2, S̃

)
.

(4) For g ∈ G, we say that an edge {u, v} of the complete graph on G × Z2 is a
g-edge if v = u ± g̃. Note that {u, v} is an edge of BX if and only if it is an
s-edge for some s ∈ S.

Notation 2.2. For convenience, proofs will sometimes use the following abbreviation:
n = n/2.

Besides the fairly standard notation from graph theory, we will employ the follow-
ing:

Notation 2.3.
(1) For a ∈ Zn, we use |a| to denote the order of a as an element of the cyclic

group Zn. So
|a| = n

gcd(n, a) .

It does not denote the absolute value of a.
(2) ϕ denotes the Euler’s totient function.
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Throughout the paper various notions of graph products will be used. We now
recall their definitions and notation.

Definition 2.4 ([5, pp. 35, 36, and 43]). Let X and Y be graphs.
(1) The direct product X × Y is the graph with V (X × Y ) = V (X) × V (Y ), such

that (x1, y1) is adjacent to (x2, y2) if and only if
(x1, x2) ∈ E(X) and (y1, y2) ∈ E(Y ).

(2) The Cartesian product X □ Y is the graph with V (X × Y ) = V (X) × V (Y ),
such that (x1, y1) is adjacent to (x2, y2) if and only if either

• x1 = x2 and (y1, y2) ∈ E(Y ), or
• y1 = y2 and (x1, x2) ∈ E(X).

(3) The wreath product X ≀Y is the graph that is obtained by replacing each vertex
of X with a copy of Y . (Vertices in two different copies of Y are adjacent in
X ≀ Y if and only if the corresponding vertices of X are adjacent in X.) This
is called the lexicographic product in [5, p. 43] (and denoted X ◦ Y ).

Definition 2.5 (Kotlov-Lovász [8]). A graph X is twin-free if there do not exist two
distinct vertices v and w, such that NX(v) = NX(w), where NX(v) denotes the set of
neighbors of v in X.

The notion of a “block” (or “block of imprimitivity”) is a fundamental concept in
the theory of permutation groups, but we need only the following special case:

Definition 2.6 (cf. [2, pp. 12–13]). Let G be a finite abelian group. Let X = Cay(G, S)
be a Cayley graph. A nonempty subset B of V (X) is a block for the action of Aut X
if, for every α ∈ Aut X, we have

either α(B) = B or α(B) ∩ B = ∅.
It is easy to see that this implies B is a coset of some subgroup H of G. Then every
coset of H is a block. Indeed, the action of Aut X permutes these cosets, so there is a
natural action of Aut X on the set of cosets.

Remark 2.7. The most important instance of Definition 2.6 for us will be the case
of canonical bipartite double covers. Indeed, if X = Cay(Zn, S) is a circulant graph
then its canonical bipartite double cover BX = Cay(Zn × Z2, S̃), defined in Defini-
tion 2.1(3), is a Cayley graph. Therefore, every block for the action of Aut BX is a
coset of some subgroup H of Zn × Z2.

2.2. Normal Cayley graphs.

Definition 2.8. (M.-Y. Xu [17, Defn. 1.4]) For each g ∈ G, it is easy to see that the
translation g∗, defined by g∗(x) = g + x, is an automorphism of Cay(G, S). The set

G∗ = { g∗ | g ∈ G }
is a subgroup of Aut Cay(G, S). (It is often called the regular representation of G.)
We say that Cay(G, S) is normal if the subgroup G∗ is normal in Aut Cay(G, S). This
means that if φ is an automorphism of the graph Cay(G, S), and φ(0) = 0, then φ is
an automorphism of the group G.

Lemma 2.9. Assume X = Cay(Zn, S) is connected and unstable. If the Cayley graph
BX is normal, then X has Wilson type (C.4).

Proof. Since X is unstable, we know that (0, 1) is not central in Aut BX. So it is
conjugate to some other element of order 2. However, since BX is normal, we know
that Zn × Z2 is a normal subgroup of Aut BX. Therefore, (0, 1) cannot be the only
element of order 2 in Zn ×Z2; so n is even. (This is also immediate from Theorem 3.1.)
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Also note that Zn × {0} is normal in Aut BX, because it consists of the elements
of the normal subgroup Zn ×Z2 that preserve each bipartition set. Since (n, 0) is the
unique element of order 2 in this normal subgroup, it must be central in Aut BX.

Now, since (0, 1), (n, 0), and (n, 1) are the only elements of order 2 in Zn ×Z2, and
(n, 0) is not conjugate to any other elements, we see that (0, 1) must be conjugate
to (n, 1), by some α ∈ Aut BX.

Since BX is normal, α must be a group automorphism. Hence, there is some
m ∈ Z×

n , such that α(s, 0) = (ms, 0) for all s. Since α(0, 1) = (n, 1), this implies
α(s, 1) = (ms + n, 1). Since S × {1} is α-invariant, this implies that S is invariant
under the map s 7→ ms+n, which is precisely the condition of Wilson type (C.4). □

Corollary 2.10. If X = Cay(Zn, S) is a nontrivially unstable circulant graph of odd
valency, then the Cayley graph BX is not normal.

Proof. If BX is normal, then Lemma 2.9 implies n + gS = S, for some g ∈ Z×
n . Also,

since X has odd valency, we know that n ∈ S. Also, we know that g is odd (because
n is even). Therefore

0 = n + n = n + gn ∈ n + gS = S.

This contradicts our standing assumption that all graphs are simple (no loops). □

Lemma 2.11. Let X = Cay(Zn, S) be a nontrivially unstable circulant graph of odd
valency, and let X0 = Cay(Zn, S ∖ {n/2}), so

BX0 = Cay(Zn × Z2, (S ∖ {n/2}) × {1}).

If every automorphism of BX maps n/2-edges to n/2-edges, then BX0 is not a normal
Cayley graph. Moreover, if X0 is bipartite, then X0 is not a normal Cayley graph.

Proof. By the assumption on n-edges, it follows that every automorphism of BX
induces an automorphism of BX0. If BX0 is normal, it follows that BX is also
normal, contradiction with Corollary 2.10. We conclude that BX0 is non-normal.

Suppose now that X0 is bipartite. It is not difficult to see that X0 is connected,
since X is connected. It follows that every element of S ∖ {n} is odd. Since X is
nonbipartite, it follows that n is even. Suppose that X0 is normal Cayley graph.
Observe that BX0 is isomorphic to the disjoint union of two copies of X0, and that
the connected component containing the vertex (0, 0) is X1 = Cay(H, (S∖{n})×{1}),
where H = ⟨(1, 1)⟩ ⩽ Zn ×Z2. The map θ : Zn → H defined by θ(k) = (k, k mod 2)
is an isomorphism between X0 and X1. Then X1 is a normal Cayley graph on H. Let φ
be an automorphism of BX that fixes (0, 0). Then φ is also an automorphism of BX0,
and consequently of its connected component X1. Since X1 is normal, it follows that
the action of φ on H is an automorphism of the group H, hence φ fixes the unique
element of order 2 in H, which is (n, 0). Observe that the n-edge in BX incident with
(n, 0), must also be fixed, hence (0, 1) is fixed. Now Lemma 3.2 implies that X is
stable, a contradiction. The obtained contradiction shows that X0 is non-normal. □

Proposition 2.12 (Baik-Feng-Sim-Xu [1, Thm. 1.1]). Let Cay(G, S) be a connected
Cayley graph on an abelian group G. Assume, for all s, t, u, v ∈ S:

s + t = u + v ̸= 0 =⇒ {s, t} = {u, v}.

Then the Cayley graph Cay(G, S) is normal.
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2.3. Miscellany. The following result is a very special case of the known results on
automorphism groups of Cartesian products. (Note that C4 is isomorphic to K2□K2.)

Proposition 2.13 (cf. [5, Thm. 6.10, p. 69]). Let X be a connected graph. If there
does not exist a graph Y, such that X ∼= K2 □ Y, then

Aut(K2 □ X) = S2 × Aut X and Aut(C4 □ X) = Aut C4 × Aut X.

Lemma 2.14. Let X = Cay(Zn, S) be a connected circulant graph of order n such that
X is not twin-free, and let d be the valency of X.

(1) There is a connected circulant graph Y and some m ⩾ 2, such that X ∼= Y ≀Km

and d = δm, where δ is the valency of Y .
(2) If d is prime, then X ∼= Kd,d.
(3) If d = 4, then X is isomorphic either to K4,4 or to Cℓ ≀K2 with ℓ = |V (X)|/2.

Moreover, the unique twin of 0 in the second case is n/2.

Proof. (1) Let ∼ be the relation of being twins on V (X) defined in Definition 2.5,
i.e., write x ∼ y if and only if NX(x) = NX(y) for x, y ∈ V (X). Note that since X is
assumed to have no loops, equivalence classes of ∼ are independent sets. Furthermore,
they are clearly blocks for the action of Aut(X) since x ∼ y if and only if α(x) ∼ α(y)
for all α ∈ Aut(X). Since X is a circulant (so in particular, a Cayley graph), by
Definition 2.6 the blocks are cosets of some subgroup H. Clearly, each block is of size
m := |H|. From the assumption that X is not twin-free, we obtain that m ⩾ 2. It
is easy to see that if x and y are adjacent, then x′ is adjacent to y′ for all x′ ∼ x

and y′ ∼ y. It is now clear that X ∼= Y ≀ Km with Y := Cay(Zn/H, Ŝ), where Zn/H

is the quotient group and Ŝ := {s + H : s ∈ S}.
(2) By (1), we then represent X as Y ≀ Km, where Y is m-regular and connected,

and m ⩾ 2. As d = δm, and d is prime, it follows that m = d and δ = 1. In particular,
Y = K2 and X = K2 ≀ Kd

∼= Kd,d. (Conversely, it is clear that Kd,d is a connected
circulant graph, but is not twin-free.)

(3) By (1), we then represent X as Y ≀ Km, where Y is m-regular and connected,
and m ⩾ 2. As 4 = δm and m ⩾ 2, it follows that m ∈ {2, 4}. If m = 4, then δ = 1
and consequently X ∼= K2 ≀ K4 ∼= K4,4. If m = 2, then Y is connected and 2-regular,
so it is isomorphic to the cycle Cℓ with ℓ = |V (X)|/2. It follows that X ∼= Cℓ ≀ K2.
Note that in this case, two vertices are twins in X if and only if they are in the same
copy of K2 (see Definition 2.4(3)). It is clear that these 2-element sets of twins form
blocks for the action of Aut X by Definition 2.6. From Definition 2.6, it also follows
that they are cosets of the subgroup of Zn of order 2. As this subgroup is {0, n/2},
the conclusion follows. □

Proposition 2.15 ([7, Cor. 4.6]). Let α be an automorphism of BX, where X is
a circulant graph Cay(Zn, S), and let s, t ∈ S. If α maps some s-edge to a t-edge,
and either gcd(|s|, |t|

)
= 1, or S contains every element that generates ⟨s⟩ (e.g.,

if |s| ∈ {2, 3, 4, 6}), then S contains every element that generates ⟨t⟩.

Theorem 2.16 (Kovács [9], Li [11]). Let X be a connected, arc-transitive, circulant
graph of order n. Then one of the following holds:

(1) X = Kn,
(2) X is a normal circulant graph,
(3) X = Y ≀ Kd, where n = md, d ⩾ 2, and Y is a connected arc-transitive

circulant graph of order m,
(4) X = Y ≀ Kd − dY , where n = md, d > 3, gcd(d, m) = 1, and Y is a connected

arc-transitive circulant graph of order m.
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The statement of the following result in [7] requires the graph to have even order
(because the statement refers to n/2), but the same proof applies to graphs of odd
order. Although the proofs in this paper will only apply Lemma 2.17 to graphs of
even order, we omit this unnecessary hypothesis.

Lemma 2.17 ([7, Cor. 4.3]). Let X = Cay(Zn, S) be a circulant graph, let φ be an
automorphism of BX, and let

S′ = { s′ ∈ S | 2t ̸= 2s′ for all t ∈ S, such that t ̸= s′ }.

Then φ is an automorphism of Cay(Zn × Z2, 2S′ × {0}).

Proposition 2.18 ([7, Cor. 5.6(4)]). Let X = Cay(Zn, S) be a nontrivially unstable,
circulant graph, such that n ≡ 2 (mod 4), and such that 2Zn × {0} is a block for the
action of Aut BX. Define Xe := Cay(2Zn, S ∩ 2Zn). If the valency of Xe is ⩽ 5, then
X has Wilson type (C.1) or (C.4).

Proposition 2.19 (cf. [4, Prop. 3.4]). If X is a connected, cubic, arc-transitive multi-
graph, and the girth of X is ⩽ 5, then X is one of the following graphs: the theta
graph Θ2 (which has multiple edges), K4, K3,3, the cube Q3 = K2 □ K2 □ K2, the
Petersen graph GP (5, 2), or the dodecahedron graph GP (10, 2).

Corollary 2.20. The only connected, cubic, arc-transitive circulant graphs are K4
and K3,3.

3. Some conditions that imply stability
Theorem 3.1 (Fernandez-Hujdurović [3] (or [13])). There are no nontrivially unsta-
ble, circulant graphs of odd order.

Lemma 3.2 (cf. [3, Lem. 2.4]). A circulant graph X = Cay(Zn, S) is stable if and only
if, for every α ∈ Aut BX, such that α(0, 0) = (0, 0), we have α(0, 1) = (0, 1).

The complete graph on 2 vertices is bipartite, and therefore unstable. It is not
difficult to see that all of the larger complete graphs are stable:

Example 3.3 ([14, Example 2.2]). If n ⩾ 3, then Kn is stable.

Lemma 3.4. Let X = Cay(Zn, S) be a connected, nonbipartite circulant graph, and
let S0 be a nonempty subset of Zn ∖ {0} such that S0 = −S0. If every automorphism
of BX maps S0-edges to S0-edges, and some (or, equivalently, every) connected com-
ponent of Cay(Zn, S0) is a stable graph, then X is stable.

Proof. Let α be an automorphism of BX that fixes (0, 0), and let X0 be the connected
component of Cay(Zn, S0) that contains 0. Since α maps S0-edges to S0-edges, it
restricts to an automorphism of BX0. Since X0 is a stable graph, this implies that
α(0, 1) = (0, 1). □

Lemma 3.5. Let X = Cay(G, S) be a Cayley graph on an abelian group, and let
k ∈ Z+, such that k is odd. Suppose there exists c ∈ S, such that

(1) |c| = k,
(2) 2c ̸= s + t, for all s, t ∈ S ∖ {c}, and
(3) for all a ∈ S of order 2k, there exist s, t ∈ S ∖ {a}, such that 2a = s + t.

Then X is stable.

Proof. Let us say that a cycle in BX is exceptional if, for every pair vi, vi+2 of vertices
at distance 2 on the cycle, the unique path of length 2 from vi to vi+2 is vi, vi+1, vi+2. It
is clear that every automorphism of BX must map each exceptional cycle of length k
to an exceptional cycle of length k.
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Let α be an automorphism of BX fixing (0, 0). If c is any element satisfying the
conditions, then (c, 1)2k is an exceptional cycle. Furthermore, every exceptional cycle
of length 2k is of this form. Since k(c, 1) = (0, 1), for every such exceptional cycle,
this implies that α fixes (0, 1). So X is stable by Lemma 3.2. □

Lemma 3.6. Let X := Cay(Zn, S) be a circulant graph of even order and odd valency.
Let S0 ⊂ S be non-empty such that n/2 ∈ ⟨S0⟩. Assume that the set of S0-edges is
invariant under the elements of Aut BX (and S0 = −S0). If some (equivalently every)
connected component X ′

0 of X0 := Cay(Zn, S0) is not bipartite and has the property
that BX ′

0 is normal, then X is stable.

Proof. We can take X ′
0 := Cay(⟨S0⟩, S0). Because X is of odd valency, we know

n ∈ S. By our assumptions, n is a vertex of X ′
0. As X ′

0 is connected and assumed to
be non-bipartite, BX ′

0 is connected. Let α ∈ Aut(BX)(0,0). Then by our assumptions,
α ∈ Aut(BX0). Because α fixes (0, 0), it also fixes the connected component of BX0
containing it, which is BX ′

0. As BX ′
0 is normal, the restriction of α onto BX ′

0 is a
group automorphism of ⟨S0⟩×Z2. Note that as (0, 1), (n, 0), (n, 1) are the only elements
of order 2 in ⟨S0⟩ ×Z2, it follows that α must permute them among themselves. As α
fixes the colors of BX ′

0, it follows that α fixes (n, 0) because this is the unique element
of order 2 in the set ⟨S0⟩ × 0. Because X is loopless, 0 /∈ S and the only element of
order 2 in the connection set of BX, which is S × 1, is (n, 1). Since α fixes S × 1
set-wise, it must hold that α fixes (n, 1) and consequently it also fixes (0, 1). It follows
that X is stable. □

Proofs in later sections assume that the following circulant graphs are known to
be stable.

Lemma 3.7. Each of the following circulant graphs is stable:
(1) valency 3:

(a) Cay(Z6, {±2, 3}),
(2) valency 4:

(a) Cay(Z12, {±2, ±3}),
(b) Cay(Z12, {±3, ±4}),

(3) valency 5:
(a) Cay(Z10, {±2, ±4, 5}),
(b) Cay(Z12, {±1, ±5, 6}),
(c) Cay(Z12, {±3, ±4, 6}),

(4) valency 6:
(a) Cay(Z20, {±4, ±5, ±8}),
(b) Cay(Z20, {±2, ±5, ±6}),

(5) valency 7:
(a) Cay(Z12, {±2, ±3, ±4, 6}),
(b) Cay(Z14, {±2, ±4, ±6, 7}),
(c) Cay(Z20, {±4, ±5, ±8, 10}),
(d) Cay(Z24, {±3, ±8, ±9, 12}),
(e) Cay(Z30, {±5, ±6, ±12, 15}),
(f) Cay(Z30, {±3, ±9, ±10, 15}),
(g) Cay(Z30, {±6, ±10, ±12, 15}).

Proof. This is easily verified by computer (in less than a second). For example, one
can use the MAGMA or sagemath programs available at https://arxiv.org/src/
2108.05164/anc/. □
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Lemma 3.8. Let k ⩾ 3 be an integer. The graph Xk := Ck ≀ K2 is unstable if and only
if k = 4.

Proof. We note that Xk
∼= Cay(Z2k, {±1, k ± 1, k}) for all k ⩾ 3.

• Note that X3 ∼= K6 is stable by Example 3.3.
• The graph X4 is unstable with Wilson type (C.3′).

Assume that k ⩾ 5. We observe the ball B of radius 2 in BXk centered at (0, 0).
An easy computation then shows that B consists of vertices (±1, 1), (k ± 1, 1), (k, 1),
which are neighbours of (0, 0), and vertices (±1, 0), (±2, 0), (k ± 1, 0), (k ± 2, 0) and
(k, 0), all of which are at distance 2 from (0, 0). Since k ⩾ 5, all of these vertices are
distinct.

Note that (k, 0) is the only element of B sharing 4 neighbours with (0, 0). Its only
remaining neighbour (0, 1) is then at distance 3 from (0, 0). So an automorphism of
BXk fixing (0, 0) must fix (k, 0) and consequently, it also fixes (0, 1). It follows by
Lemma 3.2 that Xk is stable. □

4. Unstable circulants of valency ⩽ 4
Theorem 4.1. Every nontrivially unstable circulant graph of valency ⩽ 4 has Wilson
type (C.4).

The union of the following two results provides a more precise formulation of the
above Theorem 4.1.

Proposition 4.2. There are no nontrivially unstable circulant graphs of valency ⩽ 3.

Proof. We consider twin-free, connected, nonbipartite, circulant graphs of each va-
lency ⩽ 3.

(valency 0) The one-vertex trivial graph K1 is stable, because BK1 = K2, and
|Aut K2| = 2 = 2 |Aut K1|.

(valency 1) K2 is bipartite.
(valency 2) If Cn is a nonbipartite cycle, then n is odd, so BCn

∼= C2n, so
|Aut BCn| = |Aut C2n| = 2 · 2n = 2 · |Aut Cn|,

so Cn is stable.
(valency 3) A connected, nonbipartite, circulant graph X of valency 3 is either an

odd prism or a nonbipartite Möbius ladder. In either case, the canonical double cover
is the even prism K2 □ Cn, where n = |V (X)|. It is easy to check that K4 is stable
(see Example 3.3). And the following calculation (which uses Proposition 2.13) shows
that X is also stable when n > 4:

|Aut BX| = |Aut(K2 □ Cn)| = |S2 × Aut Cn| = 2 · 2n ⩽ 2|Aut X|. □

Theorem 4.3. A circulant graph X = Cay(Zn, {±a, ±b}) of valency 4 is unstable if
and only if either it is trivially unstable, or one of the following conditions is satisfied
(perhaps after interchanging a and b):

(1) n ≡ 2 (mod 4), gcd(a, n) = 1, and b = ma + (n/2), for some m ∈ Z×
n , such

that m2 ≡ ±1 (mod n), or
(2) n is divisible by 8 and gcd

(
|a|, |b|

)
= 4.

In both of these cases, X has Wilson type (C.4).

Proof. For convenience, let n = n/2 (see Notation 2.2).
(⇐) Condition (1) clearly implies that X has Wilson type (C.4), so X is unstable.
We may now assume condition (2) holds, which means gcd

(
|a|, |b|

)
= 4. We may

also assume that X is connected (for otherwise it is trivially unstable). This implies
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that we may assume a is odd (perhaps after interchanging a and b), which means
n/|a| is odd. Since gcd

(
|a|, |b|

)
= 4, it also implies that |b| = 4n/|a|. Write |a| = 2rℓ,

where ℓ is odd.
Now, since ℓ and n/|a| are odd, we have gcd(2r, ℓ) = gcd(2r, n/|a|) = 1. Also note

that
4 = gcd

(
|a|, |b|

)
= gcd

(
2rℓ, 4n/|a|

)
= 4 gcd

(
2r−2ℓ, n/|a|

)
.

Therefore 2r, ℓ, and n/|a| are pairwise relatively prime, so we may choose m ∈ Z×
n ,

such that

m ≡ 2r−1 + 1 (mod 2r), m ≡ 1 (mod ℓ), and m ≡ −1 (mod n/|a|).

Then:
(a) 2(m−1) is divisible by 2rℓ, but m−1 is not divisible by 2rℓ, so 2(m−1)a = 0,

but (m − 1)a ̸= 0. Therefore (m − 1)a = n, so ma + n = a ∈ S, and
(b) 2(m + 1) is divisible by 4n/|a|, but m + 1 is not divisible by 4n/|a| (because

m + 1 ≡ 2 (mod 4)). Since |b| = 4n/|a|, this implies that 2(m + 1)b = 0, but
(m + 1)b ̸= 0. Therefore (m + 1)b = n, so mb + n = −b ∈ S.

So mS+n = S, which means that X has Wilson type (C.4) (and is therefore unstable).
(⇒) Assuming that X is nontrivially unstable, we will show that it satisfies the

conditions of (1) or (2). Note that n must be even (see Theorem 3.1). Since X is con-
nected, and not bipartite, the subgroup 2Zn must contain exactly one of the elements
of {a, b}.

Let α be an automorphism of BX that fixes (0, 0), and is not in Aut X × S2. Since
Zn × {0} and Zn × {1} are the bipartition sets of BX, we know that each of these
sets is α-invariant.

Case 1. Assume α is a group automorphism. Since Zn×{0} is α-invariant, this implies
there is some m ∈ Z×

n , such that α(x, 0) = (mx, 0) for all x ∈ Zn. Since α(0, 1) is an
element of order 2 (and (n, 0) is fixed by α), we must have α(0, 1) ∈ {(0, 1), (n, 1)}.
If α(0, 1) = (0, 1), then α(x, i) = (mx, i), which contradicts the assumption that
α /∈ Aut X × S2. Therefore, we have α(0, 1) = (n, 1). So

α(x, i) =
(
mx + in, i

)
for all (x, i) ∈ BX.

Since S×{1} is α-invariant, this implies that mS+n = S, so X is of Wilson type (C.4).

Subcase 1.1. Assume that n is odd. Since X is connected, we may assume, without
loss of generality, that a /∈ 2Zn. Then ma + n ∈ 2Zn, so we must have α(a, 1) ∈
{(±b, 1)}. Therefore b = ma+n (perhaps after composing α with the group automor-
phism x 7→ −x, which replaces m with −m).

Now, we have α(a, 1) = (ma+n, 1) = (b, 1), so α(±a, 1) = (±b, 1). Since α is a group
automorphism that preserves the set S × {1}, this implies α(±b, 1) = (±a, 1), so we
may write α(b, 1) = (ϵa, 1) with ϵ ∈ {±1}. Then we have m2(a, 1) = α2(a, 1) = ϵ(a, 1)
and m2(b, 1) = α2(b, 1) = ϵ(b, 1), so m2x = ϵx for all x ∈ Zn × Z2. This implies
m2 ≡ ϵ ≡ ±1 (mod n). So X is as described in (1).

Subcase 1.2. Assume that n is even. Then ma+a has the same parity as a (and mb+b
has the same parity as b), so we must have α(a, 1) ∈ {(±a, 1)} and α(b, 1) ∈ {(±b, 1)}.
There is no harm in assuming α(a, 1) = (a, 1) (by replacing m with −m if necessary).
Then, since α is not the identity map, we must have α(b, 1) = (−b, 1). Therefore(

ma + n, 1
)

= α(a, 1) = (a, 1), so (m − 1)a = n,

and (
mb + n, 1

)
= α(b, 1) = (−b, 1), so (m + 1)b = n.
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Since m − 1 and m + 1 are even (and n has order 2), this implies that |a| and |b| are
divisible by 4.

This also implies that 2(m − 1)a = 0 and 2(m + 1)b = 0, so |a| is a divisor
of 2(m − 1) and |b| is a divisor of 2(m + 1). Therefore gcd

(
|a|, |b|

)
is a divisor of

gcd
(
2(m − 1), 2(m + 1)

)
⩽ 4. By combining this with the conclusion of the preceding

paragraph, we conclude that gcd
(
|a|, |b|

)
= 4. Then, since X is not bipartite, we must

have n ≡ 0 (mod 8). This establishes that conclusion (2) holds.
Case 2. Assume 2s ̸= 2t, for all s, t ∈ S, such that s ̸= t. We may assume α is not a
group automorphism, for otherwise Case 1 applies. So BX is not normal. Therefore,
Proposition 2.12 implies there exist s, t, u, v ∈ S such that s + t = u + v ̸= 0 and
{s, t} ≠ {u, v}. From the assumption of this Case 2, we see that this implies 3a = ±b
(perhaps after interchanging a with b). This implies that a and b have the same parity,
which contradicts the assumption that X is connected and nonbipartite.
Case 3. The remaining case. Since Case 2 does not apply, we have 2s = 2t, for some
s, t ∈ S, such that s ̸= t. We may assume s = a.
Subcase 3.1. Assume that t = −s = −a. Then |a| = 4. If n is divisible by 8, then
condition (2) is satisfied. (If |a| = 4, and n is divisible by 8, then |b| must be divisible
by 8, so gcd

(
|a|, |b|

)
= 4.) So we may assume n = 4k, where k is odd. Since X is

nonbipartite, we know that |b| is not divisible by 4, so the fact that |a| = 4 implies
|⟨a⟩ ∩ ⟨b⟩| ⩽ 2. Hence, there is an automorphism of Zn that fixes a, but inverts b, so:

|Aut X| ⩾ 4n.

Also, since k is odd and X is nonbipartite, we must have kb ̸= ±a. Since 4kb =
nb = 0, this implies k(b, 1) ∈ {(0, 1), (2a, 1)}. Since (2a, 1) /∈ ⟨(a, 1)⟩, this implies that
⟨(a, 1)⟩ ∩ ⟨(b, 1)⟩ = {(0, 0)}, so BX ∼= C4 □ Cn/2. Therefore (using Proposition 2.13)
we have

|Aut BX| = |Aut(C4 □ Cn/2)| = |Aut C4 × Aut Cn/2|
= |Aut C4| · |Aut Cn/2| = 8 · n = 2 · 4n ⩽ 2 · |Aut X|.

This contradicts the assumption that X is unstable.
Subcase 3.2. Assume that t ̸= −s. Therefore, we may assume s = a and t = b,
so 2a = 2b. This means that a − b has order 2, and must therefore be equal to n,
so S + n = S. This contradicts the fact that Cay(Zn, S) is twin-free. □

The following observation can be verified by inspecting the list [1] of connected,
non-normal Cayley graphs of valency 4 on abelian groups, and confirming that none of
them are the canonical double cover of a nontrivially unstable circulant graph. (Recall
that “normal” is defined in Definition 2.8.) For the reader’s convenience, we provide a
proof that avoids reliance on the entire classification, by extracting the relevant part
of the proof in [1] (and by using Theorem 4.3 to reduce the number of cases).

Corollary 4.4. If X is a nontrivially unstable circulant graph of valency 4, then
BX is normal.

Proof. Write X = Cay(Zn, {±a, ±b}), and suppose BX is not normal. (This will lead
to a contradiction.) By using Proposition 2.12 (and the fact that X is not bipartite),
as in Case 2 of the proof of Theorem 4.3, we see that 2s = 2t, for some s, t ∈ S, such
that s ̸= t. Therefore, we may assume that either 2a = 2b or |a| = 4. However, we
cannot have 2a = 2b, since X is twin-free. (If b = a + n, then S = S + n.)

So we have |a| = 4. Then, since X is nontrivially unstable, we see from Theorem 4.3
that n is divisible by 8 and ⟨b⟩ = Zn. (We are now in the situation of [1, Lem. 3.4],
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but will briefly sketch the proof.) Let α ∈ Aut BX, such that α(0, 0) = (0, 0). The
subgraph induced by the ball of radius 2 around (0, 0) has only two automorphisms, so
the restriction of α to this ball is the same as the restriction of a group automorphism β
(such that β(a) ∈ {±a} and β(b) ∈ {±b}). It is then easy to see that α(x) = β(x) for
all x, so α is a group automorphism. This means that BX is normal. □

The following technical result will be used in Sections 5 and 7.

Corollary 4.5. Let X = Cay(Zn, S) be a circulant graph of even order and odd
valency, and let S0 ⊂ S with |S0| = 4. Let X0 := Cay(Zn, S0) and let X ′

0 be a connected
component of X0. Assume that the set of S0-edges is invariant under Aut(BX). If
either

(1) |V (X ′
0)| is odd, or

(2) X0 is twin-free and nonbipartite,
then X is stable.

Proof. Let us first assume that |⟨S0⟩| = |V (X ′
0)| is odd. Note that as X ′

0 is 4-valent, it
is twin-free. (Otherwise, Lemma 2.14 tells us that X ′

0
∼= Y ≀ Km, where m ⩾ 2 and Y

is δ-regular. Then |V (X ′
0)| = m |V (Y )|, so m is odd. But also 4 = δm, so m is even, a

contradiction.) Therefore X ′
0 is a connected, twin-free, circulant graph of odd order,

so, by Theorem 3.1, it must be stable. It follows by Lemma 3.4 that X is stable.
Let us now suppose that |⟨S0⟩| = |V (X ′

0)| is even. It then follows that n ∈ ⟨S0⟩.
By assumption (2), X0 must be twin-free and nonbipartite. As all of its connected
components are isomorphic to X ′

0, it follows that X ′
0 is twin-free and nonbipartite. In

particular, X ′
0 is not trivially unstable. If it is stable, we conclude that X is stable by

Lemma 3.4. If it is not stable, it is nontrivially unstable so by Corollary 4.4 it follows
that BX ′

0 is normal. Applying Lemma 3.6, we conclude that X is stable. □

5. Unstable circulants of valency 5
Theorem 5.1. A circulant graph Cay(Zn, S) of valency 5 is unstable if and only if
either it is trivially unstable, or it is one of the following:

(1) Cay(Z12k, {±s, ±2k, 6k}) with s odd, which has Wilson type (C.1),
(2) Cay(Z8, {±1, ±3, 4}), which has Wilson type (C.3′).

Remark 5.2. It is easy to see that each connection set listed in Theorem 5.1 contains
both even elements and odd elements, so none of the graphs are bipartite. Then it
follows from Lemma 2.14(2) that the graphs are also twin-free. Therefore, a graph
listed in Theorem 5.1 is nontrivially unstable if and only if it is connected. And this
is easy to check:

• the graph in (2) is connected (since 1 is in the connection set);
• a graph in (1) is connected if and only if s is relatively prime to k.

The proof of Theorem 5.1 will use the following lemmas.
The first lemma can be obtained by inspecting the list [1, Cor. 1.3] of connected,

non-normal, circulant graphs of valency 4: K5, Cm≀K2 (with m ⩾ 3) and K2≀K5−5K2.
For the reader’s convenience, we reproduce the relevant parts of the proof in [1].

Lemma 5.3 (cf. [1, Cor. 1.3]). If X0 = Cay(Zn, {±a, ±b}) is a connected, bipartite,
twin-free, non-normal, circulant graph of valency 4, then X0 = Cay(Z10, {±1, ±3}).

Proof (cf. [1, proof of Thm. 1.2]). From Proposition 2.12, we see that (perhaps after
permuting the generators), we have either 2a = 2b or b = 3a or 4a = 0. However, we
cannot have 2a = 2b, since X is twin-free. So there are two cases to consider.
Case 1. Assume b = 3a. Since |b| ≠ 2, we have n > 6.
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For n = 8, we have 2b = 6a = −2a, which contradicts the assumption that X is
twin-free.

For n = 10, we have the Cayley graph that is specified in the statement of
Lemma 5.3.

For n ⩾ 12, we have X ∼= Cay(Zn, {±1, ±3}). This is the situation of [1, Lem. 3.5],
but, for completeness, we sketch the proof. The only nontrivial automorphism of the
ball of radius 2 centered at 0 is x 7→ −x. From this, it easily follows that x 7→ −x is the
only nontrivial automorphism of X, so X is normal. This contradicts our hypothesis.
Case 2. Assume 4a = 0. This means |a| = 4. Since X is bipartite, we know that |b| is
even, so ⟨b⟩ contains the unique element of order 2; this means 2a = ℓb for some ℓ ∈ Z.
Since X is bipartite, we know that ℓ is even. So |b| is divisible by 4. Therefore, ⟨b⟩
contains a. So X ∼= Cay(n, {±1, ±n/4}). If we consider the subgraph induced by the
ball of radius 2, we note that only the vertices ±1 have a pendant edge. In particular,
every automorphism of X maps 1-edges to 1-edges and is therefore an automorphism
of the graph X0 := Cay(Zn, {±1}) ∼= Cn. Since this Cayley graph is normal, we can
conclude the same about X, which is a contradiction. □

Recall that an edge {u, v} of the complete graph on G × Z2 is called a g-edge if
v = u ± (g, 1) for g ∈ G, 1 ∈ Z2 (see Definition 2.1(4)).

Lemma 5.4. Let X = Cay(Zn, S) be a nontrivially unstable, circulant graph of va-
lency 5. If every automorphism of BX preserves the set of n/2-edges, then X =
Cay(Z8, {±1, ±3, 4}).

Proof. Recall that Notation 2.2 introduced n as an abbreviation for n/2. Since X has
odd valency, we know that n is even; indeed, we may write

X = Cay(Zn, {±a, ±b, n}).
Since every automorphism of BX maps n-edges to n-edges, we know that every au-
tomorphism of BX is an automorphism of BX0, where

X0 = Cay(Zn, {±a, ±b}).
If X0 is stable, then by Lemma 3.4 it follows that X is stable, a contradiction. So we
may assume now that X0 is unstable.
Case 1. Assume X0 is nontrivially unstable. As X0 is 4-valent, by applying Corol-
lary 4.4 we conclude that BX0 is a normal Cayley graph. Because every automorphism
of BX is an automorphism of BX0, it then follows that BX is normal as well. How-
ever, since X is nontrivially unstable and of valency 5, Corollary 2.10 implies that
BX is not normal, a contradiction.
Case 2. Assume X0 is trivially unstable. There are three possibilities to consider:
Subcase 2.1. Assume X0 is not connected. Then a and b generate a proper subgroup
of Zn, while a, b and n generate the whole group. From here, n = 2k, where k is odd,
and ⟨a, b⟩ = 2Zn has order k. The connected components of X0 then have order k,
and therefore have odd order. By applying Corollary 4.5(1) we conclude that X is
stable, a contradiction.
Subcase 2.2. Assume X0 is connected, but is not twin-free. Then (by Lemma 2.14(1))
we can represent X0 as a wreath product Y ≀ Km, where Y is a δ-regular connected
graph and m > 1 is an integer such that δm = 4.
Subsubcase 2.2.1. Assume m = 4. Then δ = 1, so we get that X0 = K2 ≀K4 = K4,4.
Hence, X0 is a connected, 4-valent Cayley graph on Z8 and its connection set can
only contain odd numbers, because it is also bipartite. This uniquely determines X0
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as Cay(Z8, {±1, ±3}). From here, X = Cay(Z8, {±1, ±3, 4}), so X is the graph in the
statement of Lemma 5.4.
Subsubcase 2.2.2. Assume m = 2. Then δ = 2 and

|V (Y )| = |V (X)|/m = 2k/2 = k,

so Y is a k-cycle, so X0 ∼= Ck ≀ K2. Consequently, X ∼= Ck ≀ K2. From Lemma 3.8,
and the fact that X is not stable, we conclude that k = 4, i.e., X ∼= C4 ≀ K2. It is
easy to see that this implies X = Cay(Z8, {±1, ±3, 4}). So X is again the graph in
the statement of Lemma 5.4.
Subcase 2.3. Assume X0 is bipartite, connected and twin-free. By applying
Lemma 2.11, we conclude that the Cayley graph X0 is not normal. Then Lemma 5.3
tells us that X0 = Cay(Z10, {±1, ±3}), meaning that X = Cay(Z10, {±1, ±3, 5}).
But then X is bipartite, a contradiction. □

The following simple observation provides a converse to Lemma 5.4.

Lemma 5.5. Let X = Cay(Z8, {±1, ±3, 4}). Then:
(1) X is nontrivially unstable, and has Wilson type (C.3′),
(2) every automorphism of BX maps n/2-edges to n/2-edges, and
(3) all other edges of BX are in a single orbit of Aut BX.

Proof. (1) X has Wilson type (C.3′) with parameters H = ⟨2⟩ = {0, 2, 4, 6}, R = {4},
and d = 4. (Then n/d = 2 is even, r/d = 1 for the unique element r of R, and
H = 2Z8 ̸⊂ 4Z8 = dZ8.) See Remark 5.2 for an explanation that X is therefore
nontrivially unstable.

(2) and (3) Let
X0 = Cay(Z8, {±1, ±3}) ∼= K4,4.

Since X0 is bipartite, we know that BX0 is isomorphic to the disjoint union of two
copies of X0. But BX is connected, and the element (n, 1) of order 2 is the only
element of its connection set that is not in the connection set of BX0. It follows that

BX ∼= X0 □ K2 ∼= K4,4 □ K2.

So we see from Proposition 2.13 that the set of n-edges is invariant under all auto-
morphisms of BX. On the other hand, K4,4 is edge-transitive, so the other edges are
all in a single orbit. □

Lemma 5.6. Let X = Cay(Zn, S) be a nontrivially unstable, circulant graph of va-
lency 5. If the set of n/2-edges is not invariant under Aut BX, then:

(1) X = Cay(Z12k, {±s, ±2k, 6k}), for some s, k ∈ Z+, with s odd, and
(2) Aut BX has exactly two orbits on the set of edges of BX.

Proof. Write
X = Cay(Zn, {±a, ±b, n}).

By assumption, some automorphism of BX maps an n-edge to an a-edge (perhaps
after interchanging a and b). Then Proposition 2.15 shows that every generator of ⟨a⟩
is in S ∖ {n}. So the number of generators of ⟨a⟩ is ⩽ 4 (and |a| > 2), and therefore
|a| ∈ {3, 4, 5, 6, 8, 10, 12}.
Case 1. Assume |a| ∈ {5, 8, 10, 12}. The four generators of ⟨a⟩ are in S, so they must
coincide with ±a and ±b. Therefore, ⟨a, n⟩ = ⟨a, b, n⟩ = Zn. Therefore, X is one of
the following Cayley graphs:

Cay(Z10, {±2, ±4, 5}), Cay(Z8, {±1, ±3, 4}),
Cay(Z10, {±1, ±3, 5}) or Cay(Z12, {±1, ±5, 6}).
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Note that the first and fourth graph appear in Lemma 3.7 under (3a) and (3b) re-
spectively, and are therefore both stable. The third graph is bipartite, so it is trivially
unstable. Lemma 5.5(2) implies that the second graph is also not permissible (since
the statement of Lemma 5.6 requires that the set of n-edges is not invariant under
Aut BX). So this case cannot occur.

Case 2. Assume |a| ∈ {3, 4, 6}. Note that then ±a are the only generators of ⟨a⟩.
Because all elements of S are pairwise distinct, it follows that ⟨a⟩ ≠ ⟨b⟩. There-
fore, |a| ≠ |b|.

Subcase 2.1. Assume |b| ∈ {3, 4, 6}. We consider each of the three possibilities
for {|a|, |b|}:

Subsubcase 2.1.1. Assume {|a|, |b|} = {3, 4}. Then

X = Cay(Z12, {±3, ±4, 6}).

This graph is stable by Lemma 3.7(3c).

Subsubcase 2.1.2. Assume {|a|, |b|} = {3, 6}. Then

X = Cay(Z6, {±1, ±2, 3}) ∼= K6.

This graph is stable by Example 3.3.

Subsubcase 2.1.3. Assume {|a|, |b|} = {4, 6}. Then

X = Cay(Z12, {±2, ±3, 6}).

This graph appears in part (1) of the statement of Lemma 5.6 with parameters s = 3
and k = 1.

Also note that

BX = Cay(Z12 × Z2, {±(2, 1), ±(3, 1), (6, 1)}).

Since ⟨(3, 1)⟩ ∩ ⟨(2, 1), (6, 1)⟩ = {0, 0}, this implies

BX ∼= C4 □ Cay(2Z12 × Z2, {±(2, 1), (6, 1)}) ∼= C4 □ M6,

where M6 is the Möbius ladder with 6 vertices. Then Proposition 2.13 implies that BX
is not edge-transitive. Since n-edges are in the same orbit as a-edges, this establishes
part (2) of the statement of Lemma 5.6 for this graph.

Subcase 2.2. Assume |b| ̸∈ {3, 4, 6}. From here, we see from Proposition 2.15 that
no automorphism of BX can map an n-edge to a b-edge (because S cannot contain
more than 2 generators of ⟨b⟩, in addition to ±a). Hence, the set of b-edges is invariant
under all automorphisms of BX. (Note that this establishes part (2) of the statement
of Lemma 5.6 for this subcase.) Now, we see that every automorphism of BX is also
an automorphism of the graphs

BX1 := Cay
(
Zn × Z2, {(±a, 1), (n, 1)}

)
and

BX2 := Cay
(
Zn × Z2, {(±b, 1)}),

which are the canonical double covers of

X1 := Cay
(
Zn, {±a, n}) and X2 := Cay

(
Zn, {±b}),

respectively. Note that BX1 is arc-transitive (because a-edges and n-edges are in the
same orbit of Aut BX).
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If |a| = 3, then every connected component of BX1 is isomorphic to a 6-prism,
which is not arc-transitive. If |a| = 4, then every connected component of X1 is iso-
morphic to K4, which is a stable graph by Example 3.3, so it follows from Lemma 3.4
that X is stable, a contradiction. Therefore, we must have |a| = 6.

The connected components of X2 are |b|-cycles. If |b| is odd, then these are stable
(by Theorem 3.1, for example). By another application of Lemma 3.4, it follows that X
is stable, a contradiction.

So we can now assume that |a| = 6 and |b| is even. Write n = 6ℓ. From here n = 3ℓ
and {±a} = {ℓ, 5ℓ}.

Note that if ℓ is odd, then a and b must both be odd (since |a| and |b| are even).
Since n = 3ℓ is also odd, this means that all elements of S are odd, so X is bipartite,
a contradiction.

Therefore, we know that ℓ is even, so we may write ℓ = 2k. Then n = 12k, n = 6k
and {±a} = {±2k}. In particular, ±a and n are all even. So b must be odd (since X
is connected). This means that X appears in part (1) of the statement of Lemma 5.6
with parameter s = b. □

Proof of Theorem 5.1. (⇐) It suffices to show that each of the graphs in (1) and (2)
has the specified Wilson type. For any member of (1), it holds that Se = {2k, 6k, 10k};
therefore 4k + Se = Se, so the graph has Wilson type (C.1). For the graph in (2), see
Lemma 5.5(1).

(⇒) Assume X = Cay(Zn, S) has valency 5, and is nontrivially unstable. Then
either Lemma 5.4 or Lemma 5.6 must apply (depending on whether the set of n-edges
is invariant or not). So X is one of the graphs listed in these two lemmas, and is
therefore listed in the statement of Theorem 5.1. □

Combining Lemmas 5.4 to 5.6 also yields the following observation that will be
used in Section 7:

Corollary 5.7. If X is a nontrivially unstable, 5-valent, circulant graph, then
Aut BX has exactly two orbits on the edges of BX.

6. Unstable circulants of valency 6
See Corollary 6.2 for a more explicit formulation of the following Theorem 6.1.

Theorem 6.1. Every nontrivially unstable, circulant graph of valency 6 has Wilson
type (C.1), (C.2′), (C.3′), or (C.4).

Proof. Let X = Cay(Zn, S) be a nontrivially unstable, circulant graph of valency 6,
and write S = {±a, ±b, ±c}. The proof is by contradiction, so assume that X does not
have any of the four listed Wilson types. As usual, we let n = n/2, for convenience.
The proof considers several cases.
Case 1. Assume 2a = 2b. This means b = a + n (and −b = −a + n). Since X does
not have Wilson type (C.1), we also know that

(S ∩ 2Zn) ̸= n + (S ∩ 2Zn).
Therefore, we must have S ∩ 2Zn ̸= {±a, ±b}. Since S ̸⊆ 2Zn, this implies

{a, b} ̸⊆ 2Zn.(2)

We claim that |c| is not divisible by 4. To see this, note that otherwise n/gcd(c, n) =
|c| is even, so c/gcd(c, n) is odd, and we also know that |2c| is even, so n ∈ ⟨2c⟩.
This contradicts the fact that X does not have Wilson type (C.3′) (with H = ⟨n⟩,
R = {±c}, and d = gcd(c, n)). This completes the proof of the claim.
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Also note that 2c /∈ {±2a, ±2b}. (For example, if 2c = 2a, then, since c ̸= a, we
must have c = a + n = b, which contradicts the fact that a, b, and c must be distinct,
because |S| = 6.) Furthermore, since |c| is not divisible by 4, we also know that |c| ≠ 4,
so 2c ̸= −2c. Thus, we have

2c /∈ {±2a, ±2b, −2c}.(3)

Therefore, we see from Lemma 2.17 (with S′ = {±c}) that

every automorphism of BX is also an
automorphism of Cay(Zn × Z2, {(±2c, 0)}

)
.(4)

We now consider two subcases.

Subcase 1.1. Assume (c, 1) is the only common neighbor of (0, 0) and (2c, 0) in BX.
Let α be an automorphism of BX that fixes (0, 0), but does not fix (0, 1). Combin-
ing (4) with the assumption of this subcase implies that α must preserve the set of
c-edges.

If |c| is odd, then letting S0 = {±c} in Lemma 3.4 implies that X is stable (because
cycles of odd length are stable), which is a contradiction.

Therefore, since |c| is not divisible by 4, we must have |c| ≡ 2 (mod 4), so (|c|/2) ·
(c, 1) = (n, 1), so this implies that

α
(
v + (n, 1)

)
= α(v) + (n, 1) for every vertex v of BX.

Also note that, since α preserves the set of c-edges in BX, it must also preserve the
complement, which consists of the a-edges and b-edges. Hence, α is an automorphism
of the canonical double cover of the 5-valent circulant graph X ′ = Cay(Zn, S′), where
S′ = {±a, ±b, n}.

Let X ′
0 be the connected component of X ′ that contains 0. Note that X ′

0 is not
stable (since α does not fix (0, 1)). Also note that X ′

0 is connected, by definition.
Furthermore, it is not bipartite, because X is not bipartite and n = kc where k is
odd. We therefore see from Lemma 2.14 that it is also twin-free. So X ′

0 is nontrivially
unstable, and must therefore be one of the graphs listed in Theorem 5.1 (after identi-
fying the cyclic group V (X ′

0) with some Zm by a group isomorphism). Since 2a = 2b,
it follows that X ′

0 is the graph in part (2) of Theorem 5.1, so

X ′ = Cay(Zn, {±n/8, ±3n/8, n}).

Therefore, if we write |c| = 2k, where k is odd, then

X = Cay(Z8k, {±k, ±3k, ±c}).

So X has Wilson type (C.3′), with H = ⟨2k⟩, R = {±c},

d = gcd(c, 8k) = 8k

|c|
= 8k

2k
= 4,

and H ⊈ dZ8k.

Subcase 1.2. Assume (c, 1) is not the only common neighbor of (0, 0) and (2c, 0)
in BX. This implies that

2c is equal to either −2c or a − c or 2a or a + b or a − b

(perhaps after interchanging a with b and/or replacing both of them with their neg-
atives).

However, we know from (3) that 2c ̸= −2c and 2c ̸= 2a. Also, if 2c = a − b = n,
then |c| = 4, which contradicts the fact that |c| is not divisible by 4. Thus, only two
possibilities need to be considered.
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Subsubcase 1.2.1. Assume 2c = a + b = 2a + n. Since 2a and 2c are even, this
implies n is even, which means n ≡ 0 (mod 4). It also implies that a and b have the
same parity, so we conclude from (2) that a and b are odd. Since X is not bipartite,
then c must be even. Therefore,

0 ≡ 2c = 2a + n ≡ 2 + n (mod 4),
so n ≡ 2 (mod 4), which means n/4 is odd. Also note that 4c = 4a = 4b. Therefore,
setting k := n/4, we get that

X = Cay(Z4k, {±c, ±(c + k), ±(c − k)}).
If c ≡ 0 (mod 4), this graph has Wilson type (C.2′) (with h = k).

So we may assume c ≡ 2 (mod 4). We will show that this implies X is stable
(which is a contradiction). Any two vertices of BX that are in the same coset of the
subgroup ⟨(k, 0)⟩ have 4 common neighbors, but no two vertices of BX that are in
different cosets of ⟨(k, 0)⟩ have more than 3 common neighbors. Therefore, each coset
of ⟨(k, 0)⟩ is a block for Aut BX. Also note that (c + 2k, 1) is the only element of the
coset (c, 1)+⟨(k, 0)⟩ that is not adjacent to (0, 0). So every automorphism of BX must
preserve the set of (c + 2k)-edges. Since c + 2k is an element of odd order (because
c + 2k ≡ 2 + 2 ≡ 0 (mod 4) and n = 4k is not divisible by 8), we conclude from
Lemma 3.4 that X is stable.
Subsubcase 1.2.2. Assume 2c = a − c. This implies a = 3c, so

Zn = ⟨a, b, c⟩ = ⟨3c, 3c + n, c⟩ = ⟨c, n⟩.
If |c| is even, we know that n ∈ ⟨c⟩, so ⟨c⟩ = Zn. This implies that c is odd,

so {a, b} ∩ 2Zn ̸= ∅ (because X is not bipartite). Since {a, b} ̸⊆ 2Zn, this implies
n is odd (i.e., n ≡ 2 (mod 4)). And Lemma 2.17 (together with (3)) implies that
⟨2(c, 1)⟩ = 2Zn×{0} is a block for the action of Aut BX. Then, since |S∩2Zn| = 2 ⩽ 5,
we see from Proposition 2.18 that X has Wilson type (C.1) or (C.4).

We may now assume that |c| is odd. Since 2a = 2b and we may assume that
Subsubcase 1.2.1 does not apply, it is easy to see that X is stable by Lemma 3.5,
which is a contradiction.
Case 2. Assume |a| = 4, and the previous case does not apply.
Subcase 2.1. Assume some automorphism of BX maps an a-edge to a b-edge. Then
Proposition 2.15 tells us that S contains every generator of ⟨b⟩. Since |S| = 6 (and
the only generators of ⟨a⟩ are ±a), it follows that ϕ(|b|) ⩽ 4. We also know |b| ⩾ 3,
so we conclude that

|b| ∈ {3, 4, 5, 6, 8, 10, 12}.

Also note that if ϕ(|b|) = 4, then {±b, ±c} consists of the 4 generators of ⟨b⟩, so
n = lcm

(
|a|, |b|

)
= lcm

(
4, |b|

)
.

• If |b| = 4, then a and b are generators of the same cyclic subgroup of order 4, but
then {±a} = {±b}, a contradiction.

• If |b| ∈ {5, 10}, then ϕ(|b|) = 4, so {±b, ±c} consists of the 4 generators
of ⟨b⟩, and we have n = lcm

(
4, |b|

)
= 20. If |b| = 5, then X is isomorphic to

Cay(Z20, {±4, ±5, ±8}); if |b| = 10, then X is isomorphic to Cay(Z20, {±2, ±5, ±6}).
Both of these graphs are stable by Lemma 3.7(4).

• If |b| ∈ {8, 12}, then {±a} ⊆ ⟨b⟩, and a is not a generator of this subgroup. So
the other two generators of ⟨b⟩ must be ±c. This implies that b and c each generate
the whole group Zn. If |b| = 8, then X is isomorphic to Cay(Z8, {±1, ±2, ±3}),
which is not twin-free since 4 + S = S. If |b| = 12, then X is isomorphic to
Cay(Z12, {±1, ±3, ±5}), which is bipartite.

• We may now assume |b| ∈ {3, 6}. We consider two subsubcases.
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Subsubcase 2.1.1. Assume |b| ∈ {3, 6} and |c| ∈ {3, 6}. If |c| = |b|, then b and c
generate the same cyclic subgroup, which has only two generators, which contradicts
the fact that {±b} ≠ {±c}. So we may assume |b| = 3 and |c| = 6. Then X is
isomorphic to Cay(Z12, {±2, ±3, ±4}), which is not twin-free since 6 + S = S.

Subsubcase 2.1.2. Assume |b| ∈ {3, 6} and |c| /∈ {3, 6}. Then we can assume that
no isomorphism of BX maps an a-edge to a c-edge (for otherwise an earlier argument
would apply after interchanging b and c). Since a-edges can be mapped to b-edges, this
implies that no b-edge can be mapped to a c-edge. Therefore, every automorphism
of BX is an automorphism of BX0, where X0 = Cay(Zn, {±a, ±b}). Let X ′

0 be the
connected component of X0 that contains 0. Recalling that |a| = 4, we see that if
|b| = 3 then X ′

0 is isomorphic to Cay(Z12, {±3, ±4}), and if |b| = 6, then X ′
0 is

isomorphic to Cay(Z12, {±2, ±3}). Both of these graphs are stable (by Lemma 3.7(2)
or Theorem 4.3). So Lemma 3.4 tells us that X is stable as well, a contradiction.

Subcase 2.2. Assume every automorphism of BX maps a-edges to a-edges.
Then every automorphism of BX is also an automorphism of BX0, where
X0 = Cay(Zn, {±b, ±c}). As usual, let X ′

0 be the connected component of X0
that contains 0.

Subsubcase 2.2.1. Assume X0 is not twin-free. Then b = c + n (perhaps after
replacing c with −c). Since a + n = −a, this implies S + n = S, which contradicts the
fact that X is twin-free.

Subsubcase 2.2.2. Assume X0 is not connected (but is twin-free). We know that
X ′

0 is not stable (for otherwise Lemma 3.4 contradicts the fact that X is not stable).
Since X ′

0 is connected (by definition) and twin-free (by assumption), this implies that
it has even order (see Theorem 3.1). Since ⟨a, b, c⟩ = Zn and |a| = 4, we conclude that
⟨b, c⟩ = 2Zn and n ≡ 4 (mod 8).

• If X ′
0 is bipartite, then BX0 is isomorphic to the union of four disjoint copies

of X ′
0. Since |a| = 4 and BX is connected, this implies that BX ∼= C4 □ X ′

0. Since X ′
0

has even valency, and |V (X ′
0)|/2 is odd, it it is easy to see that X ′

0 does not have K2
as a Cartesian factor. (If X ′

0
∼= K2 □ Y , then Y is a regular graph of odd valency and

odd order, which is impossible.) This implies (by Proposition 2.13) that

|Aut BX| = |Aut(C4 □ X ′
0)| = |Aut C4| · |Aut X ′

0| = 8 |Aut X ′
0|.

Also note that, since X ′
0 is a bipartite circulant graph whose order is congruent to 2

modulo 4, it is (isomorphic to) the canonical double cover of a circulant graph of
odd order. Since connected, twin-free, circulant graphs of odd order are stable (see
Theorem 3.1) and 2a is the element of order 2 in Zn, we conclude that if β is any
automorphism of X ′

0, then β(v + 2a) = β(v) + 2a for every v ∈ V (X ′
0). This implies

that we can extend β to an automorphism β′ of X by defining β′(a + v) = a +
β(v) for v ∈ V (X ′

0); so Aut X contains a copy of Aut X ′
0. Since Aut X also contains

the translation v 7→ v + a and the negation automorphism v 7→ −v, we conclude
that |Aut X| ⩾ 4 |Aut X ′

0|. Combining this with the above calculation of |Aut BX|
contradicts the fact that X is not stable.

• If X ′
0 is not bipartite, then X ′

0 is nontrivially unstable, and therefore must be
described by Theorem 4.3. Since |2Zn| ≡ 2 (mod 4), we must be in the situation
of 4.3(1): ⟨c⟩ = 2Zn, and b = mc + n, for some m ∈ Z×

n , such that m2 ≡ ±1
(mod n). (Technically, Theorem 4.3 only tells us that m2 ≡ 1 (mod n/2). However,
we know that m is odd, so m2 ≡ 1 (mod 4). Therefore m2 ≡ 1 (mod n).) We also
have ma + n = ±a (since |a| = 4). Therefore mS + n = S, which means that X has
Wilson type (C.4).
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Subsubcase 2.2.3. Assume X0 is connected and bipartite. This means that b and c
are odd, so S∩2Zn = {±a}. Since |a| = 4, we conclude that (S∩2Zn)+n = (S∩2Zn),
so X has Wilson type (C.1).

Subsubcase 2.2.4. Assume X0 is nontrivially unstable. Then Theorem 4.3 tells us
that X0 has Wilson type (C.4). Then X also has Wilson type (C.4), with the same
value of m.

Case 3. Assume neither of the previous cases apply (even after permuting and/or
negating some of the generators). Let α be an automorphism of BX that fixes (0, 0).
The assumption of this case implies that 2s ̸= 2t for all s, t ∈ S, such that s ̸= t.
Therefore, Lemma 2.17 implies that the cosets of 2Zn × {0} are blocks for the action
of Aut BX. So α must fix the two cosets that are in Zn × {0}, and either fixes or
interchanges the other two. However, also note that S is the disjoint union of

Se := S ∩ 2Zn and So := S ∩ (1 + 2Zn).

Each of these two sets has even cardinality (since it is closed under inverses), and
|Se| + |So| = 6, so it is easy to see that |Se| ≠ |So|. Therefore, α cannot interchange
Se and So, which means that α must fix all four cosets of 2Zn × {0}. So

α maps Se-edges to Se-edges, and maps So-edges to So-edges.(5)

Hence, by Lemma 3.4, we know that

the connected components of Cay(Zn, Se) are unstable.

(The connected components of Cay(Zn, So) are always unstable, since they are bi-
partite.) We also know that Cay(Zn, Se) is twin-free (since X does not have Wilson
type (C.1)). Therefore, we see from Theorem 3.1 that |⟨Se⟩| is even, so

n ≡ 0 (mod 4).

From Lemma 2.9, we see that BX is not normal. So applying Proposition 2.12 to
BX implies that either |a| = 4 or 3a = b or 2a = 2b or 2a = b + c (perhaps
after permuting and/or negating some of the generators). Since neither of the previous
cases apply, this implies that

either 3a = b or 2a = b + c.

We will consider each of these two possibilities as a separate subcase.
Recall that Definition 2.1(2) introduced s̃ as an abbreviation for (s, 1) with s ∈ S.

Subcase 3.1. Assume 3a = b. Then also 3ã = b̃.
We claim that |ã| ⩾ 10. First of all, we have |ã| ≠ 2, because |a| /∈ {1, 2}. We

also have |ã| ̸= 4, because |a| ̸= 4 (since Case 2 does not apply). Now, note that
if |ã| = 6, then |a| = 3 or |a| = 6; however, the fact that b = 3a would then imply
that |a| = 3|b|, so |b| ∈ {1, 2}, which is a contradiction. Finally, note that if |a| = 8,
then 2(−a) = −2a = 6a = 2(3a) = 2b, which contradicts the assumption that Case 1
does not apply. This completes the proof of the claim.

Subsubcase 3.1.1. Assume |ã| = 10. Then |a| = 5 or |a| = 10. However, if |a| = 5,
then |b| = 5 as well and they generate the same cyclic subgroup of Zn. In particular,
the connected components of Cay(Zn, {±a, ±b}) are isomorphic to K5, which is stable,
so by Lemma 3.4, we get that X is stable, a contradiction.

Therefore, we must have |a| = 10. (Then |b| = 10 and they generate the same cyclic
subgroup.) Since n ≡ 0 (mod 4), we may write

n = 20k for some k ∈ Z.
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Since |a| = |b| = 10 ̸≡ 0 (mod 4) and n ≡ 0 (mod 4), it is clear that |c| is even (in
fact, it is divisible by 4). It follows that |c| is either n (if |c| is divisible by 5) or n/5
(otherwise). So we see that (up to isomorphism) X is

Cay(Z20k, {±c, 2k, 6k, 14k, 18k}) with c = 1 or c = 5.
From (5), we know that α is also an automorphism of the graphs

Y1 = Cay(Z20k × Z2, {(±c, 1)})
and

Y2 = Cay(Z20k × Z2, {(2k, 1), (6k, 1), (14k, 1), (18k, 1)}).
Note that (0, 0) and (10k, 1) lie in the same connected component of Y2, which is

isomorphic to K5,5−5K2. In this component, (10k, 1) is the unique vertex at distance 3
from (0, 0), so α fixes (10k, 1).

Also note that the vertices (0, 1) and (10k, 1) lie in the same connected component
of Y1, which is a cycle (of length 20k or 4k), and that these two vertices are diametri-
cally opposite on this cycle. Since we already know that α fixes (10k, 1), it must also
fix (0, 1). We conclude that X is stable, a contradiction.
Subsubcase 3.1.2. Assume |ã| = 12. Then |a| = 12. Since b = 3a, we have |b| =
|3a| = 4, which contradicts the fact that Case 2 does not apply.
Subsubcase 3.1.3. Assume |ã| ⩾ 14. Let B2 be the subgraph induced by the ball
of radius 2 centered at 0 in Cay(Zn ×Z2, {±ã, ±b̃}). This graph is drawn in Figure 1,
under the assumption of this subcase that |ã| ⩾ 14. From this drawing, it can be
seen that ±b̃ are the only vertices in B2 that have a pendant edge. (These edges are
colored white in the figure.) So {±b̃} is α-invariant. This means that α maps b-edges
to b-edges. Since we already know that α maps c-edges to c-edges, it must also map
a-edges to a-edges.

(0, 0)

−ã

−b̃ = −3ã

b̃ = 3ã

ã
−ã+ b̃ = 2ã

ã+ b̃ = 4ã

2b̃ = 6ã

−2b̃ = −6ã

−ã− b̃ = −4ã

ã− b̃ = −2ã

Figure 1. The subgraph B2 induced by the ball of radius 2 centered
at (0, 0) in Cay(Zn × Z2, ±ã, ±b̃).

In the terminology of [6], this means that α is a color-preserving graph automor-
phism. We will now use a simple argument from [6, §4] to establish that α is a group
automorphism (so BX is normal, and then it follows from Lemma 2.9 that X has
Wilson type (C.4)).
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We provide only a sketch of the proof. By composing with negation, if necessary,
we may assume that α(ã) = ã. This implies α(kã) = kã for all k ∈ Z. Let m ∈ Z+,
such that mc̃ ∈ ⟨ã⟩. Then α(kmc̃) = kmc̃ for all k ∈ Z. If 2mc̃ ̸= 0, this implies that
α(ℓc̃) = ℓc̃ for all ℓ ∈ Z; in fact, α(kã + ℓc̃) = kã + ℓc̃, for all k, ℓ ∈ Z, which means
that α is the identity map, contradicting the fact that α /∈ Aut X × Z2.

Therefore, we may assume 2mc̃ = 0, for all m ∈ Z, such that mc̃ ∈ ⟨ã⟩. This
means that |⟨c̃⟩ ∩ ⟨ã⟩| ⩽ 2, so there is a group automorphism of Zn that fixes ã and
negates c̃. So we may assume that α(c̃) = c̃. Since ã + c̃ is the only common neighbor
of ã and c̃, we must have α(ã + c̃) = ã + c̃. Similarly, we must have α(2ã + c̃) = 2ã + c̃
and α(ã + 2c̃) = ã + 2c̃. Repeating the argument shows that α(kã + ℓc̃) = kã + ℓc̃, for
all k, ℓ ∈ Z, so, once again, α is the identity map.

Subcase 3.2. Assume 2a = b + c. (Note that this implies 2ã = b̃ + c̃.) We will show
that α(kb̃ + ℓã) = kα(b̃) + ℓα(ã), for all k, ℓ ∈ Z⩾0. (This implies that α is a group
automorphism of Zn, so BX is normal, so Lemma 2.9 implies that X has Wilson
type (C.4).)

Since b and c have the same parity, we see from (5) that α maps {b, c}-edges to
{b, c}-edges, and maps a-edges to a-edges. In particular, we may assume (by compos-
ing with negation if necessary) that

α fixes every element of ⟨ã⟩.(6)

Since α maps {b, c}-edges to {b, c}-edges, α is an automorphism of the graph
Cay(Zn ×Z2, {±b̃, ±c̃}), which has at most two connected components. Let X ′

0 be its
connected component containing (0, 0) with the vertex set ⟨b̃, c̃⟩. Since α fixes (0, 0),
it restricts to an automorphism of X ′

0. Because we are assuming Case 1 and Case 2
do not hold and we can additionally assume Subcase 3.1 does not hold either, Propo-
sition 2.12 applies to X ′

0. It follows that the restriction of α to V (X ′
0) is a group

automorphism of ⟨b̃, c̃⟩. We let b′, c′ ∈ {±b, ±c}, such that α(b̃) = b̃′ and α(c̃) = c̃′. It
follows that:

α(kb̃ + ℓc̃) = kb̃′ + ℓc̃′ ∀k, ℓ ∈ Z.(7)

Notice that:

b̃ + c̃ = 2ã (assumption of Subcase 3.2)
= α(2ã) (6)
= α(b̃ + c̃) (2ã = b̃ + c̃)
= b̃′ + c̃′ (7).

As we have already established that the hypothesis of Proposition 2.12 holds, we
obtain that {b′, c′} = {b, c}.

To complete the proof of this Subcase 3.2, we now prove by induction on k that,
for all k, ℓ ∈ Z⩾0, we have

α(kb̃ + ℓã) = kb̃′ + ℓã.

The base case is provided by (6), so assume k > 0. Since α maps a-edges to a-edges,
there exists ϵ ∈ {±1}, such that α(kb̃ + ℓã) = kb̃′ + ϵℓã for all ℓ ∈ Z. We wish to show
that ϵ = 1, so suppose ϵ = −1. (This will lead to a contradiction.) Letting ℓ = −2
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tells us
(k − 1)b̃′ − c̃′ = α

(
(k − 1)b̃ − c̃

)
(7)

= α(kb̃ − 2ã) (2ã = b̃ + c̃)
= kb̃′ + 2ã (ϵ = −1)
= kb̃′ + (b̃ + c̃) (2ã = b̃ + c̃)
= kb̃′ + (b̃′ + c̃′) ({b, c} = {b′, c′}).

This implies −2b̃′ = 2c̃′, which contradicts the fact that Case 1 does not apply. □

The following result provides a more explicit version of Theorem 6.1. Remark 6.3
explains which of these graphs are nontrivially unstable.

Corollary 6.2. A circulant graph X = Cay(Zn, {±a, ±b, ±c}) of valency 6 is un-
stable if and only if either it is trivially unstable, or it is one of the following:

(1) Cay(Z8k, {±a, ±b, ±2k}), where a and b are odd, which is of Wilson
type (C.1).

(2) Cay(Z4k, {±a, ±b, ±b+2k}), where a is odd and b is even, which is of Wilson
type (C.1).

(3) Cay
(
Z4k,

{
±a, ±(a+k), ±(a−k)

})
, where a ≡ 0 (mod 4) and k is odd, which

is of Wilson type (C.2′).
(4) Cay(Z8k, {±a, ±b, ±b + 4k}), where a is even and |a| is divisible by 4, which

is of Wilson type (C.3′).
(5) Cay(Z8k, {±a, ±k, ±3k}), where a ≡ 0 (mod 4) and k is odd, which is of

Wilson type (C.3′).
(6) Cay(Z4k, {±a, ±b, ±mb + 2k}), where

gcd(m, 4k) = 1, (m − 1)a ≡ 2k (mod 4k), and
either m2 ≡ 1 (mod 4k) or (m2 + 1)b ≡ 0 (mod 4k),

which is of Wilson type (C.4).
(7) Cay(Z8k, {±a, ±b, ±c}), where there exists m ∈ Z, such that

gcd(m, 8k) = 1, m2 ≡ 1 (mod 8k), and
(m − 1)a ≡ (m + 1)b ≡ (m + 1)c ≡ 4k (mod 8k),

which is of Wilson type (C.4).

Proof. (⇐) It is easy to see that each graph has the specified Wilson type, and is
therefore unstable.

(⇒) If X is unstable, then we know from Theorem 6.1 that X has Wilson type (C.1),
(C.2′), (C.3′), or (C.4). We treat each of these possibilities as a separate case.
Case 1. Assume X has Wilson type (C.1).
Subcase 1.1. Assume |Se| = 2. Then we may assume Se = {±c}. Since X has Wilson
type (C.1), we must have −c = c + n, so |c| = 4. (Since c ∈ Se, this implies that n is
divisible by 8.) Therefore X is as described in part (1) of Corollary 6.2.
Subcase 1.2. Assume |Se| = 4. Then we may assume Se = {±b, ±c}. Since X has
Wilson type (C.1) (and |Se| is a power of 2), we must have Se +n = Se. Therefore, we
may assume c = b + n (because we cannot have b + n = −b and c + n = −c). Since b
and c are even, this implies n is even, so n is divisible by 4. Hence, X is as described
in part (2) of Corollary 6.2.
Case 2. Assume X has Wilson type (C.2′). Let h ∈ 1 + 2Zn, such that (a) and (b)
of condition (C.2′) hold.
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Subcase 2.1. Assume |So| = 2. Then we may assume So = {±c}, so part (a) of (C.2′)
tells us −c = c+2h and c = −c+2h. This implies that |c| = 4 and |h| = 4. So we may
assume c = h = n/4. Then it is obvious that −c ≡ −h (mod 4), so part (b) of (C.2′)
implies that 0 = −c + h ∈ S. This contradicts the fact that graphs in this paper do
not have loops (see Assumption 1).
Subcase 2.2. Assume |So| = 4. Then we may assume So = {±b, ±c}, so part (a)
of (C.2′) implies that we may assume c = b+2h (by replacing b with −b if necessary),
and we must have |2h| ∈ {2, 4}.
Subsubcase 2.2.1. Assume |2h| = 2. Then we have c = b+n. We may assume b ≡ −h
(mod 4) (by interchanging b and c if necessary). So part (a) of condition (C.2′) implies
b+h ∈ S, which means a = b+h (perhaps after replacing a with −a). In other words,
we have b = a − h; then c = b + 2h = a + h. Therefore, since |h| = 4, we have

S =
{

±a, ±
(
a + (n/4)

)
, ±

(
a − (n/4)

)}
.

We see from part (b) of condition (C.2′) that S contains an element that is divisible
by 4, so we must have a ≡ 0 (mod 4). Also, since a + (n/4) = b is odd, we know that
n/4 is odd. Hence, X is as described in part (3) of Corollary 6.2.
Subsubcase 2.2.2. Assume |2h| = 4. Then

{±b, ±c} = {b, b + 2h, b + 4h, b + 6h},

so −c = b + 4h (and −b = b + 6h). Since c = b + 2h, this implies 2c2 = 6h has order 4,
so |b| = 8. So So = {±n/8, ±3n/8} consists of all of the elements of order 8. Since −h
has order 8, we conclude that −h ∈ So, so part (b) of condition (C.2′) implies 0 ∈ S,
which (again) contradicts the fact that graphs in this paper do not have loops.
Case 3. Assume X has Wilson type (C.3′). Let H, R, and d be as in the definition
of Wilson type (C.3′). We may assume that X does not have Wilson type (C.1), so R
contains at least one element of Se; for definiteness, let us say that a is in R ∩ Se.
Since r/d is odd for every r ∈ R, we know that all elements of R have the same parity,
so this implies R ⊆ Se.
Subcase 3.1. Assume |R| = 2. This means R = {±a}, d = gcd(n, a), and {±b, ±c}+
H = {±b, ±c}. Let h be a generator of H, so b + h = c (perhaps after replacing c
with −c).
Subsubcase 3.1.1. Assume |h| = 2 (so h = n). Since n/d is even, we know that
n ∈ dZn. Therefore, the last condition in (C.3′) implies that |a| is divisible by 4.
(Since a is even, this implies that n is divisible by 8.) Hence, X is as described in
part (4) of Corollary 6.2.
Subsubcase 3.1.2. Assume |h| = 4. The argument of Subsubcase 2.2.2 shows
{±b, ±c} = {±n/8, ±3n/8}. Since the elements of S cannot all be even, we know
that n/8 is odd. Then, since a is even, we know that 2aZn does not contain an ele-
ment of order 4, so we conclude from the last sentence of condition (C.3′) that aZn

does not contain H. This means that a is divisible by 4. Hence, X is as described in
part (5) of Corollary 6.2.
Subcase 3.2. Assume |R| = 4. This means we may assume R = {±a, ±b}, H = ⟨n⟩,
and |c| = 4. Since n/d is even, we know that the elements of R have even order, so
n ∈ ⟨R⟩ = dZn. Therefore, the last sentence of condition (C.3′) implies n ∈ 2dZn,
which means n/d is divisible by 4. Since r/d is odd for every r ∈ R, this implies
|a| ≡ |b| ≡ 0 (mod 4). Since a ∈ R ⊆ Se, we conclude that n is divisible by 8. So
c = ±n/4 is even. This contradicts the fact that at least one element of S must be
odd (since S generates Zn).
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Case 4. Assume X has Wilson type (C.4). This means there exists m ∈ Z such that
n + mS = S and gcd(m, n) = 1. Let α(x) := n + mx, so α(S) = S. Since |Se| ̸= |So|,
we know that α(Se) ̸= So. Therefore, we must have α(Se) = Se and α(So) = So. This
means that n is even (so n is divisible by 4).

Assume, without loss of generality, that b and c have the same parity (and a has
the opposite parity).

We must have n + ma ∈ {±a}. So we may assume n + ma = a (by replacing m
with −m if necessary), so (m − 1)a = n.

We also have α({±b, ±c}) = {±b, ±c}. Therefore, either α fixes {±b} and {±c}, or
α interchanges these two sets.
Subcase 4.1. Assume α(b) ∈ {±b} and α(c) ∈ {±c}. This means n + mb = ±b and
n + mc = ±c, so (m ± 1)b = n and (m ± 1)c = n. Since (m − 1)a = n, and a has the
opposite parity from b and c, we cannot have (m−1)b = n or (m−1)c = n. Therefore,
we must have (m + 1)b = n and (m + 1)c = n.

We know that m is odd, so either m−1 or m+1 is divisible by 4. Since (m−1)a = n
and (m + 1)b = n, this implies that n is divisible by 4. So n is divisible by 8

Note that, since m + 1 is even, we have
(m2 − 1)a = (m + 1)(m − 1)a = (m + 1)n = 0.

Similarly, we also have (m2 − 1)b = 0 and (m2 − 1)c = 0. Since ⟨a, b, c⟩ = Zn, this
implies that m2 ≡ 1 (mod n). Hence, X is as described in part (7) of Corollary 6.2.
Subcase 4.2. Assume α(b) ∈ {±c} and α(c) ∈ {±b}. We have α2(b) ∈ {±b}, which
means ±b = n + m(n + mb) = m2b, so there exists ϵ ∈ {±1}, such that (m2 + ϵ)b = 0.
Subsubcase 4.2.1. Assume ϵ = −1. This means (m2 − 1)b = 0. Since m must be
odd, we also have

(m2 − 1)a = (m + 1) · (m − 1)a = (m + 1)n = 0
and (m2 − 1)n = 0. Since

Zn = ⟨a, b, c⟩ = ⟨a, b, n + mb⟩ = ⟨a, b, n⟩,

we conclude that (m2 − 1)Zn = {0}, so m2 ≡ 1 (mod n). Hence, X is as described in
part (6) of Corollary 6.2 (with m2 ≡ 1 (mod n)).
Subsubcase 4.2.2. Assume ϵ = 1. This means (m2 + 1)b = 0. Hence, X is as
described in part (6) of Corollary 6.2 (with (m2 + 1)b = 0). □

Remark 6.3. It is easy to determine whether a graph in Corollary 6.2 is nontrivially
unstable. Indeed, here are quite simple necessary and sufficient conditions for each of
the lists in the statement of Corollary 6.2:
6.2(1): gcd(a, b, k) = 1 and b /∈ {±a + 4k}.
6.2(2): gcd(a, b, k) = 1 and a /∈ {±k}.
6.2(3): gcd(a, k) = 1.
6.2(4): gcd(a, b, 4k) = 1 and a /∈ {±2k}.
6.2(5): gcd(a, k) = 1.
6.2(6): gcd(a, b, 2k) = 1, either a or b is even, and either a /∈ {±k} or mb /∈ {±b}.
6.2(7): gcd(a, b, c, 4k) = 1, either a or b is even, and either a /∈ {±2k} or c /∈ {±b+4k}.

Proof. For convenience, let S = {±a, ±b, ±c}.
It is clear that X is connected if and only if gcd(S ∪ {n}) = 1. Therefore, the first

condition in each part of Remark 6.3 is precisely the condition for X to be connected.
Knowing that gcd(S ∪ {n}) = 1 implies that at least one element of S is odd (since

n is even). Therefore, X is nonbipartite if and only if at least one element of S is even.
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It is obvious that S has an even element in all parts of Corollary 6.2 other than (6)
and (7), so the statement of Remark 6.3 only adds this as an explicit condition for
parts (6) and (7). (In part (7), the fact that (m + 1)b ≡ (m + 1)c ≡ 4k (mod 8k)
implies that b and c have the same parity, so there is no need to mention the possibility
that c is even.)

Now, let us suppose that X is not twin-free (but is connected and nonbipartite).
Then by Lemma 2.14(1), it follows that X ∼= Y ≀ Km with Y being a connected
circulant of valency δ and m ⩾ 2 an integer. Clearly, 6 = δm, so m ∈ {2, 3, 6}.

• If m = 6, then δ = 1 and Y ∼= K2. Consequently, X ∼= K2 ≀ K6 ∼= K6,6, which
contradicts the fact that X is not bipartite.

• If m = 3, then δ = 2 and Y is a cycle of even length, which again contradicts
the fact that X is not bipartite.

• If m = 2, then from the proof of Lemma 2.14(3), it can be concluded that the
unique twin of 0 is n. Therefore, it must hold that n + S = S.

Thus, we see that X is twin-free if and only if n + S ̸= S.
In parts (3) and (5), it is clear that if n + S = S, then a + n = −a, which means

a = ±n/4. Since a ≡ 0 (mod 4), this implies n is divisible by 16, which contradicts
the fact that k is odd. So all of the graphs of these two types are twin-free. All other
parts of Remark 6.3 add a final condition that specifically rules out the possibility
that n + S = S. □

7. Unstable circulants of valency 7
Theorem 7.1. A circulant graph Cay(Zn, S) of valency 7 is unstable if and only if
either it is trivially unstable, or it is one of the following:

(1) Cay(Z6k, {±2t, ±2(k − t), ±2(k + t), 3k}), with k odd, which has Wilson
type (C.1).

(2) Cay(Z12k, {±2k, ±b, ±c, 6k}), with b and c odd, which has Wilson type (C.1).
(3) Cay(Z20k, {±t, ±2k, ±6k, 10k}), with t odd, which has Wilson type (C.1).
(4) Cay(Z4k, {±t, ±(k − t), 2k ± t, 2k}), with k odd and t ≡ k (mod 4), which has

Wilson type (C.2′).
(5) Cay(Z8k, {±4t, ±k, ±3k, 4k}), with k and t odd, which has Wilson type (C.3′).
(6) Cay(Z12k, {±t, ±(4k − t), ±(4k + t), 6k}), with t odd, which has Wilson

type (C.3′).

Remark 7.2. It is easy to see that each connection set listed in Theorem 7.1 contains
both even elements and odd elements, so none of the graphs are bipartite. Then it
follows from Lemma 2.14(2) that the graphs are also twin-free. Therefore, a graph in
the list is nontrivially unstable if and only if it is connected. And this is easy to check:
a graph listed in Theorem 7.1 is connected if and only if gcd(t, k) = 1 (except that
the condition for part (2) is gcd(b, c, k) = 1).

Remark 7.3. In the statement of Theorem 7.1, it is implicitly assumed that k, t ∈ Z+.
In order for the graphs to have valency 7, the parameters k and t (or k, b, and c)
must be chosen so that all of the listed elements of the connection set are distinct in
the cyclic group. (Note that this implies k > 1 in parts (4), (1), and (5).)

Proof of Theorem 7.1. (⇐) This is the easy direction. For each family of graphs
in the statement of Theorem 7.1, we briefly justify the specified Wilson type (which
implies that the graphs are unstable):

(1) Type (C.1) with Se = {±2t, ±2(k − t), ±2(k + t)} and 2k + Se = Se.
(2) Type (C.1) with Se = {±2k, 6k} and 4k + Se = Se.
(3) Type (C.1) with Se = {±2k, ±6k, ±10k} and 4k + Se = Se.
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(4) Type (C.2′) with h = k and So = {±t, 2k±t}. Note that s ≡ 0 or −k (mod 4)
if and only if

s ∈ {−t, k − t, −(k − t), 2k + t},

in which case

s + k ∈ {k − t, 2k − t, t, −k + t}.

(Note that −k + t = −(k − t) is in the connection set.)
(5) Type (C.3′) with H = ⟨2k⟩, R = {±4t, 4k}, d = 4, n/d = 2k, {r/d} = {t, k},

and H ̸⊆ dZ8k.
(6) Type (C.3′) with H = ⟨4k⟩, R = {6k}, d = 6k, n/d = 2, {r/d} = {1}, and

H ̸⊆ dZ12k.
(⇒) Let X = Cay(Zn, S) be a nontrivially unstable circulant graph of valency 7.

Since the graph has odd valency (or by Theorem 3.1), n must be even. We will write
S = {±a, ±b, ±c, n} for its connection set.

Case 1. Assume there exists an automorphism of BX that maps an n-edge to an
a-edge. By Proposition 2.15, S must contain every generator of ⟨a⟩. It follows that
ϕ(|a|) ⩽ 6 (and we also know |a| ≠ 2). In particular, we obtain that

|a| is an element of the set {3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}.

We consider the following cases.

Subcase 1.1. Assume |a| ∈ {7, 9}. Then S must contain the 6 generators of ⟨a⟩.
Since |a| is odd, we know n /∈ ⟨a⟩, so we conclude that Zn = ⟨a⟩ × ⟨n⟩. In particular,
X is one of the following:

Cay(Z14, {±2, ±4, ±6, 7}) or Cay(Z18, {±2, ±4, ±8, 9}).

Note that the first graph appears in Lemma 3.7(5b), which contradicts the assump-
tion that X is (nontrivially) unstable. The second graph is listed in part (1) of the
statement of Theorem 7.1 (with parameters k = 3 and t = 1).

Subcase 1.2. Assume |a| ∈ {14, 18}. Then S again contains the 6 generators of ⟨a⟩.
Additionally, since |a| is even, we have n ∈ ⟨a⟩. We conclude that a generates Zn and
it follows that X is one of the following:

Cay(Z14, {±1, ±3, ±5, 7}) or Cay(Z18, {±1, ±5, ±7, 9}).

It is clear that both of these graphs are bipartite, which contradicts the assumption
that X is nontrivially unstable.

Subcase 1.3. Assume |a| = 5. Then S contains the 4 generators of ⟨a⟩. We may
suppose without loss of generality that besides ±a, the remaining two generators
of ⟨a⟩ are ±b.

Subsubcase 1.3.1. Assume |c| ∈ {3, 4, 6}. Then X is one of the following graphs, all
of which are stable by Lemma 3.7.

(1) |c| = 3 =⇒ X = Cay(Z30, {±6, ±10, ±12, 15}). See Lemma 3.7(5g).
(2) |c| = 4 =⇒ X = Cay(Z20, {±4, ±5, ±8, 10}). See Lemma 3.7(5c).
(3) |c| = 6 =⇒ X = Cay(Z30, {±5, ±6, ±12, 15}). See Lemma 3.7(5e).

Subsubcase 1.3.2. Assume |c| ̸∈ {3, 4, 6}. From here, ⟨c⟩ has more than two gen-
erators, while ⟨a⟩ = ⟨b⟩ has no generators besides ±a, ±b. Hence, there cannot exists
an automorphism of BX mapping an s-edge, with s ∈ S ∖ {±c}, onto a c-edge, since
Proposition 2.15 would then imply that S contains all generators of ⟨c⟩. It follows the
set of c-edges is invariant under Aut BX. Hence, every automorphism of BX maps
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S0-edges to S0-edges, where we define S0 := {±a, ±b, n}. The connected components
of Cay(Zn, S0) are isomorphic to

Cay(Z10, {2, 4, 5, 6, 8}).

By Lemma 3.7(3a), this graph is stable. It then follows from Lemma 3.4 that X is
stable as well, a contradiction.

Subcase 1.4. Assume |a| = 8. We may assume (as in Subcase 1.3) that ±a and ±b
are the four generators of ⟨a⟩ (which contains n, because |a| is even).

Subsubcase 1.4.1. Assume |c| ∈ {3, 4, 6}. Then X is one of the following graphs
(1) |c| = 3 =⇒ X = Cay(Z24, {±3, ±8, ±9, 12}). This is stable, by

Lemma 3.7(5d).
(2) |c| = 4 =⇒ X = Cay(Z8, {±1, ±2, ±3, 4}) ∼= K8. This is stable, by Exam-

ple 3.3.
(3) |c| = 6 =⇒ X = Cay(Z24, {±3, ±4, ±9, 12}). This graph appears in part (5)

of the statement of Theorem 7.1 (with parameters k = 3 and t = 1).

Subsubcase 1.4.2. Assume |c| /∈ {3, 4, 6}. By the assumption of Case 1, there is
an automorphism α of X that maps an n-edge to an a-edge. By composing with
translations on the left and right, we may assume that α fixes the vertex (0, 0), and
maps an n-edge that is adjacent to (0, 0) to an a-edge that is adjacent to (0, 0).

We see from Proposition 2.15 (by the same argument as in Subsubcase 1.3.2)
that the set of c-edges is invariant under all automorphisms of BX. So α re-
stricts to an automorphism of BX ′

0, where X ′
0 is the connected component of

Cay(Zn, {±a, ±b, n}) that contains 0. However, since X ′
0

∼= Cay(Z8, {±1, ±3, 4}), we
know from Lemma 5.5(2) that the set of n-edges is invariant under all automorphisms
of BX ′

0. This contradicts the choice of α.

Subcase 1.5. Assume |a| = 10. Once again, we may assume that ±a and ±b are the
four generators of ⟨a⟩ (which contains n, because |a| is even).

Subsubcase 1.5.1. Assume |c| ∈ {3, 4, 6}. Then X is one of the following graphs:
(1) |c| = 3 =⇒ X = Cay(Z30, {±3, ±9, ±10, 15}). By Lemma 3.7(5f), this graph

is stable.
(2) |c| = 4 =⇒ X = Cay(Z20, {±2, ±5, ±6, 10}). This graph appears in part (3)

of the statement of Theorem 7.1 (with parameters k = 1 and t = 5).
(3) |c| = 6 =⇒ X = Cay(Z30, {±3, ±5, ±9, 15}). This is a bipartite graph, so

trivially unstable.

Subsubcase 1.5.2. Assume |c| /∈ {3, 4, 6}. Since |a| = 10, we may write n = 10m.
As before, we see from Proposition 2.15 that the set of c-edges is invariant under

all automorphisms of BX. Then Lemma 3.4 implies that |c| is even (since cycles of
odd length are stable).

If m is odd, then c must also be odd (since |c| is even and n = 10m is not divis-
ible by 4), so all elements of S are odd. Then X is bipartite, which contradicts the
assumption that X is nontrivially unstable.

So m must be even, which means we may write m = 2k. In this notation, we
have X = Cay(Z20k, {±c, ±2k, ±6k, 10k}). Note that c must be odd, since X is not
bipartite, so this is listed in part (3) of Theorem 7.1 (with parameter t = c).

Subcase 1.6. Assume |a| = 12. Then S contains the 4 generators of ⟨a⟩, which are
without loss of generality ±a and ±b.

Subsubcase 1.6.1. Assume |c| ∈ {3, 4, 6}. Then X is one of the following graphs:
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(1) |c| = 3 =⇒ X = Cay(Z12, {±1, ±4, ±5, 6}). This is listed in part (4) of
Theorem 7.1 (with parameters k = 3 and t = −1).

(2) |c| = 4 =⇒ X = Cay(Z12, {±1, ±3, ±5, 6}). This is listed in part (6) of
Theorem 7.1 (with parameters k = t = 1).

(3) |c| = 6 =⇒ X = Cay(Z12, {±1, ±2, ±5, 6}). This is listed in part (2) of
Theorem 7.1 (with parameters k = 1, b = 1, and c = 5).

Subsubcase 1.6.2. Assume |c| /∈ {3, 4, 6}. As usual, we see from Proposition 2.15 (by
the same argument as in Subsubcase 1.3.2) that the set of c-edges is invariant under all
automorphisms of BX. Therefore, if we let S0 := {±a, ±b, n}, then the set of S0-edges
is also invariant under every automorphism of BX. Since the connected components
of Cay(Zn, S0) are isomorphic to Cay(Z12, {±1, ±5, 6}), we see from Lemma 3.7(3b)
that these connected components are stable. It therefore follows from Lemma 3.4 that
X is stable.
Subcase 1.7. Assume |a| ∈ {3, 4, 6}.
Subsubcase 1.7.1. Assume |b| ∈ {3, 4, 6}. Note that no two of a, b, and c can have
the same order, as they cannot generate the same subgroup, since a cyclic group of
order 3, 4, or 6 has only 2 generators.

If |c| ∈ {3, 4, 6}, then {|a|, |b|, |c|} = {3, 4, 6}, so
X = Cay(Z12, {±2, ±3, ±4, 6}).

By Lemma 3.7(5a), this graph is stable.
So we must have |c| /∈ {3, 4, 6}. Then, yet again, Proposition 2.15 implies that

the set of c-edges is invariant under every automorphism of BX. Therefore, if we let
S0 := {±a, ±b, n}, then the set of S0-edges is also invariant.

• If {|a|, |b|} = {3, 4}, then the connected components of Cay(Zn, S0) are iso-
morphic to Cay(Z12, {±3, ±4, 6}). By Lemma 3.7(3c), this graph is stable and
consequently, by Lemma 3.4, so is X.

• If {|a|, |b|} = {3, 6}, then the connected components of Cay(Zn, S0) are iso-
morphic to Cay(Z6, {±1, ±2, 3}), which, in turn, is isomorphic to K6. By
Example 3.3, this is stable. Then, by Lemma 3.4, so is X.

Therefore, we must have {|a|, |b|} = {4, 6}.
In this situation, a connected component X ′

0 of Cay(Zn, S0) is isomorphic to
Cay(Z12, {±2, ±3, 6}). This graph is nontrivially unstable, as it is listed in Theo-
rem 5.1(1) with parameters k = 1 and s = 3 (and Remark 5.2 tells us that it is
nontrivially unstable, not merely unstable). So Corollary 5.7 tells us that the group
Aut BX ′

0 has precisely two orbits on the edges of BX ′
0. We know from the assump-

tion of Case 1 that there exists an automorphism of BX that maps an n-edge to an
a-edge. Since the set of S0-edges is invariant, this implies there is an automorphism
of BX ′

0 that maps an n-edge to an a-edge. (So the n-edges are in the same orbit as
the a-edges.) It follows that the set of b-edges is invariant.

If |a| = 4, then the invariant subgraph Cay(Zn, {±a, n}) of X has connected com-
ponents isomorphic to K4, which is stable by Example 3.3. It then follows from
Lemma 3.4 that X is stable.

So we must have |a| = 6. Then |b| = 4. Write n = 12k. Then, since |a| is not
divisible by 4, we see that a must be even.

If b and c are of opposite parity, the connected components of Cay(Zn, {±b, ±c})
are nonbipartite. It is not difficult to see that they are also twin-free (since |b| = 4
and the valency of the graph is so small). Since the set of b-edges is invariant under
Aut BX and the set of c-edges is also invariant, we know that the set of {b, c}-edges
is invariant. It therefore follows from Corollary 4.5(2) that X is stable.
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So b and c must have the same parity. However, they cannot both be even, since a
is known to be even, and X is not connected if every element of S is even. So b and c
are odd. Since |a| = 6, we now see that X is listed in part (2) of Theorem 7.1.

Subsubcase 1.7.2. Assume |b| /∈ {3, 4, 6}. By symmetry, we may additionally sup-
pose that |c| /∈ {3, 4, 6}. Then, by applying Proposition 2.15 one last time, we see that
no automorphism of BX maps an n-edge to a b-edge or a c-edge. This implies that
the set of {a, n}-edges is invariant under all automorphisms of BX, and the set of
{b, c}-edges is also invariant.

If |a| = 3, then the connected components of Cay(Zn, S0) are isomorphic to
Cay(Z6, {±2, 3}), which is stable by Lemma 3.7(1a). It follows by Lemma 3.4 that X
is also stable.

If |a| = 4, then the connected components of Cay(Zn, S0) are isomorphic to
Cay(Z4, {1, 2, 3}), which is further isomorphic to K4, which is stable by Example 3.3.
It follows again by Lemma 3.4 that X is stable.

We now only have the case |a| = 6 to consider. Let n = 6m. Note that then
{±a, n} = {±m, 3m}. We focus on

X0 := Cay(Zn, {±b, ±c}).

Let X ′
0 be the connected component of X0 that contains 0. As X is assumed to be

unstable and X0 is 4-valent, we can conclude from Corollary 4.5 that |V (X ′
0)| is even

and that either X ′
0 is bipartite or X ′

0 is not twin-free.
Suppose, first, that X ′

0 is bipartite. This implies that b and c are of the same parity.

(1) If b and c are even, then m must be odd. (Otherwise, S would contain only
even integers, so X would not be connected.) Consequently, since n = 6m, it
follows that b and c are both of odd order, so X ′

0 contains an odd cycle. This
contradicts the assumption that X ′

0 is bipartite.
(2) If b and c are odd, then m must be even. (Otherwise, every element of S

is odd, so X is bipartite, which contradicts the fact that X is nontrivially
unstable.). Hence, we may write m = 2k, and then we see that X is listed in
part (2) of Theorem 7.1.

We can now assume that X ′
0 is not bipartite and is not twin-free. By Lemma 2.14(3),

it follows that X ′
0 is isomorphic to K4,4 or Cℓ ≀ K2 with ℓ = |V (X ′

0)|/2. As X ′
0 is

assumed to be nonbipartite, the first case is not possible, and in the second case, we
see that |V (X ′

0)|/2 is odd.
From the fact that X ′

0 is not twin-free (and the valency of X is small — only 4) we
obtain that c = b + n (perhaps after replacing b with −b). For every v ∈ Zn × Z2, we
deduce that v +(n, 0) is the unique twin of v in the graph BX0. Since automorphisms
must map twin vertices to twin vertices, and the set of {b, c}-edges is invariant under
Aut BX, we conclude that the cosets of the subgroup ⟨(n, 0)⟩ are blocks for the action
of Aut BX (see Definition 2.6). Note that quotient graph of BX ′

0 with respect to the
partition induced by cosets of ⟨(n, 0)⟩ is a cycle. Since |V (X ′

0)|/2 is odd, the length of
this cycle is |V (X ′

0)|. Therefore, in this cycle, the vertices corresponding to the cosets
{(0, 0), (n, 0)} and {(0, 1), (n, 1)} are at maximum distance.

It follows that if α is an automorphism of BX that fixes (0, 0), then α must fix the
coset {(0, 1), (n, 1)} set-wise. Also note that α must fix the set of neighbors of (0, 0)
in BX1 with X1 := Cay(Zn, {±a, n}) (because {a, n}-edges are invariant); this set
of neighbors is {±(a, 1), (n, 1)}. Then α must fix the intersection of these two sets,
which is {(n, 1)}. The automorphism α must therefore also fix the twin of the vertex
(n, 1), which is (0, 1). We now conclude from Lemma 3.2 that X is stable.
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This completes the proof of Case 1. For the remaining cases, we may assume that
every automorphism of BX maps n-edges to n-edges, and is therefore an automor-
phism of the canonical double cover of the following subgraph X0 of X:

Notation 7.4. For the remainder of the proof, we let

X0 := Cay(Zn, {±a, ±b, ±c})

be the graph that is obtained from X by removing all of the n-edges.

Case 2. Assume X0 is not connected. (We also assume that every automorphism of
BX maps n-edges to n-edges, for otherwise Case 1 applies.) Then ⟨a, b, c⟩ is a proper
subgroup of Zn, but ⟨a, b, c, n⟩ is the whole group Zn. It follows that n = 2m, where m
is odd, and |⟨a, b, c⟩| = m. Let X ′

0 be the connected component of X0 that contains 0.
Note that X ′

0 is connected by definition and also that it is not bipartite (since it is
vertex-transitive and of odd order).

If X ′
0 is twin-free, then it follows by Theorem 3.1 that X ′

0 is stable. By Lemma 3.4,
we conclude that X is stable, which is a contradiction.

Therefore, we know that X ′
0 is not twin-free. Then by Lemma 2.14(1), X ′

0
∼= Y ≀Kd,

where Y is a vertex-transitive, connected graph and d ⩾ 2. Let δ be the valency of Y .
Since X ′

0 is 6-valent, it follows that 6 = δd and therefore, d ∈ {2, 3, 6}. Because
d |V (Y )| = |V (X ′

0)| is odd, it cannot happen that d is even. Hence, we conclude that
d = 3. It follows that δ = 2, so Y must be a cycle. Letting

k := |V (Y )| = m/3 = n/6,

we conclude that X ′
0

∼= Ck ≀ K3. Since X0 is the disjoint union of two copies of X ′
0,

we now see that
X0 = Cay(Z6k, {±s, 2k ± s, 4k ± s}),

for some s ∈ Zn, with |⟨s, 2k⟩| = n/2. This final condition means gcd(s, 2k, 6k) = 2,
so s must be even; write s = 2t. Then

X = Cay(Z6k, {±2t, 2k ± 2t, 4k ± 2t, 3k}).

This graph is listed in part (1) of Theorem 7.1.

Case 3. Assume that X0 is bipartite and that BX0 is arc-transitive. (We also assume
that every automorphism of BX maps n-edges to n-edges, and that X0 is connected,
for otherwise a previous case applies.) Since X0 is bipartite, it follows that BX0
is isomorphic to a disjoint union of two copies of X0. Since BX0 is assumed to be
arc-transitive, it follows that X0 is a connected arc-transitive circulant graph. Con-
sequently, it is one of the four types that are listed in Theorem 2.16. Type 2.16(1)
is impossible because X0 is bipartite (and has valency 6). By Lemma 2.11, it follows
that X0 is not a normal Cayley graph, so it does not have type 2.16(2) either.

Subcase 3.1. Assume X0 has type 2.16(3). Then X0 = Y ≀Kd, where Y is a connected
arc-transitive circulant graph, and d ⩾ 2. Let δ be the valency of Y . Since X0 has
valency 6, it follows that δd = 6, so d ∈ {2, 3, 6}.

Subsubcase 3.1.1. Assume d = 6. Then X0 ∼= K6,6. It follows that n = 12 and we
obtain X = Cay(Z12, {±1, ±3, ±5, 6}). We have already seen this graph; it is listed in
part (6) of Theorem 7.1 with parameters k = t = 1.

Subsubcase 3.1.2. Assume d = 3. Then Y is a cycle of even length 2m. We obtain
that

X0 = Cay(Z6m, {±t, 2m ± t, 4m ± t}).
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Then X = Cay(Z6m, {±t, 2m ± t, 4m ± t, 3m}). Since X0 is connected, we have
gcd(t, 2m) = 1. In particular, t is odd. Since X is not bipartite, this implies m is
even. Writing m = 2k, we get that

X = Cay(Z12k, {±t, 4k ± t, 8k ± t, 6k}).

So X is listed in part (6) of Theorem 7.1.

Subsubcase 3.1.3. Assume d = 2. Then Y is a connected, cubic, arc-transitive,
circulant graph, so Corollary 2.20 tells us that Y is either K4 or K3,3. Since X0 is
bipartite, it follows that Y is isomorphic to K3,3. We obtain that X0 ∼= K6,6, a case
that has already been considered in Subsubcase 3.1.1.

Subcase 3.2. Assume X0 has type 2.16(4). Letting n = |V (X0)|, we have X0 =
Y ≀ Kd − dY , where n = md, d > 3, gcd(d, m) = 1 and Y is a connected arc-transitive
circulant graph of order m. Let δ be the valency of Y . Since X0 has valency 6, we
must have δ(d − 1) = 6. Since d > 3, this implies that either d = 7 and δ = 1 or d = 4
and δ = 2.

If δ = 1, then Y = K2 (so m = 2). This implies n = md = 2 · 7 = 14. Then
X0 = K2 ≀ K7 − 7K2 and X = K2 ≀ K7 ∼= K7,7. Hence, X is bipartite and trivially
unstable.

Assume, now, that δ = 2 and d = 4. Since δ = 2, we have Y = Cm. Then m must
be even, because X0 is bipartite. This contradicts the fact that gcd(d, m) = 1.

Case 4. Assume that none of the preceding cases apply. This means that:
(1) every automorphism of BX maps n-edges to n-edges,
(2) X0 is connected, and
(3) either X0 is not bipartite or BX0 is not arc-transitive.

Subcase 4.1. Assume there exists s ∈ {a, b, c}, such that the set of s-edges is invari-
ant under the action of Aut(BX), and the graph Cay(Zn, {±s, n}) is not bipartite.
Let X1 := Cay(Zn, {±s, n}), and let X ′

1 be a connected component of X1. Then X ′
1

is connected, cubic, and nonbipartite. The graph X ′
1 must also be twin-free, because

otherwise Lemma 2.14(2) would imply that X ′
1

∼= K3,3, which contradicts the fact
that X ′

1 is not bipartite. We therefore conclude from Proposition 4.2 that X ′
1 is sta-

ble. By our assumptions, the set of s-edges is invariant under the action of Aut(BX),
and the set of n-edges is also invariant. So it follows by Lemma 3.4 that X is stable,
which is a contradiction.

Subcase 4.2. Assume there exists s ∈ {a, b, c}, such that the set of s-edges is invariant
under Aut BX. Since X is not bipartite, we know that S contains two elements of
opposite parity. Therefore, we may assume without loss of generality that a+n is odd.
We may assume that the set of a-edges is not invariant under Aut BX, for otherwise
Subcase 4.1 applies (with s = a). So s ̸= a. Hence, we may assume, without loss of
generality, that s = c, which means the set of c-edges is invariant under Aut BX. This
implies that the a-edges and the b-edges are in the same orbit of Aut BX.

We consider the following two subgraphs of X:

X1 := Cay(Zn, {±c, n}) and X2 := Cay(Zn, {±a, ±b}).

Denote their connected components containing 0 by X ′
1 and X ′

2, respectively.
We may assume that X ′

1 is bipartite. (Otherwise, Subcase 4.1 applies with s = c.)
This implies that |c| is even, so n ∈ ⟨c⟩. More precisely, we have n = (|c|/2) c. Since
X ′

1 is bipartite, this implies that |c|/2 is odd.
Also, since X is unstable, it follows from Corollary 4.5 that |V (X ′

2)| is even and
either X ′

2 is not twin-free or X ′
2 is bipartite.
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Subsubcase 4.2.1. Assume X ′
2 is not twin-free. We claim that X ′

2
∼= K4,4. From

Lemma 2.14(3), we obtain that X ′
2 is isomorphic to K4,4 or Cℓ ≀K2 with ℓ := |⟨a, b⟩|/2.

Let X∗
2 be the connected component of Cay(Zn, {±a, ±b, n}) containing 0. Note that

X∗
2 is obtained by adding n-edges to X ′

2. Since X ′
2

∼= Cℓ ≀K2, this implies X∗
2

∼= Cℓ ≀K2.
However, since n-edges are also invariant, X∗

2 cannot be stable, since in this case
Lemma 3.4 would imply that X is stable. By Lemma 3.8, we therefore conclude that
ℓ = 4. Finally, note that C4 ≀ K2 ∼= K4,4. Hence, we may assume that X ′

2
∼= K4,4. This

completes the proof of the claim.
It follows from the claim that |V (X ′

2)| = |⟨a, b⟩| = 8, so we may write n = 8k. The
claim then implies that {±a, ±b} = {±k, ±3k}. We also obtain:

8k = n = |⟨a, b, c, n⟩| = |⟨a, b, c⟩| = |⟨a, b⟩| · |c|
|⟨a, b⟩ ∩ ⟨c⟩|

= 8|c|
|⟨a, b⟩ ∩ ⟨c⟩|

This immediately implies that k divides |c|. More precisely, since |c|/2 is odd, and the
denominator of the right-most term is a divisor of |⟨a, b⟩| = 8 (and is a multiple of
|⟨n⟩| = 2), the only possibility is that k = |c|/2 (so k is odd). We conclude that:

X = Cay(Z8k, {±c, ±k, ±3k, 4k}).

Since |c| = 2k = 8k/4, we know that gcd(c, 8k) = 4; this means that we may write
c = 4t with t odd. So X is listed in part (5) of Theorem 7.1 (with parameter 4t = c).

Subsubcase 4.2.2. Assume X ′
2 is bipartite. Then a and b must be of the same parity,

but as X is nonbipartite, it follows that their parity is opposite to that of c and n.
Therefore, if we let X∗

2 be a connected component of Cay(Zn, {±a, ±b, n}), then X∗
2

is a connected, nonbipartite, 5-valent circulant graph. By Lemma 2.14(2), it is also
twin-free (since it is not bipartite, and therefore cannot be isomorphic to K5,5). We
conclude that X∗

2 is not trivially unstable.
Due to Lemma 3.4 and the fact that X is unstable, we see that X∗

2 is not stable.
Hence, it is nontrivially unstable. From our assumptions, we already know that a-
edges and b-edges are in the same orbit under the action of Aut BX∗

2 . This implies
that if the set of n-edges is not invariant, then all edges of BX∗

2 are in the same orbit,
which would contradict Corollary 5.7. Hence, the set of n-edges must be invariant, so
Lemma 5.4 tells us that X∗

2 is isomorphic to Cay(Z8, {±1, ±3, 4}). Therefore, X ′
2

∼=
Cay(Z8, {±1, ±3}) ∼= K4,4 is not twin-free, so Subsubcase 4.2.1 applies.

Subcase 4.3. Assume all edges of BX besides n-edges are in the same orbit of
Aut BX. As every automorphism of BX is also an automorphism of BX0, it follows
that BX0 is arc-transitive. Then by the assumption of Case 4, X0 must be nonbipar-
tite.

Subsubcase 4.3.1. Assume |a| = 4. Since BX0 is arc-transitive, there exist auto-
morphisms of BX0 mapping an a-edge to a b-edge and a c-edge. Since |a| = 4, by
Proposition 2.15 it follows that all generators of the subgroups ⟨b⟩ and ⟨c⟩ are in S. As
all elements of S are pairwise distinct, it is clear that either b and c generate distinct
subgroups with exactly 2 generators each or b and c generate the same subgroup with
exactly 4 generators.

In the first case, we get that |b| ̸= |c| and both lie in {3, 4, 6}. As |a| = 4, we
conclude that {|a|, |b|, |c|} = {3, 4, 6}, so X = Cay(Z12, {±2, ±3, ±4, 6}). By part (5a)
of Lemma 3.7, this graph is stable.

In the second case, it follows that |b| = |c| ∈ {5, 8, 10, 12}. Then X is one of the
following graphs:

• |b| = |c| = 5 =⇒ X = Cay(Z20, {±4, ±5, ±8, 10}). This is stable by
Lemma 3.7(5c).
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• |b| = |c| = 8 =⇒ X = Cay(Z8, {±1, ±2, ±3, 4}) ∼= K8. This is stable by
Example 3.3.

• |b| = |c| = 10 =⇒ X = Cay(Z20, {±2, ±5, ±6, 10}). We find this graph in
part (3) of Theorem 7.1 (with parameters k = 1 and t = 5).

• |b| = |c| = 12 =⇒ X = Cay(Z12, {±1, ±3, ±5, 6}. We find this graph in
part (6) of Theorem 7.1 (with parameters k = t = 1).

Subsubcase 4.3.2. Assume 2s ̸= 2t, for all s, t ∈ S, such that s ̸= t. Then from
Lemma 2.17, it follows that any automorphism of BX0 (and consequently of BX, as
well) is an automorphism of

Cay(Zn × Z2, {(±2a, 0), (±2b, 0), (±2c, 0)}).
Therefore, (the vertex sets of) the connected components of this graph are blocks for
the action of Aut BX0. These blocks are the four cosets of the subgroup 2Zn × {0}.
As BX0 is 6-valent and arc-transitive (and all neighbors of (0, 0) are in Zn × {1}), it
follows that either all 6 neighbors of (0, 0) in BX0 lie in the same coset of 2Zn × {0}
or three of its neighbors lie in 2Zn × {1} and the other three lie in (1 + 2Zn) × {1}.
In the first case, it follows that a, b, c are all of the same parity, which contradicts the
fact that X0 is connected and nonbipartite. In the second case, it follows that exactly
three elements of the set {±a, ±b, ±c} are odd, which is impossible, since −s has the
same parity as s.
Subsubcase 4.3.3. Assume that neither of the two preceding cases apply. This means
that:

(1) S contains no element of order 4, and
(2) we may assume, without loss of generality, that 2a = 2b.

By Lemma 2.17, every automorphism of BX0 is also an automorphism of Cay(Zn ×
Z2, {(±2c, 0)}). This implies that the cosets of ⟨2c⟩ × {0} are blocks for the action
of Aut BX0. The two c-neighbors of (0, 0) are both in the coset (c, 1) +

(
⟨2c⟩ × {0}

)
.

Therefore, by arc-transitivity, either all neighbors of (0, 0) in BX0 are in this coset or
there are three different cosets, each containing two neighbors of (0, 0).

However, if all neighbors of (0, 0) are in (c, 1) +
(
⟨2c⟩ × {0}

)
, then a and b have the

same parity as c. This contradicts the fact that X0 is connected and nonbipartite.
So there are three different cosets that each contain two neighbors of (0, 0). Consider

the quotient graph of BX0 with respect to the coset partition induced by ⟨2c⟩ × {0}.
This is a cubic, connected, bipartite, arc-transitive graph Q, which is a Cayley graph
on Zm×Z2, where m is the index of ⟨2c⟩ in Zn. It follows from Theorem 2.16 that there
are only three cubic, connected Cayley graphs on abelian groups (up to isomorphism):
K4, K3,3, and the cube Q3.

• K4 is not bipartite.
• If Q ∼= K3,3, then ⟨2c⟩ is of index 3 in Zn. But this means ⟨2c⟩ cannot be of

index 2 in ⟨c⟩, so it follows that ⟨2c⟩ = ⟨c⟩, so c is of odd order. Then n = 3|c|
is also odd. By Theorem 3.1, X is stable.

Therefore, Q must be the cube (and therefore has exactly 8 vertices).
It follows that ⟨2c⟩ × 0 is of index 8 in Zn × Z2, so the order of 2c is n/4. This

means n/gcd(n, 2c) = n/4, so gcd(n, 2c) = 4. Therefore, c is an even integer, and n is
also even. Since X is connected, then a and b = a + n must be odd.

Note that the five non-zero neighbors of (a, 1) in BX0 are
(a ± c, 0), (2a, 0) = (2b, 0), (a ± b, 0).

There is more than one path of length 2 from (0, 0) to each of these vertices. Due
to arc-transitivity, this implies that the the path (0, 0), (c, 1), (2c, 0) is not the only

Algebraic Combinatorics, Vol. 6 #5 (2023) 1268



Unstable circulants of valency at most 7

path of length 2 from (0, 0) to (2c, 0). Because the first coordinate of (2c, 0) is an even
integer, we conclude that 2c is a sum of two integers from {±a, ±a + n, ±c} of the
same parity, besides c + c. As we have assumed there is no element of order 4 in S,
the case 2c = (−c) + (−c) is not possible. So 2c must be a sum of two (odd) integers
from {±a, ±a + n}. Recalling that 2c ̸= 2s for s ̸= c, we see that (up to relabeling
a, −a and a + n), we must have either

2c = a + (a + n) = 2a + n or 2c = a − (a + n) = n.
However, the case 2c = n is not possible, because no element of S has order 4.
Therefore, we have 2c = 2a + n. This means 2(c − a) = n, so either c = a + (n/4) or
c = a − (n/4). However, if c = a + (n/4), then −c = −a − (n/4); therefore, we may
assume c = a − (n/4), by replacing a, b, and c with their negatives, if necessary.

As a is an odd integer, we know that n/|a| = gcd(a, n) is odd, so ⟨a⟩ contains every
element of Zn whose order is a power of 2. In particular, it contains n and ±n/4.
Since b = a + n and c = a + (n/4), we conclude that ⟨a⟩ = Zn. Then, writing n = 4k,
we have:

X = Cay(Z4k, {±a, ±(a + 2k), ±(a − k), 2k}).
If a ≡ k (mod 4), then this is listed in part (4) of Theorem 7.1 (with parameter t = a).

To complete the proof, we will show that if a ̸≡ k (mod 4), then the subgraph X0
is stable. This then implies by Lemma 3.4 that X is stable as well, which is a contra-
diction.

Suppose, for a contradiction, that X0 is unstable (and a ≡ −k (mod 4)). To work
around a conflict of notation, let us change our notation for X0, by writing α and κ
instead of a and k:

X0 = Cay(Z4κ, {±α, ±(α + 2κ), ±(α − κ)}).
Recall that κ is odd, and α ≡ −κ (mod 4).

Since X0 is connected, nonbipartite, and twin-free, it is nontrivially unstable. So
it must appear in the list of nontrivially unstable 6-valent graphs in Corollary 6.2.
However:

(1) Since κ is odd, we know that |V (X0)| = 4κ is not divisible by 8. So X0 cannot
appear under (1), (4), or (5) in Corollary 6.2.

(2) Since the connection set of X0 has 4 odd elements (±α and ±(α + 2κ)), we
can also rule out the family 6.2(2).

(3) If X0 is a member of the family 6.2(3), then, since α − k and its negative are
the only even elements of the connection set for X0 (and the four elements
±(a+k) and ±(a−k) all have the same parity), the element a of 6.2(3) must
be α − κ (perhaps after replacing a with −a). Since α ≡ −κ (mod 4), this
implies

a = α − κ ≡ 2α ≡ 2 (mod 4),
which contradicts the requirement of 6.2(3) that a ≡ 0 (mod 4).

(4) Assume X0 is a member of the family 6.2(7). Then we can find m ∈ Z with
gcd(m, 4κ) = 1 and m2 ≡ 1 (mod 4κ) satisfying the identity listed in 6.2(7).
Using the notation from Corollary 6.2, we observe the following cases:

• Assume a = α. We then obtain that:
(m − 1)α ≡ (m + 1)(α + 2κ) (mod 4κ),

so 2 | (α+κ(m+1)). This is clearly a contradiction, since the right-most
expression is odd, since α and m are odd.

• Assume a = α + 2κ. We then obtain a contradiction of the same type:
(m − 1)(α + 2κ) ≡ (m + 1)α (mod 4κ),
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so 2 | (κ(m − 1) − α).
• Assume a = α − κ. It then follows that:

(m − 1)(α − κ) ≡ (m + 1)α (mod 4κ),

so κ | α. This is a contradiction, since we have already established that
α is a generator of the group Z4κ.

(5) Finally, suppose X0 is a member of the family 6.2(6). Since α − κ and its
negative are the only even elements of the connection set of X0 (and the four
elements ±b and ±mb + 2k all have the same parity), the element a of 6.2(3)
must be α − κ (or its negative). Then a and m − 1 are even (and k = n/4 = κ
is odd), so we have

(m − 1)a ≡ 0 ̸≡ 2 ≡ 2k (mod 4).

This contradicts the requirement that (m − 1)a ≡ 2k (mod n).
Therefore X0 does not appear on any of the lists in Corollary 6.2. This contradiction
completes this final case of the proof of Theorem 7.1. □
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