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On Zd
ℓ -towers of graphs

Sage DuBose & Daniel Vallières

Abstract Let ℓ be a rational prime. We show that an analogue of a conjecture of Greenberg
in graph theory holds true. More precisely, we show that when n is sufficiently large, the ℓ-adic
valuation of the number of spanning trees at the nth layer of a Zd

ℓ -tower of graphs is given by
a polynomial in ℓn and n with rational coefficients of total degree at most d and of degree in n

at most one.

1. Introduction
Throughout this paper, we fix a rational prime number ℓ. Let
(1) K = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn ⊆ . . .
be a tower of number fields for which Kn/K is Galois with Gal(Kn/K) ≃ Z/ℓnZ for
all n ⩾ 0. A theorem of Iwasawa [9, §4.2] postulates the existence of non-negative
integers µ, λ, n0 and an integer ν such that

ordℓ(hn) = µℓn + λn+ ν,

for all n ⩾ n0, where hn is the class number of Kn and ordℓ denotes the usual ℓ-
adic valuation on Q. The situation of constant field extensions for function fields over
finite fields is classical and the situation of geometric Zℓ-extensions of global fields of
characteristic ℓ was studied by Gold and Kisilevsky in [2]. More recently, an analogous
result was proven in the context of graph theory where field extensions are replaced
with graph covers and the class number is replaced with the number of spanning trees.
See [3, 4, 12, 13, 29].

Let d be a fixed positive integer and consider a tower of number fields such as (1),
where now Kn/K is Galois with Gal(Kn/K) ≃ (Z/ℓnZ)d for all n ⩾ 0. Greenberg
conjectured (see [1, §7]) that there exists a polynomial P (X,Y ) ∈ Q[X,Y ] of total
degree at most d and of degree at most 1 in Y such that

ordℓ(hn) = P (ℓn, n),
for n large enough. When d = 1, the polynomial P (X,Y ) is simply Iwasawa’s poly-
nomial

P (X,Y ) = µX + λY + ν ∈ Z[X,Y ].
When d ⩾ 2, this conjecture of Greenberg was investigated in the number field
situation by Cuoco and Monsky in [1] and by Monsky in a series of papers (see
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[14, 15, 16, 17, 18]). More recently, Kleine gave in [10] sufficient conditions in the
number field situation when d = 2 for Greenberg’s conjecture to hold true. Further-
more, for d ⩾ 2 the analogous conjecture in the function field case was proved by Wan
in [30] for Zdℓ -extensions of global fields of characteristic ℓ ramified at finitely many
primes using the class number formula, T -adic L-functions and a result of Monsky
([14, Theorem 5.6]).

The goal of the current paper is to adapt ideas of [13] and [30] to prove the analogous
conjecture in the context of graph theory. In the category of finite graphs, one is led
to study sequences of covers of connected graphs

(2) X = X0 ←− X1 ←− X2 ←− · · · ←− Xn ←− · · ·

for which the coverXn/X obtained by composing the coversXn −→ Xn−1 −→ · · · −→
X0 = X is Galois with group of covering transformations isomorphic to (Z/ℓnZ)d.
(Throughout this paper, by a graph we shall mean what is sometimes referred to as a
multigraph so that loops and parallel edges are allowed.) Such a tower will be called
a Zdℓ -tower of graphs. Our main result is the following:

Theorem A (Theorem 6.2). Let X be a finite connected graph that has no vertex of
degree one and for which its Euler characteristic χ(X) ̸= 0. Let

X = X0 ←− X1 ←− X2 ←− · · · ←− Xn ←− · · ·

be a Zdℓ -tower of graphs. Then, there exists P (X,Y ) ∈ Q[X,Y ] of total degree at most
d and of degree at most 1 in Y such that

ordℓ(κn) = P (ℓn, n),

for n large enough, where κn is the number of spanning trees of Xn.

The paper is organized as follows. In §2, we gather together a few preliminaries
on number theory, Pontryagin duals, graph theory and Artin–Ihara L-functions. In
§3, we remind the reader about voltage assignments in a way that is convenient for
us. We introduce in §4 the notion of a Zdℓ -tower of graphs. In particular, we show
that every tower of graphs such as (2) above is isomorphic in a suitable sense to one
coming from a voltage assignment α : S −→ Zdℓ . Following [30], we remind the reader
in §5 about a useful character

ρ : Zdℓ −→ ZℓJT1, . . . , TdK×

which we use in §6 to study the special value at u = 1 of Artin–Ihara L-functions
as one goes up a Zdℓ -tower of graphs. This leads us to prove our main result, namely
Theorem A, in §6. We end the paper with a few numerical examples in §7.

2. Preliminaries
2.1. Number theory. Throughout this paper, we let N = {0, 1, 2, . . .}. We need a
few facts from the theory of cyclotomic number fields which can be found in [19]
for instance. The symbol Q will denote a fixed algebraic closure of Q which we view
as being embedded in C once and for all. For a positive integer m, we let ζm =
exp(2πi/m) ∈ Q and we denote by µm the group of mth roots of unity. We also fix
a rational prime ℓ and the collection of all ℓ-power roots of unity will be denoted by
µℓ∞ . For a positive integer i, there is a unique prime ideal Li lying above ℓ in the ring
of integers of the cyclotomic number field Q(ζℓi) and it is totally ramified. From now
on, letting Qℓ be an algebraic closure of Qℓ, we fix an embedding

(3) τ : Q(µℓ∞) ↪→ Qℓ,
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and we view elements of Q(µℓ∞) inside of Qℓ via this embedding. The extension of
the ℓ-adic valuation ordℓ on Q to Cℓ, where Cℓ denotes a fixed completion of Qℓ, will
be denoted by vℓ. For x ∈ Q(ζℓi), one has

(4) vℓ(τ(x)) = 1
φ(ℓi)ordLi(x),

where φ is the Euler φ-function, and ordLi is the valuation on Q(ζℓi) associated to
the prime ideal Li. The absolute value on Cℓ extending the ℓ-adic absolute value on
Q normalized in the usual way will be denoted by | · |ℓ. Note that it follows from (4)
that
(5) |1− ξ|ℓ < 1
for all ξ ∈ µℓ∞ , since Li = (1− ζℓi).

2.2. Pontryagin dual. For the basic facts contained in this section, we refer the
reader to the first chapter of [20]. If G is an abelian compact topological group, we
let G∨ denote the Pontryagin dual of G. It consists of the group of continuous group
morphisms from G to S1, where S1 denotes the unit circle in C× with its induced
topology. An element of G∨ will simply be called a character of G. If G is an abelian
profinite group, then every character of G has finite image and thus takes values in
µ∞, where µ∞ is the collection of all roots of unity in S1. It follows that if G is an
abelian profinite group, then
(6) G∨ = G∗,

where G∗ is the group of continuous group morphisms from G to µ∞, where µ∞ is
induced with the discrete topology. Now, if G is an abelian pro-ℓ group, then any
character actually takes values in µℓ∞ . Thus, via the embedding (3), we will view the
characters of an abelian pro-ℓ group as taking values in Qℓ. Furthermore, it follows
from (6) that
(7) G∨ ⊆ Homcont(G,C×ℓ ).
The group G arising in this paper will be Zdℓ , where d is a fixed positive integer. For
i = 1, . . . , d, let Gi = Zℓ, so that

Zdℓ = G1 × · · · ×Gd and (Zdℓ )∨ ≃ G∨1 × · · · ×G∨d .
If ψi ∈ G∨i for i = 1, . . . , d, then the character of (Zdℓ )∨ corresponding to

(ψ1, . . . , ψd) ∈ G∨1 × · · · ×G∨d
via the second isomorphism above will be denoted by ψ1 ⊗ · · · ⊗ ψd. Thus, if a =
(a1, . . . , ad) ∈ Zdℓ and ψ ∈ (Zdℓ )∨, then

ψ(a) = ψ1 ⊗ · · · ⊗ ψd(a1, . . . , ad) = ψ1(a1) · · · · · ψd(ad),
where ψi is the restriction of ψ to Gi.

2.3. Graph theory. Our main references for this section are [22, 26]. A graph X =
(VX ,EX) thus consists of a set of vertices VX , a set of directed edges EX , an incidence
map inc : EX −→ VX × VX denoted by e 7→ inc(e) = (o(e), t(e)), and an inversion
map EX −→ EX denoted by e 7→ ē satisfying ¯̄e = e, ē ̸= e, and o(e) = t(ē) for all
e ∈ EX . The set of undirected edges will be denoted by EX . Throughout this paper,
we allow loops and multiple edges. Such graphs are sometimes called multigraphs,
but we will refer to them more simply as graphs. A graph that has neither loops nor
multiple edges will be called a simple graph. All graphs in this paper will be assumed
to be finite meaning that both VX and EX are finite sets. If v ∈ VX , then we let

EX,v = {e ∈ EX | o(e) = v} and valX(v) = |EX,v|.
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Let Y = (VY ,EY ) and X = (VX ,EX) be two graphs. Recall from [26] that a
morphism of graphs f = (fV , fE) : Y −→ X consists of two functions fV : VY −→ VX
and fE : EY −→ EX satisfying

(1) fV (o(e)) = o(fE(e)) for all e ∈ EY ,
(2) fV (t(e)) = t(fE(e)) for all e ∈ EY ,
(3) fE(e) = fE(ē) for all e ∈ EY .

A morphism is an isomorphism if and only if both fV and fE are bijections. The
group of automorphisms of a graph X will be denoted by Aut(X). We will often drop
the indices V and E for the functions fV and fE and denote them both simply by f .

From now on, let Y and X be two connected graphs. A morphism of graphs π :
Y −→ X is called a covering map (or just a cover) if the following two extra conditions
are satisfied:

(1) π : VY −→ VX is surjective,
(2) For all w ∈ VY , the restriction of π to EY,w, denoted by π|EY,w induces a

bijection
π|EY,w : EY,w

≈−→ EX,π(w).

If π : Y −→ X is a covering map, then we let
Autπ(Y/X) = {ϕ ∈ Aut(Y ) : π ◦ ϕ = π},

and we shall often drop π from the notation if it is clear from the context. Clearly,
Aut(Y/X) is a subgroup of Aut(Y ). A cover π : Y −→ X is called Galois if the
action of Aut(Y/X) on the fiber π−1(v) for all v ∈ VX is transitive. In this case, we
write Gal(Y/X) instead of Aut(Y/X). If Y/X is a Galois cover, then we have the
usual Galois correspondence between subgroups of Gal(Y/X) and equivalence classes
of intermediate covers of Y/X. By an abelian cover of graphs Y/X, we mean a Galois
covering map π : Y −→ X for which Gal(Y/X) is an abelian group.

2.4. Ihara zeta functions and Artin–Ihara L-functions. For more details
regarding this section, we refer the reader to [27]. Let X be a connected graph and
label the vertices VX = {v1, . . . , vg}. From now on, we assume that all of our graphs
do not have vertices of valency one, but see Remark 2.1 below. We denote the Ihara
zeta function of X by ZX(u). (This zeta function was first defined by Ihara in [8]
and interpreted in terms of graph theory by Sunada in [25] following a suggestion of
Serre.) The three-term determinant formula [27, Theorem 2.5] gives

ZX(u)−1 = (1− u2)−χ(X)det(I −Au+ (D − I)u2),
where I is the identity matrix, A the adjacency matrix of X, D the degree (or valency)
matrix of X, and χ(X) the Euler characteristic of X. Recall that D = (dij) is the
diagonal matrix for which dii = valX(vi), the adjacency matrix A = (aij) is the
matrix for which aij is the number of directed edges going from vi to vj , and the
Euler characteristic of a connected graph is given by χ(X) = |VX | − |EX |. From now
on, we let

hX(u) = det(I −Au+ (D − I)u2) ∈ Z[u].
Furthermore, one has hX(1) = 0, since the Laplacian matrix D − A is singular, and
the main result of [21] and also [7, Theorem B] imply
(8) h′X(1) = −2χ(X)κX ,
where κX is the number of spanning trees of X.

More generally, let Y/X be an abelian cover of connected graphs and let G =
Gal(Y/X). (The theory can be extended to arbitrary Galois covers not necessarily
abelian. See [27, 23, 24].) If ψ ∈ G∨, then we denote the corresponding Artin–Ihara

Algebraic Combinatorics, Vol. 6 #5 (2023) 1334



On Zd
ℓ -towers of graphs

L-function by LX(u, ψ). For each i = 1, . . . , g, we let wi ∈ VY be a fixed vertex in the
fiber of vi. The three-term determinant formula [27, Theorem 18.15] gives

LX(u, ψ)−1 = (1− u2)−χ(X)det(I −Aψu+ (D − I)u2),
where I is the identity matrix, Aψ the twisted adjacency matrix associated to ψ, D the
degree matrix of X, and χ(X) the Euler characteristic of X. Let us remind the reader
how Aψ is defined (see [27, Definition 18.13]). For σ ∈ G, one sets A(σ) = (aij(σ))
to be the g × g matrix, where aij(σ) is given by the number of directed edges going
from wi to wσj , and if ψ ∈ G∨, then the twisted adjacency matrix Aψ is defined via

Aψ =
∑
σ∈G

ψ(σ) ·A(σ).

From now on, we let
(9) hX(u, ψ) = det(I −Aψu+ (D − I)u2) ∈ Z[ψ][u].
Throughout this paper, we let ψ0 denote the trivial character. We have Aψ0 = A, the
usual adjacency matrix of X, so that

ZX(u) = LX(u, ψ0) and hX(u) = hX(u, ψ0).
The Artin–Ihara L-functions satisfy the usual Artin formalism (see [27, Proposition
18.10]), and thus using the fact that
(10) χ(Y ) = |G| · χ(X),
one has
(11) hY (u) = hX(u)

∏
ψ ̸=ψ0

hX(u, ψ),

where the product is over all non-trivial characters ψ of G. Differentiating (11), eval-
uating at u = 1, and using (8) and (10) leads to the formula

(12) |G| · κY = κX
∏
ψ ̸=ψ0

hX(1, ψ),

assuming that χ(X) ̸= 0. From now on, we assume that χ(X) ̸= 0 throughout.

Remark 2.1. The hypothesis that X does not have vertices of valency one made at
the beginning of this section is made throughout in [27]. For our purposes, one does
not lose generality by assuming this hypothesis. Indeed, adding a vertex of degree one
to a connected finite graph does not change the primes, the Ihara zeta function and
the number of spanning trees of the graph X.

3. Construction of Galois covers via voltage assignments
A convenient way to construct Galois covers of graphs is via voltage assignments.
Our main reference for this section is [6]. (See also [5].) Let X be a graph and let
γ : EX −→ EX be a section of the natural map EX −→ EX . We set S = γ(EX). If
G is a finite abelian group (the abelian condition could be removed if desired) and
α : S −→ G is a function (sometimes called a voltage assignment), then we extend α
to S̄ by setting

α(s̄) = α(s)−1,

when s ∈ S. The derived graph X(G,S, α) is a new graph constructed as follows. The
set of vertices V is VX ×G and the set of directed edges E is EX ×G. The incidence
map is given by

inc((e, σ)) = ((o(e), σ), (t(e), σ · α(e))),
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and the inversion map by

(e, σ) = (ē, σ · α(e)).

We leave it to the reader to check that X(G,S, α) is a graph.
Furthermore, if for simplicity we let Y = X(G,S, α) and we define p : Y −→ X via

(13) p((v, σ)) = v and p((e, σ)) = e,

then p is a morphism of graphs. Under the assumption that both X and Y are
connected, the map p is in fact a Galois cover. For each σ ∈ G, we let φσ ∈ Aut(Y )
be defined via

φσ((v, τ)) = (v, σ · τ) and φσ((e, τ)) = (e, σ · τ).

Then the function ϕ : G −→ Autp(Y/X) given by σ 7→ ϕ(σ) = φσ can be checked
to be a group isomorphism. In other words, the cover p : Y −→ X is a Galois cover
whose group of covering transformations is isomorphic to G.

Any abelian cover arises from a derived graph as above as we now explain. If
π : Y −→ X is an abelian cover of connected graphs with Galois group G, then
consider (see for instance [26, page 77]) the natural surjective group morphism

µ : H1(X,Z) −→ Gal(Y/X),

and let T be a spanning tree of X. If e ∈ EX , then let ce = de · e, where de is
the unique geodesic path going from t(e) to o(e) within T . Then ce is a closed path
in X. Let S be the image of a section γ as above, and define α : S −→ G via
s 7→ α(s) = µ(⟨cs⟩), where ⟨cs⟩ ∈ H1(X,Z) is the corresponding cycle. Consider
now the graph X(G,S, α) and choose a labeling VX = {v1, . . . , vg}. Let T̃ be a lift
of T to Y , and set V

T̃
= {w1, . . . , wg}, where π(wi) = vi for i = 1, . . . , g. Define

ϕ : X(G,S, α) −→ Y via

(14) ϕ((vi, σ)) = σ(wi) and ϕ((e, σ)) = σ(ẽ),

where ẽ is the unique lift of e to Y starting at wi if o(e) = vi. Then, one can check
that ϕ is an isomorphism of graphs and that the following diagram

X(G,S, α) Y

X

ϕ

p
π

commutes.
Now, let G1 and G2 be both finite abelian groups, and let f : G1 −→ G2 be a group

morphism. If we start with a function α : S −→ G1, then we can also consider the
function f ◦ α : S −→ G2 and the graphs Y1 = X(G1, S, α) and Y2 = X(G2, S, f ◦ α).
We leave it to the reader to check that f∗ : Y1 −→ Y2 defined via

f∗(v, σ1) = (v, f(σ1)) and f∗(e, σ1) = (e, f(σ1))

is a morphism of graphs. Moreover, if f is surjective and both Y1 and Y2 are connected,
then f∗ is a Galois cover with Galois group isomorphic to ker(f). Letting pi be the
covering map pi : Yi −→ X defined in (13) above, we obtain that (Y2, f∗, p2) forms an
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intermediate cover of p1 : Y1 −→ X, in other words the following diagram commutes.

X(G1, S, α)

X(G2, S, f ◦ α)

X

p1

f∗

p2

4. Zd
ℓ -towers of graphs

Let X be a connected graph and d a fixed positive integer. We start with the following
definition.

Definition 4.1. A Zdℓ -tower of graphs above a connected graph X consists of a se-
quence of covers of connected graphs

X = X0 ←− X1 ←− X2 ←− · · · ←− Xn ←− · · ·

having the property that the cover Xn/X obtained from the composition Xn −→
· · · −→ X2 −→ X1 −→ X is Galois with group of covering transformations iso-
morphic to (Z/ℓnZ)d.

Note that when d = 1, such towers were simply called abelian ℓ-towers in [11, 12,
13, 29]. Let now S be the image of a section of the natural map EX −→ EX as
explained in §3. If we start with a function α : S −→ Zdℓ , then for each n ∈ N we let
αn : S −→ (Z/ℓnZ)d be the function obtained from the compositions

Zdℓ −→ (Zℓ/ℓnZℓ)d
≃−→ (Z/ℓnZ)d.

To simplify the notation, we now let G(n) = (Z/ℓnZ)d. Under the assumption that
all graphs X(G(n), S, αn) are connected, it follows from §3 that we obtain a Zdℓ -tower
of graphs
(15) X ←− X(G(1), S, α1)←− X(G(2), S, α2)←− · · · ←− X(G(n), S, αn)←− · · ·

Conversely every Zdℓ -tower of graphs in the sense of Definition 4.1 is isomorphic in
a suitable sense to a Zdℓ -tower as in (15) for some function α : S −→ Zdℓ as we now
briefly explain. Let

X ←− X1 ←− X2 ←− · · · ←− Xn ←− · · ·

be a Zdℓ -tower of graphs and let Gn = Gal(Xn/X). Then we have group morphisms
µn : H1(X,Z) −→ Gn

that are compatible so that we get a group morphism
µ : H1(X,Z) −→ lim←−

n⩾1
Gn ≃ Zdℓ .

Let T be a spanning tree of X, and define α : S −→ Zdℓ via s 7→ α(s) = µ(⟨cs⟩),
where cs = ds · s and ds is the unique geodesic path going from t(s) to o(s) within
T . Let now T1 be a lift of T to X1 via the covering map X1 −→ X. Then, we get the
isomorphism of graphs

ϕ1 : X(G(1), S, α1) −→ X1

as defined in (14) above. Let now T2 be a lift of T1 to X2 via the covering map X2 −→
X1. Then, T2 is a lift of T to X2, and we get again from (14) an isomorphism of graphs
ϕ2 : X(G(2), S, α2) → X2. Keeping going like this, one constructs isomorphisms of
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graphs ϕn : X(G(n), S, αn) → Xn for which all the squares and the triangle in the
diagram

(16)

X(G(1), S, α1) X(G(2), S, α2) · · · X(G(n), S, αn) · · ·

X

X1 X2 · · · Xn · · ·

ϕ1 ϕ2 ϕn

commute.

5. An (ℓ, T1, . . . , Td)-adic character
Throughout this paper, for a fixed positive integer d and a unital commutative ring
R, we set

R[T ] = R[T1, . . . , Td] and RJT K = RJT1, . . . , TdK.
The ring ZℓJT K is a local ring with maximal ideal m = (ℓ, T1, . . . , Td), and we consider
it with its usual m-adic topology. For any a ∈ Zℓ and any i = 1, . . . , d, the function
Zℓ −→ ZℓJTiK ⊆ ZℓJT K defined by a 7→ (1− Ti)a is continuous. (See for instance [13,
Proposition 3.1] and the discussion that follows.) Therefore, one gets a continuous
group morphism ρ : Zdℓ −→ ZℓJT K× defined via

a = (a1, . . . , ad) 7→ ρ(a) = (1− T1)a1 · . . . · (1− Td)ad .

We set
Qa(T ) := ρ(a),

and note that if a ∈ Nd, then Qa(T ) ∈ Z[T ] and if a ∈ Zd, then Qa(T ) ∈ ZJT K.
From now on, we let

D = {t = (t1, . . . , td) ∈ Cdℓ : |ti|ℓ < 1 for all i = 1, . . . , d}.

Given any t ∈ D, the function evt : ZℓJT K −→ Cℓ given by

(17) Q(T ) 7→ evt(Q(T )) = Q(t)

is continuous. Indeed, if Q(T ) ∈ mN for some positive integer N , and if we write

Q(T ) =
∞∑
i=0

Hi(T ),

where Hi(T ) ∈ Zℓ[T ] is homogeneous of degree i, then

|Q(t)|ℓ ⩽
N−1∑
i=0
|Hi(t)|ℓ +

∞∑
i=N
|Hi(t)|ℓ

⩽
1
ℓN

(
N − 1 + d− 1

d− 1

)N−1∑
i=0

(ℓx)i +
∑
α∈Nd
|α|⩾N

|tα|ℓ,

where we use the usual multi-index notation for the sum on the right (meaning tα =
tα1
1 · · · · · t

αd
d and |α| = α1 + · · ·+ αd) and x = max{|t1|ℓ, . . . , |td|ℓ}. Now, both these

sums can be made arbitrarily small for N large, and this shows that (17) is continuous.
Furthermore, if ψ ∈ (Zdℓ )∨, then the function Zdℓ −→ Cℓ defined via

a 7→ ψ(a)

is continuous as well by (7).
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Following [30], for ψ ∈ (Zdℓ )∨, we let
tψ = (1− ψ1(1), . . . , 1− ψd(1)) ∈ D,

where ψ = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψd. Note that tψ ∈ D by (5). It follows from the above
discussion that for a fixed ψ ∈ (Zdℓ )∨ both functions evtψ ◦ ρ and ψ are continuous
functions from Zdℓ to Cℓ. Since they are equal on Nd, which is dense in Zdℓ , one gets
(18) evtψ ◦ ρ(a) = Qa(tψ) = ψ(a),

for all a ∈ Zdℓ .

Remark 5.1. In [30], the author is working with the character
a = (a1, . . . , ad) 7→ (1 + T1)a1 · · · · · (1 + Td)ad

and the classical points
tψ = (ψ1(1)− 1, . . . , ψd(1)− 1).

We choose to work with our current convention in order to align with the previous
work contained in [12, 13, 29].

6. The special value at u = 1 of Artin–Ihara L-functions in
Zd

ℓ -towers of graphs
Let X be a graph (with loops and multiple edges allowed) and recall that we are
assuming X is finite, connected, with no vertex of degree one, and χ(X) ̸= 0. Fix also
S as explained in §3. We start with the following theorem.

Theorem 6.1. Let X be as above, α : S −→ Zdℓ a function for which all the graphs
X(G(n), S, αn) are connected, and label the vertices VX = {v1, . . . , vg}. Consider the
Zdℓ -tower of graphs

X ←− X(G(1), S, α1)←− X(G(2), S, α2)←− · · · ←− X(G(n), S, αn)←− · · ·
and let

Q(T ) = det(D −Aρ) ∈ ZℓJT K,
where D is the degree matrix of X and

Aρ =

 ∑
s∈S

inc(s)=(vi,vj)

ρ(α(s)) +
∑
s∈S

inc(s)=(vj ,vi)

ρ(−α(s))

 ∈Mg×g(ZℓJT K).

Then, for all n ∈ N and for all ψ ∈ G(n)∨, one has
Q(t

ψ̃
) = hX(1, ψ),

where ψ̃ ∈ (Zdℓ )∨ is obtained from ψ after composing with the natural projection map
Zdℓ ↠ G(n).

Proof. Given t ∈ D, the function evt : ZℓJT K −→ Cℓ is a Zℓ-algebra morphism, and
therefore it induces a ring morphism

Mg×g(ZℓJT K) −→Mg×g(Cℓ),
which we denote by the same symbol. Now, if n ∈ N and ψ ∈ G(n)∨, then we have

Q(tψ̃) = evtψ̃ (Q(T ))
= evtψ̃ (det(D −Aρ))
= det(D − evtψ̃ (Aρ)).
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By (18), we have

evtψ̃ (Aρ) =

 ∑
s∈S

inc(s)=(vi,vj)

evtψ̃ ◦ ρ(α(s)) +
∑
s∈S

inc(s)=(vj ,vi)

evtψ̃ ◦ ρ(−α(s))



=

 ∑
s∈S

inc(s)=(vi,vj)

ψ̃(α(s)) +
∑
s∈S

inc(s)=(vj ,vi)

ψ̃(−α(s))



=

 ∑
s∈S

inc(s)=(vi,vj)

ψ(αn(s)) +
∑
s∈S

inc(s)=(vj ,vi)

ψ(−αn(s))


= Aψ,

where Aψ is the twisted adjacency matrix, and the last equality is true by [13, Corol-
lary 5.3]. It follows from (9) that

Q(tψ̃) = det(D −Aψ)
= hX(1, ψ),

and this is what we wanted to show. □

We can now prove our main result.

Theorem 6.2. Let X be as above and let α : S −→ Zdℓ be a function for which all the
graphs X(G(n), S, αn) are connected. Consider the Zdℓ -tower of graphs

X ←− X(G(1), S, α1)←− X(G(2), S, α2)←− · · · ←− X(G(n), S, αn)←− · · ·

and let κn be the number of spanning trees of Xn = X(G(n), S, αn). Then, there exists

P (X,Y ) ∈ Q[X,Y ]

of total degree at most d and of degree at most 1 in Y such that

ordℓ(κn) = P (ℓn, n),

when n is large enough.

Proof. Equation (12) applied to the cover Xn/X gives

ℓdn · κn = κX
∏
ψ ̸=ψ0

hX(1, ψ),

where the product is over all non-trivial characters of Gal(Xn/X) ≃ (Z/ℓnZ)d. We
now let

W ∗ = µdℓn ∖ {(1, 1, . . . , 1)},

and if ξ = (ξ1, . . . , ξd) ∈W ∗, then we set

1− ξ = (1− ξ1, . . . , 1− ξd) ∈ D.
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By Theorem 6.1, we have

ordℓ(κn) = −dn+ ordℓ(κX) +
∑
ψ ̸=ψ0

vℓ(hX(1, ψ))

= −dn+ ordℓ(κX) +
∑
ψ ̸=ψ0

vℓ(Q(tψ̃))

= −dn+ ordℓ(κX) +
∑
ξ∈W∗

vℓ(Q(1− ξ))

where Q(T ) is the power series in the statement of Theorem 6.1. Now, [14, Theorem
5.6] shows that there exists E(X,Y ) ∈ Q[X,Y ], of total degree at most d and of
degree at most 1 in Y , such that∑

ξ∈W∗

vℓ(Q(1− ξ)) = E(ℓn, n),

when n is large enough. It then suffices to set
P (X,Y ) = E(X,Y )− dY + ordℓ(κX) ∈ Q[X,Y ]

to conclude the proof. Combining with §4 also proves Theorem A from the introduc-
tion. □

Let us make a few remarks. It is known that the coefficients of Xd and of Y ·X(d−1)

are nonnegative integers. See [14, Remark 2]. There are also explicit formulas for those
two coefficients in terms of the power series in several variables. See [1, Definition
1.1] and [1, Definition 1.2]. Furthermore, when d = 1, Theorem 6.2 reduces to [13,
Theorem 6.1] with the difference that the Iwasawa invariants µ, λ, and ν are more
easily calculated from the power series Q(T ) in one variable than the Greenberg
coefficients when d ⩾ 2.

7. Examples
In this section, we present a few numerical examples of Z2

ℓ -towers of graphs in the
situation where the base graph X is a bouquet and the function α : S −→ Z2

ℓ takes
values in Z2. In [29], [12], and [13], we could calculate the Iwasawa invariants µ, λ,
and ν precisely, since we knew how far up a Zℓ-tower one had to go for the formula

ordℓ(κn) = µℓn + λn+ ν

to hold true, and with enough ℓ-adic precision, we could calculate µ and λ from
the power series Q(T ) arising in Theorem 6.1. Here, for each example we find some
rational numbers a, b, c, d, e ∈ Q satisfying

ordℓ(κn) = aℓ2n + bnℓn + cℓn + dn+ e

for a few layers only, but we have not tried to prove that those numbers are the
Greenberg coefficients. We now explain how we found candidates a, b, c, d, e ∈ Q
numerically.

For this calculation, we work in Q ⊆ C, so we do not embed everything in Qℓ via
the embedding (3). The absolute Galois group GQ = Gal(Q/Q) acts in the usual way
on G(n)∨. The set of orbits for this group action will be denoted by Ĝ(n)(Q), and an
orbit will be denoted by Ψ or a similar notation. The orbit consisting of the trivial
character only will be denoted by Ψ0. Equation (12) becomes at level n of a Z2

ℓ -tower
over a bouquet the following formula

(19) ℓ2n · κn =
∏

Ψ∈Ĝ(n)(Q)
Ψ̸=Ψ0

hX(1,Ψ),
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where
hX(1,Ψ) =

∏
ψ∈Ψ

hX(1, ψ) ∈ Z.

Then, we proceed in calculating each of the integers hX(1,Ψ) as follows. One has a
non-canonical isomorphism γn : G(n) −→ G(n)∨ given by (ā1, ā2) 7→ ψ(ā1,ā2), where
ψ(ā1,ā2) is defined via

ψ(ā1,ā2)(b̄1, b̄2) = ζ ā1·b̄1+ā2·b̄2
ℓn .

The group (Z/ℓnZ)× acts via the diagonal action on G(n) and as such the group
isomorphism γn is equivariant. Therefore, the orbits of the action of (Z/ℓnZ)× on
G(n) are in one-to-one correspondence with Ĝ(n)(Q). From now on, for a positive
integer m, we let εm : Z −→ R ⊆ C be defined via

a 7→ εm(a) = (1− ζam)(1− ζ−am ).
If α(s) = (b1,s, b2,s) ∈ Z2 for s ∈ S, [29, Equation 17] implies

(20) hX(1, ψ(ā1,ā2)) =
∑
s∈S

εℓn(ā1 · b̄1,s + ā2 · b̄2,s).

We then calculate the orbits O of the action of (Z/ℓnZ)× on G(n), and using (20),
we calculate hX(1,Ψ) to high precision enough in order to be able to recognize it
as an integer. Here Ψ is the orbit in Ĝ(n)(Q) corresponding to O. Once we have all
of the integers hX(1,Ψ), we calculate their ℓ-adic valuation and we sum them up.
Subtracting 2n from this sum allows us to calculate ordℓ(κn) numerically by (19)
above. We then go ahead and solve a system of linear equations of the form

ℓ2(n−4) (n− 4)ℓn−4 ℓn−4 n− 4 1
∣∣ ordℓ(κn−4)

ℓ2(n−3) (n− 3)ℓn−3 ℓn−3 n− 3 1
∣∣ ordℓ(κn−3)

ℓ2(n−2) (n− 2)ℓn−2 ℓn−2 n− 2 1
∣∣ ordℓ(κn−2)

ℓ2(n−1) (n− 1)ℓn−1 ℓn−1 n− 1 1
∣∣ ordℓ(κn−1)

ℓ2n nℓn ℓn n 1
∣∣ ordℓ(κn)


and this is how we get candidates a, b, c, d, e ∈ Q for each of the examples below.

(1) Let ℓ = 2, S = {s1, s2} and α : S −→ Z2
2 be defined via α(s1) = (1, 0) and

α(s2) = (0, 1). Then we get:

←− ←− ←−· · ·

We apply our algorithm in SageMath ([28]) to find
n ord2(κn)
1 5
2 19
3 61
4 167
5 417
6 987
7 2261
8 5071
9 11209
10 24515
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which follows the pattern

ord2(κn) = 2 · n · 2n + 4 · 2n − 6 · n− 1,

when 1 ⩽ n ⩽ 10.
(2) Let ℓ = 2, S = {s1, s2, s3, s4} and α : S −→ Z2

2 be defined via α(s1) = (1, 0),
α(s2) = (1, 0), α(s2) = (0, 1) and α(s4) = (0, 1). Then we get:

←− ←− ←−· · ·

Applying our algorithm reveals

n ord2(κn)
1 8
2 34
3 124
4 422
5 1440
6 5082
7 18644
8 70606
9 273352
10 1073090

This time we have

ord2(κn) = 22n + 2 · n · 2n + 4 · 2n − 6n− 2,

when 1 ⩽ n ⩽ 10.
(3) Let ℓ = 2, S = {s1, s2, s3, s4} and α : S −→ Z2

2 be defined via α(s1) = (1, 5),
α(s2) = (0, 3), α(s3) = (1, 2), and α(s4) = (0, 1). Then we get:

←− ←− ←−· · ·

After an application of our algorithm we get the data

n ord2(κn)
1 5
2 19
3 65
4 179
5 403
6 887
7 1923
8 4127
9 8795
10 18647
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from which we obtain the formula

ord2(κn) = n · 2n + 33
4 · 2

n − 4n− 1,

for 4 ⩽ n ⩽ 10.
(4) Let ℓ = 3, S = {s1, s2} and α : S −→ Z2

3 be defined via α(s1) = (1, 0) and
α(s1) = (0, 1). Then we get:

←− ←− ←−· · ·

After applying our algorithm we get the table of values

n ord3(κn)
1 6
2 28
3 98
4 312
5 958
6 2900
7 8730

from which we obtain the following formula

ord3(κn) = 4 · 3n − 2n− 4,

for 1 ⩽ n ⩽ 7.
(5) Let ℓ = 3, S = {s1, s2, s3} and α : S −→ Z2

3 be defined via α(s1) = (1, 0),
α(s2) = (2, 3), and α(s4) = (1, 1). Then we get:

←− ←− ←−· · ·

and after an application of our algorithm we get

n ord3(κn)
1 10
2 48
3 166
4 524
5 1602
6 4840
7 14558

from which we obtain the formula

ord3(κn) = 20
3 3n − 2n− 8,

for 1 ⩽ n ⩽ 7.
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