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The non-commuting, non-generating graph
of a non-simple group

Saul D. Freedman

Abstract Let G be a (finite or infinite) group such that G/Z(G) is not simple. The non-
commuting, non-generating graph Ξ(G) of G has vertex set G\Z(G), with vertices x and y
adjacent whenever [x, y] ̸= 1 and ⟨x, y⟩ ≠ G. We investigate the relationship between the
structure of G and the connectedness and diameter of Ξ(G). In particular, we prove that the
graph either: (i) is connected with diameter at most 4; (ii) consists of isolated vertices and a
connected component of diameter at most 4; or (iii) is the union of two connected components
of diameter 2. We also describe in detail the finite groups with graphs of type (iii). In the
companion paper [17], we consider the case where G/Z(G) is finite and simple.

1. Introduction
Given a group G, knowledge about the generating pairs of G and their statistics have
found a vast number of applications throughout abstract and computational group
theory. Similarly, it is useful to gain information about the pairs of elements of G
that do not generate the group. If G is non-abelian, then these clearly include all
commuting pairs, and so our interest lies in the remaining non-generating pairs.

Information about these pairs of elements is encoded in the non-commuting, non-
generating graph Ξ(G) of G, which has vertex set G\Z(G), with two vertices x and
y adjacent if and only if [x, y] ̸= 1 and ⟨x, y⟩ ≠ G. Note that the central elements of
G are excluded from the graph’s vertex set for convenience, as otherwise they would
always be isolated. Aside from this redefinition of the vertex set, the graph Ξ(G) is
the difference between two consecutive graphs in Cameron’s [10, §2.6] hierarchy of
graphs defined on the elements of a group, namely, the non-generating graph and the
commuting graph. The same is true for the generating graph, which was introduced in
[21], and for certain graphs studied in [1, 6].

Many authors (e.g. [8, 9, 15]) have studied the generating graph, and in particular
its connectedness and diameter. For example, Burness, Guralnick and Harper [9] re-
cently showed that the generating graph of a finite group is connected if and only if
its diameter is at most 2, and that this occurs precisely when every proper quotient
of the group is cyclic.
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In [11], we showed that the graph Ξ+(G) induced by the non-isolated vertices of
Ξ(G) has a similarly small diameter whenever the (finite or infinite) group G is nilpo-
tent, and more generally, when every maximal subgroup of G is normal. In particular,
we proved the following theorem, together with detailed structural relationships be-
tween G and Ξ(G) in the finite case. Note that, in general, Ξ(G) has no edge precisely
when every proper subgroup of G is abelian.

Theorem 1.1 ([11, Theorem 13]). Let G be a group with every maximal subgroup
normal. If Ξ(G) has an edge, then Ξ+(G) is connected with diameter 2 or 3. Moreover,
if Ξ+(G) has diameter 3, then Ξ(G) = Ξ+(G).

In this paper, we extend the results of [11] to the case where G/Z(G) is an arbitrary
non-simple group, via the following theorem. Here, an abstract group is primitive if
it has a core-free maximal subgroup H (so that G acts faithfully and primitively on
the right cosets of H, which is a point stabiliser for the action). Finally, we denote
the diameter of a graph Γ by diam(Γ).

Theorem 1.2. Let G be a group such that G := G/Z(G) is not simple and Ξ(G) has
an edge. Then (at least) one of the following holds.

(i) Ξ(G) has an isolated vertex, and diam(Ξ+(G)) = 2. If G has a proper non-
cyclic quotient, then G is soluble.

(ii) Ξ(G) has an isolated vertex, and diam(Ξ+(G)) ∈ {2, 3, 4}. Additionally, G is
an infinite, insoluble primitive group with every proper quotient cyclic.

(iii) Ξ(G) is connected with diameter 2 or 3.
(iv) Ξ(G) is connected with diameter 4, G is infinite, and G has a proper non-

cyclic quotient.
(v) Ξ(G) is the union of two connected components of diameter 2.

Hence each component of Ξ(G) has diameter at most 4, and if the graph has
more than one nontrivial component (i.e. containing at least two vertices), then Ξ(G)
is the union of two components of diameter 2. The former restriction distinguishes
Ξ(G) from the generating graph of a non-simple finite group, where a component can
have arbitrarily large diameter [15, Theorem 1.3]. On the other hand, if G is finite
and soluble, then the subgraph of the generating graph induced by its non-isolated
vertices has diameter at most 3 [22, Theorem 1]. The same holds for Ξ(G), unless
Theorem 1.2(v) applies. We also show in [16, Proposition 5.9.9] that if G is finite, G
has an abelian maximal subgroup, and Ξ(G) has an edge, then diam(Ξ+(G)) = 2.

Note that it is an open problem to determine whether cases (ii) and (iv) can occur;
see Questions 4.5, 4.10 and 6.6, and Remark 4.11. If G does satisfy case (ii), then
Lemma 6.5 yields further information about the structures of Ξ(G) and Ξ(G).

In our companion paper [17], we explore the diameter of Ξ(G) when G/Z(G) is
finite and simple; in particular, we prove that Ξ(G) is always connected in this case.
Hence each finite group G with Ξ+(G) not connected satisfies Theorem 1.2(v). Our
second main theorem precisely describes these finite groups. We write Φ(H) to denote
the Frattini subgroup of a group H.

Theorem 1.3. Let G be a finite group. Then Ξ(G) is the union of two connected
components of diameter 2 if and only if the following all hold:

(i) G = P :Q, where P and Q are nontrivial Sylow subgroups;
(ii) Q is cyclic and acts irreducibly on P/Φ(P );
(iii) Φ(P ) = Z(P ) ̸⩽ Z(G); and
(iv) the unique maximal subgroup of Q is normal in G.
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We will observe in Theorem 3.2 below (see also [3]) that conditions (i)–(ii) of
Theorem 1.3 hold if and only if the finite group G has exactly two conjugacy classes
of maximal subgroups.

The paper is organised as follows. In §2, we present preliminary results on maximal
subgroups of G and on Ξ(G). Next, §3 focuses on groups whose maximal subgroups
satisfy certain conditions, including finite groups with exactly two conjugacy classes
of maximal subgroups. In §4, we bound distances in Ξ(G) when G has a normal, non-
abelian maximal subgroup M with Z(G) < Z(M). These bounds are applied in §5,
where we prove Theorem 1.2 and 1.3 when G/Z(G) has a proper non-cyclic quotient.
We then complete the proof of our main theorems in §6 by considering the remaining
groups. In §5–6, we also exhibit structural relationships between G and Ξ(G) using
concrete examples, many of which involve Magma [7] computations.

2. Preliminaries
In this section, we state several preliminary results related to maximal subgroups of
a group G and its non-commuting, non-generating graph Ξ(G). Given vertices x and
y of a graph, d(x, y) denotes their distance in the graph, and we write x ∼ y if the
vertices are adjacent.

Throughout this paper, we will implicitly use the following proposition.

Proposition 2.1 ([12, Proposition 2.1.1]). Suppose that G is finitely generated, and
let H be a proper subgroup of G. Then H is contained in a maximal subgroup of G.

Theorem 2.2 ([24, Theorems I.4, IV.11, and IV.14]). Suppose that G is finite and
soluble, and let L and M be distinct maximal subgroups of G. Then the following are
equivalent:

(i) L and M are conjugate in G;
(ii) CoreG(L) = CoreG(M); and
(iii) LM ̸= G.

Lemma 2.3. Let (X, Y ) be a pair of proper subgroups of G, with X maximal and
Y ̸⩽ X. If Z(X) ∩ Y ̸⩽ Z(G), then Z(Y ) ⩽ X ∩ Y . If, in addition, X is abelian, then
Z(Y ) ⩽ Z(G).

Proof. Let z ∈ (Z(X) ∩ Y )\Z(G). Then X = CG(z), and hence Z(Y ) ⩽ CY (z) =
X ∩ Y . If X is abelian, then each element of Z(Y ) is centralised by ⟨X, Y ⟩ = G, and
hence Z(Y ) ⩽ Z(G). □

Our next result generalises an argument used in the proof of [11, Proposition 10].

Lemma 2.4. Let (W, X, Y ) be a triple of distinct proper subgroups of G, with X and
W ∩ X normal in G, X and Y maximal in G, and W ∩ X ̸⩽ Y . Then X ∩ Y ̸⩽ W .

Proof. Assume for a contradiction that X ∩ Y ⩽ W . Then
G/(W ∩X) = (W ∩X)Y/(W ∩X) ∼= Y/(W ∩X ∩Y ) = Y/(X ∩Y ) ∼= XY/X = G/X.

This contradicts the fact that G/X is simple, while G/(W ∩ X) is not. □

Proposition 2.5 ([11, §2]). Suppose that G is non-abelian.
(i) No connected component of Ξ(G) has diameter 1.
(ii) If G is not 2-generated, then Ξ(G) is connected with diameter 2.
(iii) Suppose that G is 2-generated, and let g ∈ G\Z(G). Then g is an isolated

vertex of Ξ(G) if and only if g lies in a unique maximal subgroup M of G and
in Z(M). Moreover, if g is not isolated, then g ∈ L\Z(L) for some maximal
subgroup L of G.
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(iv) Let H be a proper non-abelian subgroup of G. Then the induced subgraph of
Ξ(G) corresponding to H\Z(H) is connected with diameter 2.

Proposition 2.6. Suppose that G is 2-generated, and that an element g ∈ G lies in
a unique maximal subgroup M of G and in Z(M). If G is finite or M ⊴ G, then M
is abelian.

Proof. If M ⊴ G, then M is abelian by [11, Proposition 11]. Assume therefore that
G is finite and M ̸⊴ G. Then g /∈ Z(G) and M = CG(g). Moreover, gh ∈ Mh\M
for each h ∈ G\M , yielding ⟨g, gh⟩ = G and Z(G) = CG(g) ∩ CG(gh) = M ∩ Mh.
Thus G/Z(G) is a Frobenius group with Frobenius complement M/Z(G), and so G
has a nontrivial normal subgroup N with G = NM and N ∩ M = Z(G). Observe
that G = ⟨N, g⟩ = N⟨g⟩, and hence M is the abelian group ⟨Z(G), g⟩. □

Our next two results involve the non-commuting graph of G, which has vertex set
G\Z(G), with two vertices adjacent if and only if they do not commute.

Proposition 2.7 ([2, Proposition 2.1]). The non-commuting graph of a non-abelian
group is connected with diameter 2.

Lemma 2.8. Let N be a normal subgroup of G, and suppose that G/N is not cyclic.
Additionally, let n ∈ N and g ∈ G. Then {n, g} is an edge of Ξ(G) if and only if
[n, g] ̸= 1, i.e. if and only if {n, g} is an edge of the non-commuting graph of G.

Proof. Since G/N is not cyclic, it is clear that ⟨N, g⟩ < G. The result now follows
from the definitions of Ξ(G) and the non-commuting graph of G. □

Lemma 2.9. Let N be a normal subgroup of G.
(i) Let x, y ∈ G. Then {Nx, Ny} is an edge of Ξ(G/N) if and only if [x, y] /∈ N

and ⟨x, y, N⟩ < G.
(ii) Suppose that Ξ(G/N) has a connected component C containing at least

two vertices. Then the subgraph of Ξ(G) induced by the vertices in the set
{x ∈ G\Z(G) | Nx ∈ C} is connected with diameter at most diam(C).

Proof. Observe that [Nx, Ny] is the identity in G/N if and only if [x, y] ∈ N , and
⟨Nx, Ny⟩ < G/N if and only if ⟨x, y, N⟩ < G. Thus we obtain (i).

To prove (ii), let x, y ∈ G\Z(G) with Nx, Ny ∈ C. As k := diam(C) ⩾ 2 by
Proposition 2.5(i), there exist g1, . . . , gn ∈ G\Z(G), with n ⩽ k and gn = y, such
that Ξ(G/N) contains the path (Nx, Ng1, . . . , Ngn). By (i), (x, g1, . . . , gn) is a path
in Ξ(G) of length n ⩽ k. □

Lemma 2.10. Let (x, J, K) be such that J and K are proper subgroups of G, with
x ∈ J\Z(J) and x /∈ K. In addition, suppose that H := J ∩ K is a maximal subgroup
of J , or that K is a normal maximal subgroup of G.

(i) There exists h ∈ H such that {x, h} is an edge of Ξ(G), and in particular
CH(x) < H.

(ii) Suppose that there exists y ∈ K\Z(K) with y /∈ J . If H is a maximal subgroup
of K, or if J is a normal maximal subgroup of G, then there exists an element
g ∈ H such that (x, g, y) is a path in Ξ(G).

Proof. Note that if K is a normal maximal subgroup of G, then H is maximal in J .
Thus we may assume in general that H is maximal in J , and similarly, that H is
maximal in K in (ii).

Observe that CH(x) < H, as otherwise ⟨H, x⟩ = J would centralise x. For each
h ∈ H\CH(x), the subgroup ⟨x, h⟩ lies in J < G. Hence x ∼ h, and we obtain (i).

Algebraic Combinatorics, Vol. 6 #5 (2023) 1398



The non-commuting, non-generating graph of a non-simple group

Now suppose that H is maximal in K, and let y be as in (ii). Arguing as above,
CH(y) < H. There exists g ∈ H\(CH(x) ∪ CH(y)), as the union of two proper
subgroups of H is a proper subset. Furthermore, ⟨x, g⟩ ⩽ J < G and ⟨g, y⟩ ⩽ K < G,
so that x ∼ g ∼ y, yielding (ii). □

Lemma 2.11. Suppose that G is 2-generated, and let (x, L, y, M) be such that L and M
are non-abelian maximal subgroups of G, with L ⊴ G, x ∈ L\Z(L) and y ∈ M\Z(M).
Suppose also that CL(x) ⊴ G or M ⊴ G. Then d(x, y) ⩽ 3. Moreover, d(x, y) = 3 if
and only if either:

(i) x ∈ Z(M), y /∈ L, and M is the only maximal subgroup of G containing but
not centralising y; or

(ii) y ∈ Z(L), x /∈ M , and L is the only maximal subgroup of G containing but
not centralising x.

Proof. If M ⊴ G, then the result is precisely [11, Lemma 12]. Assume therefore that
CL(x) ⊴ G and M ̸⊴ G. Additionally, let {(f, A), (g, B)} = {(x, L), (y, M)}. We
claim that if f ∈ Z(B), then G/⟨f⟩G is not cyclic. This is clear if B = L. If instead
B = M , then CL(x) = L ∩ CG(x) = L ∩ M , and so ⟨x⟩G ⩽ L ∩ M . Furthermore,
M/(L∩M) ̸⊴ G/(L∩M), since M ̸⊴ G. Hence G/(L∩M) is not cyclic, and it follows
that G/⟨x⟩G is also not cyclic, as claimed.

We split the remainder of the proof into four cases, corresponding to where x lies
with respect to M and Z(M) and where y lies with respect to L and Z(L).
Case (a): x ∈ M\Z(M) or y ∈ L\Z(L). Here, we obtain d(x, y) ⩽ 2 from Proposi-

tion 2.5(iv).
Case (b): x /∈ M and y /∈ L. Since x lies in L and in CG(x) but not in M , we

see that CG(x) ∩ L ̸⩽ M . Applying Lemma 2.4 to (CG(x), L, M) therefore
gives L ∩ M ̸⩽ CG(x). Hence CL∩M (x) < L ∩ M , and applying Lemma 2.10
to (y, M, L) yields CL∩M (y) < L ∩ M . Thus there exists h ∈ L ∩ M that
centralises neither x nor y. It follows that x ∼ h ∼ y, and so d(x, y) ⩽ 2.

Case (c): x ∈ Z(M) and y ∈ Z(L). Here, [x, y] = 1. As the non-commuting graph of
G is connected with diameter 2 by Proposition 2.7, this graph contains the
path (x, r, y) for some r ∈ G\Z(G). In addition, G/⟨x⟩G and G/⟨y⟩G are
non-cyclic, by the first paragraph of the proof. It follows from Lemma 2.8
that (x, r, y) is also a path in Ξ(G), and hence d(x, y) = 2.

Case (d): x ∈ Z(M) and y /∈ L, or y ∈ Z(L) and x /∈ M . Here, f ∈ Z(B)
and g /∈ A, where {(f, A), (g, B)} = {(x, L), (y, M)} as above. We
claim that CA∩B(g) < H := A ∩ B. Indeed, if B = M , then applying
Lemma 2.10(i) to (g, B, A) yields the claim. Otherwise, the claim follows
by applying Lemma 2.4 to (CG(g), B, A), as in the proof of Case (b). In
general, as f ∈ H\Z(A), we see that Z(A) ∩ B < H. Thus there exists
k ∈ H\(CH(g) ∪ CH(A)). Observe that g ∼ k, while d(f, k) ⩽ 2 by
Proposition 2.5(iv). Hence d(f, g) ⩽ 3.

It remains to show that d(f, g) = 3 if and only if B is the unique maximal
subgroup of G that contains but does not centralise g. If B is the unique
such maximal subgroup, then B contains the neighbourhood of g in Ξ(G),
while no element of B is a neighbour of f ∈ Z(B). Thus d(f, g) > 2, and so
d(f, g) = 3 by the previous paragraph.

If instead g ∈ K\Z(K) for some maximal subgroup K ̸= B of G, then
K ∩B and CK(g) are proper subgroups of K. Hence there exists an element
s ∈ K\(B ∪ CK(g)), and in particular, s ∼ g. Additionally, since f ∈ Z(B),
the quotient G/⟨f⟩G is non-cyclic, by the first paragraph of the proof. As
s /∈ B = CG(f), Lemma 2.8 implies that f ∼ s, and thus d(f, g) ⩽ 2. □
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3. Groups with two conjugacy classes of maximal subgroups
Here, we consider groups whose maximal subgroups satisfy certain conditions, and in
particular, finite groups with exactly two conjugacy classes of maximal subgroups.

Lemma 3.1. Suppose that G is finitely generated and non-cyclic. Moreover, assume
that G contains a normal maximal subgroup M , and that K ∩ M = L ∩ M for all
maximal subgroups K and L of G distinct from M . Then K ∩ M = K ∩ L = Φ(G).
Moreover, if G is finite, then G is soluble. If, in addition, M is the unique normal
maximal subgroup of G, then G contains exactly two conjugacy classes of maximal
subgroups.

Proof. Let K and L be distinct maximal subgroups of G that are not equal to M
(these exist as G is finitely generated and not cyclic). As K ∩ M = L ∩ M , we observe
that K ∩ M ⩽ K ∩ L < K. Moreover, K ∩ M is maximal in K (by the normality
of M), and thus K ∩ M = K ∩ L. Hence K ∩ M is the intersection of each pair of
distinct maximal subgroups of G, and so K ∩ M = Φ(G).

We assume from now on that G is finite. Then |K| = |L|, and so the set S of orders
of maximal subgroups of G has size at most 2. Suppose first that G is insoluble. Since
|S| ⩽ 2, the quotient G/Φ(G) is isomorphic to H := (C3i

2 :PSL(2, 7)) × Cj
7 , where

i and j are non-negative integers [25]. As PSL(2, 7) contains maximal subgroups of
index 7 and 8, we deduce from the simplicity of that group that G contains non-
normal maximal subgroups A and B of index 7 and 8, respectively, contradicting the
requirement |A| = |B|.

Hence G is soluble. Assume now that M is the unique normal maximal subgroup
of G. Then K ̸⊴ G, and CoreG(K) = K ∩ M = Φ(G), for each maximal subgroup
K ̸= M . Thus Theorem 2.2 shows that G has exactly two conjugacy classes of maximal
subgroups. □

We now examine the finite groups satisfying the final conclusion of the previous
lemma.

Theorem 3.2. Suppose that G is finite. Then the following statements hold.
(i) G contains exactly two conjugacy classes of maximal subgroups if and only if:

(a) G = P :Q, where P and Q are nontrivial Sylow subgroups; and
(b) Q is cyclic and acts irreducibly on P/Φ(P ).

(ii) Suppose that (i)(a) and (b) hold, and let R be the unique maximal subgroup
of Q. Then:
(a) the maximal subgroups of G are M := PR and the conjugates of Φ(P )Q;
(b) R ⊴ G if and only if Φ(G) = M ∩ Φ(P )Q;
(c) if R ⊴ G, then M = P × R, and Φ(G) = Φ(P ) × R is the intersection of

each pair of distinct maximal subgroups of G; and
(d) if R ⊴ G, CM (Φ(G)) ̸⩽ Φ(G), and M is non-abelian, then Φ(G) =

Z(M), i.e. Φ(P ) = Z(P ).

Proof. We will begin by proving (i) and (ii)(a). Adnan [3] proved that if G contains
exactly two conjugacy classes of maximal subgroups, then G satisfies (i)(a) and (b).
We will therefore assume that (i)(a) and (b) hold. The irreducibility of the action of
Q on P/Φ(P ) implies that ⟨Φ(P ), Q, x⟩ = G for each x ∈ P\Φ(P ), and so Φ(P )Q and
its G-conjugates are maximal subgroups of G. Since R is maximal in Q and P ⊴ G,
we deduce that M := PR is also a maximal subgroup of G. As G/P is cyclic, its
subgroup M/P is normal, and hence M ⊴ G.

To complete the proofs of (i) and (ii)(a), it suffices to show that we have described
all maximal subgroups of G. Suppose, for a contradiction, that G contains a maximal
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subgroup T that is neither equal to M nor conjugate to Φ(P )Q. Then T contains an
element xy, where x ∈ P and (without loss of generality) y is a generator for Q. For
each integer k, the projection of (xy)k onto Q is equal to yk. Thus |Q| divides |xy|,
and it follows that T contains an element of order |Q|. Hence T contains a Sylow
subgroup of G of order |Q|, and we may assume that Q ⩽ T .

Let S be the projection of T onto P , i.e. the set of elements v ∈ P such that there
exists w ∈ Q with vw ∈ T . By the previous paragraph, S = T ∩ P . Additionally,
Theorem 2.2 implies that G = TΦ(P )Q = TQΦ(P ) = SQΦ(P ) = SΦ(P )Q. As
G = P :Q, we deduce that ⟨S, Φ(P )⟩ = P , hence S = P and P ⩽ T . Thus T contains
⟨P, Q⟩ = G. This contradicts the maximality of T , and we obtain (i) and (ii)(a).

We now prove (ii)(b)–(c). Assume first that Φ(G) = M ∩ Φ(P )Q. Then this in-
tersection, which is equal to Φ(P )R, is normal in G. Since R is a Sylow q-subgroup
of Φ(P )R, the Frattini Argument yields G = Φ(P )RNG(R) = Φ(P )NG(R). Thus
P = Φ(P )NG(R) ∩ P = Φ(P )(NG(R) ∩ P ). Hence P = NG(R) ∩ P , i.e. P ⩽ NG(R).
Therefore, R ⊴ P :Q = G.

Conversely, assume that R ⊴ G. Since P ∩ R = 1, it is clear that M = P × R.
Additionally, as G = P :Qg for each g ∈ G, we see that

M ∩ (Φ(P )Q)g = (P × R) ∩ Φ(P )Qg = (P ∩ Φ(P ))(R ∩ Qg) = Φ(P ) × R.

As Φ(P )×R is the intersection of any two distinct G-conjugates of Φ(P )Q, (ii)(b)–(c)
hold.

To prove (ii)(d), assume again that R ⊴ G. Observe that CM (Φ(G)) =
CP ×R(Φ(P ) × R) = CP (Φ(P )) × R. Note that CP (Φ(P ))Q is a subgroup of G,
since CP (Φ(P )) is characteristic in P . As Φ(P )Q is the unique maximal subgroup
of G containing Q, and as P ∩ Q = 1, it follows that either CP (Φ(P )) ⩽ Φ(P ) or
CP (Φ(P )) = P . In the former case, CM (Φ(G)) ⩽ Φ(P ) × R = Φ(G).

Assume now that M is non-abelian and CM (Φ(G)) ̸⩽ Φ(G). Then CM (Φ(G)) =
P × R = M and Φ(G) ⩽ Z(M). Suppose for a contradiction that Φ(G) ̸= Z(M), so
that Z(M) ̸⩽ Φ(G) = M ∩ Φ(P )Q. Then Z(M) ̸⩽ Φ(P )Q, and applying Lemma 2.4
to (Z(M), M, Φ(P )Q) yields Φ(G) = M ∩ Φ(P )Q ̸⩽ Z(M), a contradiction. Thus
Φ(G) = Z(M), and (ii)(d) follows. □

Note that the above theorem is closely related to Theorem 1.3. For convenience,
we will collect conditions (i)–(iv) of the latter theorem in the following assumption,
together with the condition on maximal subgroups that Theorem 3.2(i) shows is
equivalent to (i)–(ii).

Assumption 3.3. Assume that G is finite and contains exactly two conjugacy classes
of maximal subgroups, i.e. that G = P :Q, where P and Q are nontrivial Sylow sub-
groups such that Q is cyclic and acts irreducibly on P/Φ(P ). In addition, assume that
Φ(P ) = Z(P ) ̸⩽ Z(G), and that the unique maximal subgroup of Q is normal in G.

4. Normal, non-abelian maximal subgroups with large centres
We now focus on the case where G contains a normal, non-abelian maximal subgroup
M satisfying Z(G) < Z(M) (equivalently, Z(M) ̸⩽ Z(G)). In particular, we determine
upper bounds for the distance in Ξ(G) between an element of M\Z(M) and an
element of G\M or Z(M)\Z(G). We will apply these results in §5 in order to bound
diam(Ξ(G)).

Proposition 4.1 ([11, Proposition 10]). Suppose that G contains a normal non-
abelian maximal subgroup M , with Z(G) < Z(M). Then each maximal subgroup of G
is non-abelian.
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Lemma 4.2. Suppose that G contains a normal, non-abelian maximal subgroup M with
Z(G) < Z(M), and let z ∈ Z(M)\Z(G). Then G\M is the set of neighbours of z in
Ξ(G).

Proof. As M is non-abelian, G/Z(M) is not cyclic. Thus Lemma 2.8 yields the result.
□

Lemma 4.3. Suppose that G contains a normal, non-abelian maximal subgroup M with
Z(G) < Z(M). In addition, let x ∈ M\Z(M) and z ∈ Z(M)\Z(G), and let JM be
the set of maximal subgroups of G distinct from M . If ⟨I ∩ M | I ∈ I⟩ = M for some
I ⊆ JM , then there exists I ∈ JM such that x /∈ CM (I ∩ M). More generally, if such
I exists, then d(x, z) ⩽ 3.

Proof. First, if ⟨I ∩ M | I ∈ I⟩ = M for some I ⊆ JM , then
⋂

I∈I CM (I ∩ M) =
Z(M), and so there exists I ∈ I such that x /∈ CM (I ∩ M).

We now assume, more generally, that there exists I ∈ JM such that x /∈
CM (I ∩ M). Then CI∩M (x) < I ∩ M . Additionally, by Proposition 4.1, I is non-
abelian, and so there exists s ∈ I\(Z(I) ∪ M). Applying Lemma 2.10(i) to (s, I, M)
now yields CI∩M (s) < I ∩ M . Therefore, there exists an element t ∈ I ∩ M that
centralises neither x nor s. In addition, s ∼ z by Lemma 4.2. Thus (x, t, s, z) is a
path in Ξ(G), and d(x, z) ⩽ 3. □

We can now bound distances in Ξ(G) between elements of M\Z(M) and elements of
Z(M)\Z(G). Here, and in much of what follows, we will assume that G is 2-generated,
as otherwise diam(Ξ(G)) = 2 by Proposition 2.5(ii).

Proposition 4.4. Suppose that G is 2-generated and contains a normal, non-abelian
maximal subgroup M with Z(G) < Z(M). In addition, let x ∈ M\Z(M) and z ∈
Z(M)\Z(G). Then the following statements hold.

(i) x and z lie in distinct connected components of Ξ(G) if and only if
K ∩ M = Z(M) for every maximal subgroup K of G distinct from M .
Otherwise, d(x, z) ⩽ 4.

(ii) Suppose that d(x, z) < ∞. Then d(x, z) = 4 if and only if, for each maximal
subgroup K of G distinct from M :
(a) x /∈ K; and
(b) x ∈ CM (K ∩ M).

(iii) Suppose that (ii)(a)–(b) hold for each maximal subgroup K of G distinct from
M . Then K ∩ M = Φ(G) for all such K.

(iv) Suppose that d(x, z) < ∞, and that G is finite. Then d(x, z) ⩽ 3.

Proof. We first note that Proposition 4.1 implies that G contains no abelian maximal
subgroups, while Lemma 4.2 shows that G\M is the set of neighbours of z in Ξ(G).
(i) Suppose first that K ∩ M = Z(M) for every maximal subgroup K of G distinct

from M , and let y ∈ (G\M) ∪ Z(M). Then M is the unique maximal subgroup
of G containing x, and so if ⟨x, y⟩ < G, then y ∈ Z(M), and hence [x, y] = 1.
Thus there is no edge in Ξ(G) between any element of M\Z(M) and any element
of (G\M) ∪ Z(M) = G\(M\Z(M)). In particular, the connected component of
Ξ(G) containing x consists only of elements of M\Z(M), and so this component
does not contain z ∈ Z(M).

Conversely, suppose that there exists a maximal subgroup L of G distinct
from M that satisfies L ∩ M ̸= Z(M). We claim that L ∩ M ̸⩽ Z(M). Indeed,
either Z(M) ̸⩽ L ∩ M or L ∩ M ̸⩽ Z(M), and if the former holds, then applying
Lemma 2.4 to (Z(M), M, L) yields L ∩ M ̸⩽ Z(M). Additionally, as L is non-
abelian, there exists r ∈ L\(Z(L) ∪ M). Applying Lemma 2.10(i) to (r, L, M)

Algebraic Combinatorics, Vol. 6 #5 (2023) 1402



The non-commuting, non-generating graph of a non-simple group

yields CL∩M (r) < L ∩ M , and so Z(L) ∩ M < L ∩ M . We also see, since L ∩ M ̸⩽
Z(M), that L ∩ Z(M) < L ∩ M . Thus there exist s ∈ (L ∩ M)\(Z(L) ∪ Z(M))
and t ∈ L\(CL(s) ∪ M). Proposition 2.5(iv) gives d(x, s) ⩽ 2, and as G\M is the
neighbourhood of z in Ξ(G), we obtain s ∼ t ∼ z. Hence

d(x, z) ⩽ d(x, s) + d(s, z) ⩽ 4.

(ii) Assume first that (a) and (b) hold for each maximal subgroup K of G distinct
from M . As G\M is the set of neighbours of z in Ξ(G), it suffices by (i) to show
that d(x, t) ⩾ 3 for all t ∈ G\M . Suppose for a contradiction that d(x, t) ⩽ 2 for
some t. By (a), ⟨x, t⟩ = G, and so d(x, t) = 2. Thus there exists s ∈ M such that
x ∼ s ∼ t, and so ⟨s, t⟩ lies in a maximal subgroup R of G. However, x centralises
s ∈ R ∩ M by (b), a contradiction. Thus d(x, z) = 4.

Conversely, suppose that some maximal subgroup K of G distinct from M
fails to satisfy either (a) or (b). We will prove that d(x, z) ⩽ 3. If K does not
satisfy (b), i.e. if x /∈ CM (K ∩ M), then this is an immediate consequence of
Lemma 4.3, with I = K.

Assume therefore that K does not satisfy (a), i.e. that x ∈ K. If x /∈ Z(K),
then CK(x) and CK(z) = K ∩ M are proper subgroups of K. Hence there exists
r ∈ K\(M ∪ CK(x)). As G\M is the neighbourhood of z in Ξ(G), it follows that
x ∼ r ∼ z and d(x, z) = 2.

Suppose now that x ∈ Z(K). Then K = CG(x), and since x also lies in
M\Z(G), applying Lemma 2.3 to (K, M) implies that Z(M) ⩽ K ∩ M , and it is
now clear that z ∈ K\Z(K). If K ⊴ G, then we obtain d(x, z) ⩽ 3 by applying
Lemma 2.11 to (x, M, z, K).

If instead K ̸⊴ G, then let g ∈ G\K. If x ∈ Kg, then since x /∈ Z(Kg),
applying the second last paragraph with Kg replacing K yields d(x, z) = 2.
Otherwise, x /∈ Kg = CG(xg), and since xg ∈ Kg ∩ Mg = Kg ∩ M , setting
I = Kg in Lemma 4.3 gives d(x, z) ⩽ 3.

(iii) Let JM be the set of maximal subgroups of G distinct from M . Note that no
R ∈ JM is normal in G; otherwise, applying Lemma 2.10(i) to (x, M, R) would
imply that x /∈ CM (R ∩ M), contradicting (ii)(b). Suppose for a contradiction
that K ∩ M ̸= Φ(G) for some K ∈ JM . We will show that there exists a subset
I of JM such that ⟨I ∩ M | I ∈ I⟩ = M , and it will follow from Lemma 4.3 that
(ii)(b) does not hold for some I ∈ JM , a contradiction.

Suppose first that there exists R ∈ JM with R ∩ M ̸⊴ G. Since R ∩ M is a
maximal subgroup of R, which is not normal in G, we see that ⟨R ∩ M⟩G ̸⩽ R.
However, ⟨R ∩ M⟩G ⩽ M , since M ⊴ G. If ⟨R ∩ M⟩G ̸= M , then we can apply
Lemma 2.4 to the triple (∠R ∩ M⟩G, M, R) of distinct subgroups, and this in
turn yields R ∩ M ̸⩽ ⟨R ∩ M⟩G, a contradiction. Therefore

M = ⟨R ∩ M⟩G = ⟨Rg ∩ M | g ∈ G⟩,
and so we can set I = {Rg | g ∈ G}.

Assume finally that R ∩ M ⊴ G for all R ∈ JM . Since K ∩ M ̸= Φ(G),
Lemma 3.1 implies that there exists a maximal subgroup L ∈ JM such that
L ∩ M ̸= K ∩ M . Either K ∩ M ̸⩽ L or L ∩ M ̸⩽ K, and if the former holds, then
since K ∩ M ⊴ G, applying Lemma 2.4 to (K, M, L) shows that the latter holds
too. Thus, in general, L ∩ M ̸⩽ K. As L ∩ M ⊴ G, we obtain (L ∩ M)(K ∩ M) =
((L ∩ M)K) ∩ M = G ∩ M = M . We can therefore set I = {K, L}.

(iv) By (i), d(x, z) ⩽ 4, and there exists a maximal subgroup K of G distinct from
M with K ∩ M ̸= Z(M). Suppose for a contradiction that d(x, z) = 4. Then
(ii) shows that each maximal subgroup L of G distinct from M satisfies x ∈
CM (L ∩ M)\L. Additionally, (iii) implies that Φ(G) = L ∩ M for each L, and

Algebraic Combinatorics, Vol. 6 #5 (2023) 1403



S. D. Freedman

so x ∈ CM (Φ(G))\Φ(G). Furthermore, Lemma 3.1 implies that the finite group
G contains exactly two conjugacy classes of maximal subgroups. Since M is
the unique normal maximal subgroup of G (as in the proof of (iii)), and since
Φ(G) = K ∩ M , the equivalent conditions of part (b) of Theorem 3.2(ii) hold. In
addition, M is non-abelian and Φ(G) = K ∩ M ̸= Z(M), and so part (d) of that
theorem shows that CM (Φ(G)) ⩽ Φ(G), contradicting x ∈ CM (Φ(G))\Φ(G).
Thus d(x, z) ⩽ 3. □

Question 4.5. Does there exist an infinite 2-generated group G that contains a nor-
mal, non-abelian maximal subgroup M with Z(G) < Z(M), and that satisfies the
equivalent conditions of Proposition 4.4(ii) for some x ∈ M\Z(M), so that d(x, z) = 4
for z ∈ Z(M)\Z(G)?

In the following result, we write Ĥ := H/Z(M) when H is a subgroup of G con-
taining Z(M). Recall that an abstract group is primitive if it contains a core-free
maximal subgroup, which is a point stabiliser for the corresponding primitive coset
action.
Proposition 4.6. Suppose that G contains a normal, non-abelian maximal subgroup
M , and a maximal subgroup K with K ∩ M = Z(M). Then the following state-
ments hold.

(i) Ĝ is primitive, and is the semidirect product of its unique minimal normal
subgroup M̂ by its point stabiliser K̂, which has prime order.

(ii) Ĝ is finite if and only if it is soluble. Hence G is soluble if and only if Ĝ is
finite.

(iii) If Ĝ is infinite, then M̂ is an infinite simple group, and |K̂| is odd.
(iv) If G contains a maximal subgroup L with L ̸= M and Z(M) < L ∩ M , then

Ĝ is infinite.
Proof. As Z(M) is not a maximal subgroup of M , we deduce that K is not normal
in G. However, Z(M) = K ∩ M is a maximal subgroup of K, and so CoreG(K) =
Z(M). Thus Ĝ is primitive with a point stabiliser K̂ of prime order, and Ĝ = M̂ :K̂.
Furthermore, each nontrivial normal subgroup N̂ of Ĝ contained in M̂ intersects K̂
trivially, and N̂K̂ = Ĝ. We therefore deduce that N̂ = M̂ , and so M̂ is a minimal
normal subgroup of Ĝ.

Now, each finite group with an abelian maximal subgroup is soluble [19]. Hence
if Ĝ is finite, then it is soluble, as is G. Hence in this case M̂ is the unique minimal
normal subgroup of Ĝ. If instead Ĝ is infinite, then since K̂ is finite, [26, Theorem 1.1]
shows that M̂ is a direct product of isomorphic infinite simple groups, and is again
the unique minimal normal subgroup of Ĝ. Hence G is insoluble. Arguing as in the
proof of [20, Theorem 4.1], we deduce that M̂ is simple and |K̂| is odd. Thus we have
proved (i)–(iii).

Finally, suppose that G has a maximal subgroup L as in (iv). As M̂ is maximal
and the unique minimal normal subgroup of Ĝ, the maximal subgroup L̂ is core-free.
Additionally, K̂ ∩M̂ = 1 ̸= L̂∩M̂ , and thus the core-free maximal subgroup K̂ is not
conjugate to L̂. Theorem 2.2 therefore implies that Ĝ is either infinite or insoluble,
and (iv) follows from (ii). □

Lemma 4.7. Suppose that G contains a normal, non-abelian maximal subgroup M .
In addition, let x ∈ M\Z(M) and y ∈ G\M . Finally, suppose that R is a maximal
subgroup of G containing y, with CR∩M (y) < R ∩ M ̸= Z(M). Then d(x, y) ⩽ 3.
Proof. Either Z(M) ̸⩽ R or R ∩ M ̸⩽ Z(M), and if the former holds, then apply-
ing Lemma 2.4 to (Z(M), M, R) shows that the latter also holds. Thus, in general,
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R ∩ M ̸⩽ Z(M), and so R ∩ Z(M) < R ∩ M . Since CR∩M (y) < R ∩ M , there exists
h ∈ R ∩ M with h /∈ CR∩M (y) ∪ Z(M). We see that h ∼ y, while d(x, h) ⩽ 2 by
Proposition 2.5(iv). Therefore, d(x, y) ⩽ 3. □

Lemma 4.8. Suppose that G contains a normal, non-abelian maximal subgroup M ,
with Z(G) < Z(M). In addition, suppose that G contains maximal subgroups K and
L, with K ∩ M = Z(M) ̸⩽ L and L ̸⊴ G. Then the following statements hold.

(i) U := L ∩ M is a normal subgroup of G.
(ii) Let s ∈ L ∩ (K\Z(M)). Then S := {[s, r] | r ∈ Z(M)} ⊴ G, and SU = M .
(iii) Each element of K\Z(M) lies in some G-conjugate of L.

Proof.
(i) As U ⊴ L and U ⩽ M = CM (Z(M)), we obtain U ⊴ Z(M)L = G.
(ii) Let x, y ∈ Z(M). As Z(M) ⊴ G, it follows that [s, y] ∈ Z(M). We calculate

[s, x][s, y] = [s, yx], and it follows that S ⩽ Z(M), and hence S ⊴ M . Addition-
ally, xs ∈ Z(M), and so [s, x]s = [s, xs] ∈ S. Thus Ss = S. As s ∈ K\Z(M), we
see that s /∈ M and S ⊴ ⟨M, s⟩ = G.

Now, by (i), U ⊴ G. For a subgroup T of G, let T := TU/U , and for an element
g ∈ G, let g := Ug. We observe that U is maximal in L, and since L ̸⊴ G, it follows
that G is primitive with point stabiliser L. Since |G| is not prime, it follows that
Z(G) = 1.

Let r ∈ Z(M)\L. Then CG(r) = M . As s /∈ M , we deduce that [s, r] = [s, r] ̸=
1, and thus [s, r] /∈ U = L∩M . Since S ⩽ M , it follows that S ̸⩽ L. Thus SL = G,
and we conclude that SU = S(L ∩ M) = SL ∩ M = G ∩ M = M .

(iii) Let k ∈ K\Z(M). As G = Z(M)L, it follows that k = zf for some z ∈ Z(M) and
some f ∈ L\Z(M). In fact, since Z(M) ⩽ K, we see that f = z−1k ∈ K\Z(M).
Hence f−1 ∈ L ∩ (K\Z(M)).

Finally, let S := {[f−1, r] | r ∈ Z(M)}. As U ⊴ G by (i), we deduce that
Z(M)U/U ⩽ M/U , which is equal to SU/U by (ii). Thus there exists r ∈
Z(M) such that Uz−1 = U [f−1, r], and hence [f−1, r]z = z[f−1, r] ∈ U . As
U = Ur ⩽ Lr, it follows that k = zf = z[f−1, r]fr ∈ Lr. □

We now bound distances in Ξ(G) between elements of M\Z(M) and elements of
G\M .

Proposition 4.9. Suppose that G is 2-generated and contains a normal, non-abelian
maximal subgroup M , with Z(G) < Z(M). In addition, let x ∈ M\Z(M) and y ∈
G\M .

(i) x and y lie in distinct connected components of Ξ(G) if and only if K ∩ M =
Z(M) for every maximal subgroup K of G distinct from M .

(ii) If x and y lie in the same connected component of Ξ(G), then d(x, y) ⩽ 4.
(iii) If d(x, y) = 4, then Φ(G) = Z(M), and G/Z(M) is primitive with unique min-

imal normal subgroup M/Z(M), which is infinite and simple. Moreover, each
maximal subgroup K of G containing y satisfies K∩M = Z(M), and K/Z(M)
is a point stabiliser of G/Z(M) = (M/Z(M)) : (K/Z(M)) of odd prime order.
Additionally, G contains a maximal subgroup L such that Z(M) < L ∩ M .

Proof. First, Proposition 4.1 shows that G contains no abelian maximal subgroups.
Let z ∈ Z(M)\Z(G). Then y ∼ z by Lemma 4.2, and so x and y lie in the same
connected component of Ξ(G) if and only if x and z lie in the same component. Thus
(i) follows from Proposition 4.4(i).

Assume now that x and y lie in the same connected component of Ξ(G).
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Case (a): Φ(G) = Z(M). Let K be a maximal subgroup of G containing y, so
that K ̸= M , and suppose that d(x, y) > 3. Since K ∩ M contains Φ(G) =
Z(M) > Z(G), we deduce from Lemma 2.3, applied to (M, K), that Z(K) ⩽
K ∩ M . As y /∈ M , it follows that y /∈ Z(K). Thus applying Lemma 2.10(i)
to (y, K, M) yields CK∩M (y) < K ∩M . Since d(x, y) > 3, Lemma 4.7 shows
that K ∩ M = Z(M). On the other hand, as x and y lie in the same compo-
nent of Ξ(G), we see from (i) that there exists a maximal subgroup L of G
with L ̸= M and L ∩ M ̸= Z(M). This means that Φ(G) = Z(M) < L ∩ M ,
and so Proposition 4.4 gives d(x, z) ⩽ 3. As y ∼ z, it follows that d(x, y) = 4.
Furthermore, as K ∩ M = Z(M) < L ∩ M , Proposition 4.6(iv) shows that
G/Z(M) is infinite, and hence the claims about G/Z(M), M/Z(M) and
K/Z(M) in (iii) follow from Proposition 4.6(i)–(iii).

Case (b): Φ(G) ̸= Z(M). To complete the proof of (ii) and (iii), it suffices to show
that d(x, y) ⩽ 3. Since y ∼ z, some maximal subgroup K of G contains
y and z. Note that z ∈ (K ∩ M)\CG(y), and so CK∩M (y) < K ∩ M . By
Lemma 4.7, we may assume that K ∩ M = Z(M), and so Φ(G) < Z(M).
Hence some maximal subgroup L satisfies Z(M) ̸⩽ L.

We will show that Z(L) ⩽ Z(G). Observe that
G/Z(M) = Z(M)L/Z(M) ∼= L/(L ∩ Z(M)).

Since G/Z(M) is primitive by Proposition 4.6 (and |G/Z(M)| is not prime),
L/(L ∩ Z(M)) has trivial centre. Thus Z(L) ⩽ L ∩ Z(M) ⩽ M . As Z(M) ̸⩽
L ∩ M , the contrapositive of Lemma 2.3, applied to (L, M), shows that
Z(L) = Z(L) ∩ M ⩽ Z(G), as claimed.

We divide the remainder of Case (b) into three (not all mutually exclu-
sive) sub-cases.
Case (b)(α): y ∈ Lg for some g ∈ G. Since Z(Lg) ⩽ Z(G), applying
Lemma 2.10(i) to (y, Lg, M) yields CLg∩M (y) < Lg ∩ M ̸= Z(M). Thus
d(x, y) ⩽ 3 by Lemma 4.7.
Case (b)(β): L ̸⊴ G. Since y ∈ K\Z(M), it follows from Lemma 4.8(iii)
that y ∈ Lg for some g ∈ G. Thus by the previous sub-case, d(x, y) ⩽ 3.
Case (b)(γ): L ⊴ G and y /∈ L. Applying Lemma 2.10(i) to (y, K, L)
shows that r ∼ y for some r ∈ K ∩ L, and that CK∩L(y) < K ∩ L. If x ∈ L,
then (since Z(L) ⩽ Z(G)) Proposition 2.5(iv) yields d(x, r) ⩽ 2, and so
d(x, y) ⩽ 3.

If instead x /∈ L, then since K ∩ M = Z(M) ̸⩽ L, applying Lemma 2.4 to
(K, M, L) shows that L∩M ̸⩽ K. Therefore, applying the same proposition
to (M, L, K) yields K ∩ L ̸⩽ M . Thus there exists t ∈ (K ∩ L)\M . In
particular, t /∈ Z(G), and hence t /∈ Z(L). It follows from Lemma 2.10(ii),
applied to the triple (x, M, L) and the element t, that x ∼ s ∼ t for some
s ∈ L ∩ M . As s ∼ t ∈ K ∩ L, we see that CK∩L(s) < K ∩ L. Additionally,
CK∩L(y) < K ∩L by the previous paragraph. Hence there exists an element
f ∈ K ∩ L that centralises neither s nor y. Since y ∈ K, we see that
x ∼ s ∼ f ∼ y and d(x, y) ⩽ 3. □

Question 4.10. Does there exist an infinite 2-generated group G that contains a nor-
mal, non-abelian maximal subgroup M with Z(G) < Z(M), that satisfies all nec-
essary conditions given in Proposition 4.9(iii)? If yes, is d(x, y) = 4 possible for
x ∈ M\Z(M) and y ∈ G\M?

Remark 4.11. Let x ∈ M\Z(M), z ∈ Z(M)\Z(G) and y ∈ G\M . Propositions 4.4
and 4.9 show that if d(x, z) = 4, then K ∩ M = Φ(G) ̸= Z(M) for each maximal

Algebraic Combinatorics, Vol. 6 #5 (2023) 1406



The non-commuting, non-generating graph of a non-simple group

subgroup K of G distinct from M , while if d(x, y) = 4, then there exists a maximal
subgroup L ̸= M such that Z(M) = Φ(G) < L ∩ M . Hence d(x, z) and d(x, y) cannot
both be equal to 4.

Our next result specifies exactly when Ξ(G) is connected, assuming that G contains
a maximal subgroup M as above. In the next section, we will consider in more detail
the diameters of the connected components of this graph, and discuss several concrete
examples.

Lemma 4.12. Suppose that G is 2-generated and contains a normal, non-abelian max-
imal subgroup M , with Z(G) < Z(M). Then Ξ(G) is not connected if and only if
K ∩ M = Z(M) for every maximal subgroup K of G distinct from M , in which case
Proposition 4.6 applies to G for any choice of K. In particular, if G is finite, then
Ξ(G) is not connected if and only if G satisfies Assumption 3.3.

Proof. Suppose first that K ∩M = Z(M) for every maximal subgroup K of G distinct
from M . Then Propositions 4.4 and 4.9 show that there is no path in Ξ(G) between
any element of M\Z(M) and any element of (G\M) ∪ (Z(M)\Z(G)). Hence Ξ(G)
is not connected. In addition, Proposition 4.6 applies to G for any choice of K, and
so CoreG(K) = Z(M). Thus M is the unique normal maximal subgroup of G. It
follows from Lemma 3.1 that if G is finite, then it is soluble and contains exactly
two conjugacy classes of maximal subgroups, and Z(M) = Φ(G) is the intersection of
each pair of distinct maximal subgroups. Hence in this case G satisfies all conditions
of Theorem 3.2(i). In particular, G has exactly two conjugacy classes of maximal
subgroups, and a unique non-cyclic Sylow subgroup P . Furthermore, Theorem 3.2(ii)
shows that G has a nontrivial cyclic Sylow subgroup whose maximal subgroup is
normal in G, and that Φ(P ) = Z(P ). As Z(G) < Z(M) = Φ(G), we also observe
from this theorem that Φ(P ) ̸⩽ Z(G). Thus G satisfies Assumption 3.3.

If instead G has a maximal subgroup L ̸= M with L ∩ M ̸= Z(M), then Proposi-
tions 4.4 and 4.9 imply that Ξ(G) is connected. Suppose that G is finite in this case.
To show that Assumption 3.3 does not hold for G, we may assume that G has exactly
two conjugacy classes of maximal subgroups, and a nontrivial cyclic Sylow subgroup
whose maximal subgroup is normal in G. Then Theorem 3.2(ii)(c)–(d) implies that
Φ(G) = L ∩ M ̸= Z(M), and hence that the unique non-cyclic Sylow subgroup P
of G does not satisfy Φ(P ) = Z(P ). As Φ(S) < S = Z(S) for each nontrivial Sylow
subgroup S ̸= P , Assumption 3.3 is not satisfied by G. □

We note that Proposition 4.6 and Lemma 4.12 show that if G is infinite and Ξ(G)
is not connected, then G/Z(M) is primitive with a unique minimal normal subgroup,
which is infinite and simple, and each point stabiliser of G/Z(M) has odd prime order.

5. Non-central by non-cyclic groups
In this section, we will determine upper bounds (or exact values in some cases) for the
diameters of the connected components of Ξ(G) whenever G satisfies the following
assumption.

Assumption 5.1. Assume that G contains a normal subgroup N , such that G/N is
not cyclic and N ̸⩽ Z(G). Additionally, let C := CG(N).

Note that this assumption holds whenever G/Z(G) has a proper non-cyclic quo-
tient. Additionally, C and Z(C) are normal subgroups of G, and Z(G) ⩽ C < G.

Throughout this section, we will implicitly use Proposition 2.5(i), which states that
each nontrivial connected component of Ξ(G) has diameter at least 2.

Lemma 5.2. Let G, N and C be as in Assumption 5.1.
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(i) Let h, h′ ∈ G\C. Then there exists n ∈ N\Z(G) such that h ∼ n ∼ h′.
(ii) Let c ∈ C\Z(G) and g ∈ G\Z(G). If d(c, g) > 2, then either G/⟨c⟩G and

G/⟨g⟩G are both cyclic, or one of these quotients is cyclic and [c, g] = 1.

Proof. To prove (i), note that since h, h′ /∈ C, each of CN (h) and CN (h′) is a proper
subgroup of N . Thus there exists n ∈ N\(CN (h) ∪ CN (h′)), and Lemma 2.8 yields
h ∼ n ∼ h′.

Next, we prove the contrapositive of (ii). If [c, g] ̸= 1 and either G/⟨c⟩G or G/⟨g⟩G

is not cyclic, then Lemma 2.8 yields d(c, g) = 1. Suppose therefore that [c, g] = 1,
with G/⟨c⟩G and G/⟨g⟩G both non-cyclic. Since the non-commuting graph of G has
diameter 2 by Proposition 2.7, there exists k ∈ G\Z(G) such that (c, k, g) is a path
in that graph. By Lemma 2.8, this is also a path in Ξ(G), and hence d(c, g) ⩽ 2. □

We now split the investigation of the structure of Ξ(G) into three cases: G/C non-
cyclic; G/C cyclic and C abelian; and G/C cyclic and C non-abelian. In the second
and third cases, we will see that more can be said if we know whether or not C is a
maximal subgroup of G.

Lemma 5.3. Let G, N and C be as in Assumption 5.1, and suppose that G/C is not
cyclic. Then Ξ(G) is connected with diameter 2 or 3. Moreover, if d(x, y) = 3 for
x, y ∈ G\Z(G), then one of these elements lies in C, the other lies in G\(N ∪ C),
and [x, y] = 1. Hence diam(Ξ(G)) = 2 if CG(x) ⊆ N ∪ C for all x ∈ C\Z(G), and in
particular if C = Z(G).

Proof. By Lemma 5.2(i), any two elements of G\C are joined in Ξ(G) by a path of
length at most two. Thus it suffices to consider distances in Ξ(G) involving elements
of C\Z(G).

Suppose that x ∈ C\Z(G) and y ∈ G\Z(G) satisfy d(x, y) > 2. As G/N and G/C
are not cyclic, neither is G/⟨r⟩G for any r ∈ N ∪ C. In particular, G/⟨x⟩G is not
cyclic. Therefore, Lemma 5.2(ii) implies that y ∈ G\(N ∪ C) and [x, y] = 1.

Now, Lemma 5.2(i) shows that n ∼ y for some n ∈ N\Z(G). By the previous
paragraph, d(x, n) ⩽ 2, and so d(x, y) ⩽ d(x, n) + d(n, y) ⩽ 3. □

Using Magma, we see that the groups S4 and C2
2 × S3 satisfy the hypotheses of

Lemma 5.3, and have non-commuting, non-generating graphs of diameter 3 and 2,
respectively. In fact, in the latter case, C = Z(G). On the other hand, if G = S3 × S3,
then G satisfies the hypotheses of Lemma 5.3 and diam(Ξ(G)) = 2, even though
CG(x) ̸⊆ N ∪ C for some x ∈ C\Z(G).

Example 5.4. Consider the infinite, 2-generated Thompson’s group F . The derived
subgroup F ′ of F is infinite and simple, F/F ′ ∼= Z2, and every proper quotient of
F is abelian [4, §1.4]. Hence F ′ is the unique minimal normal subgroup of F , and it
follows that CF (F ′) = 1. As F/F ′ is not cyclic, we can apply Lemma 5.3 with G = F
and N = F ′ to deduce that diam(Ξ(F )) = 2.

Next, we prove useful properties of subgroups of G containing C, when G/C is
cyclic.

Lemma 5.5. Let G, N and C be as in Assumption 5.1, and suppose that G/C is cyclic.
Additionally, let H be a subgroup of G properly containing C. Then H is non-abelian,
Z(H) < Z(C), and H ⊴ G. In particular, Z(G) < Z(C).

Proof. Since G/C is cyclic, so is its subgroup NC/C ∼= N/(N ∩ C) = N/Z(N).
Thus N is abelian, and it follows that N ⩽ Z(C). In particular, H contains N .
Hence each of N and C is centralised by Z(H), and so Z(H) ⩽ Z(C). However, H
does not centralise N . Thus N ̸⩽ Z(H), and it follows that H is non-abelian and
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Z(H) < Z(C). Additionally, H/C is a normal subgroup of the cyclic group G/C, and
thus H ⊴ G. □

Our next proposition explores the case where G/C is cyclic and C is abelian. Recall
that Ξ+(G) is the subgraph of Ξ(G) induced by its non-isolated vertices. As in much
of the previous section, we assume that G is 2-generated; otherwise, diam(Ξ(G)) = 2
by Proposition 2.5(ii).

Lemma 5.6. Let G, N and C be as in Assumption 5.1. Suppose also that G is 2-
generated, G/C is cyclic, and C is abelian, so that G is soluble. Then the following
statements hold.

(i) Each isolated vertex of Ξ(G) lies in C\N .
(ii) Suppose that C is maximal in G. Then Ξ+(G) is connected with diameter 2.
(iii) Suppose that C is not maximal in G, and let M be a maximal subgroup of G

containing C. Then Table 1 lists upper bounds for distances between vertices
of Ξ(G), depending on the subsets of G\Z(G) that contain them. In particular,
diam(Ξ(G)) ⩽ 3.

Table 1. Upper bounds for distances between vertices x ∈ A and
y ∈ B of Ξ(G), with A, B ⊆ G\Z(G), and C and M as in
Lemma 5.6(iii).

A
B Z(M)\Z(G) C\Z(M) M\C G\M

G\M 1 3 2 22, if [x, y] ̸= 1
M\C 3 2 2

C\Z(M) 3 2
Z(M)\Z(G) 2

Proof.
(i) By Lemma 5.2(i), any two elements of G\C have distance at most two in Ξ(G).

Additionally, as G/N is not cyclic, and as the non-commuting graph of G is
connected by Proposition 2.7, it follows from Lemma 2.8 that each isolated vertex
lies in C\N .

(ii) By Lemma 5.2(i), it suffices to show that d(x, y) ⩽ 2 whenever x ∈ C\Z(G)
and y ∈ G\Z(G) are distinct non-isolated vertices. If G/⟨x⟩G is not cyclic, then
Lemma 2.8 shows that G\CG(x) = G\C is the neighbourhood of x in Ξ(G). In
particular, if y ∈ G\C, then d(x, y) = 1. If instead the non-isolated vertex y lies
in the abelian group C, then k ∼ y for some k ∈ G\C. Hence x ∼ k ∼ y and
d(x, y) = 2.

Suppose now that G/⟨x⟩G is cyclic. By Proposition 2.5(iii), there exist maximal
subgroups L and K of G with x ∈ L\Z(L) and y ∈ K\Z(K). Then x ∈ C ∩ L,
and applying Lemma 2.3 to (C, L) gives Z(L) ⩽ Z(G). Note also that G = CL =
CG(x)L, and so ⟨x⟩G = ⟨x⟩L ⩽ L. Thus L/⟨x⟩G ⊴ G/⟨x⟩G, and hence L ⊴ G.
This implies that CL(x) = C ∩ L ⊴ G. Additionally, y /∈ Z(L) ⩽ Z(G), and
x is centralised by C, and hence not by K. We therefore obtain d(x, y) ⩽ 2 by
applying Lemma 2.11 to (x, L, y, K).

(iii) Since Z(G) ⩽ C < M , it follows that Z(G) ⩽ Z(M). Additionally, Lemma 5.5
shows that M is non-abelian and normal in G, with Z(M) < Z(C) = C. We
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observe from Proposition 2.5(iv) and Lemma 5.2(i) that any two vertices of Ξ(G)
in M\Z(M) = (M\C) ∪ (C\Z(M)) have distance at most two, as do any two
vertices in G\C = (G\M)∪ (M\C). This yields the (1, 3), (1, 4), (2, 2), (2, 3) and
(3, 2) entries of Table 1.

Now, suppose that Z(G) < Z(M), and let z ∈ Z(M)\Z(G). Since M is a
non-abelian, normal subgroup of G and ⟨z⟩G ⩽ Z(M), the quotient G/⟨z⟩G is
not cyclic. Additionally, CG(z) = M , and so Lemma 2.8 gives z ∼ r for each
r ∈ G\M , hence the (1, 1) entry of Table 1. Thus if z′ ∈ Z(M)\Z(G) is not
equal to z, then z ∼ r ∼ z′ and d(z, z′) = 2, yielding the (4, 1) entry of the table.
Moreover, if m ∈ M\C, then d(r, m) ⩽ 2 by the (1,3) entry of the table, and so
d(z, m) ⩽ d(z, r) + d(r, m) ⩽ 3. This gives the (2, 1) entry of the table.

It remains to determine upper bounds for d(c, g), where c ∈ C\Z(M) and
g ∈ G\M , and for d(c, z) when the element z exists. As g does not lie in C, it is a
non-isolated vertex by (i). It follows from Proposition 2.5(iii) that g ∈ K\Z(K)
for some maximal subgroup K of G. Additionally, the abelian group C lies in
CG(c), and the cyclic group G/C normalises CG(c)/C. Thus CG(c) ⊴ G. Since
M ⊴ G, it follows that CM (c) = CG(c)∩M ⊴ G. Therefore, applying Lemma 2.11
to (c, M, g, K) gives d(c, g) ⩽ 3. Moreover, since g /∈ Z(M), that lemma shows
that if d(c, g) = 3, then c ∈ Z(K), and in particular, [c, g] = 1. Thus we obtain
the (1, 2) entry of Table 1.

Finally, since CG(c) < G and M < G, there exists h ∈ G\(M ∪ CG(c)).
The (1, 1) and (1, 2) entries of Table 1 yield h ∼ z and d(c, h) ⩽ 2. Hence
d(c, z) ⩽ d(c, h) + d(h, z) ⩽ 3. This gives the (3, 1) entry of the table, completing
the proof. □

Using Magma, we observe that if G is equal to C3 :S3 or the dihedral group D12
of order 12, then Lemma 5.6(ii) applies, and Ξ(G) is connected only in the former
case (in both cases, Ξ+(G) is connected with diameter 2). If instead G is equal to
C2 ×AGL(1, 5) or C3 :AGL(1, 5), then Lemma 5.6(iii) applies, and Ξ(G) has diameter
2 or 3, respectively.

The following result is a more detailed version of Lemma 4.12, with a weaker
hypothesis.

Lemma 5.7. Let G and C be as in Assumption 5.1. Suppose also that G is 2-generated,
G/C is cyclic, and C is non-abelian. Then the following statements hold.

(i) Ξ(G) is not connected if and only if C is maximal in G and K ∩ C = Z(C)
for every maximal subgroup K of G distinct from C. In this case, Ξ(G) is
the union of two connected components of diameter 2, and one component
consists of the elements of C\Z(C). In particular, if G is finite, then Ξ(G) is
not connected if and only if G satisfies Assumption 3.3.

(ii) Suppose that C is not maximal in G, and let M be a maximal subgroup of G
containing C. Then Table 2 lists upper bounds for distances between vertices
of Ξ(G), depending on the subsets of G\Z(G) that contain them. In particular,
diam(Ξ(G)) ⩽ 4, and diam(Ξ(G)) ⩽ 3 if G is finite or if Z(M) = Z(G).

(iii) Suppose that C is maximal in G, and that Ξ(G) is connected. Then Table 3
lists upper bounds for distances between vertices of Ξ(G), depending on the
subsets of G\Z(G) that contain them. In particular, diam(Ξ(G)) ⩽ 4, and
diam(Ξ(G)) ⩽ 3 if G is finite.

Proof. Proposition 2.5(iv) and Lemma 5.2(i) show that any two vertices in C\Z(C)
are joined by a path of length at most two, as are any two vertices in G\C, and any two
vertices in M\Z(M) when M is as in (ii). We therefore obtain the (1, 4), (1, 5), (2, 2),
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Table 2. Upper bounds for distances between vertices x ∈ A
and y ∈ B of Ξ(G), with A, B ⊆ G\Z(G), and C and M as in
Lemma 5.7(ii). Additionally, M denotes the family of groups for
which any two distinct maximal subgroups intersect in Φ(G).

A
B Z(M)\Z(G) Z(C)\Z(M) C\Z(C) M\C G\M

G\M 1 3 3 2 2
M\C 3 2 2 2

C\Z(C)
4

2 23, if |G| < ∞
3, if G /∈ M

Z(C)\Z(M) 2 2
Z(M)\Z(G) 2

Table 3. Upper bounds for distances between vertices x ∈ A and
y ∈ B of Ξ(G), with A, B ⊆ G\Z(G), and C as in Lemma 5.7(iii).
Additionally, M denotes the family of groups for which any two dis-
tinct maximal subgroups intersect in Φ(G).

A
B Z(C)\Z(G) C\Z(C) G\C

G\C 1
4

23, if |G/Z(C)| < ∞
3, if G ∈ M

C\Z(C)
4

23, if |G| < ∞
3, if G /∈ M

Z(C)\Z(G) 2

(2, 3), (2, 4), (3, 2), (3, 3) and (4, 2) entries of Table 2, and the (1, 3) and (2, 2) entries
of Table 3. Additionally, Lemma 5.5 implies that Z(G) < Z(C). Let z ∈ Z(C)\Z(G).
Since C is non-abelian and normal in G and ⟨z⟩G ⩽ Z(C), the quotient G/⟨z⟩G is
not cyclic. We split the remainder of the proof into two cases, depending on whether
C is maximal in G.
Case (a): C is maximal in G. Here, C = CG(z). Since G/⟨z⟩G is not cyclic, it follows

from Lemma 2.8 that z ∼ k for all k ∈ G\C. Thus we obtain the (1, 1) entry
of Table 3. If z′ is another element of Z(C)\Z(G), then z ∼ k ∼ z′, yielding
the (3, 1) entry of Table 3. Furthermore, since Z(G) < Z(C), Lemma 4.12
shows that if G is finite, then Ξ(G) is not connected if and only G satisfies
Assumption 3.3, and in general, Ξ(G) is not connected if and only if K∩C =
Z(C) for every maximal subgroup K ̸= C of G.

Suppose first that Ξ(G) is connected, and let x ∈ C\Z(C) and y ∈ G\C.
Then Propositions 4.4 shows that d(x, z) ⩽ 4, and that if d(x, z) = 4, then
|G| = ∞ and K ∩ C = Φ(G) for each maximal subgroup K of G distinct
from C. It follows from Lemma 3.1 that if d(x, z) = 4, then any two distinct
maximal subgroups of G intersect in Φ(G), and we obtain the (2, 1) entry
of Table 3. Additionally, Proposition 4.9 shows that d(x, y) ⩽ 4, and that if
d(x, y) = 4, then |G/Z(C)| = ∞ and G contains maximal subgroups K and
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L ̸= C such that K ∩ C = Z(C) ̸= L ∩ C. This yields the (1, 2) entry of
Table 3. We have therefore proved (iii).

Next, suppose that Ξ(G) is not connected. We have shown that if g, h ∈
C\Z(C) or g, h ∈ (G\C) ∪ (Z(C)\Z(G)), then d(g, h) ⩽ 2. Hence the com-
ponents of Ξ(G) and their diameters are as in (i). To complete the proof of
(i), it remains to show that if C is not maximal in G, then Ξ(G) is connected,
and if G is also finite, then it does not satisfy Assumption 3.3.

Case (b): C is not maximal in G. Let M be a maximal subgroup of G containing C.
Then M is non-abelian, and Lemma 5.5 gives M ⊴ G and Z(M) < Z(C). As
Z(G) < C, it also follows that Z(G) ⩽ Z(M). Let z′ ∈ Z(C)\(Z(G) ∪ {z}).
Since G/⟨z⟩G and G/⟨z′⟩G are not cyclic, we can apply Lemma 5.2(ii) (and
the fact that [z, z′] = 1) to obtain d(z, z′) = 2. This gives the (4, 1) and (5, 1)
entries of Table 2. Note also that as z ∈ Z(C)\Z(G), there exists h ∈ G\C
with [z, h] ̸= 1, and Lemma 2.8 gives z ∼ h. Letting g ∈ G\C, the known
entries of Table 2 show that d(h, g) ⩽ 2, and so d(z, g) ⩽ 3. This yields the
(1, 2) and (2, 1) entries of the table.

Now, let x ∈ C\Z(C). Then x /∈ Z(M), and so CM (x) < M . Thus there
exists k ∈ M\(C ∪ CM (x)), and we observe that x ∼ k. The (1, 4) entry of
Table 2 gives d(k, g) ⩽ 2 for each g ∈ G\M , and hence d(x, g) ⩽ 3, yielding
the (1, 3) entry of the table.

Next, we will consider the remaining entries in the first column of Table 2,
which apply only when Z(G) < Z(M). Assume that z ∈ Z(M)\Z(G). Then
the (2, 1) entry of Table 2 shows that d(z, m) < ∞ for each m ∈ M\C.
The (3, 1) entry of the table therefore follows from Proposition 4.4 and
Lemma 3.1. In addition, M = CG(z), and so Lemma 2.8 gives the (1, 1)
entry of the table. This completes the proof of (ii).

We have shown that Ξ(G) is connected, which partially proves (i). To
complete the proof, suppose for a contradiction that G is finite and satisfies
Assumption 3.3. Then the unique non-cyclic Sylow subgroup G of P satisfies
Z(P ) ̸⩽ Z(G); the unique maximal subgroup of each nontrivial cyclic Sylow
subgroup of G is normal in G; and M is precisely the maximal subgroup
M specified in Theorem 3.2(ii) (by part (a) of that theorem). Part (c) of
that theorem therefore implies that Z(M) contains Z(P ) ̸⩽ Z(G), and so
Z(G) < Z(M). Hence Lemma 4.12 applies, and shows that G does not in
fact satisfy Assumption 3.3. Thus (i) holds. □

Notice from Propositions 4.4 and 4.9 that the conditions G /∈ M and G ∈ M in
the (2, 1) and (1, 2) entries of Table 3, respectively, are stronger than those necessary
to ensure that the specified distances cannot be equal to 4 (and similarly for the
(3, 1) entry of Table 2). However, the chosen conditions highlight the fact that there
is no group for which these two entries of Table 3 are simultaneously equal to 4, as
discussed in Remark 4.11.

We compute via Magma that S3 × AGL(1, 5) and the group numbered (192, 30)
in the Small Groups Library [5] satisfy the hypotheses of Lemma 5.7(ii), and have
non-commuting, non-generating graphs of diameter 2 and 3, respectively. In addition,
S3 × S3 and SmallGroup(48, 15) satisfy the hypotheses of Lemma 5.7(iii), and their
graphs have diameter 2 and 3, respectively.

Before presenting examples of groups that satisfy Lemma 5.7(i), we further clarify
how Assumption 3.3 relates to this lemma (and to Assumption 5.1).

Proposition 5.8. Suppose that G satisfies Assumption 3.3. Then G is 2-generated
and has a normal subgroup N ̸⩽ Z(G), with G/N non-cyclic, G/CG(N) cyclic, and
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CG(N) non-abelian. Thus G satisfies the hypotheses of Lemma 5.7, and so Ξ(G) is
the union of two connected components of diameter 2.

Proof. Let P and Q be as in Assumption 3.3, and let R be the unique maximal
subgroup of Q. Theorem 3.2 shows that G contains a normal maximal subgroup
M := P × R, and that G = ⟨x, y⟩ for each x ∈ P\Φ(P ) and generator y for Q.
Additionally, N := Z(M) = Z(P ) × R is not a subgroup of Z(G) by assumption.
Since Z(P ) = Φ(P ) < P , both P and M are non-abelian. Thus G/N = G/Z(M) is
not cyclic, and so G and N are as in Assumption 5.1. Moreover, CG(N) = M , and
hence G/CG(N) is cyclic. Therefore, G satisfies the hypotheses of Lemma 5.7, and
the final part of the result follows from Lemma 5.7(i). □

We will call a group G a [2, 2]-group if Ξ(G) is the union of two connected com-
ponents of diameter 2. The following example describes an infinite family of such
groups.

Example 5.9. Let G be the finite simple Suzuki group Sz(q), where q := 2i with
i an odd integer at least 3. Additionally, let P be a Sylow 2-subgroup of G, and
N := NG(P ). Then |P | = q2, and N is a maximal subgroup of G isomorphic to
the Frobenius group P :Cq−1 [27, §4, p. 133, & Theorem 9]. Given a primitive prime
divisor r of 2i − 1, let Nr := P :Cr ⩽ N . Then Nr is also Frobenius, hence Z(Nr) = 1.
Moreover, each cyclic subgroup of Nr of order r acts irreducibly on P/Φ(P ) [18,
Theorem 3.5]. Thus Nr satisfies all conditions of Theorem 3.2(i).

We claim that Nr is a [2, 2]-group. By Proposition 5.8, it suffices to show that
G satisfies Assumption 3.3. As the unique maximal subgroup of Cr is the trivial
subgroup, it remains only to prove that Φ(P ) = Z(P ) ̸⩽ Z(Nr) = 1. Let θ be the
automorphism α 7→ α

√
2q of Fq. Then [27, pp. 111-112 & Theorem 7] shows that P is

isomorphic to the group {(α, β) | α, β ∈ Fq}, where (α, β)(γ, δ) := (α+γ, αγθ +β +δ)
for all (α, β), (γ, δ) ∈ P .

Now, Z(P ) = {(0, β) | β ∈ Fq} ⩽̸ 1 = Z(Nr). Using the fact that α 7→ ααθ is an
automorphism of F×

q , we calculate that Z(P ) contains P ′ and is equal to the subgroup
K generated by all squares in P . Since Φ(P ) = KP ′, it follows that Φ(P ) = Z(P ).
Hence Nr is a [2, 2]-group.

We observe using Magma that SmallGroup(96, 3) is the unique smallest finite [2, 2]-
group. Additionally, there exist [2, 2]-groups with no Sylow subgroup of prime order,
e.g. SmallGroup(288, 3), and with odd order, e.g. SmallGroup(9477, 4035).

The following theorem summarises this section’s main results.

Theorem 5.10. Suppose that G contains a normal subgroup N , such that G/N is not
cyclic and N ̸⩽ Z(G), and let C := CG(N). Then one of the following holds.

(i) Ξ(G) has an isolated vertex, and Ξ+(G) is connected with diameter 2. Addi-
tionally, G is soluble, C is abelian and maximal in G, and each isolated vertex
lies in C\N .

(ii) Ξ(G) is connected with diameter 2, 3 or 4. If diam(Ξ(G)) = 4, then G is
infinite, G/C is cyclic, and C is non-abelian.

(iii) Ξ(G) is the union of two connected components of diameter 2, with one com-
ponent consisting of the elements of C\Z(C). Moreover, C is non-abelian and
maximal in G.

Furthermore, if G is finite, then (iii) holds if and only if G satisfies Assumption 3.3.

Proof. We may assume that G is 2-generated; otherwise, diam(Ξ(G)) = 2 by Propo-
sition 2.5(ii). If G/C is not cyclic, then Lemma 5.3 applies, and (ii) holds. Otherwise,
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either Lemma 5.6 or Lemma 5.7 applies, depending on whether C is abelian. Specifi-
cally, if C is abelian, then (i) or (ii) holds, and otherwise, (ii) or (iii) holds. Thus we
observe from Lemma 5.7 and Proposition 5.8 that if G is finite, then (iii) holds if and
only if G satisfies Assumption 3.3. □

The above theorem implies Theorems 1.2 and 1.3 in the case where G/Z(G) has a
proper non-cyclic quotient. Additionally, if Ξ(G) has two nontrivial components, then
Lemma 5.7(i) shows that K ∩ C = Z(C) for each maximal subgroup K of G distinct
from the normal, non-abelian maximal subgroup C. As Z(G) < Z(C) by Lemma 5.5,
we can use Lemma 4.12 and Proposition 4.6 to deduce further information about
infinite groups in this case. It is also easy to show using Theorem 5.10 that if a group
G contains non-central normal subgroups N1 and N2, with G/N1 and G/N2 non-cyclic
and CG(N1) ̸= CG(N2), then Ξ(G) is connected.

Note that Theorem 5.10 applies whenever G is a free product ⟨a⟩ ∗ ⟨b⟩ of nontrivial
cyclic groups, e.g. with N = ⟨(ab)k⟩ for some k ⩾ 2 and C = ⟨ab⟩. By appealing to
the nature of G as a free product, we prove in [16, §5.10] that diam(Ξ(G)) = 2 unless
|a| = |b| = 2, in which case G is the infinite dihedral group, Ξ(G)\Ξ+(G) = {ab, ba},
and diam(Ξ+(G)) = 2.

6. Groups with each proper quotient cyclic
In order to prove Theorems 1.2 and 1.3, it remains to consider the case where every
proper quotient of G/Z(G) is cyclic. As in the previous section, we will implicitly use
Proposition 2.5(i), which states that each nontrivial component of Ξ(G) has diameter
at least 2.

The following lemma generalises the classification given in [23, §3] of finite groups
whose proper quotients are all cyclic. Here, by a central extension of G, we mean
a group H such that H/Z(H) ∼= G. As above, an abstract group is primitive if it
has a core-free maximal subgroup, which is a point stabiliser for the corresponding
primitive action.

Lemma 6.1. Suppose that each proper quotient of G is cyclic. Then one of the following
holds:

(i) for each central extension H of G (including G itself ), every maximal subgroup
of H is normal in H, and hence G is not primitive;

(ii) G is soluble and primitive with a (unique) minimal normal subgroup and a
cyclic point stabiliser; or

(iii) G is insoluble and primitive, and CG(N) = 1 for each normal subgroup N ̸= 1
of G.

Proof. We split the proof into three cases, which together account for all possibilities.
Case (a): G is not primitive. Suppose that G contains a maximal subgroup M , and

let J := CoreG(M). Then J ̸= 1, and so G/J is cyclic. Thus M/J ⊴ G/J ,
and so M ⊴ G. As each maximal subgroup of H not containing Z(H) is
normal, (i) follows.

Case (b): G is primitive, and CG(J) ̸= 1 for some nontrivial normal subgroup J of
G. Then N := CG(J) is a minimal normal subgroup of G. If G contains a
distinct minimal normal subgroup K, then K is non-abelian and equal to
K/(K ∩ N) ∼= NK/N . In particular, NK/N is not cyclic, and so neither
is G/N , a contradiction. Hence N is the unique minimal normal subgroup
of G. Moreover, since CG(N) contains the nontrivial subgroup J (which is
now clearly equal to N), it follows that N is abelian. As G/N is cyclic, G
is soluble, and (ii) holds.
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Case (c): G is primitive, and CG(N) = 1 for each nontrivial normal subgroup N of
G. If G is soluble, then the penultimate subgroup R in the derived series
of G is nontrivial and abelian, and hence CG(R) ̸= 1. However, R ⊴ G, a
contradiction. Thus (iii) holds. □

If case (i) of Lemma 6.1 holds, then Theorem 1.1 applies. Hence it remains to
consider cases (ii) and (iii). We will write H := H/Z(G) when H is a subgroup of G
containing Z(G).

Proposition 6.2. Suppose that G is soluble and primitive with every proper quotient
cyclic, and let L be a non-abelian maximal subgroup of G. Then L ⊴ G and Z(L) ⩽
Z(G).

Proof. It follows from Lemma 6.1 that G contains a unique minimal normal subgroup
N , and a cyclic point stabiliser M such that G = N :M . Suppose first that Z(G) ̸⩽ L.
Then L ⊴ G. Additionally, there is no x ∈ G satisfying L = CG(x), and thus Z(L) <
Z(G).

Assume from now on that Z(G) ⩽ L, and note that L is a non-cyclic maximal
subgroup of G. Thus L is not a complement of N in G, and so L is not core-free in G.
Hence N ⩽ L. Moreover, as G/N is cyclic, we see that L/N ⊴ G/N , and it follows
that L ⊴ G.

Next, G/Z(L) is isomorphic to G/Z(L), which is not cyclic, and so N ̸⩽ Z(L). As
N lies in each nontrivial normal subgroup of G, we conclude that Z(L) = 1, and so
Z(L) = Z(G). □

Lemma 6.3. Suppose that G is soluble and primitive with every proper quotient cyclic,
and that Ξ(G) has an edge. Then Ξ(G) has isolated vertices, and diam(Ξ+(G)) = 2.

Proof. Since the primitive group G has a minimal normal subgroup by Lemma 6.1, it
is clear that each point stabiliser K of G is cyclic. Additionally, Z(G) = 1, and since
G = ⟨k, g⟩ whenever k is a generator for K and g ∈ G\K, every such k is an isolated
vertex of Ξ(G).

Now, let x, y ∈ Ξ+(G), and assume that G is 2-generated; else diam(Ξ(G)) = 2
by Proposition 2.5(ii). By Propositions 2.5(iii) and 6.2, there exist normal maximal
subgroups L and M of G with x ∈ L\Z(L), y ∈ M\Z(M) and Z(L), Z(M) ⩽ Z(G).
By Lemma 2.11, d(x, y) ⩽ 2. □

As we mentioned in §1, the generating graph of a finite group is connected precisely
when all proper quotients of that group are cyclic [9, Theorem 1 & Corollary 2].
However, this is not the case for the non-commuting, non-generating graph. Indeed,
G := AGL(1, 5) = G satisfies the hypotheses of Lemma 6.3, and so Ξ+(G) ̸= Ξ(G). On
the other hand, Magma computations show that H := D10 :C8 is a non-split extension
of Z(H) by G, and diam(Ξ(H)) = 2.

In the following theorem, we assume that G itself is primitive, so that Z(G) = 1.

Lemma 6.4. Suppose that G is insoluble, non-simple and primitive with every proper
quotient cyclic. Then Ξ+(G) is connected with diameter 2 or 3. Moreover, if Ξ(G) has
an isolated vertex r, then G is infinite and each proper subgroup of G containing r
is core-free. Finally, if G is 2-generated, then it contains a normal maximal subgroup
with trivial centre.

Proof. We may again assume that G is 2-generated, else diam(Ξ(G)) = 2 by Propo-
sition 2.5(ii). Let N be a nontrivial proper normal subgroup of G, and M a maximal
subgroup containing N . Then for each overgroup H of N in G, the cyclic group G/N
normalises H/N , and hence H ⊴ G. Thus each non-normal subgroup of G is core-free.
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In particular, M ⊴ G, and Z(M) = 1 by Lemma 6.1. Since no maximal subgroup of
a finite insoluble group is abelian [19], the statement about an isolated vertex follows
from Propositions 2.5(iii) and 2.6.

Now, let x and y be non-isolated vertices of Ξ(G). Then Proposition 2.5(iii) shows
that x ∈ K\Z(K) and y ∈ L\Z(L) for some maximal subgroups K and L of G. We
may assume that K ̸= L, as otherwise d(x, y) ⩽ 2 by Proposition 2.5(iv). Observe also
that K ∩ M and L ∩ M are nontrivial maximal subgroups of K and L, respectively.

Suppose first that K ⊴ G, so that Z(K) = 1 by this proof’s first paragraph. We
may assume that y /∈ K, as otherwise we could set L = K. Applying Lemma 2.10(i)
to (y, L, K) yields y ∼ h for some h ∈ K ∩ L\CK∩L(y). As d(x, h) ⩽ 2 by Proposi-
tion 2.5(iv), we obtain d(x, y) ⩽ 3.

By symmetry, we may assume from now on that neither K nor L is normal in G,
i.e. that both are core-free in G, and that x, y /∈ M . Then the nontrivial subgroups
K ∩ M and L ∩ M are not normal in G. Since K ∩ M ⊴ K and ⟨K, L⟩ = G, it
follows that L does not centralise K ∩ M . Additionally, applying Lemma 2.10(i) to
(x, K, M) gives CK∩M (x) < K ∩M . Thus if K ∩M ⩽ L, then there exists an element
a ∈ K ∩ M that centralises neither x nor L. Hence x ∼ a, and Proposition 2.5(iv)
yields d(a, y) ⩽ 2. Therefore, d(x, y) ⩽ 3.

If instead K ∩ M ̸⩽ L, then ⟨K ∩ M, L⟩ = G. As L ∩ M is normalised by L but not
G, we deduce that K ∩ M ̸⩽ CG(L ∩ M). Since CK∩M (x) < K ∩ M , and similarly
CL∩M (y) < L ∩ M , it follows that there exists an element b ∈ K ∩ M that centralises
neither L ∩ M nor x, and an element c ∈ L ∩ M that centralises neither b nor y. Thus
x ∼ b ∼ c ∼ y and d(x, y) ⩽ 3. □

Using Magma, we see that G1 := A5 ≀ C2 and G2 := (A5 × A5):C4 (with a point
stabiliser of index 25) satisfy the hypotheses of Lemma 6.4, with diam(Ξ(G1)) = 2
and diam(Ξ(G2)) = 3.

Lemma 6.5. Suppose that G is insoluble, non-simple and primitive with every proper
quotient cyclic.

(i) The subgraph X of Ξ(G) induced by the vertices in the set

{g ∈ G\Z(G) | Z(G)g ∈ Ξ+(G)}

has diameter at most k := diam(Ξ+(G)) ∈ {2, 3}. Hence if Ξ(G) has no
isolated vertices, and in particular if G is finite, then diam(Ξ(G)) ⩽ k.

(ii) If X ̸= Ξ+(G), then Ξ+(G) is connected with diameter at most 4.

Proof. As Z(G) = 1, (i) follows from Lemma 6.4, and Lemma 2.9(ii) with N = Z(G).
To prove (ii), we may assume that X ̸= Ξ+(G) and (by Proposition 2.5(ii)) that G

is 2-generated. Then G is also 2-generated, and Lemma 6.4 implies that G contains a
normal maximal subgroup M with Z(M) = Z(G), and that each element of M\Z(G)
lies in X.

Let y, y′ ∈ Ξ+(G)\X, so that y, y′ /∈ M . Then Proposition 2.5(iii) shows that
y ∈ K\Z(K) for some maximal subgroup K of G, and applying Lemma 2.10(i)
to (y, K, M) yields y ∼ m for some m ∈ K ∩ M . Similarly, y′ ∼ m′ for
some m′ ∈ M . Proposition 2.5(iv) gives d(m, m′) ⩽ 2, and so d(y, y′) ⩽
d(y, m) + d(m, m′) + d(m′, y) ⩽ 4.

By (i), it remains to consider d(y, x), with x ∈ X. We also observe from (i)
that d(m, x) ⩽ 3. Hence d(y, x) ⩽ d(y, m) + d(m, x) ⩽ 4, and we conclude that
diam(Ξ+(G)) ⩽ 4. □

Recall from above that if G = G = (A5 × A5):C4, then diam(Ξ(G)) = 3. We can
use Magma to show that the non-commuting, non-generating graphs of the central
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extensions G × C2 and G × C3 of G are connected with diameter 2 and 3, respectively
(cf. [11, Proposition 16]).
Question 6.6. Does there exist an infinite group G such that G satisfies the hypotheses
of Lemma 6.5 and either diam(Ξ+(G)) = 4, or diam(Ξ+(G)) = 3 and Ξ+(G) ̸= Ξ(G)?

In the following example, we prove that Ξ(Gk) is connected (and hence has no
isolated vertices) for a certain infinite family of infinite groups Gk that satisfy the
hypotheses of Lemma 6.4.
Example 6.7. For each positive integer k, let Gk be the group of permutations of Z
generated by the simple alternating group Alt(Z) and the translation tk that maps
x to x + k for all x ∈ Z. Then Alt(Z) is the unique minimal normal subgroup of
the insoluble group Gk [13, Proposition 2.5]. Moreover, Gk is 2-generated, and every
proper quotient of Gk is cyclic [14, Theorem 4.1]. Observe that any maximal subgroup
of Gk containing tk is core-free, and so Gk is primitive.

Assume now that k ⩾ 3, and let g ∈ Gk\{1}. Since Alt(Z) is generated by its
3-cycles and CGk

(Alt(Z)) = 1, it follows that there exists a 3-cycle α ∈ Alt(Z) with
[g, α] ̸= 1. Furthermore, the proofs of [14, Lemmas 4.2–4.3] show that no 3-cycle in
Alt(Z) lies in a generating pair for Gk. Hence g ∼ α. In particular, Ξ(Gk) = Ξ+(Gk).
Using Lemmas 6.4 and 6.5(i), we conclude that Ξ(Gk) is connected with diameter 2
or 3, as is Ξ(H) for each central extension H of Gk.

It would be interesting to determine diam(Ξ(Gk)) precisely for each k ⩾ 3, and to
investigate Ξ(Gk) when k ∈ {1, 2}, where each g ∈ Gk\{1} lies in a generating pair
[14, Theorem 6.1].

We now prove this paper’s main theorems.

Proof of Theorems 1.2 and 1.3. If G = G/Z(G) has a proper non-cyclic quotient,
then G contains a normal subgroup N such that Z(G) < N and G/N is not cyclic.
Thus in this case Theorem 5.10 applies, and case (i), (iii), (iv) or (v) of Theorem 1.2
holds. Otherwise, one of the three cases in Lemma 6.1 applies, with G in place of
G. If every maximal subgroup of G is normal, or if G is soluble and primitive, then
we can use Theorem 1.1 or Lemma 6.3, respectively, to show that case (i) or (iii) of
Theorem 1.2 holds. If instead G is insoluble and primitive, then Lemma 6.5 shows
that case (ii) or (iii) holds. This completes the proof of Theorem 1.2.

Assume now that G is finite. By the previous paragraph, if Ξ(G) is the union
of two connected components of diameter 2, then Theorem 5.10 applies. That theo-
rem and Proposition 5.8 imply that Ξ(G) is such a union if and only if G satisfies
Assumption 3.3, and Theorem 1.3 follows. □

We see from the above proof that if Ξ(G) has two nontrivial connected components,
then Theorem 5.10 applies. Hence, as discussed below the proof of that theorem,
Lemma 4.12 and Proposition 4.6 yield further information about the structures of
infinite groups in this case.

Acknowledgements. The author is grateful to Jendrik Brachter for the proof of Propo-
sition 2.6 in the case M ̸⊴ G; to Colva Roney-Dougal, Peter Cameron, Martyn Quick
and Donna Testerman for helpful discussions regarding the original thesis on which
this work is based; and to Colva and an anonymous referee for useful comments on
this paper.

References
[1] Ghodratollah Aalipour, Saieed Akbari, Peter J. Cameron, Reza Nikandish, and Farzad Shaveisi,

On the structure of the power graph and the enhanced power graph of a group, Electron. J.
Combin. 24 (2017), no. 3, article no. 3.16 (18 pages).

Algebraic Combinatorics, Vol. 6 #5 (2023) 1417



S. D. Freedman

[2] A. Abdollahi, S. Akbari, and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298
(2006), no. 2, 468–492.

[3] Saad Adnan, On groups having exactly 2 conjugacy classes of maximal subgroups. II, Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 68 (1980), no. 3, 179.

[4] James Michael Belk, Thompson’s group F , Ph.D. thesis, Cornell University, August 2004.
[5] Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien, The groups of order at most 2000, Elec-

tron. Res. Announc. Amer. Math. Soc. 7 (2001), 1–4.
[6] Sucharita Biswas, Peter J. Cameron, Angsuman Das, and Hiranya Kishore Dey, On the difference

of the enhanced power graph and the power graph of a finite group, 2022, https://arxiv.org/
abs/2206.12422.

[7] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265.

[8] Thomas Breuer, Robert M. Guralnick, and William M. Kantor, Probabilistic generation of finite
simple groups. II, J. Algebra 320 (2008), no. 2, 443–494.

[9] Timothy Burness, Robert Guralnick, and Scott Harper, The spread of a finite group, Ann. of
Math. (2) 193 (2021), no. 2, 619–687.

[10] Peter J. Cameron, Graphs defined on groups, Int. J. Group Theory 11 (2022), no. 2, 53–107.
[11] Peter J. Cameron, Saul D. Freedman, and Colva M. Roney-Dougal, The non-commuting, non-

generating graph of a nilpotent group, Electron. J. Combin. 28 (2021), no. 1, article no. 1.16
(15 pages).

[12] P. M. Cohn, Basic algebra: groups, rings and fields, Springer-Verlag London, Ltd., London,
2003.

[13] Charles Garnet Cox, A note on the R∞ property for groups FAlt(X) ⩽ G ⩽ Sym(X), Comm.
Algebra 47 (2019), no. 3, 978–989.

[14] , On the spread of infinite groups, Proc. Edinb. Math. Soc. (2) 65 (2022), no. 1, 214–228.
[15] Eleonora Crestani and Andrea Lucchini, The non-isolated vertices in the generating graph of a

direct powers of simple groups, J. Algebraic Combin. 37 (2013), no. 2, 249–263.
[16] Saul D. Freedman, Diameters of graphs related to groups and base sizes of primitive groups,

Ph.D. thesis, University of St Andrews, May 2022.
[17] , The non-commuting, non-generating graph of a finite simple group, 2022 (submitted),

https://arxiv.org/abs/2212.01616.
[18] Christoph Hering, Transitive linear groups and linear groups which contain irreducible subgroups

of prime order, Geometriae Dedicata 2 (1974), 425–460.
[19] I. N. Herstein, A remark on finite groups, Proc. Amer. Math. Soc. 9 (1958), 255–257.
[20] Marcel Herzog, Patrizia Longobardi, and Mercede Maj, On a graph related to the maximal

subgroups of a group, Bull. Aust. Math. Soc. 81 (2010), no. 2, 317–328.
[21] Martin W. Liebeck and Aner Shalev, Simple groups, probabilistic methods, and a conjecture of

Kantor and Lubotzky, J. Algebra 184 (1996), no. 1, 31–57.
[22] Andrea Lucchini, The diameter of the generating graph of a finite soluble group, J. Algebra 492

(2017), 28–43.
[23] Andrea Lucchini, Attila Maróti, and Colva M. Roney-Dougal, On the generating graph of a

simple group, J. Aust. Math. Soc. 103 (2017), no. 1, 91–103.
[24] Oystein Ore, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1939),

no. 2, 431–460.
[25] Wu Jie Shi, Finite groups having at most two classes of maximal subgroups of the same order,

Chinese Ann. Math. Ser. A 10 (1989), no. 5, 532–537.
[26] Simon M. Smith, A classification of primitive permutation groups with finite stabilizers, J.

Algebra 432 (2015), 12–21.
[27] Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105–145.

Saul D. Freedman, School of Mathematics and Statistics, University of St Andrews, St Andrews,
KY16 9SS (UK)
Current address: Centre for the Mathematics of Symmetry and Computation, The University
of Western Australia, Crawley, WA 6009 (Australia)
E-mail : saul.freedman@uwa.edu.au

Algebraic Combinatorics, Vol. 6 #5 (2023) 1418

https://arxiv.org/abs/2206.12422
https://arxiv.org/abs/2206.12422
https://arxiv.org/abs/2212.01616
mailto:saul.freedman@uwa.edu.au

	1. Introduction
	2. Preliminaries
	3. Groups with two conjugacy classes of maximal subgroups
	4. Normal, non-abelian maximal subgroups with large centres
	5. Non-central by non-cyclic groups
	6. Groups with each proper quotient cyclic
	References

