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Cyclic independence: Boolean and monotone

Octavio Arizmendi, Takahiro Hasebe & Franz Lehner

Abstract The present paper introduces a modified version of cyclic-monotone independence
which originally arose in the context of random matrices, and also introduces its natural analogy
called cyclic-Boolean independence. We investigate formulas for convolutions, limit theorems
for sums of independent random variables, and also classify infinitely divisible distributions
with respect to cyclic-Boolean convolution. Finally, we provide applications to the eigenvalues
of the adjacency matrices of iterated star products of graphs and also iterated comb products
of graphs.

1. Introduction
The present paper takes its origin in the concept of cyclic-monotone independence
which appeared in the study of random matrices [5, 20] and which deserves sepa-
rate treatment; see [2] for further work. The term “cyclic-monotone independence”
was coined in [5] because of its apparent similarity with monotone independence ex-
cept that it involves two linear functionals: a state and a tracial linear functional. It
abstracts an asymptotic formula for the mixed moments, with respect to the non-
normalized trace, of a random rotation of two sets AN and BN consisting of N ×N
deterministic matrices such that all mixed moments of AN have finite limits with
respect to the non-normalized trace as N tends to infinity, and all mixed moments
of BN have finite limits with respect to the normalized trace. More precisely, sup-
pose that {AN

i : 1 ⩽ i ⩽ k} and {BN
i : 1 ⩽ i ⩽ k}, N = 1, 2, 3, ... are families

of N × N deterministic matrices that satisfy the following conditions: for any ∗-
polynomial P (x1, x2, . . . , xk) in non-commuting variables x1, x2, . . . , xk over the field
C without a constant term (e.g. P (x1, x2) = x2

1x2x
∗
1), the limits

lim
N→∞

TrN [P (AN
1 , A

N
2 , . . . , A

N
k )] and lim

N→∞

1
N

TrN [P (BN
1 , B

N
2 , . . . , B

N
k )]
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exist in C. According to [5, Theorem 4.3], for an N×N Haar unitary matrix UN , N =
1, 2, 3, . . . , we have the almost sure convergence

lim
N→∞

TrN [AN
1 (UN )∗BN

1 U
NAN

2 (UN )∗BN
2 U

N · · ·AN
k (UN )∗BN

k U
N ]

= lim
N→∞

TrN [AN
1 A

N
2 · · ·AN

k ]
k∏

j=1

[
lim

N→∞

1
N

TrN [BN
j ]

]
.

(1.1)

The formula (1.1) shows some similarity with monotone independence, but they are
not the same because the formula involves both normalized trace and non-normalized
trace.

The present paper offers a simple operator model for cyclic-monotone independence
realized on the tensor product of Hilbert spaces. This construction also uncovers the
associativity of cyclic-monotone independence with respect to a state and a trace. In
order to ensure associativity, we modify the definition of cyclic-monotone indepen-
dence. The new definition consists of two conditions: one is basically the condition
in [5, Definition 3.2] referring to both the state and the tracial linear functional, and
the other is monotone independence with respect to the state (see Definition 7.2).
The modified definition of cyclic-monotone independence shares the same spirit with
c-monotone independence [10] (and c-freeness [3]) because they are all associative
notions of independence referring to two linear functionals.

However, the relationship between the random matrix model and the operator
model is not perfectly understood. Curiously monotone independence does not appear
in the random matrix model above, although it appears very naturally in the operator
model. This is related to the fact that the random matrix model above is limited to
two families of random matrices AN and BN and hence the question of associativity
is not relevant.

Our operator realization of (modified) cyclic-monotone independence also indicates
that a similar construction works for Boolean independence, which therefore leads to
a notion of cyclic-Boolean independence. We develop a general theory of these two
independences: computing generating functions for the sum of independent random
variables, limit theorems, cyclic-Boolean cumulants which are governed by cyclic-
interval partitions and infinitely divisible distributions with respect to cyclic-Boolean
convolution. We do not know how to define cyclic-monotone cumulants and therefore
this question is not addressed in the present paper.

Moreover, the operator models for cyclic-Boolean and cyclic-monotone indepen-
dences are directly connected to the star product of (rooted) graphs (see Section 2.6)
and the comb product of (rooted) graphs (see Section 2.7). Specifically, the eigenvalues
of their adjacency matrices can be analyzed by means of cyclic-Boolean independence
and cyclic-monotone independence, respectively.

The techniques are motivated by the relations between the adjacency matrix, the
spectrum, the characteristic polynomial and walk generating functions of a graph.
These form the core subject of algebraic graph theory, which deals with various ma-
trices, polynomials and generating functions and other invariants carrying information
about graphs.

It was shown by Schwenk [19] (later generalized by Godsil and McKay [9]) that the
characteristic polynomial of the star product (or coalescence) and the comb product
(or rooted product) of graphs only depends on the characteristic polynomials of the
factors and the walk generating function at the roots of the factors and he gave
an explicit formula. Similar simple formulas for the generating function of closed
walks starting at the root hold. While Schwenk’s proofs are combinatorial, we will
give algebraic proofs based on the Schur complement which can be generalized to
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arbitrary matrices and operators. Accardi, Ben Ghorbal and Obata [1] and Obata
[15] initiated the application of monotone independence and Boolean independence
to the asymptotic spectral analysis of adjacency matrices of iterated comb products
and star products, respectively. The operator models for cyclic-monotone and cyclic-
Boolean independences extend their work in the sense that the new framework also
enables one to analyze refined properties of eigenvalues of the adjacency matrices.
These generalizations are the subject of the present paper and illustrate the emergence
of new notions of noncommutative independence, i.e., cyclic-monotone and cyclic-
Boolean ones.

To summarize, the main contributions of the present paper are:
(1) the new notion of cyclic-Boolean independence (Sections 3) and a modification

of the definition of cyclic-monotone independence given in [5] (Section 7);
(2) operator models for cyclic-Boolean independence (Sections 3) and for cyclic-

monotone independence (Section 7);
(3) convolution formulas for the sum of independent random variables (Sections

4, 7) and their relationships to algebraic graph theory (Section 2);
(4) limit theorems for sums of independent random variables (Sections 3, 7);
(5) cyclic-Boolean cumulants and the relevant partition structure with cyclic-

interval partitions (Section 5);
(6) classification of infinitely divisible distributions for cyclic-Boolean convolution

(Section 6);
(7) analysis of the asymptotics of the eigenvalues of the adjacency matrices of

iterated star product of graphs and iterated comb product of graphs (Sections
4, 7).

Recently Collins, Leid and Sakuma found a different matrix model for monotone
independence and cyclic monotone independence [6]. So far a connection between
their model and ours is not clear.

2. Preliminaries
2.1. Adjacency matrix. Let Γ = (V,E) be a graph on a vertex set V =
{v1, v2, . . . , vd} with edge set E. We always consider finite undirected graphs without
loops or multiple edges. An edge between two vertices u and v is denoted by uv. The
adjacency matrix of Γ is the matrix AΓ = [aij ]di,j=1 with entries

aij =
{

1 if vivj ∈ E,
0 otherwise.

Since the graph has no loops, the diagonal entries of AΓ are all zero. The spectrum of
the graph Γ is the spectrum of its adjacency matrix. It consists of the eigenvalues λi

of AΓ which are the roots of the characteristic polynomial

ϕΓ(x) = det(xI −AΓ) =
d∏

i=1
(x− λi).

Alternatively, the eigenvalues of AΓ are the poles of the (tracial) Cauchy transform

(2.1) gΓ(z) = Tr((zI −AΓ)−1).
The Cauchy transform and the characteristic polynomial are mutually related by the
logarithmic derivative

(2.2) gΓ(z) =
d∑

i=1

1
z − λi

= d

dz
log ϕΓ(z) = ϕ′

Γ(z)
ϕΓ(z) .
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For the generalization of this identity to trace class operators it will be convenient to
remove the moment of order zero and work with the “renormalized” Cauchy transform

(2.3) g̃Γ(z) = gΓ(z) − d

z
= Tr((zI −AΓ)−1 − z−1I)

instead.

2.2. Walk generating functions. Let (Γ, o) be a finite rooted graph, i.e., a graph
on vertices v1, v2, . . . , vd where we single out the vertex o = v1 as the root of the graph.
The number mn of closed walks of length n starting at the root o is equal to ⟨An

Γe1, e1⟩
where AΓ is the adjacency matrix of Γ and e1 is the vector (1, 0, 0, . . . , 0) ∈ Cd. Denote
by

(2.4) MΓ(z) =
∞∑

n=0
mnz

n = ⟨(I − zAΓ)−1e1, e1⟩

the walk generating function. One caution is in place here. To keep notation sim-
ple here and below we do not explicitly write the root in subscripts, although the
generating functions depend on the choice of the root.

It will be more convenient to rather work with the resolvent of AΓ and with the
Green function (evaluated at the root)

(2.5) GΓ(z) = ⟨(zI −AΓ)−1e1, e1⟩ = 1
z
MΓ

(
1
z

)
and its reciprocal

(2.6) FΓ(z) = 1
GΓ(z) .

We can obtain a relation between the Green function (2.5) and the Cauchy trans-
form (2.1) from the Schur complement.

2.3. Schur complement. Let

M =
[
A B
C D

]
be a block matrix and assume D is invertible. Then the Schur complement [24] is
defined as
(2.7) M/D = A−BD−1C.

It appears in Aitken’s factorization

(2.8) M =
[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
,

which is obtained by Gaussian elimination on the original matrix M . From this fac-
torization we infer the following assertions:

(1) M is invertible if and only if M/D is invertible. If this is the case, then the
Banachiewicz inversion formula

(2.9) M−1 =
[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
holds.

(2) The determinant factorizes and Jacobi’s identity
(2.10) detM = det(M/D) detD

holds.
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2.4. Relation between the Green function and the characteristic poly-
nomial. Let (Γ, o) be a rooted graph on vertices v1, v2, . . . , vd. If we decompose its
adjacency matrix

AΓ =
[
0 b∗

b D

]
into block form with D = AΓ∖o. Then the resolvent of the matrix

M = M(z) = zI −AΓ =
[
z −b∗

−b zI −D

]
can be determined from the Banachiewicz formula (2.9). The Schur complement is

S = z − b∗(zI −D)−1b

and the Green function

GΓ(z) = ⟨(zI −AΓ)−1e1, e1⟩ = S−1

i.e., the Schur complement is S = GΓ(z)−1 = FΓ(z). Being a matrix of dimension 1
it equals its determinant and Jacobi’s identity (2.10) yields

(2.11) ϕΓ(x) = detS det(zI −D) = FΓ(x)ϕΓ∖o(x), x ∈ C∖ R.

2.5. Relation between the Green function and the Cauchy transform of
a general matrix. Let A be a d × d matrix. We want to understand the relation
between the functions

GA(z) = ⟨(z −A)−1e1, e1⟩ and gA(z) = Tr((z −A)−1).

To this end, we partition the matrix into blocks of dimension 1 and d− 1

(2.12) A =
[
α a∗

1
a2 Å

]
.

Now the corresponding Schur complement (2.7) of z −A is a scalar

S = z − α− a∗
1(z − Å)−1a2

and we conclude from the Banachiewicz inversion formula (2.9) that

(2.13) GA(z) = S−1 = 1
z − α− a∗

1(z − Å)−1a2

and

gA(z) = Tr
[
S−1 ∗

∗ (z − Å)−1 + (z − Å)−1a2S
−1a∗

1(z − Å)−1

]
= GA(z) + gÅ(z) +GA(z) Tr((z − Å)−1a2a

∗
1(z − Å)−1)

= GA(z)(1 + Tr(a∗
1(z − Å)−2a2)) + gÅ(z)

= F ′
A(z)
FA(z) + gÅ(z).

After subtracting the unit matrix according to (2.3) we obtain the identity

(2.14) g̃Å(z) = g̃A(z) + d

dz
log(zGA(z)) = g̃A(z) + 1

z
+ G′

A(z)
GA(z) ,

which can be extended to trace class operators.
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2.6. The star product and its adjacency matrix. Let (Γ1, o1) = (V1, E1, o1)
and (Γ2, o2) = (V2, E2, o2) be rooted graphs. The star product, denoted by (Γ1, o1)⊛
(Γ2, o2), is defined by conglutinating the graphs (Γ1, o1), (Γ2, o2) at their roots; see
Fig. 1. Formally the vertex set of Γ can be realized as a subset of V1 × V2,

V = {(x1, o2) : x1 ∈ V1} ∪ {(o1, x2) : x2 ∈ V2}.
Two vertices (x1, x2) and (y1, y2) of V are connected by an edge if either x1y1 ∈ E1
and x2 = y2 = o2, or x1 = y1 = o1 and x2y2 ∈ E2. The cartesian product of the
vertices corresponds to the tensor product of the vector spaces and the adjacency
matrix has entries

a(x1,x2),(y1,y2) = a(1)
x1,y1

δx2,o2δy2,o2 + δx1,o1δy1,o1a
(2)
x2,y2

i.e.,
A = A1 ⊗ P2 + P1 ⊗A2

where Pi is the orthogonal projection of ℓ2(Vi) onto the one-dimensional subspace
spanned by the delta function δoi ; see [12, Proposition 8.50].

The star product is associative and hence one may define by iteration the star
product (Γ, o) = (V,E, o) of rooted graphs (Γi, oi) = (Vi, Ei, oi), i = 1, 2, . . . , N .
Suppose further that those graphs are finite and simple. Then the vertex set V of Γ
can be regarded as a subset of V1 × · · · × VN and hence the adjacency matrix AΓ can
be regarded as an operator on ℓ2(V1) ⊗ · · · ⊗ ℓ2(VN ). Under this identification one has

(2.15) AΓ =
N∑

i=1
P1 ⊗ P2 ⊗ · · · ⊗ Pi−1 ⊗AΓi

⊗ Pi+1 ⊗ · · · ⊗ PN .

• •

• ⊙
⊛

• •

⊙
= •

•

⊙

•

•

•

•

Figure 1. Star product of rooted graphs

2.7. The comb product and its adjacency matrix. Given a graph Γ1 =
(V1, E1) and a rooted graph (Γ2, o2) = (V2, E2, o2), a new graph Γ = Γ1 ▷ (Γ2, o2)
is defined by gluing a copy of Γ2 to every vertex of Γ1 at the root o2: The vertex
set V of Γ is V1 × V2 and two vertices (x1, x2) and (y1, y2) are connected by an edge
if and only if either x1y1 ∈ E1 and x2 = y2 = o2, or x1 = y1 and x2y2 ∈ E2. If we
further specify a root of Γ1, then the natural root for the comb product is (o1, o2),
which makes the comb product associative (but non-commutative) in the category of
rooted graphs; see Fig. 2. The adjacency matrix now can be written as

•• ⊙ ▷

• •

•

⊙

=

• • ⊙

•• •

• • • • • •

Figure 2. Comb product of rooted graphs

A1 ⊗ P2 + I1 ⊗A2
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and by iteration one may define the comb product (Γ, o) of a sequence of rooted
graphs (Γi, oi) = (Vi, Ei, oi), i = 1, 2, . . . , N . The adjacency matrix AΓ can then be
regarded as an operator on ℓ2(V1) ⊗ · · · ⊗ ℓ2(VN ) and it has the form

(2.16) AΓ =
N∑

i=1
I1 ⊗ I2 ⊗ · · · ⊗ Ii−1 ⊗AΓi

⊗ Pi+1 ⊗ · · · ⊗ PN ;

see [12, Proposition 8.38].
For comb products of identical rooted graphs, Accardi, Ben Ghorbal and Obata

used monotone independence satisfied by the summands in (2.16) in order to study
the asymptotics of the Green function of Γ as N → ∞; see the original article [1,
Theorem 5.1] or the book [12, Theorem 8.40]. On the other hand, for the star product,
the summands in (2.15) are Boolean independent, which provides another type of
asymptotics of Green function; see the original article of Obata [15, Theorem 3.7] or
the book [12, Theorem 8.53].

In the present paper we study the asymptotic behavior of eigenvalues or
empirical eigenvalue distributions of AΓ for large N using the asymptotics of
the characteristic polynomial ϕΓ(z) or the Cauchy transform gΓ(z).

2.8. Identities for the star product. For the sake of notational convenience we
denote by Γ1 ⊛ Γ2 the star product of two rooted graphs (Γ1, o1) and (Γ2, o2). The
Green function of the star product satisfies the following relation, which follows from
the decomposition (2.15) of the adjacency matrix into Boolean independent operators
and the linearization formula for Boolean convolution in [23, Section 2]; see also [17]
for another proof of the latter.

Proposition 2.1. For rooted graphs (Γ1, o1) and (Γ2, o2) the following formula holds.
FΓ1⊛Γ2(z) = FΓ1(z) + FΓ2(z) − z.(2.17)

The Cauchy transform of the star product is computed by the formula below.

Proposition 2.2. For rooted graphs (Γ1, o1) and (Γ2, o2) the following formula holds.

gΓ1⊛Γ2(z) +
G′

Γ1⊛Γ2
(z)

GΓ1⊛Γ2(z) = gΓ1(z) + gΓ2(z) +
G′

Γ1
(z)

GΓ1(z) +
G′

Γ2
(z)

GΓ2(z) .(2.18)

Remark 2.3. Later we will give two alternative proofs in a more general setting; see
Theorem 4.2.

Proof. The key is the simple identity
(2.19) ϕ(Γ1⊛Γ2)∖o(x) = ϕΓ1∖o1(x)ϕΓ2∖o2(x),
for the star product, which follows from the fact that the removal of the root splits
the graph into two disjoint connected components

(Γ1 ⊛ Γ2) ∖ o = (Γ1 ∖ o1) ∪ (Γ2 ∖ o2).
Using the Schur identity (2.11) we can rewrite (2.19) as
(2.20) ϕΓ1⊛Γ2(z)GΓ1⊛Γ2(z) = ϕΓ1(z)GΓ1(z)ϕΓ2(z)GΓ2(z)
and taking the logarithmic derivative of (2.20) together with (2.2) yields (2.18). □

Finally, the characteristic polynomial of the star product satisfies the following
identity proved by Schwenk, for which we give an alternative proof.

Theorem 2.4 ([19, Corollary 2b], [8, Lemma 9.1]). For rooted graphs (Γ1, o1) and
(Γ2, o2) the following formula holds.
(2.21) ϕΓ1⊛Γ2(x) = ϕΓ1(x)ϕΓ2∖o2(x) + ϕΓ1∖o1(x)ϕΓ2(x) − xϕΓ1∖o1(x)ϕΓ2∖o2(x).
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Proof. Equations (2.20) and (2.17) give rise to
ϕΓ1⊛Γ2(x) = ϕΓ1(x)ϕΓ2(x)GΓ1(x)GΓ2(x)(FΓ1(x) + FΓ2(x) − x)

= ϕΓ1(x)ϕΓ2(x)(GΓ1(x) +GΓ2(x) − xGΓ1(x)GΓ2(x)).

Substituting the formula (2.11), GΓi
(x) = ϕΓi∖o(x)/ϕΓi

(x), into the above yields the
desired formula. □

2.9. Identities for the comb product. In this section, the comb product is de-
noted simply by Γ1 ▷ Γ2, the root being omitted for simplicity, for a graph Γ1 and
a rooted graph (Γ2, o2). The relation between the Green functions is simple and fol-
lows from the decomposition (2.16) of the adjacency matrix together with Muraki’s
formula [14, Theorem 3.1]; see also [16, Theorem 3.2] for another proof of Muraki’s
formula.

Proposition 2.5. For rooted graphs (Γ1, o1) and (Γ2, o2) the following formula holds:
(2.22) FΓ1▷Γ2(z) = FΓ1(FΓ2(z)).

For the characteristic polynomial Schwenk proved the following relation by combi-
natorial arguments; we give an algebraic proof based on the simpler relation (2.22).

Theorem 2.6 ([19, Theorem 5]). Let Γ be a graph on d vertices and (H, o) a rooted
graph. Then
(2.23) ϕΓ▷H(x) = ϕH∖o(x)dϕΓ(ϕH(x)/ϕH∖o(x)) = ϕH∖o(x)dϕΓ(FH(x)).

Proof. We proceed by induction. Fix an arbitrary vertex o′ of Γ as a root and denote
by o′′ the root of Γ ▷ H. Removing it from Γ ▷ H splits off an extra copy of H ∖ o
(cf. Fig. 2)

(Γ ▷ H) ∖ o′′ = ((Γ ∖ o′) ▷ H) ∪ (H ∖ o)
and therefore

ϕ(Γ▷H)∖o′′(x) = ϕ(Γ∖o′)▷H(x)ϕH∖o(x).
We proceed with identities (2.11) and (2.22) to conclude by induction

ϕΓ▷H(x) = ϕ(Γ▷H)∖o′(x)FΓ▷H(x)
= ϕ(Γ∖o′)▷H(x)ϕH∖o(x)FΓ▷H(x)
= ϕH∖o(x)d−1 ϕΓ∖o′(FH(x))ϕH∖o(x)FΓ(FH(x))
= ϕH∖o(x)d ϕΓ(FH(x)).

□

Finally, formula (2.23) gives rise to an equivalent formula for the renormalized
Cauchy transform.

Proposition 2.7. In the setting of Theorem 2.6, one has
g̃Γ▷H(z) = d g̃Γ(z) + F ′

H(z) g̃Γ(FH(z)).

Remark 2.8. Later we will give two more proofs in a more general setting; see The-
orem 7.7.

Proof. Combining (2.2), (2.23) and (2.11) yields

gΓ▷H(z) = d
d

dz
log ϕH(z)

FH(z) + F ′
H(z) gΓ(FH(z))

= d

(
gH(z) − F ′

H(z)
FH(z)

)
+ F ′

H(z) gΓ(FH(z)),

Algebraic Combinatorics, Vol. 6 #6 (2023) 1704
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which can be rewritten as

g̃Γ▷H(z) + dd′

z
= d

(
g̃H(z) + d′

z
− F ′

H(z)
FH(z)

)
+ F ′

H(z)
(
g̃Γ(FH(z)) + d

FH(z)

)
,

where d′ is the number of vertices of H. □

3. Cyclic-Boolean independence
In order to study the eigenvalues of the adjacency matrix of star product graphs, we
will compute traces of powers of the adjacency matrix. These computations can be
abstracted and formulated as a new notion of independence, which we call cyclic-
Boolean independence.

3.1. Definition and example. The definition of cyclic-Boolean independence is
motivated by the star product from Section 2.6, which can be extended to the general
setting of Hilbert spaces as follows.

Example 3.1. LetHi, i ∈ N, be Hilbert spaces with distinguished unit vectors ξi ∈ Hi,
Pi : Hi → Hi the orthogonal projection onto Cξi, T (Hi) the ∗-algebra of trace-class
operators on Hi and φi the vector state on B(Hi) defined by φi(A) = ⟨Aξi, ξi⟩.

Let H = H1 ⊗ · · · ⊗ HN , ξ = ξ1 ⊗ · · · ⊗ ξN and φ be the vacuum state on B(H)
defined by ξ. Let πi : B(Hi) → B(H) be the ∗-homomorphism defined by
(3.1) πi(A) = P1 ⊗ · · · ⊗ Pi−1 ⊗A⊗ Pi+1 ⊗ · · · ⊗ PN .

The family of ∗-subalgebras {πi(B(Hi))}N
i=1 is Boolean independent in (B(H), φ); e.g.

see [12, Theorem 8.8]. Furthermore, we compute the mixed moments with respect to
the trace. A key formula is
(3.2) PiAPi = φi(A)Pi, A ∈ B(Hi).
For any cyclically alternating tuple (k1, . . . , kn) ∈ Nn, namely those satisfying k1 ̸=
k2 ̸= · · · ̸= kn ̸= k1, and for any Ai ∈ T (Hki

) a direct computation using formula
(3.2) yields

TrH(πk1(A1) · · ·πkn
(An)) =

{
TrHk1

(A1) if n = 1,
φk1(A1)φk2(A2) · · ·φkn(An) if n ⩾ 2.

Let us raise this identity to an abstract concept.

Definition 3.2. Let A be a ∗-algebra over C, φ a positive linear functional on A and
ω a positive tracial linear functional on A. The triplet (A, φ, ω) is called a cyclic non-
commutative probability space (cncps). Here the term “cyclic” reflects the invariance
of the trace ω under cyclic permutations of the argument. The distribution of a self-
adjoint element a ∈ A is the data {(φ(an), ω(an)) : n ⩾ 1}.

Definition 3.3. Let (A, φ, ω) be a cncps. A family of ∗-subalgebras {Ak}k∈K is said
to be cyclic-Boolean independent if

(i) it is Boolean independent with respect to φ, that is, for any n ⩾ 2, alternating
tuple (k1, . . . , kn) ∈ Kn (namely, with k1 ̸= k2 ̸= · · · ̸= kn) and ai ∈ Aki

, i =
1, 2, . . . , n, one has the factorization

φ(a1 · · · an) = φ(a1)φ(a2) · · ·φ(an);
(ii) for any n ⩾ 1, any cyclically alternating tuple (k1, . . . , kn) ∈ Kn and any

choice of ai ∈ Aki , i = 1, 2, . . . , n, one has

ω(a1a2 · · · an) =
{
ω(a1) if n = 1,
φ(a1)φ(a2) · · ·φ(an) if n ⩾ 2.
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A family of elements {ak}k∈K of A is said to be cyclic-Boolean independent if this is
the case for {Ak}k∈K , where Ak is the ∗-subalgebra generated by ak without unit.

Example 3.4. Suppose that {a, b, c} is cyclic-Boolean independent in (A, φ, ω). Then

φ(ba2bc2b) = φ(b)φ(a2)φ(b)φ(c2)φ(b)

and
ω(ba2bc2b) = φ(b2)φ(a2)φ(b)φ(c2).

Another operator model occurs on star products of Hilbert spaces.

Example 3.5. Let Hi be separable Hilbert spaces with distinguished unit vectors ξi

as above and H̊i = (Cξi)⊥. The star product of the Hilbert spaces Hi is the direct
sum

H = Cξ ⊕
⊕

i

H̊i.

Then each Hi can be identified with the subspace Cξ⊕H̊i ⊆ H and there is a canonical
representation of B(Hi) on H which acts by simply annihilating the complement of Hi.
More precisely we decompose H as a direct sum H ≃ Hi ⊕ H⊥

i where H⊥
i =

⊕
j ̸=i H̊j

and define the representation πi(X) = X ⊕ 0. Then the algebras Ai = πi(B(Hi))
are Boolean independent with respect to the vacuum expectation φ = ⟨. ξ, ξ⟩ and
moreover, the algebras Ai are cyclic-Boolean independent with respect to the trace.
Indeed, let P0 ∈ B(H) be the projection onto Cξ and Pi the projections onto H̊i;
then P0, P1, P2, . . . form a partition of unity and by definition we have X = (P0 +
Pi)X(P0 +Pi) for all X ∈ Ai. Let X1X2 . . . Xn be a cyclically alternating product of
trace class operators, i.e., Xk ∈ Aik

with ik ̸= ik+1 for all k and in ̸= i1, then

Tr(X1X2 · · ·Xn) = Tr((P0 + Pi1)X1(P0 + Pi1)(P0 + Pi2)X2(P0 + Pi2)
· · · (P0 + Pin

)Xn(P0 + Pin
))

= Tr(P0X1P0X2P0 · · ·P0XnP0)
= φ(X1)φ(X2) · · ·φ(Xn)

where we used the identity (P0 + Pi)(P0 + Pj) = P0, valid for i ̸= j.

Next we show that any Boolean independent family can be represented on a star
product space.

3.2. Construction of a cyclic-Boolean trace. Let (A, φ) be a noncommu-
tative probability space, where A is a ∗-algebra and Ai are Boolean independent
subalgebras. In the following assume that A is faithfully represented on a Hilbert
space H and that the state φ is realized as a vector state φ(X) = ⟨Xξ, ξ⟩. One way
to achieve this under certain conditions is the GNS-construction.

Recall that the GNS-representation consists of the Hilbert space Hφ obtained by
completing the quotient space A/Nφ, where Nφ = {x ∈ A | φ(x∗x) = 0}, with respect
to the scalar product

⟨[x]φ, [y]φ⟩ = φ(y∗x).
The action of the GNS representation is πφ(x)[y]φ = [xy]φ.

Lemma 3.6. The GNS representation is faithful if and only if the state φ is nonde-
generate in the sense that if φ(axb) = 0 for all a, b ∈ A, then x = 0.

Proof. Let x ∈ A, then πφ(x) = 0 ⇐⇒ πφ(x)[y]φ = 0 for all y ∈ A ⇐⇒
⟨[xy]φ, [z]φ⟩φ = 0 for all y, z ∈ A ⇐⇒ φ(z∗xy) = 0 for all y, z ∈ A. □
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If A is unital, then the state vector ξ = [1]φ comes for free, otherwise the state
must satisfy the Cauchy-Schwarz condition

|φ(x)|2 ⩽ Cφ(x∗x)

for some fixed constant C in order to allow a positive extension to the unitization of
A, see [18, Theorem 4.5.11].

Assuming that A and the state φ are faithfully represented on some Hilbert space
H we identify A with a subalgebra of B(H) and we are now going to reconstruct the
star product space from this data. Let H0 = [ξ] = Cξ be the subspace spanned by
ξ and P0 the orthogonal projection onto it. Adjoining this projection to the algebra
A and to each subalgebra Ai, Boolean independence is preserved because φ(P0) = 1
and P0XP0 = φ(X)P0 for any X ∈ B(H); therefore without loss of generality we may
assume that P0 ∈ Ai for every i. Let now Åi = kerφ∩ Ai, then we can construct the
components of the star product space as follows.

Lemma 3.7. Let H0 = [ξ] and H̊i = [Åiξ] be the closed invariant subspace generated
by ξ. Then

(i) H0 ⊥ H̊i for all i.
(ii) H̊i ⊥ H̊j for all i ̸= j.

Proof. It suffices to verify orthogonality on the dense subspaces Åiξ.
(i) Let X ∈ Åi, then

⟨Xξ, ξ⟩ = φ(X) = 0.
(ii) Let X ∈ Åi and Y ∈ Åj with i ̸= j, then

⟨Xξ, Y ξ⟩ = φ(Y ∗X) = φ(Y ∗)φ(X) = 0.

□

We now construct the decomposition. Under the assumption that P0 ∈ Ai we have
Hi := H0 ⊕ H̊i = [Aiξ]. Let Pi be the projection onto H̊i, Â the ∗-subalgebra of
A generated by (Ai)i∈I and Ĥ = [Âξ] ⊆ H the closed invariant subspace generated
by ξ. Let further P̂ and P̂⊥ be the respective projections onto the space Ĥ and its
orthogonal complement Ĥ⊥.

Proposition 3.8.
(i) For each i the space Hi is invariant under Ai, i.e., for X ∈ Ai

(3.3) X(P0 + Pi) = (P0 + Pi)X(P0 + Pi).

(ii) For i ̸= j the subspace H̊j is annihilated by Ai, i.e., for X ∈ Ai

(3.4) XPj = PjX = 0.

(iii) The space Ĥ is the closed linear span of the subspaces Aiξ, i.e.,

(3.5) Ĥ = H0 ⊕
⊕

i

H̊i.

Proof.
(i) This is an immediate consequence of the definition.
(ii) It suffices to show that XPj = 0, i.e., X vanishes on H̊j . We verify this on

the dense subspace Åjξ. Indeed, let Y ∈ Åj , then

∥XY ξ∥2 = ⟨XY ξ,XY ξ⟩ = φ(Y ∗X∗XY ) = φ(Y ∗)φ(X∗X)φ(Y ) = 0;

finally PjX = (X∗Pj)∗ = 0 because Ai is a ∗-algebra.
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(iii) The space Ĥ is the closure of the span of the alternating words X1X2 . . . Xnξ
with Xj ∈ Aij

and ij ̸= jj+1. We claim that such a word satisfies
X1X2 · · ·Xnξ ∈ Hi1 . We proceed by induction. The claim is obviously
true for n = 1. Let now η = X1X2 · · ·Xnξ be a given word. Then η = X1η

′

with η′ = X2 · · ·Xnξ and by induction hypothesis η′ ∈ Hi2 , say η′ = αξ + η′′

with η′′ ∈ H̊i2 . But then from item ((ii)) we infer that X1η
′ = αX1ξ+0 ∈ Hi1 .

□

Corollary 3.9. Every X ∈ Â has block decomposition

(3.6) X = P̂XP̂ + P̂⊥XP̂⊥

and more precisely every X ∈ Ai has the block decomposition

(3.7) X = (P0 + Pi)X(P0 + Pi) + P̂⊥XP̂⊥.

Theorem 3.10. The functional ω(X) = Tr(P̂XP̂ ) is a semifinite trace on the algebra
Â and the subalgebras Ai ∩ T (H) are cyclic-Boolean independent with respect to ω.

Proof. ω is a trace on Â because P̂ is in the commutant of Â. Now let X1X2 · · ·Xn

be a cyclically alternating product with Xj ∈ Aij
for j = 1, 2, . . . , n, then we have

ω(X1X2 · · ·Xn) = Tr
(
P̂ ((P0 + Pi1)X1(P0 + Pi1) + P̂⊥X1P̂

⊥)
× ((P0 + Pi2)X2(P0 + Pi2) + P̂⊥X2P̂

⊥)

· · · ((P0 + Pin)Xn(P0 + Pin) + P̂⊥XnP̂
⊥)P̂

)
= Tr

(
(P0 + Pi1)X1(P0 + Pi1)((P0 + Pi2)X2(P0 + Pi2)

· · · ((P0 + Pin)Xn(P0 + Pin)
)

= Tr
(
(P0 + Pi1)X1P0X2P0 · · ·P0Xn(P0 + Pin)

)
= Tr(P0X1P0X2P0 · · ·P0XnP0)

and it follows that P̂X1X2 · · ·Xn is trace class. □

4. Convolution and central limit theorem
4.1. Cyclic-Boolean convolution. Let (A, φ, ω) be a cncps. If a, b ∈ A are cyclic-
Boolean independent and self-adjoint, then the distribution of the sum a+ b, i.e., the
collection of moments {(φ((a + b)n), ω((a + b)n)) : n ⩾ 1}, is uniquely determined
by the marginal distributions, i.e., the individual moments {(φ(an), ω(an))}n⩾1 and
{(φ(bn), ω(bn))}n⩾1, of a and b, and is called the cyclic-Boolean convolution of (the
distributions of) a and b. The description of convolutions in noncommutative proba-
bility is very much facilitated with the help of generating functions and we will see
that cyclic-Boolean convolution makes no exception.

We start by generalizing the Cauchy transform (2.1): the renormalized (tracial)
Cauchy transform is the formal Laurent series

g̃a(z) =
∞∑

n=1

ω(an)
zn+1 .

By slight abuse of terminology, we call Ga the Green function (evaluated at the state
φ) of a. It has formal Laurent expansion

Ga(z) = 1
z

+
∞∑

n=1

φ(an)
zn+1 ,

and we denote the reciprocal Green function by Fa(z) = 1/Ga(z).
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If a is a trace class operator on a Hilbert space and ω is the trace then | Tr(an)| ⩽
∥|a|n−1∥ Tr(|a|) ⩽ ∥a∥n−1 Tr(|a|), and hence g̃a(z) is absolutely convergent in {z ∈ C :
|z| > ∥a∥}. Moreover, if a is selfadjoint then g̃a has analytic extension to C∖ spec(a)
by Lidskii’s theorem

(4.1) g̃a(z) = Tr((z − a)−1 − z−1) =
∞∑

i=1

λi

z(z − λi)
,

where {λi}i⩾1 is the multiset of eigenvalues of a. In particular, the non-zero eigenval-
ues of a can be detected from g̃a as poles. If the Hilbert space is finite-dimensional,
then we also have the formula

(4.2) g̃a(z) =
dim(H)∑

i=1

1
z − λi

− dim(H)
z

,

and hence
lim
z→0

z g̃a(z) = the multiplicity of the eigenvalue zero − dim(H).

Remark 4.1. By [5, Corollary 2.2], the tracial moments Tr(an) for all but finitely
many natural numbers n determine the eigenvalues of a. So, for any p ∈ N, we can
generalize the above setting to the Schatten class Sp by using the truncated generating
function

g̃p(z) =
∞∑

n=p

ω(an)
zn+1 .

Let a and b be cyclic-Boolean independent in (A, φ, ω). It is known [23] (and will
be shown in Remark 4.4 below) that the Green function of a+ b can be computed via
the formula

(4.3) 1
Ga(z) + 1

Gb(z) − z = 1
Ga+b(z) ;

i.e.,
Ba+b(z) = Ba(z) +Bb(z),

where
(4.4) Ba(z) = z

Ga(1/z) − 1

is the Boolean cumulant transform. The next theorem generalizes this identity to an
analogous formula for the generating function g̃a+b(z) which gives information on the
eigenvalues of a+ b.

Theorem 4.2. Let a and b be cyclic-Boolean independent elements. Then the renor-
malized Cauchy transform of their sum is

g̃a+b(z) = g̃a(z) + g̃b(z) + G′
a(z)

Ga(z) + G′
b(z)

Gb(z) −
G′

a+b(z)
Ga+b(z) + 1

z
;

i.e., if we define (cf. (2.14))

(4.5) ha(z) = g̃a(z) + d

dz
log zGa(z)

then
(4.6) ha+b(z) = ha(z) + hb(z).

Remark 4.3. While h linearizes independent sums and is useful for analyzing convo-
lutions, we will later introduce a modification which deserves to be called the cyclic-
Boolean cumulant transform; see Section 5.
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Algebraic proof. We expand the power (a+ b)n and regroup the resulting monomials
into those ending in a and those ending in b:

(a+ b)n = an +
∑
k⩾1

p0⩾0, p1,q1,...,pk,qk⩾1
p0+p1+q1+···+pk+qk=n

ap0bq1ap1 · · · bqkapk + bn +
∑
k⩾1

q0⩾0, p1,q1,...,pk,qk⩾1
q0+q1+p1+···+pk+qk=n

bq0ap1bq1 · · · apkbqk ,

and applying ω yields

ω((a+ b)n) = ω(an) + ω(bn) +
∑
k⩾1

p0⩾0, p1,q1,...,pk,qk⩾1
p0+p1+q1+···+pk+qk=n

ω(ap0+pkbq1ap1 · · · bqk )

+
∑
k⩾1

q0⩾0, p1,q1,...,pk,qk⩾1
q0+p1+q1+···+pk+qk=n

ω(bq0+qkap1bq1 · · · apk )

= ω(an) + ω(bn) +
∑
k⩾1

p0⩾0, p1,q1,...,pk,qk⩾1
p0+p1+q1+···+pk+qk=n

φ(ap0+pk )φ(bq1)φ(ap1) · · ·φ(bqk )

+
∑
k⩾1

q0⩾0, p1,q1,...,pk,qk⩾1
q0+p1+q1+···+pk+qk=n

φ(bq0+qk )φ(ap1)φ(bq1) · · ·φ(apk ).

Multiplying the above identity by z−n−1 and taking the summation over n yields

g̃a+b(z) =
∑
n⩾0

ω((a+ b)n)
zn+1

=
∑
n⩾1

ω(an)
zn+1 +

∑
n⩾1

ω(bn)
zn+1 +

∑
k⩾1

p0⩾0, p1,q1,...,pk,qk⩾1

φ(ap0+pk )
zp0+pk+1

φ(bq1)
zq1

φ(ap1)
zp1

· · · φ(bqk )
zqk

+
∑
k⩾1

q0⩾0, p1,q1,...,pk,qk⩾1

φ(bq0+qk )
zq0+qk+1

φ(ap1)
zp1

φ(bq1)
zq1

· · · φ(apk )
zpk

.

Now ∑
p0⩾0
p⩾1

φ(ap0+p1)
zp0+p+1 =

∑
m⩾1

∑
p0⩾0
p⩾1

p0+p=m

φ(am)
zm+1 =

∑
m⩾1

m
φ(am)
zm+1 = −(zGa(z))′

and thus

g̃a+b(z) = g̃a(z) + g̃b(z) −
∑
k⩾1

(zGa(z))′(zGa(z) − 1)k−1(zGb(z) − 1)k

−
∑
k⩾1

(zGb(z))′(zGa(z) − 1)k(zGb(z) − 1)k−1

= g̃a(z) + g̃b(z) − (zGa(z))′(zGb(z) − 1) + (zGa(z) − 1)(zGb(z))′

1 − (zGa(z) − 1)(zGb(z) − 1)

= g̃a(z) + g̃b(z) − (zGa(z))′

Ga(z)
z − Fb(z)

Fa(z)Fb(z) − (z − Fa(z))(z − Fb(z))

− (zGb(z))′

Gb(z)
z − Fa(z)

Fa(z)Fb(z) − (z − Fa(z))(z − Fb(z))
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= g̃a(z) + g̃b(z) −
(

1
z

+ G′
a

Ga

)
z − Fb

Fa + Fb − z
−

(
1
z

+ G′
b

Gb

)
z − Fa

Fa + Fb − z

= g̃a(z) + g̃b(z) +
(
F ′

a

Fa
(z − Fb) + F ′

b

Fb
(z − Fa) − 1

)
1

Fa + Fb − z
+ 1
z

= g̃a(z) + g̃b(z) + 1
z

+
(
F ′

a

Fa
(z − Fa − Fb) + F ′

b

Fb
(z − Fa − Fb) − 1 + F ′

a + F ′
b

)
1

Fa + Fb − z

= g̃a(z) + g̃b(z) + 1
z

− F ′
a

Fa
− F ′

b

Fb
+
F ′

a+b

Fa+b

= g̃a(z) + g̃b(z) + 1
z

+ G′
a

Ga
+ G′

b

Gb
−
G′

a+b

Ga+b
. □

Analytic proof in the setting of Example 3.5. Under the assumption that our ∗-
algebras are represented as trace class operators on the star product Hilbert space

H = Cξ ⊕ H̊1 ⊕ H̊2

equipped with a vacuum state φ = ⟨.ξ, ξ⟩ and the trace ω = Tr we can use this
decomposition and represent the involved operators as block operator matrices

(4.7) A =

α a′ 0
a Å 0
0 0 0

 , B =

β 0 b′

0 0 0
b 0 B̊

 , A+B =

α+ β a′ b′

a Å 0
b 0 B̊

 .
In other words, (A+B)̊ = Å⊕ B̊ is a direct sum and therefore

g̃(A+B)̊(z) = g̃Å(z) + g̃B̊(z)

and we conclude with the identity (2.14). □

Remark 4.4. The idea of the above algebraic/analytic proofs can also be used to
verify the known formula (4.3). For example, the Banachiewicz formula (2.9) applied
to the decomposition (4.7) yields the Green function in the form

1
GA+B(z) = z − (α+ β) − a′(z − Å)−1a− b′(z − B̊)−1b.

Combining this with the formulas
1

GA(z) = z − α− a′(z − Å)−1a and 1
GB(z) = z − β − b′(z − B̊)−1b

we obtain (4.3).

4.2. Examples from star product graphs. For a rooted graph (Γ, o), its N -fold
star product (ΓN , oN ) = (Γ, o)⊛ (Γ, o)⊛ · · ·⊛ (Γ, o) has the adjacency matrix that is
the sum of cyclic-Boolean independent copies of the adjacency matrix of Γ; see (2.15).
Therefore, Theorem 4.2 and (2.17) imply that

(4.8) g̃ΓN
(z) = N g̃a(z) +N

G′
Γ(z)

GΓ(z) −
G′

ΓN
(z)

GΓN
(z) + N − 1

z

where

(4.9) 1
GΓN

(z) = N

GΓ(z) − (N − 1)z.
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S1 S5 S6 S7 S11

Figure 3. Star graphs

F1 = K3 F2 F3 F4 F5

Figure 4. Friendship graphs

Example 4.5 (Star graph). The star graph (SN , oN ) on N + 1 vertices {0, 1, . . . , N}
has edges {0, i}, i = 1, 2, . . . , N . It is the N -fold star product of the complete graph
(K2, o) (Figure 3). The eigenvalues of the adjacency matrix of K2 are ±1, and hence

g̃K2(z) = 1
z − 1 + 1

z + 1 − 2
z

and GK2(z) = 1
2

(
1

z − 1 + 1
z − 1

)
,

where the latter formula can be computed via (2.11). Using (4.9) entails

GSN
(z) = 1

2

(
1

z −
√
N

− 1
z +

√
N

)
and

G′
SN

(z)
GSN

(z) = 1
z

− 1
z −

√
N

− 1
z +

√
N
.

The renormalized Cauchy transform of (SN , oN ) may be calculated from (4.8) as
follows:

g̃SN
(z) = N

(
1

z − 1 + 1
z + 1 − 2

z

)
+N

(
1
z

− 1
z − 1 − 1

z + 1

)
+

(
1

z −
√
N

+ 1
z +

√
N

− 1
z

)
+ N − 1

z

= 1
z −

√
N

+ 1
z +

√
N

− 2
z
.

The Cauchy transform is given by

gSN
(z) = 1

z −
√
N

+ 1
z +

√
N

+ N − 1
z

.

This recovers the fact that the multiset of eigenvalues of the adjacency matrix of SN

is given by {[
√
N ]1, [−

√
N ]1, [0]N−1}.

Example 4.6 (Friendship graph). The friendship graph FN is the graph with 2N + 1
vertices {0, . . . , 2N} in which 0 is connected to every other vertex and the only other
edges are {2i− 1, 2i} for 1 ⩽ i ⩽ N . The friendship graph is the N -fold star product
of the complete graph (K3, o) with itself; see Figure 4.

In this case

g̃K3(z) = 2
z + 1 + 1

z − 2 − 3
z

and GK3(z) = 1
3

(
2

z + 1 + 1
z − 2

)
,
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from which
G′

K3
(z)

GK3(z) = −z2 + 2z − 3
z3 − 2z2 − z + 2 = 1

z − 1 − 1
z + 1 − 1

z − 2 .

On the other hand
1

GFN
(z) = N

GK3(z) − (N − 1)z = z(z − 1) − 2N
z − 1 ,

and then
G′

FN
(z)

GFN
(z) = 1

z − 1 + 1 − 2z
z2 − z − 2N

= 1
z − 1 − 1

z − (1 +
√

1 + 8N)/2
− 1
z − (1 −

√
1 + 8N)/2

.

Thus the renormalized Cauchy transform may be calculated as follows.

g̃FN
(z)

= N

(
2

z + 1 + 1
z − 2 − 3

z

)
+N

(
1

z − 1 − 1
z + 1 + 1

2 − z

)
−

(
1

z − 1 − 1
z − (1 +

√
1 + 8N)/2

− 1
z − (1 −

√
1 + 8N)/2

)
+ N − 1

z

= N − 1
z − 1 + N

z + 1 + 1
z − (1 +

√
1 + 8N)/2

+ 1
z − (1 −

√
1 + 8N)/2

− 2N + 1
z

.

Then

gFN
(z) = g̃FN

(z) + 2N + 1
z

= N − 1
z − 1 + N

z + 1 + 1
z − (1 +

√
1 + 8N)/2

+ 1
z − (1 −

√
1 + 8N)/2

.

This recovers the fact that the multiset of eigenvalues of the adjacency matrix of FN

is given by {[
1
2 − 1

2
√

1 + 8N
]1
, [−1]N , [1]N−1,

[
1
2 + 1

2
√

1 + 8N
]1

}
.

4.3. Cyclic-Boolean central limit theorem. Since we have an appropriate
linearization (4.6) for cyclic-Boolean convolution, we are able to determine the central
limit law.

Theorem 4.7. For each N ∈ N, let {a(N)
i }N

i=1 be self-adjoint cyclic-Boolean inde-
pendent random variables in a cncps (AN , φN , ωN ). Assume that, for each fixed
k ∈ N, the moments φN ((a(N)

i )k) and ωN ((a(N)
i )k) do not depend on i or N , and

also ωN (a(N)
i ) = φN (a(N)

i ) = 0, φN ((a(N)
i )2) = 1 for all i and N . Then, for the

normalized sum

sN = a
(N)
1 + a

(N)
2 + · · · + a

(N)
N√

N
,

it holds that

lim
N→∞

φN (sk
N ) =

{
1 if k ∈ 2N,
0 if k ∈ 2N − 1,

and lim
N→∞

ωN (sk
N ) =

{
2 if k ∈ 2N + 2,
0 if k ∈ 2N + 1.
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Proof. The Boolean central limit theorem [23] asserts that GsN
(z) → z/(z2 − 1). Let

α = ωN ((a(N)
i )2), then Theorem 4.2 yields

hsN
(z) = N3/2 h

a
(N)
1

(
√
Nz) = N3/2

(
α− 2

(
√
Nz)3

+O(N−2)
)

→ α− 2
z3 .

Therefore
g̃sN

(z) → 2z
z2 − 1 − 2

z
+ α− 2

z3 =
∑
n⩾1

g̃n

zn+1 ,

where

g̃n =


0 if n is odd,
2 if n is even and n ⩾ 4,
α if n = 2.

□

The limit law exhibits a large spectral gap:

Corollary 4.8. In addition to the setting of Theorem 4.7, suppose that AN is the ∗-
algebra T (HN ) of trace class operators on some Hilbert space HN and ωN = TrHN

. Let
λN and µN be the largest and smallest eigenvalues of sN , respectively. The following
assertions hold:

(i) the multiplicities of λN and µN are both one for sufficiently large N ;
(ii) λN converges to 1 and µN converges to −1 as N → ∞;
(iii) the remaining eigenvalues accumulate around 0:

lim
N→∞

dist(spec(sN ) ∖ {λN , µN }, 0) = 0

Proof. Let s be a self-adjoint operator of rank two on a Hilbert space K having
eigenvalues −1, 1, 0. Then TrK(sn) = 2 for even n ⩾ 2 and TrK(sn) = 0 for odd
n ⩾ 1. The convergence of TrH(sk

N ) in Theorem 4.7 and [5, Proposition 2.8] imply
that sN → s in eigenvalues and this concludes the argument. □

Remark 4.9. As shown in the proof of Theorem 4.7, TrHN
(s2

N ) converges (actually
is equal) to α which might not equal 2 = TrK(s2). This difference of Hilbert-Schmidt
norms is due to a large number of small eigenvalues of sN and does not contradict
the convergence of eigenvalues; see [5, Proposition 2.8, Proposition 2.10 and Remark
2.11].

Now we come back to the original model, the adjacency matrix of the star product
of rooted graphs.

Corollary 4.10. Suppose that (Γ, o) is a rooted graph with deg(o) ⩾ 1. Let AN be
the adjacency matrix of the N -fold star product graph (Γ, o) ⊛ (Γ, o) ⊛ . . . ⊛ (Γ, o)
and denote by λN and µN the largest and smallest eigenvalues of (deg(o)N)− 1

2AN ,
respectively. The following assertions hold:

(i) the multiplicities of λN and µN are both one for sufficiently large N ;
(ii) λN converges to 1 and µN converges to −1 as N → ∞;
(iii) lim

N→∞
dist(spec((deg(o)N)− 1

2AN ) ∖ {λN , µN }, 0) = 0

Proof. This is a combination of Corollary 4.8, formula (2.15) and Example 3.1. The
factor (deg(o)N)− 1

2 appears because of the variance ⟨A2
Γδo, δo⟩ℓ2(V ) = deg(o), where

V is the vertex set of Γ. □
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Remark 4.11. In the setting of Corollary 4.10 it is already known that, according to
the Boolean central limit theorem, the distribution of (deg(o)N)− 1

2AN regarding the
vector state φN = ⟨·δo, δo⟩ converges weakly to 1

2 (δ−1 + δ1). This fact entails an intu-
itive consequence of Corollary 4.10: the vector δo in the tensor product Hilbert space
ℓ2(V )⊗N is almost orthogonal to the subspace spanned by eigenvectors corresponding
to small eigenvalues, or equivalently, δo is almost contained in the two-dimensional
subspace spanned by the eigenvectors corresponding to the eigenvalues near ±1.

Example 4.12. Corollary 4.10 can be directly confirmed in the following examples.
(i) For the star graph on N + 1 vertices, its adjacency matrix divided by

√
N

has eigenvalues {[1]1, [−1]1, [0]N−1}; see Example 4.5. Eigenvectors corre-
sponding to the eigenvalues 1 and −1 are f1 = (

√
N, 1, 1, . . . , 1) and f2 =

(−
√
N, 1, 1, . . . , 1), respectively, and hence, the function δo, which corresponds

to the vector (1, 0, 0, . . . , 0), is exactly contained in the subspace spanned by
f1 and f2.

(ii) For the friendship graph on 2N + 1 vertices, its adjacency matrix divided by√
2N has eigenvalues

[
−

√
1 + 1

8N − 1
2
√

2N

]1

,

[
− 1√

2N

]N

,

[
1√
2N

]N−1
,

[√
1 + 1

8N + 1
2
√

2N

]1
 ;

see Example 4.6.

5. Cyclic-Boolean cumulants
5.1. Univariate cumulants. Let (A, φ, ω) be a cncps and a ∈ A. The generating
function ha defined in (4.5) has the series expansion

ha(z) =
∞∑

n=1

hn(a)
zn+1 ,

where the first two coefficients are h1(a) = ω(a) − φ(a) and h2(a) = ω(a2) + φ(a)2 −
2φ(a2). In general, n ⩾ 2 there is a universal polynomial Qn(x1, x2, . . . , xn−1) such
that

(5.1) hn(a) = ω(an) − nφ(an) +Qn(φ(a), φ(a2), . . . , φ(an−1)).

We can modify ha(z) by adding the Boolean cumulants to delete −nφ(an) from
hn(a). We switch from g̃a and Ga to the moment generating functions

ma(z) = 1
z
g̃a

(
1
z

)
=

∑
n⩾1

ω(an)zn, Ma(z) = 1
z

(
Ga

(
1
z

)
− z

)
=

∑
n⩾1

φ(an)zn.

The Boolean cumulant transform (4.4) is then expressed by

Ba(z) = Ma(z)
1 +Ma(z) =

∑
n⩾1

bn(a)zn.

We introduce the new generating function

ca(z) = 1
z
ha

(
1
z

)
+ zB′

a(z)(5.2)

= ma(z) − zMa(z)M ′
a(z)

(1 +Ma(z))2

= ma(z) − zMa(z)B′
a(z),(5.3)
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which linearizes the convolution
ca+b(z) = ca(z) + cb(z).

The function ca will be called the cyclic-Boolean cumulant transform of a and the
coefficients cn(a) appearing as

(5.4) ca(z) =
∑
n⩾1

cn(a)zn

are called the (univariate) cyclic-boolean cumulants of a. The first two cumulants are
c1(a) = ω(a) and c2(a) = ω(a2) − φ(a)2.

For general n ⩾ 2, we combine identities (5.1), (5.2) and B′
a(z) = M ′

a(z)/(1+Ma(z))2

to conclude that there exists a universal polynomial Pn(x1, . . . , xn−1) depending only
on n such that

cn(a) = ω(an) + Pn(φ(a), . . . , φ(an−1)).

5.2. Cyclic-interval partitions. Cyclic-Boolean independence gives rise to an
exchangeability system and we can define and compute the (multivariate) cyclic-
Boolean cumulants using the methods of [13, 11]. The relevant partition structure
turns out to be cyclic-interval partitions, which were already discussed in [7] in their
search for notions of independence, similar to Boolean and monotone ones, but such
that the algebra of scalars, C, is independent from any other algebra.

Before embarking on we recall some basic concepts on set partitions.

Definition 5.1. Let k ∈ N. We often use the notation [k] = {1, 2, . . . , k}.
(i) A set partition of [k] is a set π = {B1, B2, . . . , Bp} of nonempty and disjoint

subsets B1, . . . , Bp of [k], called blocks, such that their union is [k]. The length
|π| of a partition π is the number of blocks. The set of partitions of the set
[k] is denoted by P(k). Set partitions are in one-to-one correspondence with
equivalence relations: Any set partition π ∈ P(k) determines an equivalence
relation i ∼π j on [k] by requiring that i, j belong to the same block of π; con-
versely, for an equivalence relation ∼ on [k] its equivalence classes determine
disjoint subsets of [k] and hence a set partition.

(ii) A subset of [k] of form {i, i+1, . . . , j} is called an interval and a set partition
of [k] is called an interval partition if all its blocks are intervals. The set of
interval partitions is denoted by I(k).

(iii) For set partitions σ, π ∈ P(k) we write σ ⩽ π if every block of σ is a subset
of a block of π. This makes P(k) a poset. The trivial set partition {[k]} is the
maximum of P(k), which is denoted by 1̂k.

(iv) A tuple (i1, . . . , ik) ∈ Nk induces a unique equivalence relation ∼ on [k] by
the requirement that p ∼ q holds if and only if ip = iq. The corresponding set
partition is called the kernel set partition, denoted by κ(i1, . . . , ik).

Example 5.2. Some kernel set partitions are
κ(6, 3, 2, 3, 6) = {{3}, {2, 4}, {1, 5}},

κ(2, 7, 4, 7, 4, 2, 4) = {{1, 6}, {3, 5, 7}, {2, 4}}.

We will see that cyclic-Boolean cumulants cπ (defined in the next section) vanish
identically unless π is a cyclic-interval partition.

Definition 5.3. A partition π ∈ P(n) is called a cyclic-interval partition if every
block is an interval or the complement of an interval. In other words, there is a cyclic
permutation σ ∈ Sn such that σ · π is an interval partition. We denote by CI(n) the
set of cyclic-interval partitions of [n].
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Figure 5. The cyclic interval partition
{1, 2, 15/3, 4, 5, 6, 7/8/9/10/11/12/13/14} has separating set
{2′, 7′, 10′, 11′, 14′}

As already noticed in [7, Corollary 1], it is not difficult to see that the number of
cyclic-interval partitions is |CI(n)| = 2n −n. To see this, the most convenient picture
of cyclic-interval partitions is obtained by actually drawing them on a circle as shown
in Fig. 5. Then it is clear that a cyclic-interval partition is uniquely determined by
the set of separators of the blocks. For the maximal partition 1̂n this set is empty,
while for all other cyclic-interval partitions there must be at least two separators.

5.3. Multivariate cumulants. In order to avoid the discussion of positivity (see
Remark 5.4 below) we notice that one can easily extend the definition of independence
to a purely algebraic setting without positivity. Thus in this section we will focus on
an algebraic cyclic probability space (A, φ, ω) without positivity structure, that is, A
is an algebra over C, φ is a linear functional and ω is a tracial linear functional.

Take copies Ak of A and define the nonunital algebraic free product
U = ∗

k∈N
Ak =

⊕
n∈N

⊕
(k1,...,kn)∈Nn

k1 ̸=···≠kn

Ak1 ⊗ · · · ⊗ Akn
.

Let π(i) : a 7→ a(i) denote the embedding of A into U as the i-th copy Ai. By the
universality of tensor products we can define (φ̃, ω̃) on U as follows: for n ⩾ 1, an
alternating tuple (k1, . . . , kn) ∈ Nn and ai ∈ Aki , i = 1, 2, . . . , n, set

φ̃(a1a2 · · · an) := φ(a1)φ(a2) · · ·φ(an),

ω̃(a1a2 · · · an) :=


ω(a1) if n = 1,
φ(a1)φ(a2) · · ·φ(an) if n ⩾ 2, k1 ̸= kn,
φ(ana1)φ(a2) · · ·φ(an−1) if n ⩾ 2, k1 = kn.
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One can check that ω̃ is a trace on U , φ = φ̃ ◦ π(i), ω = ω̃ ◦ π(i) and the family of
subalgebras {π(i)(A)}∞

i=1 is cyclic-Boolean independent in (U , φ̃, ω̃).

Remark 5.4 (Positivity). It is not clear under what conditions the product trace ω̃
preserves positivity. First observe that the trivial example ω = 0 shows that some
conditions are necessary. Indeed, if ω = 0 and a, b ∈ A are self-adjoint then ω̃((a(1) +
b(2))2) = 2φ(a)φ(b), which can be negative, although both φ and ω are positive.

This example suggests that in order to expect positivity of ω̃ one should at least
require ω(x∗x) ⩾ |φ(x)|2 or ω(x∗x) ⩾ φ(x∗x). Both conditions however are not
promoted to the cyclic free product. Although the proof of [3, Theorem 2.2] adapts
well to show ω̃(x∗x) ⩾ |φ̃(x)|2 for x ∈ U11 or x ∈ U22, where

U11 =
⊕

n⩾3

⊕
(k1,...,kn)∈Nn

k1 ̸=···≠kn

k1=kn=1

Ak1 ⊗ · · · ⊗ Akn

etc., the following example shows that positivity fails on elements mixing these sub-
spaces. Choose x, y, z ∈ A1 and w ∈ U22 and put a = x + ywz. Note that ywz is
alternating and we compute

ω̃(a∗a) = ω(x∗x) + ω̃(x∗ywz) + ω̃(z∗w∗y∗x) + ω̃(z∗w∗y∗ywz)
= ω(x∗x) + φ(zx∗y)φ(w) + φ(w∗)φ(y∗xz∗) + φ(zz∗)φ(w∗)φ(y∗y)φ(w)

and

φ̃(a∗a) = φ(x∗x) + φ̃(x∗ywz) + φ̃(z∗w∗y∗x) + φ̃(z∗w∗y∗ywz)
= φ(x∗x) + φ(x∗y)φ(w)φ(z) + φ(z∗)φ(w∗)φ(y∗x)

+ φ(z∗)φ(w∗)φ(y∗y)φ(w)φ(z).

Now choose x, y, z, w such that

ω(x∗x) = φ(x∗x), φ(z) = 0, φ(zx∗y), φ(w) ∈ R∖ {0}.

Such a choice is possible, e.g., when ω = φ is a tracial state: first choose a unitary u
such that φ(u) = 0 and set z = u, y = u∗, then for selfadjoint w and x we obtain

ω̃(a∗a) − φ̃(a∗a) = 2φ(x)φ(w) + |φ(w)|2

which can be made negative by an appropriate rescaling of x.
The positivity condition ω(x∗x) ⩾ |φ(x)|2 proves to be inappropriate as well. In

the last specification, we further choose x so that |φ(x)|2 < φ(x2) < 2|φ(x)|2. Then

ω̃(a∗a) − |φ̃(a)|2 = φ(x2) − |φ(x)|2 + 2φ(x)φ(w) + |φ(w)|2 .

Replacing x with λx, λ ∈ R, will change this value into[
φ(x2) − |φ(x)|2

] [
λ+ φ(x)φ(w)

φ(x2) − |φ(x)|2

]2
+ |φ(w)|2[φ(x2) − 2|φ(x)|2]

φ(x2) − |φ(x)|2 .

Taking λ = − φ(x)φ(w)
φ(x2)−|φ(x)|2 will make this value negative.

Both pairs (U , φ̃) and (U , ω̃) are exchangeability systems in the sense of [13, Defini-
tion 1.8] except that we are not assuming unitality, which however is not essential for
the theory of cumulants. For the first pair we will get Boolean cumulants Bπ which
are well known; therefore we will focus on (U , ω̃) from now on. The exchangeability
of (U , ω̃) means that, for any n ∈ N and a1, . . . , an ∈ A, the value of the function

Nn ∋ (i1, . . . , in) 7→ ω̃(a(i1)
1 a

(i2)
2 · · · a(in)

n ) ∈ C
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is determined by the kernel set partition π = κ(i1, . . . , in). This value is denoted
by ωπ(a1, . . . , an), which then gives an n-linear functional ωπ : An → C. For each
π ∈ P(n) a partitioned cumulant cπ : An → C is then defined by

cπ(a1, a2, . . . , an) =
∑

ρ∈P(n)
ρ⩽π

ωρ(a1, a2, . . . , an)µ(ρ, π),(5.5)

where µ is the Möbius function for the poset P(n). By [11, Lemma 4.18 (ii)] or
imitating the proof of [13, Proposition 4.11] we can prove that cπ = 0 if π ∈ P(n) ∖
CI(n). This vanishing property and the Möbius inversion of (5.5) imply that

(5.6) ω(a1a2 · · · an) =
∑

π∈CI(n)

cπ(a1, a2, . . . , an).

To compute the non-vanishing cumulants we distinguish three cases.
(i) Let π ∈ CI(n) and first assume that π ∈ I(n). Now if π < 1̂n then 1 ̸∼π n

and moreover 1 ̸∼ρ n for any ρ satisfying ρ ⩽ π. This allows us to replace ω̃
by φ̃ to obtain

cπ(a1, a2, . . . , an) =
∑
ρ⩽π

φρ(a1, a2, . . . , an)µ(ρ, π) = Bπ(a1, a2, . . . , an);

see [13, Proposition 4.11] for the last equality.
(ii) Let us assume next that π ∈ CI(n)∖ I(n). This means that π < 1̂n and that

1 ∼π n. In this case we cannot immediately replace ω by φ, but first must use
the traciality of ω and rotate the partition π into an element of I(n). Indeed
fix a cyclic permutation σ ∈ Sn such that σ ·π ∈ I(n). Then 1 ̸∼π n and also
1 ̸∼ρ n for any ρ ⩽ π and we have

cπ(a1, a2, . . . , an) = cσ·π(aσ−1(1), aσ−1(2), . . . , aσ−1(n))
= Bσ·π(aσ−1(1), aσ−1(2), . . . , aσ−1(n));

notice that the rotation cannot be reversed now because the Boolean cumu-
lants are nontracial.

(iii) Finally if π = 1̂n there is no direct formula but we infer from the moment-
cumulant formula (5.6) that

cn(a1, a2, . . . , an) = ω(a1, a2, . . . , an)−
∑

π∈CI(n),π<1̂n

Bσ·π(aσ−1(1), aσ−1(2), . . . , aσ−1(n)),

where for each π an appropriate cyclic permutation σ is chosen.

Remark 5.5. Note that for univariate cumulants the rotation does not change the
value of the cumulant and we can write

(5.7) ω(an) = cn(a) +
∑

π∈CI(n),π<1̂n

bπ(a),

where bπ(a) = Bπ(a, a, . . . , a) and cn(a) = c1̂n
(a, a, . . . , a).

We can see that the definition of cn(a) in Remark 5.5 coincides with that in (5.4).
This can be confirmed from the definition and uniqueness of cumulants, but here
we directly prove the formula (5.3) for cn(a) = c1̂n

(a, a, . . . , a) using the recurrence
relation (5.7). Decomposing CI(n) into I(n) and CI(n) ∖ I(n) we obtain∑

π∈CI(n),π ̸=1̂n

bπ(a) =
∑

π∈I(n),π ̸=1̂n

bπ(a) +
∑

k,ℓ⩾1
k+ℓ⩽n−1

bk+ℓ(a)
∑

σ∈I(n−k−ℓ)

bσ(a)
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= φ(an) − bn(a) +
∑

k,ℓ⩾1
k+ℓ⩽n−1

bk+ℓ(a)φ(an−k−ℓ).

Multiplying the above by zn and taking the sum over n in (5.7) yields

ma(z) = ca(z) +Ma(z) −Ba(z) +
∑

k,ℓ⩾1
bk+ℓ(a)zk+ℓ

∑
n⩾k+ℓ+1

φ(an−k−ℓ)zn−k−ℓ

= ca(z) +Ma(z) −Ba(z) + (zB′
a(z) −Ba(z))Ma(z) = ca(z) + zMa(z)B′

a(z).

6. Cyclic-Boolean infinite divisibility
This section is devoted to the definition and classification of infinite divisibility. Due
to the lack of a precise notion of positivity (see Remark 5.4), we are not able to
treat general ∗-algebras with a state and a tracial linear functional. Hence, we give
the definition of infinitely divisible distributions in the special setting of operators on
Hilbert spaces where the linear functional ω is chosen to be the trace.

Definition 6.1. Let H be a Hilbert space and φ a state on B(H). An element a ∈
T (H)sa is said to be cyclic-Boolean infinitely divisible if for any n ∈ N there ex-
ist a Hilbert space Hn and a state φn on B(Hn) and cyclic-Boolean i.i.d. elements
a1, . . . , an ∈ T (Hn)sa such that a with respect to (φ,TrH) has the same distribution
as a1 + · · · + an with respect to (φn,TrHn).

Suppose that a is a trace class selfadjoint operator and cyclic-Boolean ID. For each
n ⩾ 2, a equals the sum of certain cyclic-Boolean iid random variables an,1, . . . , an,n

in distribution, and let t = 1/n and denote g̃t = g̃an,i
and Gt = Gan,i . Let {λi}i∈I

be the set of mutually distinct eigenvalues of a and mi the multiplicity of λi. Setting
I0 = {i ∈ I : λi ̸= 0} we have

g̃a(z) =
∑
i∈I0

miλi

z(z − λi)
.

Moreover, let Ea be the spectral decomposition of a and pi = φ(Ea({λi})) ⩾ 0; then
we have

Ga(z) =
∑
i∈I′

pi

z − λi
, I ′ = {i ∈ I : pi > 0}.

For later use we also set
I ′

0 = I ′ ∩ I0.

By calculus, we see that Ga has a unique zero in each interval between neighboring
poles and has no other zeros off the real line. Hence the set {µj}j∈J of zeros of Ga is
contained in R and is interlacing with {λi}i∈I′ .

Lemma 6.2. The factorization

Ga(z) = 1
z

∏
j∈J

(
1 − µj

z

) ∏
i∈I′

(
1 − λi

z

)−1

holds for every z ∈ C∖ ({0} ∪ {λi}i∈I′).

Proof. When the set I ′ is finite, the conclusion is easily proved since Ga is a rational
function. We may then assume that I ′ and hence I ′

0 is an infinite set. We decom-
pose the set {λi}i∈I′

0
into the positive part {λ+

k }n+
k=1 and the negative part {λ−

k }n−
k=1

arranged in the way

λ−
1 < λ−

2 < · · · < 0 < · · · < λ+
2 < λ+

1 ,
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where n± ∈ N ∪ {0,∞}. By our assumption, n− or n+ is infinity. We rewrite the
function Ga into the form

Ga(z) = p

z
+

n+∑
k=1

p+
k

z − λ+
k

+
n−∑
k=1

p−
k

z − λ−
k

, p =
∑

i∈I′:λi=0
pi ∈ [0, 1],

where p±
k is the weight of λ±

k with respect to φ. Now introduce n±(ϵ) = max{k ⩾ 1 :
|λ±

k | > ϵ} < ∞ and then the truncated function

Gϵ
a(z) = p(ϵ)

z
+

n+(ϵ)∑
k=1

p+
k

z − λ+
k

+
n−(ϵ)∑
k=1

p−
k

z − λ−
k

, p(ϵ) = p+
∑

k:|λ+
k

|⩽ϵ

p+
k +

∑
k:|λ−

k
|⩽ϵ

p−
k .

The fact that n− or n+ is infinity implies that p(ϵ) > 0 for every ϵ > 0. Since Gϵ
a is a

rational function, we have

(6.1) Gϵ
a(z) = 1

z

n−(ϵ)∏
k=1

(
z − µ−

k (ϵ)
z − λ−

k

) n+(ϵ)∏
k=1

(
z − µ+

k (ϵ)
z − λ+

k

)
,

where µ±
k (ϵ) is the unique zero of Gϵ

a on the interval between λ±
k and λ±

k+1 for k =
1, 2, . . . , n±(ϵ) − 1 and µ±

n±(ϵ)(ϵ) is the unique zero of Ga on the interval between 0
and λ±

n±(ϵ).
In order to pass to the limit in (6.1), first note that n±(ϵ) → n± as ϵ → 0. Since

Gϵ
a converges locally uniformly to Ga on C ∖ {0, λ+

k , λ
−
k : k ⩾ 1}, we conclude that

µ±
k (ϵ) converges to µ±

k as ϵ → 0 for each k. From (the product version of) Weierstrass’
M-test (recall that |µ±

k (ϵ)| ⩽ |λ±
k |) we obtain

Ga(z) = 1
z

n−∏
k=1

(
z − µ−

k

z − λ−
k

) n+∏
k=1

(
z − µ+

k

z − λ+
k

)
,

the desired formula. □

Now we are able to characterize infinitely divisible measures with respect to cyclic-
Boolean independence. First, notice that taking the logarithmic derivative in Lemma
6.2 yields that

G′
a(z)

Ga(z) = −1
z

−
∑
i∈I′

0

λi

z(z − λi)
+

∑
j∈J

µj

z(z − µj) .

As before, let t = 1/n and denote g̃t = g̃an,i
and Gt = Gan,i

. Let {λi(t)}i∈I′
0(t) be the

set of (mutually distinct) non-zero poles of Gt. Since

Gt(z) = Ga(z)
(1 − t)zGa(z) + t

,

the set {λi(t)}i∈I′
0(t) is exactly the set of zeros of (1−t)zGa(z)+t. On the other hand,

the set of zeros of Gt is exactly the set of zeros of Ga, and hence
G′

t(z)
Gt(z)

= −1
z

−
∑

i∈I′
0(t)

λi(t)
z(z − λi(t))

+
∑
j∈J

µj

z(z − µj) .

By Theorem 4.2 we have

g̃a +G′
a

Ga
+ 1
z

= n

(
g̃t +G′

t

Gt
+ 1
z

)
and hence

g̃t = t g̃a +tG
′
a

Ga
− G′

t

Gt
+ t− 1

z
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= t
∑
i∈I0

miλi

z(z − λi)
+ t

−1
z

−
∑
i∈I′

0

λi

z(z − λi)
+

∑
j∈J

µj

z(z − µj)


−

−1
z

−
∑

i∈I′
0(t)

λi(t)
z(z − λi(t))

+
∑
j∈J

µj

z(z − µj)

 + t− 1
z

= t
∑
i∈I′

0

(mi − 1)λi

z(z − λi)
+ t

∑
i∈I0∖I′

0

miλi

z(z − λi)

− (1 − t)
∑
j∈J

µj

z(z − µj) +
∑

i∈I′
0(t)

λi(t)
z(z − λi(t))

.

Now, for each non-zero real α the number limz→α(z − α) g̃t(z) is non-negative, as it
is a positive integer if α is a non-zero eigenvalue of an,1 and zero otherwise.

Therefore, to cancel the negative coefficient −(1 − t) above, the only possibility
is that each non-zero µj must be a member of {λi}i∈I0 ∪ {λi(t)}i∈I′

0(t) and because
of interlacing of the zeros and poles of Ga, one sees that µj can not be included in
{λi}i∈I′

0
∪ {λi(t)}i∈I′

0(t) as it is a zero of Ga.
It is possible that µj = λi for some i ∈ I0 ∖ I ′

0. In this case, however, for t > 0
sufficiently small (namely, n sufficiently large) the coefficient tmi − (1 − t) is negative;
therefore, we conclude that µj = 0 for all j ∈ J or J = ∅, and hence #J = 0 or 1.
This happens only if #I ′ = 0, 1 or 2.

On the other hand, for i ∈ I ′
0 we have limz→λi

(z − λi) g̃t(z) = t(mi − 1) which
must be a non-negative integer for any t = 1/n. Therefore, we conclude that mi = 1
for all i ∈ I ′

0. For i ∈ I0 ∖ I ′
0 we have limz→λi

(z − λi) g̃t(z) = tmi, which cannot be
an integer for sufficiently small t, and hence I ′

0 = I0.
Now it remains to study the possible cases for I ′

0 = I0 = 0, 1 or 2.
Case 1: #I ′

0 = #I0 = 0 or 1. Then Ga(z) = 1/(z − α) for some α ∈ R and J = ∅,
and consequently g̃a(z) = α

z(z−α) and g̃t(z) = tα/(z − tα).
Case 2: #I ′

0 = #I0 = 2. Note that Ga cannot have a pole at 0 because it would
create a non-zero µj . Hence Ga(z) = p/(z − α) + (1 − p)/(z − β) for some α, β ̸=
0, α < β, 0 < p < 1, and Ga(0) = −p/α − (1 − p)/β = 0. The last condition yields
the restriction that α < 0 < β and Ga(z) = z/[(z − α)(z − β)]. Solving the equation
(1 − t)zGa(z) + t = 0 we obtain two solutions

λ±(t) =
t(α+ β) ±

√
t2(α+ β)2 − 4tαβ

2 .

The eigenvalues can be retrieved from the formula

g̃t(z) = λ+(t)
z(z − λ+(t)) + λ−(t)

z(z − λ−(t)) .

It is easy to see that the above cases are actually cyclic Boolean ID. Thus we arrive
to the following.

Theorem 6.3. Let H be a Hilbert space and φ be a state on T (H). An element a ∈
T (H)sa is cyclic-Boolean ID with respect to (φ,TrH) if and only if a has either

(i) only zero eigenvalues (that is, a = 0),
(ii) only one non-zero eigenvalue and its multiplicity is one, or
(iii) exactly two non-zero eigenvalues α, β, their multiplicities are one, αβ < 0 and

the distribution of a with respect to φ is
−α
β − α

δα + β

β − α
δβ .
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In the last case, for every n ⩾ 2 an n-th root of a has two non-zero eigenvalues αn, βn

given as the solutions to the equation

x2 − α+ β

n
x+ αβ

n
= 0,

and the distribution with respect to the state is
−αn

βn − αn
δαn

+ βn

βn − αn
δβn

.

Example 6.4. The matrix
A =

(
0 1
1 0

)
has eigenvalues {[1]1, [−1]1} and its distribution with respect to the unit vector e1 =
t(1, 0) is

1
2δ−1 + 1

2δ1.

By Theorem 6.3, the matrix A is cyclic-Boolean infinitely divisible with respect to
(⟨ · e1, e1⟩C2 ,TrC2).

7. Cyclic-monotone independence
7.1. Definition and example. We perform an investigation for monotone indepen-
dence in a spirit similar to cyclic-Boolean independence. To this end, we start from
a specific operator model inspired by the comb product of rooted graphs in Section
2.7.

Example 7.1. LetN ∈ N be a fixed number and assume that for each i ∈ {1, 2, . . . , N}
a finite-dimensional Hilbert space Hi with distinguished unit vector ξi ∈ Hi be given.
Denote by Pi : Hi → Hi the orthogonal projection onto Cξi and by φi the vector state
on B(Hi) induced by ξi. Let H = H1 ⊗ · · · ⊗HN , ξ = ξ1 ⊗ · · · ⊗ ξN and φ the vacuum
state on B(H) defined by ξ. This is the same setting as in Example 3.1 with the
additional requirement of finite dimensionality. Analogously to the embedding (3.1)
we introduce another embedding of B(Hi) into B(H):
(7.1) σi(A) = IH1 ⊗ · · · ⊗ IHi−1 ⊗A⊗ Pi+1 ⊗ · · · ⊗ PN .

Note that this embedding does not preserve trace class and therefore the construction
is restricted to finite dimensional spaces. It is known that the family {σi(B(Hi))}N

i=1
is monotonically independent with respect to φ; see [12, Theorem 8.9].

In addition, we can compute moments with respect to the trace. Again formula (3.2)
is crucial: for n ⩾ 2, a cyclically alternating tuple (i1, . . . , in) ∈ [N ]n and Ak ∈ B(Hik

),
if p ∈ [n] is such that ip−1 < ip > ip+1 (with the conventions i0 = in and in+1 = i1)
then direct computations entail

TrH(σi1(A1) · · ·σin
(An))

= φip
(Ap) TrH

[
σi1(A1) · · ·σip−1(Ap−1)σip+1(Ap+1) · · ·σin

(An)
]
.

Observe that if 2 ⩽ p ⩽ n then the assumption that (i1, . . . , in) ∈ In is alternating
is sufficient. However, if p = 1 or n then the assumption that (i1, . . . , in) ∈ In is
cyclically alternating is crucial. Indeed, consider for instance the alternating tuple
(3, 2, 3); then for A,C ∈ B(H3) and B ∈ B(H2)

TrH(σ3(A)σ2(B)σ3(C)) = TrH(σ3(CA)σ2(B)) = φ3(CA) TrH(σ2(B)),
which is different from φ3(A) TrH [σ2(B)σ3(C)] in general.

This example can be abstracted in the following way.
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Definition 7.2. Let (A, φ, ω) be a cncps, I a totally ordered set, and Î := {−∞}∪I an
enlargement of I, where −∞ is the minimum of Î. An ordered family of ∗-subalgebras
{Ai}i∈I of A is said to be cyclic-monotone independent if

(i) it is monotonically independent with respect to φ, that is, for any n ⩾ 2, any
alternating tuple (i1, . . . , in) ∈ In (namely i1 ̸= · · · ̸= in) and ak ∈ Aik

, k =
1, 2, . . . , n, if p ∈ [n] is such that ip−1 < ip > ip+1 (with the convention that
i0 = in+1 = −∞) then

φ(a1 · · · an) = φ(ap)φ(a1 · · · ap−1ap+1 · · · an);

(ii) for any n ⩾ 2, any cyclically alternating tuple (i1, . . . , in) ∈ In (namely
i1 ̸= · · · ≠ in ̸= i1) and ak ∈ Aik

, k = 1, 2, . . . , n, if p ∈ [n] is such that
ip−1 < ip > ip+1 (with the different convention that i0 = in and in+1 = i1)
then

ω(a1 · · · an) = φ(ap)ω(a1 · · · ap−1ap+1 · · · an).

Remark 7.3. In the case n = 2 condition ((ii)) of the preceding definition boils down
to multiplicativity of ω in the sense that

ω(a1a2) = ω(a1)φ(a2)

whenever a1 ∈ Ai1 and a2 ∈ Ai2 with i1 < i2.
For n ⩾ 3 it is important to insist on cyclically alternating tuples, see the observa-

tion at the end of Example 7.1.

Definition 7.4. Let (A, φ, ω) be a cncps and I a totally ordered set. An ordered family
of elements {ai}i∈I of A is said to be cyclic-monotone independent if so is {Ai}i∈I ,
where Ai is the ∗-algebra generated by ai without unit.

Example 7.5. Suppose that (a, b, c) is cyclic-monotone independent in (A, φ, ω). Then

φ(ba2bac2b) = φ(c2)φ(b)3φ(a3)

and
ω(ba2bac2b) = φ(c2)φ(b)φ(b2)ω(a3).

Remark 7.6. Cyclic-monotone independence already appeared in the random matrix
model in [5] (see also [20, 2] and Section 1), where independence was defined for
a pair of ∗-subalgebras and only for ω. For a random matrix model for monotone
independence see [4].

In [5] the trace functional ω is unbounded, because it can diverge in the large
dimensional limit, and therefore a domain for ω was specified. To avoid this problem
in the present paper we focus on finite dimensional Hilbert spaces and ω = Tr.

It should be noticed that Example 7.1 does not provide an i.i.d. operator model
even when Hi = K does not depend on i; for A ∈ B(K) the operators {σi(A)}N

i=1 are
identically distributed with respect to φ, but not with respect to ω, because

ω(σi(A)) = di−1 TrK(A),

where d = dim(K). In fact, we do not know of any non-trivial operator model for cyclic
monotone i.i.d. random variables and for this reason we do not see any meaningful
notions of cumulants and of infinitely divisible distributions.

7.2. Cyclic-monotone convolution. Similar to the cyclic-Boolean convolution,
for a, b in a cncps which are cyclic-monotone independent, we call the distribution of
the sum a+ b the cyclic-monotone convolution of (the distributions of) a and b. The
convolution formula can be verified in several ways.
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Theorem 7.7. Let (A, φ, ω) be a cncps and a, b ∈ A. Suppose that (a, b) is cyclic-
monotone independent. Then we have

g̃a+b(z) = g̃b(z) + F ′
b(z) g̃a(Fb(z)).

Algebraic proof. Expand (a+ b)n into

(a+ b)n = bn +
∑
k⩾1

q1,q2,...,qk+1⩾0
q1+···+qk+1+k=n

bq1abq2a · · · abqk+1 ,

and applying ω yields

ω((a+ b)n) = ω(bn) +
∑
k⩾1

q1,q2,...,qk+1⩾0
q1+···+qk+1+k=n

φ(bq1+qk+1)φ(bq2) · · ·φ(bqk )ω(ak).

Multiplying the above identity by z−n−1 and taking the summation over n yields

g̃a+b(z) = g̃b(z) +
∑
k⩾1

∑
q1,...,qk+1⩾0

φ(bq1+qk+1)
zq1+qk+1

φ(bq2)
zq2

· · · φ(bqk )
zqk

ω(ak)
zk+1

= g̃b(z) − z2G′
b(z)

∑
k⩾1

[zGb(z)]k−1ω(ak)
zk+1

= g̃b(z) − G′
b(z)

Gb(z)2

∑
k⩾1

Gb(z)k+1ω(ak)

= g̃b(z) + F ′
b(z) g̃a(Fb(z)).

Note here that the identity
∞∑

m⩾0,n⩾0

φ(bm+n)
zm+n

= −z2G′
b(z)

is used above. □

Analytic proof in the setting of Example 7.1: Schur complement approach. Let A ∈
B(H1) and B ∈ B(H2) be operators with block decompositions

A =
[
α a′

a Å

]
and B =

[
β b′

b B̊

]
according to the decomposition Hi = Cξi ⊕ H̊i as in (2.12) and let σ1(A) = A ⊗ P2
and σ2(B) = I1 ⊗B act on H1 ⊗H2 ≃ Cξ⊕H̊1 ⊕(H1 ⊗H̊2) according to Example 7.1,
i.e., if we denote by η1 : H̊1 → H1 the embedding and η∗

1 : H1 → H̊1 the projection,
then

σ1(A)ξ = αξ ⊕ a⊕ 0 σ2(B)ξ = βξ ⊕ 0 ⊕ (ξ1 ⊗ b)

σ1(A)̊h1 = (a′̊h1)ξ ⊕ Å̊h1 ⊕ 0 σ2(B)̊h1 = 0 ⊕ βh̊1 ⊕ (η1(̊h1) ⊗ b)

σ1(A)(h1 ⊗ h̊2) = 0
and

σ2(B)(h1 ⊗ h̊2) = (b′̊h2)(ξ∗
1h1)ξ ⊕ (b′̊h2)η∗

1(h1) ⊕ (h1 ⊗ B̊h̊2);
thus we obtain the block decompositions

σ1(A) =

α a′ 0
a Å 0
0 0 0

 , σ2(B) =

 β 0 ξ∗
1 ⊗ b′

0 βI̊1 η∗
1 ⊗ b′

ξ1 ⊗ b η1 ⊗ b I1 ⊗ B̊


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and together

σ1(A) + σ2(B) =

α+ β a′ ξ∗
1 ⊗ b′

a Å+ βI̊1 η
∗
1 ⊗ b′

ξ1 ⊗ b η1 ⊗ b I1 ⊗ B̊

 .
We compute the resolvent

(7.2) (z − σ1(A) − σ2(B))−1 =

 z − α− β −a′ −ξ∗
1 ⊗ b′

−a (z − β)I̊1 − Å −η∗
1 ⊗ b′

−ξ1 ⊗ b −η1 ⊗ b I1 ⊗ (zI̊2 − B̊)


−1

via the Schur complement. To this end, we first compute the lower resolvent

(7.3) L−1 =
[
(z − β)I̊1 − Å −η∗

1 ⊗ b′

−η1 ⊗ b I1 ⊗ (zI̊2 − B̊)

]−1

on H̊1 ⊕ (H1 ⊗ H̊2). The corresponding Schur complement of L is

SL = (z − β)I̊1 − Å− (η∗
1 ⊗ b′)(I1 ⊗ (zI̊2 − B̊)−1)(η1 ⊗ b)

= (z − β)I̊1 − Å− η∗
1I1η1 ⊗ b′(zI̊2 − B̊)−1b

= FB(z)I̊1 − Å.

If we denote by RÅ(FB(z)) = (FB(z)I̊1 − Å)−1 and RB̊(z) = (zI̊2 − B̊)−1 the resol-
vents of Å and B̊, respectively, then with the help of Banachiewicz’ formula (2.9) the
resolvent (7.3) can be written as

L−1 =
[

S−1
L S−1

L (η∗
1 ⊗ b′)(I1 ⊗ RB̊(z))

I1 ⊗ RB̊(z)(η1 ⊗ b)S−1
L (I1 ⊗ RB̊(z))

(
1 + (η1 ⊗ b)S−1

L (η∗
1 ⊗ b′)(I1 ⊗ RB̊(z))

)]
=

[
RÅ(FB(z)) RÅ(FB(z))η∗

1 ⊗ b′ RB̊(z)
η1 RÅ(FB(z)) ⊗ RB̊(z)b I1 ⊗ RB̊(z) + η1 RÅ(FB(z))η∗

1 ⊗ RB̊(z)bb′ RB̊(z)

]
.

Now we plug L−1 into Banachiewicz’ formula (2.9) for (7.2):

(z−σ1(A)−σ2(B))−1 =

 S−1 S−1 [
a′ ξ∗

1 ⊗ b′]L−1

L−1
[

a
ξ1 ⊗ b

]
S−1 L−1 + L−1

[
a

ξ1 ⊗ b

]
S−1 [

a′ ξ∗
1 ⊗ b′]L−1

 .
After some cancellations the Schur complement evaluates to

S = Fσ1(A)+σ2(B)(z)

= z − α− β −
[
−a′ −ξ∗

1 ⊗ b′]L−1
[

−a
−ξ1 ⊗ b

]
= z − α− β − a′(FB(z)I̊1 − Å)−1a− ξ∗

1ξ1b
′(zI̊2 − B̊)−1b

= FB(z) − α− a′(FB(z)I̊1 − Å)−1a

= FA(FB(z))
where we used the Schur complement representation (2.13). Finally the resolvent is

(z − σ1(A) − σ2(B))−1 = GA(FB(z))

 1 a′ RÅ(FB(z)) u′

RÅ(FB(z))a
u

FA(FB(z))L−1 + L2


where

u′ = [a′ RÅ(FB(z))η∗
1 + ξ∗

1 ] ⊗ b′ RB̊(z)
u = [η1 RÅ(FB(z))a+ ξ1] ⊗ RB̊(z)b
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L2 =
[

T Tη∗
1 + RÅ(FB(z))aξ∗

1 ⊗ b′ RB̊(z)
η1T + ξ1a

′ RÅ(FB(z)) ⊗ RB̊(z)b L22

]
with

T = (FB(z) − Å)−1aa′(FB(z) − Å)−1

L22 =
(
η1Tη

∗
1 + η1 RÅ(FB(z))aξ∗

1 + ξ1a
′ RÅ(FB(z))η∗

1 + ξ1ξ
∗
1
)

⊗ RB̊(z).

Finally the trace of the resolvent evaluates to

gσ1(A)+σ2(B)(z) = GA(FB(z)) + Tr(L−1) +GA(FB(z)) Tr(L2)

= GA(FB(z)) + gÅ(FB(z)) + Tr[(z − B̊)−1bb′(z − B̊)−1]
+ Tr(I1) gB̊(z) + Tr[η1(FB(z) − Å)−1η∗

1 ]

+GA(FB(z)) Tr[T (FB(z) − Å)−1aa′(FB(z) − Å)−1]

+GA(FB(z)) Tr(η1Tη
∗
1 + ξ1ξ

∗
1) Tr[(z − B̊)−1bb′(z − B̊)−1]

= GA(FB(z)) + gÅ(FB(z)) + d1 gB̊(z) + gÅ(FB(z))(F ′
B(z) − 1)

+GA(FB(z))[F ′
A(FB(z)) − 1 + F ′

A(FB(z))(F ′
B(z) − 1)]

= d1 gB̊(z) + gA(FB(z))F ′
B(z). □

We note here that another equivalent convolution formula can be given in terms of

la(z) = −
∑
n⩾1

ω(an)
nzn

.

The convolution formula in Theorem 7.7 then reads l′a+b = l′b +(la ◦Fb)′ and hence

la+b(z) = lb(z) + la(Fb(z)).

7.3. Limit theorem. In the setting of Example 7.1, let Hi be the same Hilbert space
K with d = dim(K) ∈ {2, 3, 4, . . . } and with a distinguished unit vector ξ and let
a(i) = σi(a) for some a ∈ B(K)sa. Let ω be the trace on H, Tr the trace on K and ψ
the vector state on K determined by ξ.

Our main object in this section is the sum

(7.4) bN = a(1) + · · · + a(N).

In order to see the convergence of trace moments of bN we start from some examples.
Since Tr(IK) = d, we obtain

ω(bN ) = Tr(a) + dTr(a) + · · · + dN−1 Tr(a) = [N ]d Tr(a),

where [N ]d = 1 + d+ d2 + · · · + dN−1, and

ω(b2
N ) =

∑
i<j

ω(a(i)a(j)) +
∑
i>j

ω(a(i)a(j)) +
∑

i

ω((a(i))2)

=
∑
i<j

ω(a(i))φ(a(j)) +
∑
i>j

φ(a(i))ω(a(j)) + [N ]d Tr(a2)

=
N∑

j=2

dj−1 − 1
d− 1 Tr(a)ψ(a) +

N∑
i=2

di−1 − 1
d− 1 Tr(a)ψ(a) + [N ]d Tr(a2)

= 2
d− 1

[
d(dN−1 − 1)

d− 1 − (N − 1)
]

Tr(a)ψ(a) + [N ]d Tr(a2)

= 2
d− 1([N ]d −N) Tr(a)ψ(a) + [N ]d Tr(a2).
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A similar computation yields that

ω(b3
N ) = 6

[
[N ]d −N

(d− 1)2 − N(N − 1)
2(d− 1)

]
Tr(a)ψ(a)2 + 3

d− 1([N ]d −N) Tr(a2)ψ(a)

+ 3
d− 1([N ]d −N) Tr(a)ψ(a2) + [N ]d Tr(a3).

Therefore, the normalized traces converge as N → ∞ without rescaling of bN :

d−Nω(bN ) → Tr(a)
d− 1 ,

d−Nω(b2
N ) → 2

(d− 1)2 Tr(a)ψ(a) + 1
d− 1 Tr(a2),

d−Nω(b3
N ) → 6

(d− 1)3 Tr(a)ψ(a)2 + 3
(d− 1)2 Tr(a2)ψ(a)

+ 3
(d− 1)2 Tr(a)ψ(a2) + 1

d− 1 Tr(a3).

In order to describe the general situation, we need some concepts on ordered set
partitions.

Definition 7.8. Let k ∈ N.
(i) An ordered set partition of [k] is a tuple π = (B1, B2, . . . , Bp) of subsets of [k]

such that {B1, . . . , Bp} is a set partition of [k]; that is, B1, . . . , Bp are non-
empty and mutually disjoint subsets of [k], and their union is [k]. The length
p of π is denoted by |π|. The set of ordered set partitions of [k] is denoted by
OP(k).

(ii) For a tuple i = (i1, . . . , ik) ∈ Nk, the ordered kernel set partition ker(i) ∈
OP(k) is defined as follows: first, pick the smallest value p1 among i1, . . . , ik
and then define the subset B1 = {j ∈ [k] : ij = p1}; secondly, pick the second
smallest value p2 among i1, . . . , ik and define the subset B2 = {j ∈ [k] :
ij = p2}; continuing this procedure until the end we arrive at an ordered set
partition (B1, B2, . . . ), which is denoted by ker(i).

Example 7.9.
ker(6, 3, 2, 3, 6) = ({3}, {2, 4}, {1, 5}),

ker(2, 7, 4, 7, 4, 2, 4) = ({1, 6}, {3, 5, 7}, {2, 4}).

For further information on ordered (kernel) set partitions the reader is referred to
[11].

For an ordered set partition π of [k] there exists a unique packed word, i.e., a tuple
i(π) = (i1(π), . . . , ik(π)) ∈ [|π|]k such that π = ker(i(π)). Using this tuple we define
ω(π) to be ω(a(i1(π)) · · · a(ik(π))).

Example 7.10. If π = ({1, 3}, {2}) then i(π) = (1, 2, 1) and

ω(π) = ω(a(1)a(2)a(1)) = φ(a) Tr(a2).
If π = ({3}, {2, 4, 6}, {1, 5}) then i(π) = (3, 2, 1, 2, 3, 2) and

ω(π) = ω(a(3)a(2)a(1)a(2)a(3)a(2)) = φ(a)φ(a)φ(a3) Tr(a).

With those notions, we have

ω(bk
N ) =

∑
π∈OP(k)

∑
i=(i1...,ik)∈[N ]k

ker(i)=π

ω(a(i1) · · · a(ik))
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=
∑

π∈OP(k)

∑
i=(i1...,ik)∈[N ]k

ker(i)=π

dmin{i1,...,ik}−1ω(π)

=
∑

π∈OP(k)

α|π|(d,N)ω(π),

where
αp(d,N) :=

∑
(j1,...,jp)∈[N ]p

j1<···<jp

dj1−1, N ⩾ p; αp(d,N) := 0, 0 ⩽ N < p.

In order to investigate the asymptotics of ω(bk
N ) it suffices to understand the func-

tion αk(d,N).

Lemma 7.11. For each k ∈ N there exists a polynomial Pk in two variables such that

αk(d,N) = dN

(d− 1)k
+ Pk((d− 1)−1, N), d ⩾ 2, N ⩾ 0.

Proof. The proof goes by induction on k. For k = 1, α1(d,N) = (dN − 1)/(d − 1),
and hence P1(x, y) = −x. For general k ⩾ 2 we proceed as

αk(d,N) =
N∑

j=1

∑
(j1,...,jk−1)∈[j−1]k−1

j1<···<jk−1

dj1−1 =
N∑

j=1
αk−1(d, j − 1)

=
N∑

j=1

[
dj−1

(d− 1)k−1 + Pk−1((d− 1)−1, j − 1)
]

= dN

(d− 1)k
− 1

(d− 1)k
+

N∑
j=1

Pk−1((d− 1)−1, j − 1), N ⩾ 1.

By Faulhaber’s formula and induction hypothesis, there is a polynomial Qk(x, y) such
that Qk(x, 0) = 0 and

Qk(x,N) =
N∑

j=1
Pk−1(x, j − 1), N ⩾ 1,

which implies the desired formula for N ⩾ 1 by taking Pk(x, y) = −xk + Qk(x, y).
Since Qk(x, 0) = 0 the formula holds for N = 0 as well. □

By Lemma 7.11 we obtain the limit

lim
N→∞

d−Nαk(d,N) = 1
(d− 1)k

and conclude the following.

Theorem 7.12. In the setting above we have

(7.5) lim
N→∞

d−Nω(bk
N ) =

∑
π∈OP(k)

ω(π)
(d− 1)|π| .

Thus the empirical eigenvalue distributions of bN converge (in the sense of mo-
ments) to a probability measure whose k-th moment is the above limit. Of course the
empirical eigenvalue distributions of the rescaled sum N−1/2bN converge weakly to δ0,
which means that the number of eigenvalues of N−1/2bN outside a fixed neighborhood
of 0 is of the order o(dN ). Combining this with the monotone CLT, which asserts that
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vacuum spectral distribution of N−1/2bN weakly converges an arcsine distribution, it
turns out that the vacuum vector captures a relatively small number of eigenvalues
of N−1/2bN that lie outside the neighborhood of 0.

The limit moments (7.5) depend on a lot of information about trace and vacuum
moments of the original matrix a. This is in sharp contrast with the fact that if
ψ(a) = 0 and ψ(a2) = 1 then the distribution of the rescaled sum N−1/2bN with
respect to the vacuum state φ converges weakly to the same arcsine law.

We come back to the original model of comb product graphs in Section 2.7 (cf:
Example 7.1), and compute the limit empirical eigenvalue distribution of the adja-
cency matrix of the iterated comb product of the complete graph K2. Even for this
simplest graph, the limit moments (7.5) are not explicit; they only satisfy a recurrence
relation. Fortunately, we can describe the limit distribution with the help of work of
Smyth [21], who defined a distribution function L+ : [0,∞) → [0, 1) (denoted as F
therein) characterized by the property that L+ is strictly increasing, L+(0) = 0 and

|2L+(x) − 1| = L+(|x− x−1|), x > 0.
Let λ+ be the distribution associated with L+ and λ the symmetrization of λ+. It is
known that L+ is continuous and hence λ has no atoms.

Theorem 7.13. Let AN be the adjacency matrix of the N -fold comb product of (K2, o)
with itself. Then the empirical eigenvalue distribution of AN converges weakly to λ as
N → ∞.

Proof. In the notation of this section, we are dealing with

K = C2, a =
(

0 1
1 0

)
, and ξ =

(
1
0

)
.

As already verified, the limiting p-th moment of bN is described by

(7.6)
∑

π∈OP(p)

ω(π),

where ω(π) in (7.5) is determined by the moment sequence {ω(ap)}p⩾0 =
(2, 0, 2, 0, . . . ) = {2ψ(ap)}p⩾0. It is easy to see that ω(π) = 0 for all π ∈ OP(p) if p is
odd, and hence all odd moments vanish. We will compute the numbers

γn,k :=
∑

π∈OP(2n),|π|=k

ω(π).

The very definition of ω(π) shows that γn,1 = 2 and ω(π) is either 0 or 2. Below we
identify [p] with Zp regarded as points on a circle. Let p ⩾ 2, then a maximal arc in
a subset B ⊂ Zp is a maximal cyclic interval I ⊆ Zp contained in B.

Any subset B ⊂ Zp is a union of maximal arcs of B in Zp (see Fig. 6). This notion
is important since for π = (B1, . . . , Bk) ∈ OP(2n) the factorization

(7.7) ω(π) = ω(π|[2n]∖Bk
)

∏
I:maximal arc of Bk in Z2n

ψ(a#I)

holds. Observe from the repeated use of (7.7) that ω(π) = 2 if and only if
(a) each maximal arc of Bk in [2n] ≃ Z2n has even size,
(b) each maximal arc of Bi in [2n]∖(Bi+1 ∪· · ·∪Bk) ≃ Z2n−

∑k

j=i+1
#Bj

has even
size for all i = 1, 2, . . . , k − 1.

Note that these conditions imply that all Bi have even size. Moreover, since Bi are
not empty, we must have 2 ⩽ #Bi ⩽ 2n− 2k + 2 for all i ∈ [k].

To find a recursive formula for γn,k, we count the number ξn,m of all subsets Bk ⊂
[2n] satisfying ((a)) and with #Bk = 2m for each 1 ⩽ k ⩽ n and 1 ⩽ m ⩽ n− k + 1.
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•3

•2•1
◦8

•7

•
6 ◦

5
•

4

⋆ ⋆ ◦ ⋆ ◦

Figure 6. Bk = {1, 2, 3, 4, 6, 7} ⊂ [8] and its unfolded line, cut
between 1 and 8. The maximal arcs of Bk in [8] are {1, 2, 3, 4} and
{6, 7}.

◦3

◦2•1
•8

◦7

◦
6 •

5
•

4

and •3

◦2◦1
•8

•7

◦
6 ◦

5
•

4

◦ ◦ ⋆ ◦ ◦ ⋆

Figure 7. {1, 4, 5, 8} ⊂ [8] and its counterclockwise rotation {3, 4, 7, 8}

As in Fig. 6, two neighboring elements • of Bk can be joined to a single element ⋆ and
the elements on the circle can be cut between 1 and 2n and be opened to a line, so
the problem comes to counting the number of arranging m elements ⋆ and 2n − 2m
elements ◦ on one line; however, subsets like Bk = {1, 4, 5, 8} do not correspond to such
a line arrangement, so we adjust such a case by rotating the circle counterclockwise
as in Fig. 7. Therefore, a line arrangement of m elements ⋆ and 2n− 2m elements ◦
corresponds to a single Bk if it ends with ◦, while it corresponds to two Bk’s if it ends
with ⋆. Altogether, we arrive at

ξn,m =
(
m+ 2n− 2m− 1

m

)
+ 2

(
m+ 2n− 2m− 1

m− 1

)
=

(
2n−m

m

)
2n

2n−m
.

From this counting, (7.7) gives the recursive formulas

γn,k =
∑

Bk⊂[2n]
2⩽#Bk⩽2n−2k+1

Bk satisfies ((a))

γn− 1
2 #Bk,k−1 =

n−k+1∑
m=1

ξn,mγn−m,k−1

=
n−k+1∑

m=1

(
2n−m

m

)
2n

2n−m
γn−m,k−1 =

n−1∑
ℓ=k−1

(
n+ ℓ

n− ℓ

)
2n
n+ ℓ

γℓ,k−1, n ⩾ k ⩾ 2,

(7.8)

with γn,1 = 2 for n ⩾ 1. Let

βn :=
n∑

k=1
γn,k, n ⩾ 1; β0 := 1.
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Note that βn is the limiting moment (7.6) of order p = 2n. The recursive formula
(7.8) implies

(7.9) βn =
n−1∑
ℓ=0

(
n+ ℓ

n− ℓ

)
2n
n+ ℓ

βℓ, n ⩾ 1,

and thus βn satisfies the recurrence in [22, Theorem 6] and hence coincides with the 2n-
th moment of λ. Some examples are: {βn}7

n=1 = {2, 10, 80, 874, 12092, 202384, 3973580}.
It then suffices to show the determinacy of the moment problem to conclude the

weak convergence. According to Lemma 7.14 below, one easily sees Carleman’s con-
dition ∑

n⩾1
β

− 1
2n

n = ∞,

which shows that the moment problem for (7.6) is determinate. □

Lemma 7.14. Let {βn}n⩾0 be the sequence defined by (7.9) with β0 = 1. There exists
C > 0 such that the inequality βn ⩽ (Cn)2n holds for all n ⩾ 1.

Remark 7.15. The proof below shows that C = 11 suffices. Moreover, according
to OEIS A048286, a more precise asymptotics βn ∼ c(2/(e log 2))nnn+ 1

2 − log 2
4 holds,

where c = 1.6463....

Proof. We proceed by induction using the recursion formula (7.9) and Stirling’s for-
mula √

2πnn+1/2e−n ⩽ n! ⩽ enn+1/2e−n, n ⩾ 1.
Let n ⩾ 2. We adopt the notation 00 = 1. Assuming the desired inequality holds until
n− 1 for some constant C > 1, one has

βn = 2 +
n−1∑
ℓ=1

(
n+ ℓ

n− ℓ

)
2n
n+ ℓ

βℓ ⩽ 2 + 2
n−1∑
ℓ=1

(
n+ ℓ

n− ℓ

)
(Cℓ)2ℓ

⩽ 2 + e

π
√

2

n−1∑
ℓ=1

(n+ ℓ)n+ℓ+1/2
√
ℓ22ℓ(n− ℓ)n−ℓ+1/2

C2ℓ ⩽ 2 + e

π
√

2

n−1∑
ℓ=1

(n+ ℓ)n+ℓ+1/2

22ℓ(n− ℓ)n−ℓ+1/2C
2ℓ.

We split the sum into the two parts 1 ⩽ ℓ ⩽ n − 4 and n − 3 ⩽ ℓ ⩽ n − 1 (the
arguments below are valid even for 2 ⩽ n ⩽ 4 by setting the irrelevant terms to be
0). The first part is estimated as

n−4∑
ℓ=1

(n+ ℓ)n+ℓ+1/2

22ℓ(n− ℓ)n−ℓ+1/2C
2ℓ ⩽

n−4∑
ℓ=1

(2n)n+n−4+1/2

22ℓ4n−ℓ
C2ℓ ⩽

1
n

n−4∑
ℓ=1

n2nC2ℓ

⩽
n− 4
nC8 n

2nC2n ⩽
1
C2n

2nC2n,

and the second part is estimated as
n−1∑

ℓ=n−3

(n+ ℓ)n+ℓ+1/2

22ℓ(n− ℓ)n−ℓ+1/2C
2ℓ ⩽

3
C2

(2n)2nC2n

22n−6 = 3 · 26

C2 n2nC2n.

Obviously, 2 ⩽ 1
C2

e
π

√
2n

2nC2n. Putting everything together, we obtain

βn ⩽
194e
C2π

√
2

(Cn)2n.

By taking C > 1 such that C2 ⩾ 194 e
π

√
2 (C = 11 suffices) we obtain βn ⩽ (Cn)2n. □
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