

ALGEBRAIC

COMBINATORICS

Brandon Dong, Hannah Graff, Joshua Mundinger, Skye Rothstein \& Lola
Vescovo
Almost all wreath product character values are divisible by given primes
Volume 6, issue 6 (2023), p. 1519-1531.
https://doi.org/10.5802/alco. 313

© The author(s), 2023.
(c) EY This article is licensed under the Creative Commons Attribution (CC-BY) 4.0 License.
http://creativecommons.org/licenses/by/4.0/

Almost all wreath product character values are divisible by given primes

Brandon Dong, Hannah Graff, Joshua Mundinger, Skye
Rothstein \& Lola Vescovo

Abstract

For a finite group G with integer-valued character table and a prime p, we show that almost every entry in the character table of $G \imath S_{N}$ is divisible by p as $N \rightarrow \infty$. This result generalizes the work of Peluse and Soundararajan on the character table of S_{N}.

1. Introduction

Let S_{N} be the symmetric group on N letters. The complex irreducible characters of S_{N} were calculated by Frobenius in 1900; in particular, Frobenius showed that the characters are integer-valued [1]. In 2019, Alex Miller investigated the distribution of the parity of entries of the character table of S_{N}. He made the remarkable conjecture that for any prime p and exponent $\ell \geqslant 1$, the proportion of entries of the character table of S_{N} divisible by p (and later p^{ℓ} for $\ell \geqslant 1$) tends to 1 as $N \rightarrow \infty[7,6]$. This conjecture was recently proved by Peluse and Soundararajan in the case $\ell=1$ in [8].

This leaves the question of investigating the distribution of residues modulo p for more general finite groups with integer-valued character tables. For a fixed group G with integer-valued character table, a natural infinite family of such is the wreath product $G \imath S_{N}$ as $N \rightarrow \infty$. When G has integer-valued character table, it is known that the characters of $G \imath S_{N}$ are also integer-valued [4, Corollary 4.4.11]. These families of wreath products include the Weyl group of type B_{N}, when $G=\mathbb{Z} / 2 \mathbb{Z}$, and wreath products S_{M} \ S_{N} of symmetric groups.

Our main result is a generalization of Peluse and Soundararajan's theorem:
Theorem (see Theorem 3.9 below). Let G be a group with integer-valued character table and let $G \backslash S_{N}$ be the wreath product of G with S_{N}. For all primes p, the proportion of entries in the character table of $G \backslash S_{N}$ which are divisible by p tends to 1 as $N \rightarrow \infty$.

The proof relies on the combinatorics of the representations of $G \imath S_{N}$. If G has k conjugacy classes, then conjugacy classes and representations of G 亿 S_{N} are both naturally labelled by k-multipartitions of N. One of the key inputs is characterizing when two elements of $G \imath S_{N}$ have columns in the character table congruent modulo p. In Lemma 3.2, we give a combinatorial characterization directly generalizing the corresponding criterion for S_{N}.

It is known that the character tables of all Weyl groups are integer-valued. The Weyl groups of type A are the symmetric groups, where our question was answered by Peluse and Soundararajan. The Weyl groups of type B_{N} and C_{N} are both equal to

[^0]$\mathbb{Z} / 2 \mathbb{Z} \imath S_{N}$, handled by our main theorem. The only remaining infinite family of Weyl groups is that of type D. In Section 4, we also show that the proportion of character values of the Weyl group of type D_{N} divisible by a prime p tends to 1 as $N \rightarrow \infty$.

2. Preliminaries

2.1. Representation Theory of the Wreath Product. Let G be a finite group with integer-valued character table and let S_{N} be the symmetric group on N letters.

Definition 2.1. The wreath product of G with S_{N}, denoted G 亿 S_{N}, is the group of $N \times N$ permutation matrices with nonzero entries in G.

We begin by recalling the representation theory of $G \imath S_{N}$. The representation theory of wreath products was first studied in Specht's dissertation [11], anticipated by Young's work on the case $G=\mathbb{Z} / 2 \mathbb{Z}$ [12]; see also [4, 13] for more modern treatments. If we take the representation theory of G as input data and let N vary, the representation theory has structural similarities to the representation theory of S_{N}, the case when $G=1$. While representations and conjugacy classes of the symmetric group are labelled by partitions of N, representations and conjugacy classes of the wreath product are labelled by multipartitions:

Definition 2.2. $A k$-multipartition of an integer N is $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ where λ_{i} is a partition for all i such that $\sum_{i=1}^{k}\left|\lambda_{i}\right|=N$.

We now describe how to label conjugacy classes of $G \backslash S_{N}$. For an element of $G \imath S_{N}$, assign to each cycle in its projection to S_{N} a conjugacy class of G, called the cycle product, as follows: if $\left(i_{1} i_{2} \cdots i_{m}\right)$ is a cycle of σ, then the cycle product of $\left(g_{1}, g_{2}, \ldots, g_{N}\right) \sigma \in G \backslash S_{N}$ corresponding to $\left(i_{1} i_{2} \cdots i_{m}\right)$ is defined to be the conjugacy class of $g_{i_{m}} \cdots g_{i_{2}} g_{i_{1}}[4, ~(4.2 .1)]$.

Proposition 2.3 ([4, Theorem 4.2.8]). If G has k conjugacy classes, then the conjugacy classes of $G \imath S_{N}$ are indexed by k-multipartitions of N. Given $x \in G \imath S_{N}$, the multipartition λ corresponding to x is formed as follows: for each cycle in x of length ℓ, if the corresponding cycle product is the ith conjugacy class of G, then add a part of size ℓ to λ_{i}.

One can check the assignment of a conjugacy class to a multipartition is welldefined by checking under conjugation by S_{N} and by diagonal matrices $G^{N} \subseteq G \imath S_{N}$. Conjugating an element of $G \backslash S_{N}$ by S_{N} does not change the set of cycle products at all. If $\left(g_{1}, \ldots, g_{N}\right) \in G^{N}$ and $(12 \cdots N)$ is an N-cycle, the conjugate of $(12 \cdots N)\left(g_{1}, g_{2}, \ldots, g_{N}\right)$ by $(g, 1, \ldots, 1)$ is $(12 \cdots N)\left(g_{1} g^{-1}, g_{2}, \ldots, g g_{N}\right)$; these two elements have conjugate cycle products $g_{N} \cdots g_{2} g_{1}$ and $g\left(g_{N} \cdots g_{2} g_{1}\right) g^{-1}$. The general case of conjugation by G^{N} reduces to the above case. We will not need to use the specific form of this bijection in this paper; it is used in the proofs of character formulas in Propositions 2.4 and 2.11, which we omit.

To find the complex irreducible representations of $G \imath S_{N}$, we need the complex irreducible representations of G as input; call the irreducible G-representations V_{1}, \ldots, V_{k}.

Proposition 2.4 ([4, Theorem 4.4.3]). If G has k conjugacy classes, then the irreducible representations of $G \backslash S_{N}$ are in bijection with k-multipartitions of N. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ a k-multipartition of N, let $a_{i}=\left|\lambda_{i}\right|$ and $G_{a}=G \imath S_{a}$. Then the irreducible representation of $G \backslash S_{N}$ corresponding to λ is

$$
V^{\lambda}=\operatorname{Ind}_{G_{a_{1}} \times \cdots \times G_{a_{k}}}^{G_{N}}\left(\boxtimes_{i=1}^{k}\left(S^{\lambda_{i}} \otimes V_{i}^{\otimes a_{i}}\right)\right)
$$

where $S^{\lambda_{i}}$ is the Specht module for S_{N} corresponding to λ_{i}.

Character values of wreath products can be calculated using a modified version of the Murnaghan-Nakayama rule for the symmetric group. Let χ^{λ} be the character of V^{λ} and χ_{μ}^{λ} be the value of χ^{λ} on the conjugacy class corresponding to μ. Then χ_{μ}^{λ} is calculated by decomposing the Young diagrams of the partitions λ_{i} for all i using rimhooks:
Definition 2.5. A rimhook of a k-multipartition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ consists of k adjacent boxes in the Young diagram of a single λ_{i} such that no other boxes are remaining south or east after the rimhook has been removed and no box in the rimhook has a southeast neighbor.

Figure 1. Examples of three invalid and one valid rimhooks in $\lambda=\left(\left(3^{1} 2^{1}\right)\right)$.

DEFINITION 2.6. For k-multipartitions λ and μ, a rimhook decomposition of λ by μ is obtained by repeatedly removing rimhooks in λ according to a fixed ordering of the parts of μ. Further, we define $R H D(\lambda, \mu)$ to consist of all rimhook decompositions of λ by μ.

As in the Murnaghan-Nakayama rule for the usual symmetric group, formulas for irreducible characters involve the height of a rimhook decomposition:

Definition 2.7. The height of a rimhook is one less than the number of rows included in that rimhook. The height of a rimhook decomposition ρ, denoted ht (ρ), is the sum of the heights of all rimhooks in the decomposition.

The Murnaghan-Nakayama rule can be modified for wreath products as follows:
Proposition 2.8 ([4, Theorem 4.4.10]). Let λ and μ be k-multipartitions of N. Let $\chi^{1}, \chi^{2}, \ldots, \chi^{k}$ be the irreducible characters of G and $c_{1}, c_{2} \ldots, c_{k}$ the conjugacy classes of G. For $\rho \in R H D(\lambda, \mu)$, let $\psi(\rho)$ be defined by

$$
\psi(\rho)=\prod_{i=1}^{k} \prod_{j=1}^{k}\left(\chi^{i}\left(c_{j}\right)^{\#\left\{\text { rimhooks } h \in \rho \text { from } \mu_{j} \text { in } \lambda_{i}\right\}}\right) .
$$

Then

$$
\chi_{\mu}^{\lambda}=\sum_{\rho \in R H D(\lambda, \mu)}(-1)^{h t(\rho)} \psi(\rho) .
$$

The permutation module characters of wreath products form another basis for the space of class functions of $G \imath S_{N}$ that is easier to work with.

Definition 2.9. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be a k-multipartition of N and let $a_{i}=\left|\lambda_{i}\right|$. For each λ_{i}, let $S_{\lambda_{i}}$ be the Young subgroup of $S_{a_{i}}$ corresponding to λ_{i} and let $G_{\lambda_{i}}=G \imath S_{\lambda_{i}}$. Then the permutation module M^{λ} for $G \imath S_{N}$ is defined by

$$
M^{\lambda}=\operatorname{Ind}_{G_{\lambda_{1}} \times \cdots \times G_{\lambda_{k}}}^{G 2 S_{N}}\left(\boxtimes_{i=1}^{k} V_{i}^{\otimes a_{i}}\right)
$$

There is a character formula for M^{λ} using row decompositions instead of rimhook decompositions. It is as follows:

Definition 2.10. Let λ and μ be k-multipartitions of N. A row decomposition of λ by μ is a function $\rho:\{$ rows of $\mu\} \rightarrow\{$ rows of $\lambda\}$ such that if r is a row of λ, then the rows in $\rho^{-1}(r)$ have the same total length as r. The set of all row decompositions of λ by μ is denoted $R D(\lambda, \mu)$.

We will think of row decompositions of λ by μ as a tiling of the Young diagrams of λ by rows, where rows of μ are placed in a fixed ordering.

Figure 2. All valid row decompositions of $(\square \square, \square)$ by $(31,21)$. The numbers in the boxes indicate the order in which parts of μ are placed into rows of λ, with fixed right-to-left placement.

Proposition 2.11. Let λ and μ be k-multipartitions of N. Let $\chi^{1}, \chi^{2}, \ldots, \chi^{k}$ be the irreducible characters of G and c_{1}, \ldots, c_{k} the conjugacy classes of G. For $\rho \in R D(\lambda, \mu)$, let $\alpha(\rho)$ be defined by

$$
\alpha(\rho)=\prod_{i=1}^{k} \prod_{j=1}^{k}\left(\chi^{i}\left(c_{j}\right)^{\#\left\{\text { rows from } \mu_{j} \text { placed into } \lambda_{i} \text { by } \rho\right\}}\right) .
$$

Then the character for permutation module M^{λ} at μ is

$$
M_{\mu}^{\lambda}=\sum_{\rho \in R D(\lambda, \mu)} \alpha(\rho)
$$

The proof follows from the character formula for induced representations.
We now describe the change-of-basis between irreducible and permutation characters.

Definition 2.12. The dominance order on partitions is defined by $\lambda \succcurlyeq \eta$ if the row lengths $\lambda^{1} \geqslant \lambda^{2} \geqslant \ldots$ and $\eta^{1} \geqslant \eta^{2} \geqslant \ldots$ of λ and η satisfy $\sum_{i=1}^{j} \lambda^{i} \geqslant \sum_{i=1}^{j} \eta^{i}$ for all $j \geqslant 1$. The dominance order on k-multipartitions is defined by $\lambda \succcurlyeq \eta$ if and only if $\lambda_{i} \succcurlyeq \eta_{i}$ for all i.
Lemma 2.13. The matrix of multiplicities $\left[M^{\lambda}: V^{\eta}\right]$ of the irreducible representations of $G \imath S_{N}$ in permutation modules is unimodular and lower-triangular with respect to dominance order.

Proof. Recall that the Kostka numbers $K^{\beta, \gamma}$ for β, γ partitions of N are defined by

$$
M^{\beta}=\operatorname{Ind}_{S_{\beta}}^{S_{N}} 1=\bigoplus_{\gamma}\left(V^{\gamma}\right)^{\oplus K^{\gamma, \beta}}
$$

where S_{β} is the Young subgroup corresponding to β and V^{γ} is the Specht module corresponding to γ. Note that our notation for M^{β} and V^{γ} agrees with that of wreath products G \{ S_{N} when $G=1$. The Kostka numbers satisfy $K^{\beta, \beta}=1$ and $K^{\gamma, \beta}>0$ if and only if $\gamma \succcurlyeq \beta$ in dominance order [5, I, (6.5)].

We claim that

$$
\begin{equation*}
M^{\lambda}=\bigoplus_{\eta}\left(V^{\eta}\right)^{\oplus c(\lambda, \eta)}, \quad c(\lambda, \eta)=\left(\prod_{i=1}^{k} K^{\eta_{i}, \lambda_{i}}\right) \tag{1}
\end{equation*}
$$

By Definition 2.9, if $a_{i}=\left|\lambda_{i}\right|$ for all i and $H=G_{a_{1}} \times G_{a_{2}} \times \cdots \times G_{a_{k}}$, then

$$
M^{\lambda}=\operatorname{Ind}_{G_{\lambda}}^{G_{N}}\left(\boxtimes_{i=1}^{k} V_{i}^{\otimes a_{i}}\right)=\operatorname{Ind}_{H}^{G_{N}}\left(\boxtimes_{i=1}^{k} M^{\lambda_{i}} \otimes V_{i}^{\otimes a_{i}}\right),
$$

where $S_{a_{i}}$ acts diagonally on the tensor product $M^{\lambda_{i}} \otimes V_{i}^{\otimes a_{i}}$ and $G^{a_{i}}$ acts naturally on $V_{i}^{\otimes a_{i}}$. Then (1) follows from multilinearity of the tensor product and linearity of induction.

Now since the matrix of Kostka numbers is unimodular and upper-triangular with respect to dominance order, the matrix $\{c(\lambda, \mu)\}_{\lambda, \mu}$ is unimodular and lowertriangular with respect to dominance order.
2.2. Asymptotics of Partitions. We recall a form of the Hardy-Ramanujan asymptotic for the number of partitions of N, denoted $p(N)$.

Proposition 2.14 ([3, (1.36)]). If $\delta>0$, then

$$
\left(\frac{2 \pi}{\sqrt{6}}-\delta\right) \sqrt{N} \leqslant \log p(N) \leqslant\left(\frac{2 \pi}{\sqrt{6}}+\delta\right) \sqrt{N}
$$

for sufficiently large N.
Let $p_{k}(N)$ denote the number of k-multipartitions of N.
Claim 2.15. If $\delta>0$, then

$$
\left(\frac{2 \pi}{\sqrt{6}}-\delta\right) \sqrt{k N} \leqslant \log p_{k}(N) \leqslant\left(\frac{2 \pi}{\sqrt{6}}+\delta\right) \sqrt{k N}
$$

for sufficiently large N.
This formula also appears in [9]. We provide an elementary inductive proof.
Proof. We proceed by induction on k. The base case $k=1$ is Proposition 2.14.
For $\delta>0$, let $\delta^{\prime}=\frac{4}{5} \delta$. By inductive hypothesis, there exists a constant B such that if $C \geqslant B$, then

$$
\exp \left(\left(\frac{2 \pi}{\sqrt{6}}-\delta^{\prime}\right)(\sqrt{(k-1) C})\right) \leqslant p_{k-1}(C) \leqslant \exp \left(\left(\frac{2 \pi}{\sqrt{6}}+\delta^{\prime}\right)(\sqrt{(k-1) C})\right)
$$

and

$$
\exp \left(\left(\frac{2 \pi}{\sqrt{6}}-\delta^{\prime}\right)(\sqrt{C})\right) \leqslant p(C) \leqslant \exp \left(\left(\frac{2 \pi}{\sqrt{6}}+\delta^{\prime}\right)(\sqrt{C})\right)
$$

By considering the size of the first partition in a k-multipartition, it follows that

$$
p_{k}(N)=\sum_{a=0}^{N} p(a) p_{k-1}(N-a)
$$

Now assume that $N \geqslant 2 B-2$; we can then break up the sum for $p_{k}(N)$ into the following distinct parts: let

$$
\begin{aligned}
D_{1} & =\sum_{a=0}^{B-1} p(a) p_{k-1}(N-a), \\
D_{2} & =\sum_{a=B}^{N-B} p(a) p_{k-1}(N-a), \\
D_{3} & =\sum_{a=N-B+1}^{N} p(a) p_{k-1}(N-a) .
\end{aligned}
$$

In D_{2}, for $B \leqslant a \leqslant N-B$, we have

$$
\exp \left(\left(\frac{2 \pi}{\sqrt{6}}-\delta^{\prime}\right)(\sqrt{a}+\sqrt{(k-1)(N-a)})\right) \leqslant p(a) p_{k-1}(N-a)
$$

and the right hand side in turn satisfies

$$
p(a) p_{k-1}(N-a) \leqslant \exp \left(\left(\frac{2 \pi}{\sqrt{6}}+\delta^{\prime}\right)(\sqrt{a}+\sqrt{(k-1)(N-a)})\right) .
$$

Note that $\sqrt{a}+\sqrt{(k-1)(N-a)} \leqslant \sqrt{k N}$, with equality achieved at $a=\frac{N}{k}$. Summing over $a \in[B, N-B]$, we get
(2) $\quad \exp \left(\left(\frac{2 \pi}{\sqrt{6}}-\delta\right) \sqrt{k N}\right) \leqslant D_{2} \leqslant(N-2 B+1) \exp \left(\left(\frac{2 \pi}{\sqrt{6}}+\delta^{\prime}\right) \sqrt{k N}\right)$.

We now consider D_{1} and D_{3}. Note that for $a \in[0, B)$, we have $p(a) p_{k-1}(N-a) \leqslant$ $p(B) p_{k-1}(N)$, and for $a \in(N-B, N]$, we have $p(a) p_{k-1}(N-a) \leqslant p(N) p_{k-1}(B)$. Hence

$$
\begin{equation*}
0 \leqslant D_{1} \leqslant B p(B) p_{k-1}(N) \leqslant B \exp \left(\left(\frac{2 \pi}{\sqrt{6}}+\delta^{\prime}\right) \sqrt{k N}\right) \tag{3}
\end{equation*}
$$

for sufficiently large N. Likewise,

$$
\begin{equation*}
0 \leqslant D_{3} \leqslant B p(N) p_{k-1}(B) \leqslant B \exp \left(\left(\frac{2 \pi}{\sqrt{6}}+\delta^{\prime}\right) \sqrt{k N}\right) \tag{4}
\end{equation*}
$$

Combining (2), (3), and (4), we have that

$$
\begin{aligned}
\exp \left(\left(\frac{2 \pi}{\sqrt{6}}-\delta\right) \sqrt{k N}\right) \leqslant p_{k}(N) & \leqslant(N+1) \exp \left(\left(\frac{2 \pi}{\sqrt{6}}+\delta^{\prime}\right) \sqrt{k N}\right) \\
& \leqslant \exp \left(\left(\frac{2 \pi}{\sqrt{6}}+\delta\right) \sqrt{k N}\right)
\end{aligned}
$$

for sufficiently large N.
The above estimate implies k-multipartitions concentrate around having close to equal-size parts:

Corollary 2.16. For all $\delta>0$, the proportion of k-multipartitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash$ N such that

$$
\frac{N}{k}(1-\delta)<\left|\lambda_{i}\right|<\frac{N}{k}(1+\delta)
$$

for all $1 \leqslant i \leqslant k$ goes to 1 as $N \rightarrow \infty$.
Proof. Pick $1 \leqslant i \leqslant k$. By partitioning k-multipartitions according to the size of λ_{i}, the number of k-multipartitions of N where $\left|\lambda_{i}\right| \notin\left(\frac{N}{k}(1-\epsilon), \frac{N}{k}(1+\epsilon)\right)$ is

$$
\begin{equation*}
\sum_{a \notin\left(\frac{N}{k}(1-\varepsilon), \frac{N}{k}(1+\varepsilon)\right)} p(a) p_{k-1}(N-a) . \tag{5}
\end{equation*}
$$

Note that $\sqrt{a}+\sqrt{(k-1)(N-a)}$ increases for $a<\frac{N}{k}$ and decreases for $a>\frac{N}{k}$. Then by Claim 2.15, the rate of growth (5) is significantly slower than the rate of growth of $p_{k}(N)$.

3. Main Results

3.1. Character Table Column Congruences. Corollary 3.3 below, which we call "the mashing rule," gives a criterion for mod p congruence of two columns of the character table of $G \imath S_{N}$ in terms of k-multipartitions.

In this section, we must assume that G has integer-valued character table. By [10, $\S 13.1]$, the group G has integer-valued character table if and only if $\sigma \in G$ is conjugate to σ^{j} whenever j is prime to the order of σ.

DEFINITION 3.1. Let \sim_{p} be the equivalence relation on k-multipartitions generated by the following: $\mu \sim_{p} \nu$ if there is j such that $\mu_{i}=\nu_{i}$ for $i \neq j$, and ν_{j} is formed by replacing one part of size $m p$ in μ_{j} with p parts of size m in ν_{j}.

Figure 3. Example of three conjugacy classes which are congruent $\bmod 3 \operatorname{in} \mathbb{Z} / 2 \mathbb{Z} \imath S_{N}$ (note that $m=2$ in the first cycle type and $m=1$ in the second).

Lemma 3.2. Let p be a prime and G be a group with integer-valued character table. Let $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$ and $\nu=\left(\nu_{1}, \ldots, \nu_{k}\right)$ be k-multipartitions of N, indexing conjugacy classes of $G \imath S_{N}$. If $\mu \sim_{p} \nu$, then $M_{\mu}^{\lambda} \equiv M_{\nu}^{\lambda}(\bmod p)$ for all k-multipartitions λ of N.

Proof. It suffices to show $M_{\mu}^{\lambda} \equiv M_{\nu}^{\lambda}(\bmod p)$ if there exists j such that $\mu_{i}=\nu_{i}$ for all $i \neq j, \mu_{j}=(\xi, m p)$ for some ξ, and $\nu_{j}=\left(\xi, m^{p}\right)$. We break $R D(\lambda, \nu)$ into two cases. In case one, we consider the row decompositions of ν where the p rows not in ξ are tiled into the same row of λ. In case two we consider the row decompositions where the p rows not in ξ are not tiled in the same row. Recalling our formula for characters of permutation modules in Proposition 2.11, let

$$
\begin{equation*}
\beta=\sum_{\substack{\rho \in R D(\lambda, \nu) \text { s.t. } m^{p} \text { is tiled } \\ \text { in the same row }}} \alpha(\rho) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=\sum_{\substack{\rho \in R D(\lambda, \nu) \text { s.t. } m^{p} \text { is not tiled } \\ \text { in the same row }}} \alpha(\rho), \tag{7}
\end{equation*}
$$

so that $M_{\nu}^{\lambda}=\beta+\gamma$. In case one, we will show $\beta \equiv M_{\mu}^{\lambda}(\bmod p)$ and in case two that $\gamma \equiv 0(\bmod p)$. Together, these two congruences imply $M_{\mu}^{\lambda} \equiv M_{\nu}^{\lambda}(\bmod p)$.

In both cases, we break into subcases based on the ways to tile μ_{i} for $i \neq j$ and ξ. In case one, we have compatible tilings for μ and ν, and in case two, we have additional tilings for ν.

In case one, assume we have tiled all rows of μ_{i} for all $i \neq j$ and we have tiled ξ. We now have one row remaining. There is only one way to tile the last row for both μ and ν : put the remaining pieces into the remaining row. Let these row decompositions be denoted ρ_{μ} and ρ_{ν} respectively.

For ρ_{μ}, say that we place the final row r of size $m p$ in the partition λ_{q}. The associated cycle product is c_{j} because $m p$ comes from μ_{j}. Then $m p$ contributes $\chi_{q}\left(c_{j}\right)$ to the product $\alpha\left(\rho_{\mu}\right)$. Then for ρ_{ν}, the p rows of size m are placed into λ_{q}. The conjugacy class of G associated with the p rows of size m is again c_{j}, so m^{p} contributes a factor of $\chi_{q}\left(c_{j}\right)^{p}$ to $\alpha\left(\rho_{\nu}\right)$.

By assumption, the character values of G are integral, so by Fermat's little theorem, $\chi_{q}\left(c_{j}\right) \equiv \chi_{q}\left(c_{j}\right)^{p}(\bmod p)$. All other factors in $\alpha\left(\rho_{\mu}\right)$ contributed by μ_{i} for $i \neq j$ and ξ are identical to the corresponding factors in $\alpha\left(\rho_{\nu}\right)$. Hence, $\alpha\left(\rho_{\mu}\right) \equiv \alpha\left(\rho_{\nu}\right)(\bmod p)$.

Summing over all the tilings in case one, we find $M_{\mu}^{\lambda} \equiv \beta(\bmod p)$.

In case two, assume we have tiled all rows of μ_{i} for $i \neq j$ and ξ, after which there are $t>1$ remaining unfilled rows of the Young diagrams of λ. If $T \subseteq R D(\lambda, \nu)$ is the set of row decompositions extending our given tiling by μ_{i} for $i \neq j$ and ξ, then we will show

$$
\sum_{\rho \in T} \alpha(\rho) \equiv 0 \quad(\bmod p)
$$

Then γ is the sum over all such T of $\sum_{\rho \in T} \alpha(\rho)$, from which it will follow $\gamma \equiv 0$ $\bmod p$.

Call the lengths of the remaining rows $\left(m \ell_{1}, m \ell_{2}, \ldots, m \ell_{t}\right)$. Since the elements of T are in bijection with choices of placements of p cycles of length m into these rows,

$$
\begin{equation*}
|T|=\binom{p}{\ell_{1}, \ell_{2}, \ldots, \ell_{t}} \tag{8}
\end{equation*}
$$

Let $\rho \in T$. Note that all pieces of m^{p} come from μ_{j}, and thus have cycle product c_{j}, while all other cycles in μ are in the same place in T. Thus $\alpha(\rho)=\alpha\left(\rho^{\prime}\right)$ for all $\rho, \rho^{\prime} \in T$. Hence $\sum_{\rho \in T} \alpha(\rho)$ is a sum of $|T|$ identical terms. Then $\sum_{\rho \in T} \alpha(\rho) \equiv 0$ $(\bmod p)$ because $|T|$ is divisible by p.

Case one has shown that $M_{\mu}^{\lambda} \equiv \beta(\bmod p)$, and case two has shown that $\gamma \equiv 0$ $(\bmod p)$. Since $M_{\nu}^{\lambda}=\beta+\gamma$, we conclude $M_{\mu}^{\lambda} \equiv M_{\nu}^{\lambda}(\bmod p)$.

Corollary 3.3 (The mashing rule). Let G have integer-valued character table and k conjugacy classes. Let μ and ν be k-multipartitions of N. If $\mu \sim_{p} \nu$, then $\chi_{\mu}^{\lambda} \equiv \chi_{\nu}^{\lambda}$ $(\bmod p)$ for all irreducible characters χ^{λ} of $G \backslash S_{N}$.

Proof. The set of irreducible characters and the set of characters of permutation modules form bases for the space of class functions on $G \backslash S_{N}$. Since the change of basis matrix between these two bases is unimodular and lower-triangular, as stated in Lemma 2.13, χ^{λ} can be expressed as an integral linear combination of M^{η} for all k-multipartitions λ. It follows from Lemma 3.2 that $\mu \sim_{p} \nu$ implies $\chi_{\mu}^{\lambda} \equiv \chi_{\nu}^{\lambda}$ $(\bmod p)$.

Remark 3.4. Corollary 3.3 may also be proved using the following criterion from modular representation theory: if G has integer-valued character table, $g \in G$, and g^{\prime} is the p-prime part of g, then $\chi(g) \equiv \chi\left(g^{\prime}\right) \bmod p$ for all characters χ of $G[10$, 18.1(v)]. In this situation, it may be seen that the mashing preserves the conjugacy class of the p-prime part of a class in $G \imath S_{N}$. Nonetheless, we have chosen to give a combinatorial proof.
3.2. Proof of Main Theorem. Using Corollary 3.3, the existence of one zero in the character table implies many more entries are divisible by p. We proceed, following Peluse and Soundararajan in [8], by using Proposition 2.8 to show sufficiently many entries of the character table are zero.

Definition 3.5. A partition is called a t-core if none of the hook lengths of its Young diagram are divisible by t where $t \in \mathbb{Z}$. For example, from Figure 4 one can see that $(4,2,1)$ is a 5 -core.

Figure 4. Hook-lengths for $\lambda_{i}=(4,2,1)$

In the course of proving [8, Proposition 1], Peluse and Soundararajan proved the following estimate of the number of t-cores when t is slightly larger than the typical longest cycle in a random conjugacy class:
Proposition 3.6. Let L be a positive integer, and let A be a real number with $1 \leqslant$ $A \leqslant \log L / \log \log L$. Additionally suppose that t is a positive integer with

$$
\begin{equation*}
t \geqslant \frac{\sqrt{6}}{2 \pi} \sqrt{L}(\log L)\left(1+\frac{1}{A}\right) \tag{9}
\end{equation*}
$$

Then the number of partitions λ of L which are not t-cores is at most

$$
O\left(p(L) \frac{\log L}{L^{\frac{1}{2 A}}}\right)
$$

independent of t satisfying (9).
Complementing the estimate in Proposition 3.6, Peluse and Soundararajan also estimated how many columns of the character table are congruent to a column corresponding to a partition with a large first part:
Proposition 3.7 ([8, Proposition 2]). Let $p \leqslant \frac{(\log L)}{(\log \log L)^{2}}$ be a prime. Starting with a partition μ of L, we repeatedly replace every occurrence of p parts of the same size m by one part of size mp until we arrive at a partition $\tilde{\mu}$ where no part appears more than $p-1$ times. Then the largest part of $\tilde{\mu}$ exceeds

$$
\frac{\sqrt{6}}{2 \pi} \sqrt{L}(\log L)\left(1+\frac{1}{5 p}\right),
$$

except for at most

$$
O\left(p(L) \exp \left(-L^{\frac{1}{15 p}}\right)\right)
$$

partitions μ.
We now extend Peluse and Soundarajan's estimate in Proposition 3.7 to k multipartitions.

Proposition 3.8. Let $p \ll N$ be a prime. Given a k-multipartition $\mu=\left(\mu_{1}, \ldots \mu_{k}\right)$ of N, for all μ_{i} with $1 \leqslant i \leqslant k$, we repeatedly replace every occurrence of p parts of the same size m by one part of size $m p$ until we arrive at a k-multipartition $\tilde{\mu}$ where no part in any $\tilde{\mu}_{i}$ appears more than $p-1$ times.

Then the largest part of $\tilde{\mu}$ is of size at least

$$
\begin{equation*}
\frac{\sqrt{6}}{2 \pi} \sqrt{\frac{N}{k}}\left(\log \frac{N}{k}\right)\left(1+\frac{1}{5 p}\right) \tag{10}
\end{equation*}
$$

except for a number of multipartitions μ which is at most

$$
O\left(\exp \left(-\left(\frac{N}{k}\right)^{\frac{1}{15 p}}\right) p_{k}(N)\right)
$$

Proof. For a k-multipartition $\mu=\left(\mu_{1}, \mu_{2}, \ldots \mu_{k}\right)$ of N, let $\tilde{\mu}$ be as above. We will bound above the number of k-multipartitions μ such that $\tilde{\mu}$ has largest part less than (10).

For any μ, we know that for some $1 \leqslant i \leqslant k,\left|\mu_{i}\right| \geqslant \frac{N}{k}$. Fix i such that μ_{i} has size $\left|\mu_{i}\right|=a \geqslant \frac{N}{k}$. Then Proposition 3.7 tells us that the largest part of $\tilde{\mu}_{i}$ exceeds

$$
\frac{\sqrt{6}}{2 \pi} \sqrt{a}(\log a)\left(1+\frac{1}{5 p}\right) \geqslant \frac{\sqrt{6}}{2 \pi} \sqrt{\frac{N}{k}}\left(\log \frac{N}{k}\right)\left(1+\frac{1}{5 p}\right)
$$

except for at most

$$
O\left(p(a) \exp \left(-a^{\frac{1}{15 p}}\right)\right)
$$

partitions μ_{i} of size a and therefore at most

$$
O\left(p(a) \exp \left(-a^{\frac{1}{15 p}}\right) p_{k-1}(N-a)\right)
$$

total k-multipartitions μ with $\left|\mu_{i}\right|=a$. Furthermore, since $a \geqslant \frac{N}{k}$,

$$
\exp \left(-a^{\frac{1}{15 p}}\right) \leqslant \exp \left(-\left(\frac{N}{k}\right)^{\frac{1}{15 p}}\right)
$$

and therefore summing over all $a \geqslant \frac{N}{k}$ we have that the number of multipartitions μ such that $\left|\mu_{i}\right| \geqslant \frac{N}{k}$ with no part in $\tilde{\mu}_{i}$ exceeding (10) is at most an absolute constant times

$$
\begin{aligned}
\sum_{a=\frac{N}{k}}^{N} \exp \left(-a^{\frac{1}{15 p}}\right) p(a) p_{k-1}(N-a) & \ll \exp \left(-\left(\frac{N}{k}\right)^{\frac{1}{15 p}}\right) \sum_{a=\frac{N}{k}}^{N} p(a) p_{k-1}(N-a) \\
& \ll \exp \left(-\left(\frac{N}{k}\right)^{\frac{1}{15 p}}\right) \sum_{a=0}^{N} p(a) p_{k-1}(N-a) \\
& =\exp \left(-\left(\frac{N}{k}\right)^{\frac{1}{15 p}}\right) p_{k}(N) .
\end{aligned}
$$

Since this bound is identical for each i, the number of k-multipartitions μ such that $\tilde{\mu}$ does not have a part of size greater than (10) is at most a factor of k greater than the bound above, and therefore also at most

$$
O\left(\exp \left(-\left(\frac{N}{k}\right)^{\frac{1}{15 p}}\right) p_{k}(N)\right)
$$

Theorem 3.9. Let G be a group with integer-valued character table, and let $G \backslash S_{N}$ be the wreath product of G with the symmetric group S_{N}. For all primes p, the proportion of entries in the character table of $G \backslash S_{N}$ divisible by p tends to 1 as $N \rightarrow \infty$.

Proof. Let k be the number of conjugacy classes of G. Given a k-multipartition μ, let $\tilde{\mu}$ be the multipartition obtained by repeatedly replacing p parts of μ_{i} of size m with one part of size $m p$ until no μ_{i} has a part appearing more than $p-1$ times. For $A=5 p$, Proposition 3.8 implies that the largest part of $\tilde{\mu}$ has size

$$
\begin{equation*}
t \geqslant \frac{\sqrt{6}}{2 \pi} \sqrt{\frac{N}{k}}\left(\log \frac{N}{k}\right)\left(1+\frac{1}{A}\right) \tag{11}
\end{equation*}
$$

for a proportion of μ tending to 1 as $N \rightarrow \infty$. Now pick $A^{\prime} \geqslant 1$ and $\delta>0$ such that

$$
\left(\log \frac{N}{k}\right)\left(1+\frac{1}{A}\right) \geqslant \sqrt{1+\delta}\left(\log \left(\frac{N}{k}(1+\delta)\right)\right)\left(1+\frac{1}{A^{\prime}}\right) .
$$

By Corollary 2.16, the proportion of k-multipartitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash N$ such that $\left|\lambda_{i}\right| \in\left(\frac{N}{k}(1-\delta), \frac{N}{k}(1+\delta)\right)$ for all i tends to 1 as $N \rightarrow \infty$. Thus, consider only (λ, μ) satisfying the above conditions.

Our choice of δ and A^{\prime} imply that

$$
\frac{\sqrt{6}}{2 \pi} \sqrt{\frac{N}{k}}\left(\log \frac{N}{k}\right)\left(1+\frac{1}{A}\right) \geqslant \frac{\sqrt{6}}{2 \pi} \sqrt{\frac{N(1+\delta)}{k}}\left(\log \left(\frac{N}{k}(1+\delta)\right)\right)\left(1+\frac{1}{A^{\prime}}\right) .
$$

If $\left(N_{1}, \ldots, N_{k}\right)$ is a partition of sufficiently large N with $N_{i} \in\left(\frac{N}{k}(1-\delta), \frac{N}{k}(1+\delta)\right)$, we can assume $A^{\prime} \leqslant \frac{\log N_{i}}{\log \log N_{i}}$ for each i, as $N_{i} \geqslant \frac{N}{k(1-\delta)} \rightarrow \infty$. Then by Proposition 3.6 , the proportion of k-multipartitions λ with $\left|\lambda_{i}\right|=N_{i}$ such that some λ_{i} is not a t-core is

$$
\sum_{i=1}^{k} O\left(\frac{\log N_{i}}{N_{i}^{\frac{1}{2 A^{\prime}}}}\right)
$$

for all t satisfying (11), independent of t. Hence, over all k-multipartitions λ satisfying $\left|\lambda_{i}\right| \in\left(\frac{N}{k}(1-\delta), \frac{N}{k}(1+\delta)\right)$, the proportion of λ such that some λ_{i} is not a t-core is

$$
O\left(\frac{\log \left(\frac{N}{k}(1+\delta)\right)}{\left(\frac{N}{k}(1-\delta)\right)^{\frac{1}{2 A^{\prime}}}}\right)
$$

It follows that most (λ, μ) satisfy that λ_{i} is a t-core for t the largest part of $\tilde{\mu}$. Thus, for a proportion of (λ, μ) tending to 1 as $N \rightarrow \infty$, we have $\chi_{\tilde{\mu}}^{\lambda}=0$ by Proposition 2.8 and therefore $\chi_{\mu}^{\lambda} \equiv 0 \bmod p$ by Corollary 3.3.

4. Weyl groups of type D

Definition 4.1. The Weyl group of type D_{N} is the group of $N \times N$ signed permutation matrices with an even number of entries equal to -1 .

We will denote this group by D_{N} also (note that it is distinct from the dihedral group). The study of representations of D_{N} was taken up by Young in [12, §7-10]; see [2] for a more modern treatment.

Let $B_{N}=\{ \pm 1\} \backslash S_{N}$; then D_{N} is a subgroup of B_{N} of index two. Recall that conjugacy classes of B_{N} are labelled by 2-multipartitions (η, ν) of N, where we take ν to be those cycles with nontrivial cycle product.

Proposition 4.2 ([2, Proposition 3.4.12]). The conjugacy classes B_{N} which meet D_{N} correspond to 2-multipartitions (η, ν) of N where ν has an even number of parts. The conjugacy classes of B_{N} which split in D_{N} are exactly those (η, ν) where $\nu=\varnothing$ and η has only even parts.

Since D_{N} is a subgroup of B_{N} of index two, Clifford theory determines its representations:

Proposition 4.3 ([2, §5.6.1]). The irreducible representations of the Weyl group of type D_{N} are as follows:
(1) if (λ, μ) is a 2-multipartition of N such that $\lambda \neq \mu$, then

$$
\operatorname{Res}_{D_{N}}^{B_{N}} V^{\lambda, \mu}=\operatorname{Res}_{D_{N}}^{B_{N}} V^{\mu, \lambda}
$$

is an irreducible representation of D_{N};
(2) if (λ, λ) is a 2-multipartition of N with equal parts, then

$$
\operatorname{Res}_{D_{N}}^{B_{N}} V^{\lambda, \lambda}
$$

is the sum of two irreducible representations of D_{N}.
(3) Each irreducible representation of D_{N} appears exactly once in (1) or (2).

Corollary 4.4. For all primes p, the proportion of entries in the character table of D_{N} which are divisible by p tends to 1 as $N \rightarrow \infty$.
Proof. The number of irreducible representations of D_{N} of the form $\operatorname{Res}_{D_{N}}^{B_{N}} V^{\lambda, \mu}$ for $\lambda \neq \mu$ equals $\frac{1}{2}\left(p_{2}(N)-p(N / 2)\right)$ when N is even, and $\frac{1}{2} p_{2}(N)$ when N is odd. The number of irreducible representations appearing as a summand of $\operatorname{Res}_{D_{N}}^{B_{N}} V^{\lambda, \lambda}$
is $2 p(N / 2)$ when N is even and 0 when N is odd. By Claim 2.15 , we have $p_{2}(N) \gg$ $p(N / 2)$ for large enough N, so the proportion of irreducibles of the form $\operatorname{Res}_{D_{N}}^{B_{N}} V^{\lambda, \mu}$ goes to 1 as $N \rightarrow \infty$.

We must also analyze the splitting of conjugacy classes from B_{N} in D_{N}. By Proposition 4.2, the number of conjugacy classes of B_{N} which split in D_{N} is $p(N / 2)$ when N is even and 0 when N is odd. We conclude just as above that the proportion of non-split conjugacy classes tends to 1 as $N \rightarrow \infty$.

We have shown that almost every entry of the character table of D_{N} is of the form $V_{\eta, \nu}^{\lambda, \mu}$ where $\lambda \neq \mu$ and (η, ν) is a non-split conjugacy class in D_{N}. Such entries occupy at least a constant fraction of the character table of B_{N} as $N \rightarrow \infty$. By Theorem 3.9 , almost all of such entries are divisible by p as $N \rightarrow \infty$. Hence, the proportion of entries of the character table of D_{N} which are divisible by p goes to 1 as $N \rightarrow \infty$.

Acknowledgements. This work was supported by NSF Grant DMS-2149647, and conducted at the MathILy-EST 2022 REU under the direction of Nate Harman. We thank Sarah Peluse for comments on an earlier version of this paper.

References

[1] Georg Ferdinand Frobenius, Über die charaktere der symmetrischen gruppe, Sitzungsberichte der Königliche Akademie der Wissenschaften (1900), 516-534.
[2] Meinolf Geck and Götz Pfeiffer, Characters of finite coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs, New Series, no. 21, Oxford University Press, 2000.
[3] G. H. Hardy and S. Ramanujan, Asymptotic formulce in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75-115.
[4] G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, no. 16, Addison-Wesley, 1981.
[5] Ian Grant Macdonald, Symmetric functions and Hall polynomials, 2 ed., Oxford Mathematical Monographs, Oxford University Press, 1995.
[6] Alexander R. Miller, Congruences in character tables of symmetric groups, 2019, https:// arxiv.org/abs/1908.03741.
[7] , On parity and characters of symmetric groups, J. Combin. Theory Ser. A 162 (2019), 231-240.
[8] Sarah Peluse and Kannan Soundararajan, Almost all entries in the character table of the symmetric group are multiples of any given prime, J. Reine Angew. Math. 786 (2022), 45-53.
[9] M. Ram Murty, The partition function revisited, The legacy of Srinivasa Ramanujan, Lect. Notes Ser., vol. 20, Ramanujan Math. Soc., 2013, pp. 261-279.
[10] Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, 1977.
[11] Wilhelm Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Ph.D. thesis, HumboldtUniversität zu Berlin, 1932.
[12] Alfred Young, On quantitative substitutional analysis (fifth paper), Proc. London Math. Soc. (2) 31 (1930), no. 4, 273-288.
[13] Andrey V. Zelevinsky, Representations of finite classical groups. A Hopf algebra approach, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, 1981.

Brandon Dong, Carnegie Mellon University, Pittsburgh, PA E-mail : bjdong@andrew. cmu.edu

Hannah Graff, Creighton University, Omaha, NE E-mail : hjg46409@creighton.edu

Joshua Mundinger, University of Chicago, Chicago, IL E-mail : mundinger@uchicago.edu

Skye Rothstein, Bard College, Annandale-on-Hudson, NY E-mail : sr5920@bard.edu

Lola Vescovo, Macalester College, Saint Paul, MN
E-mail : lvescovo@macalester.edu

[^0]: Manuscript received 27th October 2022, revised 19th March 2023 and 25th April 2023, accepted 26th April 2023.

