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Enriched toric [D⃗]-partitions

Jinting Liang

Abstract This paper develops the theory of enriched toric [D⃗]-partitions. Whereas Stem-
bridge’s enriched P -partitions give rise to the peak algebra which is a subring of the ring
of quasi-symmetric functions QSym, our enriched toric [D⃗]-partitions generate the cyclic peak
algebra which is a subring of the ring of cyclic quasi-symmetric functions cQSym. In the same
manner as the peak set of linear permutations appears when considering enriched P -partitions,
the cyclic peak set of cyclic permutations plays an important role in our theory. The associated
order polynomial is discussed based on this framework.

1. Introduction
Denote by N and P the set of nonnegative integers and positive integers respectively.
For m,n ∈ N, define [m,n] = {m,m + 1, . . . , n} and write [n] = [1, n] when m = 1.
A linear permutation of a set A ⊂ P is an arrangement w = w1w2 . . . wn of elements
in A where each element is used exactly once. In this case, we call n the length of w,
written as #w = |w| = n. Let Sn be the symmetric group on [n] viewed as the set of
linear permutations of [n].

A linear permutation statistic is a function whose domain is the set of all linear
permutations. For a linear permutation w = w1w2 . . . wn, a descent of w is a position i
such that wi > wi+1. The descent set Des is defined by

Desw = {i | i is a descent of w} ⊆ [n− 1].
The descent number of w is desw := | Desw|. A peak of w is a position i such that
wi−1 < wi > wi+1. The peak set Pk is defined by

Pkw = {i | i is a peak of w} ⊆ [2, n− 1].
The peak number is pkw := | Pkw|.

Quasi-symmetric functions first appeared implicitly as generating functions in
Richard Stanley’s theory of P -partitions [9], and then were explicitly studied by Ira
M. Gessel [5]. To be more precise, for a finite poset P , the set of P -partitions can be
partitioned according to the linear extensions of P , where each subset corresponds
to a fundamental quasi-symmetric function indexed by the descent set of that linear
permutation. The ring QSym of quasi-symmetric functions was further developed,
see [3, 6, 10] for some related articles. It found applications in enumerative combi-
natorics, representation theory and algebraic geometry [7, 2, 8]. In the same vein,
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Stembridge’s work [11] on enriched P -partitions gave rise to the algebra of peaks Π,
a graded subring of QSym, which is closely related to the peak set.

For a linear permutation w = w1w2 . . . wn, we define the corresponding cyclic
permutation [w] to be the set of rotations of w, that is,

[w] = {w1w2 . . . wn, w2 . . . wnw1, . . . , wnw1 . . . wn−1}.
Let [Sn] denote the set of cyclic permutations on [n].

The cyclic descent set cDes of a linear permutation w is defined by
cDesw = {i | wi > wi+1 where the subscripts are taken modulo n} ⊆ [n].

This leads to the cyclic descent set of a cyclic permutation
cDes[w] = {{cDesσ | σ ∈ [w]}},

where the double curly brackets denote a multiset. The multiplicity comes into play
since cDes may have the same value on different representatives σ in [w]. In fact, one
can regard the cyclic permutation statistic cDes as an analogue of Des in the linear
setting. Similarly, if we define the cyclic peak set cPk of a linear permutation w by

cPkw = {i | wi−1 < wi > wi+1 where the subscripts are taken modulo n} ⊆ [n],
then the cyclic counterpart of Pk, the cyclic peak set cPk of a cyclic permutation, is
defined as

cPk[w] = {{cPk σ | σ ∈ [w]}}.

Example 1.1. Consider the permutation w = 3124 on [4], then
Desw = {1}, cDesw = {1, 4}, Pkw = ∅, cPkw = {4}.

Remark 1.2. By definition, cDes[w] carries the information for all representatives
in [w]. Moreover, cDesw together with |w| will be sufficient to determine cDes[w]. In
fact, cDes[w] is simply the multiset of all cyclic shifts of cDesw in [n] where n = |w|,
namely,

cDes[w] = {{ i+ cDesw | i ∈ [n] }}.
Here i+ cDesw is the set defined by (1). Similarly, cPk[w] can be entirely determined
by cPkw and |w|.

Example 1.3. Consider the permutation w = 1423 and the corresponding cyclic per-
mutation [w] = {1423, 3142, 2314, 4231}, we have

cDes[w] = cPk[w] = {{ {2, 4}, {1, 3}, {2, 4}, {1, 3} }}.
Noting that cDesw = cPkw = {2, 4}, one can easily check that the previous remark
does hold.

In the work [1] of Adin, Gessel, Reiner, and Roichman, the ring cQSym of cyclic
quasi-symmetric functions was introduced from toric P -partition enumerators, in
which case the cyclic descent set cDes plays an important role. The authors also
asked for a cyclic version of the algebra of peaks, to which question we will give an
answer in this paper.

This article is devoted to the study of enriched toric [D⃗]-partitions. By the end, we
will construct an algebra of cyclic peaks in cQSym analogous to the algebra of peaks.
The rest of this paper is structured as follows. In the next section, we recall defini-
tions of various terms such as quasi-symmetric functions and cyclic quasi-symmetric
functions, with several concrete examples provided. Section 3 introduces enriched D⃗-
partitions in terms of directed acyclic graphs (DAGs). In section 4, we define enriched
toric [D⃗]-partitions and develop some of their properties. Section 5 will review the
weight enumerators of enriched D⃗-partitions defined by Stembridge and discuss the
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cyclic analogues for enriched toric [D⃗]-partitions. The weight enumerators correspond-
ing to different cyclic peak sets generate a subring of cQSym which we call the algebra
of cyclic peaks. We also compute the order polynomial of enriched toric [D⃗]-partitions.

2. Basic definitions and results
2.1. Sets and compositions. We will use ⩽ with no subscript to denote the or-
dinary total order on Z, the set of integers. For n ∈ P, let 2[n] denote the set of all
subsets of [n], and let 2[n]

0 be the set of all nonempty subsets of [n]. Denote by Compn
the set of all compositions of n and write α ⊨ n for α ∈ Compn. Define a cyclic shift
of a subset E ⊆ [n] in [n] to be a set of the form

(1) i+ E = {i+ e (mod n) | e ∈ E}.

Note that sometimes we will use E + i as well for the same concept. While using a
negative shift, the reader should be careful to distinguish between E − i and the set
difference E − {i} = E ∖ {i}.

A cyclic shift of a composition α = (α1, α2, . . . , αm) is a composition of the form

(αk, . . . , αm, α1, . . . , αk−1)

for some k ∈ [m]. We adopt the notations from [1] and denote by c2[n]
0 (respectively,

cCompn) the set of equivalence classes of elements of 2[n]
0 (respectively, Compn) under

cyclic shifts. Here we recall two natural bijections which will play important roles when
indexing two particular bases of (cyclic) quasi-symmetric functions.

The first natural bijection is between 2[n−1] and Compn. The map Φ : 2[n−1] →
Compn is defined by

(2) Φ(E) := (e1 − e0, e2 − e1, . . . , ek − ek−1, ek+1 − ek)

for any given E = {e1 < e2 < · · · < ek} ⊆ [n − 1] with e0 = 0 and ek+1 = n, where
the inverse map is

Φ−1(α) = {α1, α1 + α2, . . . , α1 + α2 + · · · + αk}

for any α = (α1, . . . , αk+1) ⊨ n.
Another bijection is between c2[n]

0 and cCompn, for the sake of which we need to
consider the map ψ : 2[n]

0 → Compn defined by

(3) ψ(E) := (e2 − e1, . . . , ek − ek−1, e1 − ek + n)

where E = {e1 < e2 < · · · < ek} ⊆ [n]. Notice that if E′ is a cyclic shift of E in [n],
then ψ(E′) is also a cyclic shift of ψ(E). So ψ induces a map Ψ : c2[n]

0 → cCompn.
Moreover, it is straightforward to check that the induced map Ψ is bijective.

2.2. Quasi-symmetric functions QSym. A quasi-symmetric function is a formal
power series f ∈ Q[[x1, x2, . . .]] such that for any sequence of positive integers a =
(a1, a2, . . . , as), and two increasing sequences i1 < i2 < · · · < is and j1 < j2 < · · · < js
of positive integers,

[xa1
i1
xa2
i2
. . . xas

is
] f = [xa1

j1
xa2
j2
. . . xas

js
] f,

where [xa1
i1
xa2
i2
. . . xas

is
] f denotes the coefficient of monomial xa1

i1
xa2
i2
. . . xas

is
in the ex-

pression of f . Let QSymn be the set of all quasi-symmetric functions which are homo-
geneous of degree n, and QSym = ⊕n⩾0 QSymn. Two bases of QSym are particularly
important to our work: monomial quasi-symmetric functions ML and fundamental
quasi-symmetric functions FL.
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Given a composition α = (α1, α2, . . . , αs) ⊨ n, the associated monomial quasi-
symmetric function indexed by α is

Mα =
∑

i1<i2<···<is

xα1
i1
xα2
i2
. . . xαs

is
.

The {Mα}α⊨n form a basis of QSymn. From the bijection Φ : 2[n−1] → Compn
defined by (2), we can also index the monomial quasi-symmetric functions by subsets
E ⊆ [n− 1], and define Mn,E := MΦ(E).

There is another important basis of QSym. The fundamental quasi-symmetric func-
tion indexed by E ⊆ [n− 1] is

Fn,E =
∑

i1⩽···⩽in
ik<ik+1 if k ∈ E

xi1xi2 . . . xin .

Similarly, we can define Fα := FΦ−1(α) indexed by compositions.
The relation between monomial and fundamental quasi-symmetric functions is sim-

ple:

(4) Fn,E =
∑
L⊇E

Mn,L.

By the principle of inclusion and exclusion, Mn,E can be expressed as a linear com-
bination of the Fn,L, from which we can tell that {Fn,L}L⊆[n−1] spans QSymn. By
checking the cardinality of both sets {Fn,L}L⊆[n−1] and {Mn,E}E⊆[n−1], it follows
that {Fn,L}L⊆[n−1] is indeed a basis of QSymn.

Example 2.1. Consider E = {1, 3}, by definition we have

F4,{1,3} =
∑

i1<i2⩽i3<i4

xi1xi2xi3xi4 =
∑

i1<i2<i3<i4

xi1xi2xi3xi4 +
∑

i1<i2<i4

xi1x
2
i2xi4 .

There are only two choices for a set L satisfying E ⊆ L ⊆ [3]: {1, 3} or {1, 2, 3}. Since
Φ({1, 3}) = (1, 2, 1),Φ({1, 2, 3}) = (1, 1, 1, 1) , we get

M4,{1,3} = M(1,2,1) =
∑

i1<i2<i3

xi1x
2
i2xi3 , M4,{1,2,3} = M(1,1,1,1) =

∑
i1<i2<i3<i4

xi1xi2xi3xi4 .

The calculation above verifies that F4,{1,3} = M4,{1,3} +M4,{1,2,3} =
∑

L⊇{1,3}
M4,L.

2.3. Cyclic quasi-symmetric functions cQSym. In this subsection, we recall
from [1] the theory of cyclic quasi-symmetric functions. We will model our work of
enriched toric [D⃗]-partitions with enumerators in this environment.

A cyclic quasi-symmetric function is a formal power series f ∈ Q[[x1, x2, . . .]]
such that for any sequence of positive integers a = (a1, a2, . . . , as), a cyclic
shift (a′

1, a
′
2, . . . , a

′
s) of a, and two increasing sequences i1 < i2 < · · · < is

and j1 < j2 < · · · < js of positive integers,

[xa1
i1
xa2
i2
. . . xas

is
] f = [xa

′
1
j1
x
a′

2
j2
. . . x

a′
s
js

] f,

namely the coefficients of xa1
i1
xa2
i2
. . . xas

is
and x

a′
1
j1
x
a′

2
j2
. . . x

a′
s
js

in f are equal. Denote by
cQSymn the set of all cyclic quasi-symmetric functions which are homogeneous of
degree n, and cQSym = ⊕n⩾0 cQSymn.

Remark 2.2. It is clear that there exists a strict inclusion relation Sym ⊊ cQSym ⊊
QSym, where Sym is the algebra of symmetric functions.
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α ⊨ 4 M cyc
α

(4) M(4) = M4,∅
(1,3) or (3,1) M(1,3) +M(3,1) = M4,{1} +M4,{3}

(2, 2) 2M(2,2) = 2M4,{2}

(1,1,2) or (1,2,1) or (2,1,1) M(1,1,2) +M(1,2,1) +M(2,1,1) =
M4,{1,2} +M4,{1,3} +M4,{2,3}

(1, 1, 1, 1) 4M(1,1,1,1) = 4M4,{1,2,3}

Table 1. Monomial cyclic quasi-symmetric functions indexed by
compositions of 4

We have the following cyclic analogues of the concepts of monomial (fundamental)
quasi-symmetric functions.

Given a composition α = (α1, α2, . . . , αs) ⊨ n, the associated monomial cyclic
quasi-symmetric function indexed by α is

M cyc
α =

s∑
i=1

M(αi,αi+1,...,αi−1),

where the indices are interpreted modulo s, meaning αj = αj+s. In other words,
M cyc
α sums over all monomial quasi-symmetric functions indexed by cyclic shifts of α.

Therefore it is clear that M cyc
α = M cyc

α′ if α and α′ only differ by a cyclic shift.
We can also index the monomial cyclic quasi-symmetric function by sets. For a

nonempty E ⊆ [n], define M cyc
n,E := M cyc

ψ(E) via the map ψ : 2[n]
0 → Compn defined

by (3), and set M cyc
n,∅ := 0. Similarly it can be shown that M cyc

n,E = M cyc
n,E′ if E′ is a

cyclic shift of E.
The following result gives the expression of monomial cyclic quasi-symmetric func-

tions in terms of monomial quasi-symmetric functions.
Lemma 2.3 ([1, Lemma 2.5], monomial to cyclic monomial). For any subset E ⊆ [n]

(5) M cyc
n,E =

∑
e∈E

Mn,(E−e)∩[n−1],

where the set E − e is defined as (1).

Example 2.4. Table 1 computes all monomial cyclic quasi-symmetric function in-
dexed by compositions of 4, in terms of monomial quasi-symmetric functions.

For the natural desire of establishing a cyclic analogue of the relation between
monomial and fundamental quasi-symmetric functions given by (4), define the funda-
mental cyclic quasi-symmetric function indexed by E ⊆ [n] as

(6) F cyc
n,E :=

∑
L⊇E

M cyc
n,L.

Remark 2.5. This is not the original definition in [1] but appears as a lemma in the
same article. But these two definitions are equivalent via [1, Lemma 2.14]. We will
use this definition for the purpose of our work, and mention the original definition in
Proposition 2.11 for interested readers.
Example 2.6. Consider n = 4 and E = {1, 3}. By definition

F cyc
4,{1,3} =

∑
L⊇{1,3}

M cyc
4,L

Algebraic Combinatorics, Vol. 6 #6 (2023) 1495
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(i)= M cyc
4,{1,3} +M cyc

4,{1,2,3} +M cyc
4,{1,3,4} +M cyc

4,{1,2,3,4}

(ii)= M cyc
(2,2) +M cyc

(1,1,2) +M cyc
(2,1,1) +M cyc

(1,1,1,1)
(iii)= 2M(2,2) + 2

(
M(1,1,2) +M(1,2,1) +M(2,1,1))

)
+ 4M(1,1,1,1)

= 2
∑
i1<i2

x2
i1x

2
i2

+ 2
∑

i1<i2<i3

(xi1xi2x2
i3 + xi1x

2
i2xi3 + x2

i1xi2xi3)

+ 4
∑

i1<i2<i3<i4

xi1xi2xi3xi4 .

Equality (i) follows from the fact that the choices for L ⊇ {1, 3} in [4] are {1, 3},
{1, 2, 3}, {1, 3, 4} and {1, 2, 3, 4}. Equality (ii) is obtained by changing indices under
the map ψ defined by (3), equality (iii) is from Table 1.

The following transition from fundamental to cyclic fundamental quasi-symmetric
functions should come without surprise.
Lemma 2.7 ([1, Proposition 2.15], fundamental to cyclic fundamental). For any subset
E ⊆ [n],

F cyc
n,E =

∑
i∈[n]

Fn,(E−i)∩[n−1],

with set E − i defined by (1).
Remark 2.8.

(1) It follows directly from Lemma 2.7 that F cyc
n,E = F cyc

n,E′ if E′ is a cyclic shift
of E.

(2) Clearly the set {M cyc
n,E : E ∈ c2[n]

0 } spans cQSymn and is linearly independent,
as each monomial of degree n appears inM cyc

n,E for exactly one E ∈ c2[n]
0 . Hence

{M cyc
n,E : E ∈ c2[n]

0 } is a basis of cQSymn. Applying the principle of inclusion
and exclusion on (6) we have

M cyc
n,E =

∑
L⊇E

(−1)|L∖E|F cyc
n,L,

which implies that {F cyc
n,E : E ∈ c2[n]

0 } also spans cQSymn; together with the
fact that the dimension of vector space cQSymn is #c2[n]

0 , {F cyc
n,E : E ∈ c2[n]

0 }
is also a basis of cQSymn.

Now we review the original definition of cyclic quasi-symmetric functions. Before
that, we need to associate with each E ⊆ [n] a set P cyc

n,E .

Definition 2.9. Let P cyc
n,E denote the set of all pairs (w, k) where w = w1 . . . wn is a

sequence of positive integers and k ∈ [n] satisfying
(1) w is “cyclically weakly increasing” from index k, that is, wk ⩽ wk+1 ⩽ . . . ⩽

wn ⩽ w1 ⩽ . . . ⩽ wk−1.
(2) If i ∈ E∖{k− 1}, then wi < wi+1, where the indices are computed modulo n.

Remark 2.10. The index k is uniquely defined by w unless all integers in w are the
same. In that case, either E = {k − 1} for some k ∈ [n] or E = ∅. Those w with
elements all equal will only be paired with k − 1 if E = {k − 1}, and so get counted
once in P cyc

n,E ; as for E = ∅, if w has all elements equal, it can pair with every k ∈ [n],
therefore it will be counted n times in P cyc

n,E .
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Proposition 2.11. For every subset E ⊆ [n],

F cyc
n,E =

∑
(w,k)∈P cyc

n,E

xw1xw2 . . . xwn
.

Proof. The proof is essentially the same as for [1, Lemma 2.14]. □

Here we provide a concrete example to illustrate the validity of the proposition
above.

Example 2.12. Consider n = 4 and E = {1, 3}. It is clear that P cyc
n,E has a natural

partition into four parts where each part contains all pairs with a given index k ∈ [4].
This implies the following summation∑

(w,k)∈P cyc
4,{1,3}

xw1xw2xw3xw4 =
4∑
k=1

∑
(w,k)∈P cyc

4,{1,3}

xw1xw2xw3xw4

=
∑

w1<w2⩽w3<w4

xw1xw2xw3xw4 +
∑

w2⩽w3<w4⩽w1

xw1xw2xw3xw4

+
∑

w3<w4⩽w1<w2

xw1xw2xw3xw4 +
∑

w4⩽w1<w2⩽w3

xw1xw2xw3xw4 ,

For each summand,∑
w1<w2⩽w3<w4

xw1xw2xw3xw4 =
∑

w1<w2<w3<w4

xw1xw2xw3xw4 +
∑

w1<w2=w3<w4

xw1xw2xw3xw4

=
∑

w1<w2<w3<w4

xw1xw2xw3xw4 +
∑

w1<w2<w3

xw1x
2
w2
xw3 ;

∑
w2⩽w3<w4⩽w1

xw1xw2xw3xw4 =
∑

w2<w3<w4<w1

xw2xw3xw4xw1 +
∑

w2=w3<w4<w1

xw2xw3xw4xw1

+
∑

w2<w3<w4=w1

xw2xw3xw4xw1 +
∑

w2=w3<w4=w1

xw2xw3xw4xw1

=
∑

i1<i2<i3<i4

xi1xi2xi3xi4 +
∑

i1<i2<i3

x2
i1xi2xi3

+
∑

i1<i2<i3

xi1xi2x
2
i3 +

∑
i1<i2

x2
i1x

2
i2 ;

∑
w3<w4⩽w1<w2

xw1xw2xw3xw4 =
∑

w3<w4<w1<w2

xw3xw4xw1xw2 +
∑

w3<w4=w1<w2

xw3xw4xw1xw2

=
∑

i1<i2<i3<i4

xi1xi2xi3xi4 +
∑

w1<w2<w3

xw1x
2
w2
xw3 ;

∑
w4⩽w1<w2⩽w3

xw1xw2xw3xw4 =
∑

w4<w1<w2<w3

xw4xw1xw2xw3 +
∑

w4=w1<w2<w3

xw4xw1xw2xw3

+
∑

w4<w1<w2=w3

xw4xw1xw2xw3 +
∑

w4=w1<w2=w3

xw4xw1xw2xw3

=
∑

i1<i2<i3<i4

xi1xi2xi3xi4 +
∑

i1<i2<i3

x2
i1xi2xi3

+
∑

i1<i2<i3

xi1xi2x
2
i3 +

∑
i1<i2

x2
i1x

2
i2 .
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To sum up, we have

(7)

∑
(w,k)∈P cyc

4,{1,3}

xw1xw2xw3xw4 = 4
∑

i1<i2<i3<i4

xi1xi2xi3xi4

+ 2
∑

i1<i2<i3

(x2
i1xi2xi3 + xi1x

2
i2xi3 + xi1xi2x

2
i3)

+ 2
∑
i1<i2

x2
i1x

2
i2 ,

which is exactly the expression of F cyc
4,{1,3} we obtained in Example 2.6.

3. Enriched D⃗-partitions for DAGs
In [11], Stembridge defined enriched P -partitions of a poset P . In contrast to having P
with the ordinary order ⩽ as the range for ordinary P -partitions, enriched P -partitions
are obtained by imposing another total order on the range, P′, which is the set of
nonzero integers with an unusual order. We review the basic theory from Stembridge
and naturally extend enriched P -partitions to enriched D⃗-partitions where D⃗ is a
directed acyclic graph which is not necessarily transitive.

A directed acyclic graph (DAG) is a digraph with no directed cycles. Suppose D⃗ is
a DAG with vertex set [n]. A DAG D⃗ is transitive if i → j and j → k implies i → k

for i, j, k ∈ [n]. If P⃗ is a transitive DAG, it will naturally induce a partial order <P⃗
on the vertex set [n], defined so that for two vertices i and j, one has i <P⃗ j if and
only if i → j in P⃗ ; in that case, we also use P⃗ to denote this poset.

In general, we can associate a partial order with any DAG D⃗. For this purpose,
define the transitive closure P⃗ of D⃗ as the directed graph obtained from D⃗ by adding
in i → k if one has both i → j and j → k in D⃗. Such P⃗ is unique. Moreover, it is
straightforward to verify that the transitive closure P⃗ is both acyclic and transitive.
This implies that P⃗ is actually a transitive DAG, hence has a partial order structure.
We will maintain the use → for the relation between vertices in a general DAG D⃗,
while using the partial order ⩽P⃗ on a poset P⃗ .

A poset P⃗ is a total linear order if it is a complete DAG, i.e., there is a directed
edge between every pair of vertices in P⃗ . There is a bijection between the set of total
linear orders P⃗ on the vertex set [n] and Sn. For a total linear order P⃗ on [n], there
exists a unique directed path w1 → w2 → · · · → wn in P⃗ , hence P⃗ can be identified
with the permutation w = w1w2 . . . wn ∈ Sn. Conversely, given a permutation w =
w1w2 . . . wn ∈ Sn, we can construct a DAG P⃗ by putting arrows wi → wj for all
1 ⩽ i < j ⩽ n on the vertex set [n], and it is easy to check that the resulting DAG P⃗
is actually a total linear order. In this case, we usually use a permutation w to denote
the corresponding total linear order P⃗ .

For two DAGs D⃗1 and D⃗2 on the same vertex set [n], we say D⃗2 extends D⃗1 if D⃗1
is a subgraph of D⃗2, written as D⃗1 ⊆ D⃗2. If, furthermore, D⃗2 is a total linear order
corresponding to the permutation w ∈ Sn, we also say that w linearly extends D⃗1.
Denote by L(D⃗) the set of all permutations w ∈ Sn which linearly extend D⃗.

Example 3.1. Here are several DAGs on the vertex set [4] = {1, 2, 3, 4}.
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D⃗1 = 2431
2 4

31

D⃗2 = 2413
2 4

31

D⃗3

2 4

31

Note that D⃗1 is the total linear order with permutation 2431, D⃗2 is the total linear
order for 2413. Both D⃗1 and D⃗2 extend D⃗3, hence 2431 and 2413 linearly extend D⃗3.
Moreover, D⃗1 and D⃗2 are the only total linear orders which extend D⃗3, and therefore
L(D⃗3) = {2431, 2413}.

Now we are in a good position to define enriched D⃗-partitions for a DAG D⃗. Stem-
bridge originally defined the enriched P -partitions when P is a poset. This definition
can be easily extended to the cases when D⃗ is simply a DAG, as the definition does
not rely on the transitivity of P .

Stembridge defines P′ to be the set of nonzero integers, totally ordered as
−1 ≺ 1 ≺ −2 ≺ 2 ≺ −3 ≺ 3 ≺ · · · .

Definition 3.2 (Enriched D⃗-partition). Let D⃗ be a directed acyclic graph (DAG)
on [n]. An enriched D⃗-partition is a function f : [n] → P′ such that for all i → j

in D⃗,
(a) f(i) ⪯ f(j),
(b) f(i) = f(j) > 0 implies i < j,
(c) f(i) = f(j) < 0 implies i > j.

Denote by E(D⃗) the set of all enriched D⃗-partitions f .

Remark 3.3.
(1) In this definition we are using two order structures on the domain [n]: the

order → induced by DAG D⃗ and the ordinary total order ⩽ on integers in (b)
and (c). Both of them will impose restrictions on the possible choices for f .
As for the range P′, we also use two order structures: the total order ⪯ defined
by Stembridge in (a) and the usual order ⩽ on the integers in (b) and (c).

(2) If D⃗ = w is a total linear order, the structure of the set of enriched w-partitions
is quite simple:

(8)
E(w) = { f : [n] → P′ | f(w1) ⪯ · · · ⪯ f(wn),

f(wi) = f(wi+1) > 0 ⇒ i /∈ Des(w),
f(wi) = f(wi+1) < 0 ⇒ i ∈ Des(w) }.

The following fundamental lemma is a straightforward analogue of Stembridge [11,
Lemma 2.1].

Lemma 3.4 (Fundamental lemma of enriched D⃗-partitions). For any DAG D⃗ with
vertex set [n], one has a decomposition of E(D⃗) as the following disjoint union:

E(D⃗) =
⊔

w∈L(D⃗)

E(w).

Proof. Given an enriched D⃗-partition f . First we arrange the elements of [n] in a
weakly increasing order of f -values with respect to the total order ⪯ on the range.
Then if some elements in [n] have the same f -value −k (respectively, +k) for some
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positive integer k, we arrange them in a decreasing (respectively, increasing) order
with respect to the usual order ⩽ on the domain. The resulting permutation w is
unique with f ∈ E(w), and w linearly extends D⃗. On the other hand, for w ∈ L(D⃗),
every enriched w-partition is also an enriched D⃗-partition. Therefore the conclusion
follows. □

Example 3.5. Returning to Example 3.1, since L(D⃗3) = {2431, 2413}, by the Funda-
mental Lemma, E(D⃗3) = E(2431) ⊎ E(2413).

4. Enriched toric [D⃗]-partitions for toric DAGs
In this section, we review the toric DAGs and toric posets as cyclic analogues of DAGs
and posets. Then we define enriched toric [D⃗]-partitions and develop some of their
properties. The concept of toric poset was originally defined and studied by Develin,
Macauley and Reiner in [4]. Here we follow the presentation from Adin, Gessel, Reiner
and Roichman [1].

Just like a linear permutation has a corresponding cyclic permutation as the equiv-
alence class under the equivalence of rotation, for a DAG, we will define an equivalence
relation and consider the equivalence class to be the corresponding toric DAG. It turns
out that if w is a linear extension of the DAG D⃗, then [w] is a toric extension of the
corresponding toric DAG [D⃗].

A DAG D⃗ on [n] has i0 ∈ [n] as a source (respectively, sink) if D⃗ does not contain
j → i0 (respectively, i0 → j) for any j ∈ [n]. Suppose i0 is a source or a sink in D⃗,
we say D⃗′ is obtained from D⃗ by a flip at i0 if D⃗′ is obtained by reversing all arrows
containing i0. We define the equivalence relation ≡ on DAGs as follows: D⃗′ ≡ D⃗ if and
only if D⃗′ is obtained from D⃗ by a sequence of flips. A toric DAG is the equivalence
class [D⃗] of a DAG D⃗.

In particular, if D⃗ = w = w1w2 . . . wn is a total linear order, the next proposi-
tion claims that the corresponding toric DAG [D⃗] can be identified with the cyclic
permutation [w].

Proposition 4.1 ([4, Proposition 4.2]). If D⃗ = w is a total linear order with w =
w1 . . . wn, then there is a bijection between toric DAG [D⃗] and cyclic permutation [w].

Example 4.2. The total linear order D⃗1 = 2431 from Example 3.1 has a corresponding
toric DAG [D⃗1]:

D⃗1 = 2431
2 4

31

D⃗′
1 = 1243

2 4

31

D⃗′′
1 = 3124

2 4

31

D⃗′′′
1 = 4312

2 4

31
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D⃗3

2 4

31

D⃗′
3

2 4

31

D⃗′′
3

2 4

31

D⃗′′′
3

2 4

31

D⃗′′′′
3

2 4

31

Figure 1. All representatives of [D⃗3]

They can be obtained by a sequence of flips:

D⃗1
flip at 1−−−−−→ D⃗′

1
flip at 3−−−−−→ D⃗′′

1
flip at 4−−−−−→ D⃗′′′

1
flip at 2−−−−−→ D⃗1.

Therefore, [D⃗1] can be identified with [2431] = { 2431, 1243, 3124, 4312 }.

As transitivity turns a DAG into a poset, we now introduce the definition of toric
transitivity for a DAG, which will turn the corresponding toric DAG into a toric
poset.

A DAG D⃗ with vertex set [n] is toric transitive if the existence of a directed
path i1 → i2 → · · · → ik and i1 → ik implies the existence of ia → ib in D⃗ for
all 1 ⩽ a < b ⩽ k. A toric DAG [D⃗] is a toric poset if D⃗′ is toric transitive for
some D⃗′ ∈ [D⃗], or equivalently from [1, Proposition 3.10], for all representatives
D⃗′. A toric poset is a total cyclic order if one (or equivalently, all, according to
Proposition 4.1) representative is a total linear order. In this case, we usually use the
corresponding cyclic permutation [w] to denote the total cyclic order [D⃗].

Remark 4.3. In this paper, we adopt the definition of toric posets from [1], which is
not quite the same as it was originally defined in [4], but they are essentially equivalent
by [4, Theorem 1.4].

For two toric DAGs [D⃗1], [D⃗2] on the same vertex set [n], we say [D⃗2] extends [D⃗1]
if there exist D⃗′

i ∈ [D⃗′
i] for i = 1, 2 such that D⃗′

2 extends D⃗′
1. If, furthermore, [D⃗2] is

a total cyclic order corresponding to the cyclic permutation [w], we also say that [w]
torically extends [D⃗1]. Let Ltor([D⃗]) denote the set of cyclic permutations [w] which
torically extend [D⃗].

Example 4.4. In Example 3.1, both [D⃗1] = [2431] and [D⃗2] = [2413] torically ex-
tend [D⃗3]. Moreover, they are the only total cyclic orders that torically extend [D⃗3],
namely Ltor([D⃗3]) = {[2431], [2413]}.

In fact, Figure 1 lists all representatives of [D⃗3], and it is straightforward to check
that every total linear order linearly extending some DAG in [D⃗3] is in either [2431]
or [2413].

Algebraic Combinatorics, Vol. 6 #6 (2023) 1501



J. Liang

Definition 4.5 (Enriched toric [D⃗]-partition). An enriched toric [D⃗]-partition is a
function f : [n] → P′ which is an enriched D⃗′-partition for at least one DAG D⃗′

in [D⃗]. Let Etor([D⃗]) denote the set of all enriched toric [D⃗]-partitions.

If [D⃗] = [w] is a total cyclic order, the set of enriched toric [w]-partitions is the
union of the set of enriched w′-partitions for all representatives w′ of [w]:

(9) Etor([w]) =
⋃

w′∈[w]
E(w′).

As in the linear case, we have the following fundamental lemma for the decompo-
sition of enriched toric [D⃗]-partitions. The proof is analogous to [1, Lemma 3.15].

Lemma 4.6 (Fundamental lemma of enriched toric [D⃗]-partitions). For a DAG D⃗, the
set of all enriched toric [D⃗]-partitions is a disjoint union of the set of enriched toric
[w]-partitions of all toric extensions [w] of [D⃗]:

Etor([D⃗]) =
⊔

[w]∈Ltor([D⃗])

Etor([w]).

Proof. By the definition of Etor([D⃗]), one has

Etor([D⃗]) =
⋃

D⃗′∈[D⃗]
E(D⃗′).

In particular when [D⃗] = [w] is a total cyclic order, it follows from Proposition 4.1
that,

Etor([w]) =
⋃

w′∈[w]
E(w′).

Hence,

Etor([D⃗]) =
⋃

D⃗′∈[D⃗]
E(D⃗′)

(i)=
⋃

D⃗′∈[D⃗]

⋃
w′∈L(D⃗′)

E(w′)

(ii)=
⋃

[w]∈Ltor([D⃗])

⋃
w′∈[w]

E(w′)

=
⋃

[w]∈Ltor([D⃗])
Etor([w]).

To justify these steps, first note that equality (i) follows from Lemma 3.4.
As for equality (ii), it suffices to show that w′ ∈ L(D⃗′) for some D⃗′ ∈ [D⃗] if and only

if w′ ∈ [w] for some [w] ∈ Ltor([D⃗]). For the forward direction, if w′ ∈ L(D⃗′) for some
D⃗′ ∈ [D⃗], then [w′] torically extends [D⃗′] = [D⃗]. For the reverse implication, given
w′ ∈ [w] ∈ Ltor([D⃗]), pick D⃗′′ ∈ [D⃗] and w′′ ∈ [w] with w′′ linearly extending D⃗′′,
then [w′′] = [w′] = [w]. It follows that there exists a sequence of flips which takes w′′

to w′. Now applying the same sequence of flips to D⃗′′ will result in some D⃗′. One then
has D⃗′ ∈ [D⃗′′] = [D⃗] and w′ ∈ L(D⃗′) as desired.

The assertion of disjointness follows directly from the fact that every function
f : [n] → P′ has a unique linear permutation w ∈ Sn such that f is also an enriched
w-partition, hence an enriched toric [w]-partition. Such a linear permutation w can
be similarly constructed as in the proof of Lemma 3.4, so the details are omitted. This
completes the proof. □
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For convenience, we always assume the label set to be [n]. However, the definitions
of (toric) DAGs and (toric) posets can be extended to any finite subset of P as the
set of labels, with all consequent conclusions continuing to hold.

5. Weight enumerators and the algebra of cyclic peaks
In this section, we first review, in Subsection 5.1, the weight enumerators for enriched
P -partitions defined by Stembridge [11], slightly extended to the context of DAGs.
These enumerators span an algebra Π, the algebra of peaks, which is a graded sub-
ring of QSym. We then introduce, in Subsection 5.2, the cyclic analogue for enriched
toric [D⃗]-partitions. These enumerators generate the algebra of cyclic peaks Λ, de-
fined in Subsection 5.3, which is a graded subring of cQSym. We also introduce, in
Subsection 5.4, the corresponding order polynomial and provide two proofs for an
explicit formula of its evaluation on a permutation. Finally, in Subsection 5.5, we
provide another characterization of the algebra of peak number Apk, as opposed to
the characterization given by Gessel and Zhuang [6, Theorem 4.8 (b)].

5.1. Weight enumerator for enriched D⃗-partitions. Suppose D⃗ is a DAG
on [n]. Define the weight enumerator for enriched D⃗-partitions to be the formal power
series

∆D⃗ :=
∑

f∈E(D⃗)

∏
i∈[n]

x|f(i)|,

where E(D⃗) is the set of enriched D⃗-partitions. By the Fundamental Lemma 3.4, one
has
(10) ∆D⃗ =

∑
w∈L(D⃗)

∆w.

It is clear from equation (8) that ∆w is a homogeneous quasi-symmetric function.
More generally, ∆D⃗ is a homogeneous quasi-symmetric function in QSym.

It also follows from equation (8) that the weight enumerator ∆w depends only on
the descent set Desw. A less obvious but important observation, that ∆w depends
only on the peak set Pkw, will follow directly from the following proposition, proved
by Stembridge in [11].

Proposition 5.1 ([11, Proposition 2.2]). As a quasi-symmetric function, ∆w has the
following expansion in terms of monomial quasi-symmetric functions:

(11) ∆w =
∑

E⊆[n−1] :

Pkw⊆E∪(E+1)

2|E|+1Mn,E ,

where the set E + 1 is defined by (1).

Example 5.2. In Example 4.4, we have Ltor([D⃗3]) = { [2431], [2413] }. By Defini-
tion 5.4 and equation (12) in the next subsection, one has

∆cyc
[D⃗3]

= ∆cyc
[2431] + ∆cyc

[2413]

= ∆2431 + ∆4312 + ∆3124 + ∆1243 + ∆2413 + ∆4132 + ∆1324 + ∆3241.

Applying the proposition above, we can calculate each summand as follows:

∆2431 =
∑

E⊆[3] : {2}⊆E∪(E+1)

2|E|+1M4,E

= 24M4,{1,2,3} + 23(M4,{1,2} +M4,{1,3} +M4,{2,3}) + 22(M4,{1} +M4,{2}),
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∆4312 =
∑

E⊆[3] : ∅⊆E∪(E+1)

2|E|+1M4,E

= 24M4,{1,2,3} + 23(M4,{1,2} +M4,{1,3} +M4,{2,3})

+ 22(M4,{1} +M4,{2} +M4,{3}) + 2M4,∅,

∆3124 =
∑

E⊆[3] : ∅⊆E∪(E+1)

2|E|+1M4,E

= 24M4,{1,2,3} + 23(M4,{1,2} +M4,{1,3} +M4,{2,3})

+ 22(M4,{1} +M4,{2} +M4,{3}) + 2M4,∅,

∆1243 =
∑

E⊆[3] : {3}⊆E∪(E+1)

2|E|+1M4,E

= 24M4,{1,2,3} + 23(M4,{1,2} +M4,{1,3} +M4,{2,3}) + 22(M4,{2} +M4,{3}),

∆2413 =
∑

E⊆[3] : {2}⊆E∪(E+1)

2|E|+1M4,E

= 24M4,{1,2,3} + 23(M4,{1,2} +M4,{1,3} +M4,{2,3}) + 22(M4,{1} +M4,{2}),

∆4132 =
∑

E⊆[3] : {3}⊆E∪(E+1)

2|E|+1M4,E

= 24M4,{1,2,3} + 23(M4,{1,2} +M4,{1,3} +M4,{2,3}) + 22(M4,{2} +M4,{3}),

∆1324 =
∑

E⊆[3] : {2}⊆E∪(E+1)

2|E|+1M4,E

= 24M4,{1,2,3} + 23(M4,{1,2} +M4,{1,3} +M4,{2,3}) + 22(M4,{1} +M4,{2}),

∆3241 =
∑

E⊆[3] : {3}⊆E∪(E+1)

2|E|+1M4,E

= 24M4,{1,2,3} + 23(M4,{1,2} +M4,{1,3} +M4,{2,3}) + 22(M4,{2} +M4,{3}).

Therefore, we have

∆cyc
[D⃗3]

= 24 · 8M4,{1,2,3} + 23 · 8
(
M4,{1,2} +M4,{1,3} +M4,{2,3}

)
+22 · 5

(
M4,{1} +M4,{3}

)
+ 22 · 8M4,{2} + 2 · 2M4,∅

= 2 · 24M cyc
(1,1,1,1) + 8 · 23M cyc

(2,1,1) + 5 · 22M cyc
(3,1) + 4 · 22M cyc

(2,2) + 2 · 2M cyc
(4) ,

where the second equality follows from Table 1.

As a counterpart, the weight enumerator ∆w also has an expansion in terms of
another basis: the fundamental quasi-symmetric functions.
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Proposition 5.3 ([11, Proposition 3.5]). As a quasi-symmetric function, ∆w has the
following expansion in terms of fundamental quasi-symmetric functions:

∆w = 2pkw+1
∑

D⊆[n−1] : Pkw⊆D△(D+1)

Fn,D.

Here △ denotes symmetric difference, that is, D△E = (D ∪ E) ∖ (D ∩ E).

We say that a subset S ⊆ [n] is a peak set in [n] if Pkw = S for some w ∈ Sn.
For any peak set S in [n], from the above proposition we can define an associated
quasi-symmetric function by

Kn,S := ∆w,

where w is any permutation with peak set S. It follows that ∆w = Kn,Pkw and one
can rewrite equation (10) as

∆D⃗ =
∑

w∈L(D⃗)

Kn,Pkw.

Let Πn denote the space of quasi-symmetric functions spanned by Kn,S , taken over
all peak sets in [n], and set Π = ⊕n⩾0Πn. In [11] Stembridge referred to Π as the
algebra of peaks, and proved that Π is a graded subring of QSym.

5.2. Weight enumerator for enriched toric [D⃗]-partitions.

Definition 5.4. For a given toric poset [D⃗] with vertex set [n], we define the weight
enumerator for enriched toric [D⃗]-partitions by the formal power series

∆cyc
[D⃗]

:=
∑

f∈Etor([D⃗])

∏
i∈[n]

x|f(i)|.

Namely, for integer k > 0 we assign the weight xk to both f -values k and −k.

As a direct consequence of the Fundamental Lemma 4.6, one has

(12) ∆cyc
[D⃗]

=
∑

[w]∈Ltor([D⃗])

∆cyc
[w] .

Therefore, it suffices to discuss ∆cyc
[w] for cyclic permutations [w]. It follows from the

formula (9) that ∆cyc
[w] can be expressed in terms of the weight enumerators {∆v} as

(13) ∆cyc
[w] =

∑
v∈[w]

∆v.

Moreover, ∆cyc
[w] has the following expression.

Proposition 5.5. For any given cyclic permutation [w] of length n, we have

(14) ∆cyc
[w] =

∑
E⊆[n]:

cPk(w)⊆E∪(E+1)

2|E|M cyc
n,E ,

with E + 1 defined by (1). The sum is independent of the choice of representative w
of [w].

Proof. The independence of the choice of representatives is a result of the following
two observations:

(a) If E and E′ only differ by a cyclic shift, one has |E| = |E′| and M cyc
n,E = M cyc

n,E′ .
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(b) For two representatives w and w′ of [w],
{E ⊆ [n] : cPk(w) ⊆ E ∪ (E + 1)} = {E′ ⊆ [n] : cPk(w′) ⊆ E′ ∪ (E′ + 1)} + i,

for some i ∈ [n], namely, the two sets only differ by a cyclic shift.
Now fix a representative w of [w]. We rewrite both sides of equation (14) as follows:

(15) RHS (i)=
∑
F⊆[n]:

cPk(w)⊆F∪(F+1)

2|F |
∑
f∈F

Mn,(F−f)∩[n−1]
(ii)=

∑
E⊆[n−1]

2|E|+1αEMn,E

where αE = #AE , with
AE = {(F, f) : f ∈ F ⊆ [n] with cPk(w) ⊆ F ∪ (F + 1), E = (F − f) ∩ [n− 1]}.

Here equality (i) is a result of applying equation (5) to move from cyclic monomial
to monomial quasi-symmetric functions, while equality (ii) is obtained by calculating
the coefficient of Mn,E . It is noted that in equality (ii), for each pair (F, f) ∈ AE , we
have n ∈ F − f . As a result, E = (F − f) ∩ [n− 1] = (F − f) ∖ {n}. Therefore their
cardinalities satisfy |F | = |E| + 1.

LHS (i)′

=
∑
v∈[w]

∆v

(ii)′

=
∑
v∈[w]

∑
E⊆[n−1]:

Pk(v)⊆E∪(E+1)

2|E|+1Mn,E

(iii)′

=
∑

E⊆[n−1]

βE2|E|+1Mn,E

(16)

where βE = #BE with
BE = {i ∈ [n] : (cPkw − i) ∩ [2, n− 1] ⊆ E ∪ (E + 1)}.

Equality (i)′ follows from equation (13). Equality (ii)′ is obtained by applying equa-
tion (11) to express the weight enumerator ∆v in terms of monomial quasi-symmetric
functions.

Equality (iii)′ follows from the observation
{{ Pk(v) : v ∈ [w] }} = {{ (cPkw − i) ∩ [2, n− 1] : i ∈ [n] }}.

By comparing equations (15) and (16), it suffices to prove that αE = βE for every
E ⊆ [n− 1], or equivalently, to construct a bijection between AE and BE .

Set θE : AE → BE as θE(F, f) = f . To prove that this map is well-defined, it
suffices to show that for each (F, f) ∈ AE , we have f ∈ BE . It follows from the
definition of AE that F − f = E ∪ {n}. Applying the operation on both sides of the
inclusion cPk(w) ⊆ F ∪ (F + 1), we get

cPk(w) − f ⊆ (F − f) ∪ (F − f + 1) = E ∪ (E + 1) ∪ {1, n}.
Hence (cPkw − f) ∩ [2, n− 1] ⊆ E ∪ (E + 1) and f ∈ BE .

Conversely, define σE : BE → AE by σE(f) = ( (E+f)∪{f}, f ). One can similarly
check that this map is well-defined.

It is straightforward to verify that θE and σE are inverse to each other, hence we
get a bijection between AE and BE . This finishes the proof. □

Remark 5.6. As a direct corollary of the above proposition, ∆cyc
[D⃗]

is a homogeneous
cyclic quasi-symmetric function of degree n, and that ∆cyc

[w] depends only on cPk[w],
or equivalently (by Remark 1.2) on cPkw for any representative w.
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Example 5.7. Let w = 1243 so that [w] = {1243, 3124, 4312, 2431} and cPk(w) = {3};
π = 1324, [π] = {1324, 4132, 2413, 3241} and cPk(π) = {2, 4}.

To use Proposition 5.5 for calculation, we first need all possible choices of E ⊆ [4]
satisfying {3} = cPkw ⊆ E ∪ (E + 1), which are

{1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {2}, {3},

with corresponding monomial cyclic quasi-symmetric functions

M cyc
(1,1,1,1) = M cyc

4,{1,2,3,4},

M cyc
(2,1,1) = M cyc

4,{1,2,3} = M cyc
4,{1,2,4} = M cyc

4,{1,3,4} = M cyc
4,{2,3,4},

M cyc
(3,1) = M cyc

4,{1,2} = M cyc
4,{2,3} = M cyc

4,{3,4},

M cyc
(2,2) = M cyc

4,{1,3} = M cyc
4,{2,4},

M cyc
(4) = M cyc

4,{2} = M cyc
4,{3}.

Applying equation (14), we have

∆cyc
[w] = 24M cyc

(1,1,1,1) + 4 · 23M cyc
(2,1,1) + 3 · 22M cyc

(3,1) + 2 · 22M cyc
(2,2) + 2 · 2M cyc

(4) .

Similarly for π, all possible choices of E ⊆ [4] satisfying {2, 4} = cPk π ⊆ E∪(E+1)
are as follows:

{1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 3}, {1, 4}, {2, 3}, {2, 4},

hence by equation (14),

∆cyc
[π] = 24M cyc

(1,1,1,1) + 4 · 23M cyc
(2,1,1) + 2 · 22M cyc

(3,1) + 2 · 22M cyc
(2,2).

It follows from the calculation above that

∆cyc
[w] + ∆cyc

[π] = 2 · 24M cyc
(1,1,1,1) + 8 · 23M cyc

(2,1,1) + 5 · 22M cyc
(3,1) + 4 · 22M cyc

(2,2) + 2 · 2M cyc
(4) ,

which is exactly what we obtained in Example 5.2.

5.3. Algebra of cyclic peaks. We say S is a cyclic peak set in [n] if there exists
some w ∈ Sn with cPkw = S. It follows from Proposition 5.5 that, for any cyclic
peak set S in [n], we can define an associated cyclic quasi-symmetric function by

Kcyc
n,S := ∆cyc

[w] ,

for any permutation w with cPkw = S. One can observe that ∆cyc
[w] = Kcyc

n,cPkw and
rewrite equation (12) as

∆cyc
[D⃗]

=
∑

[w]∈Ltor([D⃗])

Kcyc
n,cPkw.

Moreover, it follows from formula (9) that Kcyc
n,S can be expressed in terms of the

quasi-symmetric functions {Kn,T } as

Kcyc
n,S =

∑
σ∈[w]

Kn,Pkσ,

where cPkw = S.
Let Λn denote the vector space of cyclic quasi-symmetric functions spanned byKcyc

n,S

where S ranges over cyclic peak sets in [n], and set Λ = ⊕n⩾0Λn. We will show that Λ
is an algebra by proving that the product of Kcyc

n,U and Kcyc
n,T is a linear combination

of Kcyc
n,S ’s. We call Λ the algebra of cyclic peaks.
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Lemma 5.8. The Kcyc
n,S are linearly independent, where S are, up to cyclic shift, distinct

cyclic peak sets.

Proof. For this proof, we totally order the subsets of [n− 1], first by cardinality, then
by the lexicographic order. We therefore have
∅� {1}� {2}� · · ·� {n− 1}� {1, 2}� {1, 3}� · · ·� {1, n− 1}� {2, 3}� {2, 4}� · · · .
One can similarly order the compositions of n as
(n)� (1, n− 1)� (2, n− 2)� · · ·� (1, 1, n− 2)� (1, 2, n− 3)� · · ·� (1, n− 2, 1)� · · · .

Noting that Kcyc
n,S = Kcyc

n,S′ if the sets S and S′ only differ by a cyclic shift, we will
always assume the index set S to be the least among all its cyclic shifts. It is not hard
to see that ψ(S) is also the least composition among all its cyclic shifts, where ψ is
defined by equation (3).

We now show that the matrix of {Kcyc
n,S} with respect to the basis {M cyc

n,L} has full
rank. Then the linear independence of {Kcyc

n,S} will follow immediately from the fact
that the monomial cyclic quasi-symmetric functions form a basis of cQSym.

Let us fix n and suppose {S1 � S2 � . . .� Sm} is the set of all distinct cyclic peak
sets in [n]. Given a Kcyc

n,S , suppose |S| = k and S = {1 = s1 < s2 < . . . < sk} for
some n ⩾ 2 and k ⩾ 1. Here all indices are taken modulo k unless otherwise noted.
To each Kcyc

S we associate a corresponding monomial quasi-symmetric function by
F (Kcyc

n,S) = M cyc
n,f(S), where

f(S) = {s1, s2 − 1, . . . , sk − 1}.
Since S is a cyclic peak set, elements in f(S) are distinct. So f(S) is a set and F is
well-defined. If one denotes ψ(S) by (α1, α2, . . . , αk), then

ψ(f(S)) = (α1 − 1, α2, . . . , αk−1, αk + 1).
Also notice that the assumption of S being the least among its cyclic shifts (in partic-
ular, α1 = min{αi}ni=1) ensures that f(S) is also the least among all its cyclic shifts.
It follows that F is injective.

Claim: Consider the matrix of {Kcyc
n,S} with respect to the basis {M cyc

n,E}. The
square submatrix with columns restricted to {M cyc

n,f(S)} is upper triangular with
nonzero diagonal entries. In particular, it is invertible.

Let Ai,j denote the coefficient of M cyc
n,f(Sj) in the expression of Kcyc

n,Si
in terms of

monomial cyclic quasi-symmetric functions and set A = (Ai,j) to be the m×m matrix
that we need to consider. To prove that A is an upper triangular matrix, it suffices
to show that Ai,j = 0 if i > j, or equivalently, the term M cyc

n,f(Sj) does not appear in
the expression of Kcyc

n,Si
if Sj � Si.

Suppose towards a contradiction that Ai,j ̸= 0 for some i > j. It then follows from
Proposition 5.5 that there exists some E ⊆ [n] such that

Si ⊆ E ∪ (E + 1) and M cyc
n,f(Sj) = M cyc

n,E .

Since Si is a cyclic peak set, e and e + 1 cannot be in Si at the same time. It then
follows from the assumption Si ⊆ E ∪ (E + 1) that |E| ⩾ |Si|. The condition i > j
implies Si�Sj , hence |Si| ⩾ |Sj | = |f(Sj)| = |E|. Therefore, we only need to consider
the cases when Si and Sj have the same cardinality.

Suppose
ψ(Si) = (α1, α2, . . . , αk), ψ(Sj) = (β1, β2, . . . , βk), ψ(E) = (β′

1, β
′
2, . . . , β

′
k).

Then ψ(E) = (β′
1, β

′
2, . . . , β

′
k) is a cyclic shift of

ψ(f(Sj)) = (β1 − 1, β2, . . . , βk−1, βk + 1).
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Assume
(β′
q, β

′
q+1, . . . , β

′
q−1) = (β1 − 1, β2, . . . , βk−1, βk + 1),

for some q ∈ [k]. Since Si ⊆ E ∪ (E + 1), |Si| = |E|, and Si does not have cyclically
consecutive elements, each a ∈ Si corresponds to a unique a′ ∈ E where a′ equals
either a or a− 1 (considered modulo n). A crucial observation therefore follows:
(17) |(αr + · · · + αs) − (β′

r + · · · + β′
s)| ⩽ 1 for r, s ∈ [k].

In particular,
α1 ⩽ αq ⩽ β′

q + 1 = (β1 − 1) + 1 = β1,

where the first inequality comes from the fact that Si is the least among its cyclic
shifts, and the second one follows from (17) by taking r = s = q. Note that Sj � Si
implies ψ(Sj) � ψ(Si), so β1 ⩽ α1. Thus, necessarily,

α1 = αq = β′
q + 1 = β1.

It then follows from the inequality (17) that for any r ∈ [k − 1],
αq + · · · + αq+r ⩽ β′

q + · · · + β′
q+r + 1 = β1 + · · · + β1+r + δ1+r,k,

where δ1+r,k = 1 if 1 + r = k and 0 otherwise.
If αq+r = β1+r for every r ∈ [k − 2], then ψ(Si) is a cyclic shift of ψ(Sj), which

contradicts our assumption Si�Sj . Now assume that t ∈ [k− 2] is the smallest index
such that αq+t ̸= β1+t. Then necessarily αq+t < β1+t, and

(αq, . . . , αq+t) � (β1, . . . , β1+t).
Combined with the inequality (α1, . . . , α1+t) � (αq, . . . , αq+t), as (α1, . . . , αk) is the
least among all its cyclic shifts, one has

(α1, . . . , α1+t) � (β1, . . . , β1+t).
This implies that ψ(Si) � ψ(Sj), which is a contradiction to the assumption Si � Sj .
Moreover, it is not hard to see that Ai,i ̸= 0 as Si ⊆ f(Si) ∪ (f(Si) + 1), therefore the
diagonal entries are nonzero. This proves the claim, hence the lemma. □

Define the union of digraphs D⃗
⊎
E⃗ to be the digraph with vertices V (D⃗) ∪ V (E⃗)

and arcs A(D⃗) ∪A(E⃗). The next result follows easily from the definition.

Proposition 5.9. If D⃗ and E⃗ are two DAGs on disjoint subsets of P, then
(18) ∆cyc

[D⃗
⊎
E⃗]

= ∆cyc
[D⃗]

· ∆cyc
[E⃗]
.

The proposition above yields a combinatorial proof that Λ is an algebra.

Proposition 5.10. Λ is a graded subring of cQSym.

Proof. As a subspace of cQSym, Λ naturally inherits the addition and multiplication
operations from cQSym.

To show that Λ is closed under multiplication, let Kcyc
n,U ∈ Λm and Kcyc

n,T ∈ Λn,
where U and T are cyclic peak sets in [m] and [n] respectively. That is to say, there
exist π ∈ Sm and w ∈ Sn such that cPk π = U, cPkw = T . For the purpose of
constructing two corresponding disjoint DAGs, we standardize w = w1w2 . . . wn ∈ Sn
to {m+ 1,m+ 2, . . . ,m+ n}, that is, construct w′ = w′

1w
′
2 . . . w

′
n where w′

i = wi +m
for i ∈ [n]. As a consequence of equation (18), we have

(19) Kcyc
n,U ·Kcyc

n,T = ∆cyc
[π] · ∆cyc

[w′] = ∆cyc
[π

⊎
w′]

=
∑

σ∈Ltor([π
⊎
w′])

Kcyc
n,cPkσ.

This completes the proof. □

Algebraic Combinatorics, Vol. 6 #6 (2023) 1509



J. Liang

In terms of another basis of cQSym, the fundamental cyclic quasi-symmetric func-
tions, Kcyc

n,S has the following expansion.

Proposition 5.11. For any cyclic peak set S in [n], we have

2−|S|Kcyc
n,S =

∑
E⊆[n]:

S⊆E△(E+1)

F cycn,E ,

where △ denotes symmetric difference.

Proof. Since F cycn,E =
∑
F⊇EM

cyc
n,F , the coefficient of M cyc

n,F on the right-hand side of
the above expansion is |{E ⊆ F : S ⊆ E△(E + 1)}|.

To count this set, we need the following observations. For each k ∈ S ⊆ E△(E+1),
exactly one of k − 1 and k is in E. It follows from E ⊆ F that at least one of k − 1
and k is in F . So one has the following two cases:

(1) If both k, k − 1 ∈ F , then E must contain exactly one of k or k − 1.
(2) If only one of k, k − 1 ∈ F , then E must contain this element.

Note that the restrictions above only involve two adjacent numbers.
Also notice that if k ∈ F but neither k nor k + 1 is in S, then k is free to be in E

or not. Denote
S1 = {k ∈ S | both k, k − 1 are in F},
S2 = {k ∈ S | k ∈ E, k − 1 /∈ F},
S3 = {k ∈ S | k /∈ E, k − 1 ∈ F}.

Then we have a set partition S = S1 ∪ S2 ∪ S3. Therefore if we denote si = #Si for
i ∈ {1, 2, 3}, we have |S| = s1 + s2 + s3.

Denote now
T = {k ∈ F | none of k, k + 1 is in S}.

By the definition of a peak set, numbers in S are not adjacent. Hence we have the
following partition of F into disjoint sets:

F = S1 ∪ (S1 − 1) ∪ S2 ∪ (S3 − 1) ∪ T.

It follows that |F | = 2s1 +s2 +s3 + t with t = |T |. Hence, the number of choices for E
is

2s1+t = 2s1+|F |−2s1−s2−s3 = 2|F |−(s1+s2+s3) = 2|F |−|S|.

So we have ∑
E⊆[n]:

S⊆E△(E+1)

F cycn,E =
∑
F⊆[n]:

S⊆F∪(F+1)

2|F |−|S|M cyc
n,F .

By equation (14), this quantity is 2−|S|Kcyc
n,S . □

5.4. Order polynomials Ωcyc([D⃗],m). Given a DAG D⃗, we can define the order
polynomial of enriched D⃗-partitions, Ω(D⃗,m), by

Ω(D⃗,m) = ∆D⃗(1m),
where ∆D⃗(1m) means that we set x1 = · · · = xm = 1, and xk = 0 for k > m. In fact,
Ω(D⃗,m) counts the number of enriched D⃗-partitions with absolute value at most m.

Stembridge computed the corresponding generating function as follows:

Theorem 5.12 ([11, Theorem 4.1]). For a given w ∈ Sn, one has

(20)
∑
m

Ω(w,m)tm = 1
2

(
1 + t

1 − t

)n+1 (
4t

(1 + t)2

)1+pkw
.
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It is not hard to see that Ω(D⃗, t) is indeed a polynomial in t. If D⃗ has vertex set V
and |V | = n, then

Ω(D⃗,m) =
n∑
k=1

ck

(
m

k

)
,

where ck denotes the number of f ∈ E(D⃗) such that {|f(x)| : x ∈ V } = [k]. For
any fixed k,

(
m
k

)
is a polynomial in m of degree k. Since ck and n are constants, it

follows that the summation is also a polynomial in m. This verifies that Ω([D⃗], t) is a
polynomial.

Similarly, we define the order polynomial of enriched toric [D⃗]-partitions,
Ωcyc([D⃗],m), by

Ωcyc([D⃗],m) = ∆cyc
[D⃗]

(1m).

The following result is the toric analogue of formula (20).

Proposition 5.13. Given w ∈ Sn, then

(21)
∑
m

Ωcyc([w],m)tm =
(

4t
(1 + t)2

)cpkw (
1 + t

1 − t

)n−1 (
cpkw + 2nt

(1 − t)2

)
.

This right side of the equation does not depend on the choice of representative w, as
they all have the same cyclic peak number.

Proof. By the definition of order polynomial,∑
m

Ωcyc([w],m)tm =
∑
m

∆cyc
[w] (1

m)tm

=
∑
m

∑
v∈[w]

∆v(1m)tm

=
∑
v∈[w]

∑
m

∆v(1m)tm

=
∑
v∈[w]

∑
m

Ω(v,m)tm

=
∑
v∈[w]

1
2

(
1 + t

1 − t

)n+1 (
4t

(1 + t)2

)1+pk v
,

where the last equality is obtained by applying (20).
Observe that each representative of [w] will either start with a cyclic peak, end with

a cyclic peak, or none of the two ends are cyclic peaks, which will yield peak number
cpkw− 1, cpkw− 1 or cpkw respectively. The number of those representatives with
a cyclic peak at one end is 2 cpkw. It follows that∑

m

Ωcyc([w],m)tm = 2 cpkw
2

(
1 + t

1 − t

)n+1 (
4t

(1 + t)2

)cpkw

+ n− 2 cpkw
2

(
1 + t

1 − t

)n+1 (
4t

(1 + t)2

)1+cpkw

=
(

4t
(1 + t)2

)cpkw (
1 + t

1 − t

)n−1 (
cpkw + 2nt

(1 − t)2

)
.

This completes the proof. □
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Notice that by taking the coefficient of tm on both sides of equation (21), one can
get an expression for the order polynomial of enriched D⃗-partitions Ωcyc([w],m) in
an algebraic manner. It would be desirable to derive Ωcyc([w],m) combinatorially. For
this purpose, we first give a combinatorial proof of a formula for Ω(w,m). We define
the (w,m)-marking for a permutation w and a positive integer m, and show that each
(w,m)-marking corresponds to exactly 22 pk +1 enriched w-partitions with absolute
value at most m.

Suppose w ∈ Sn, m ∈ P. One can naturally extend w = w1 . . . wn to w′ =
w0w1 . . . wnwn+1 where w0 = wn+1 = ∞. Let R1 be the longest decreasing initial
factor of w′. Now let v denote w′ with R1 deleted, and let R2 be the longest in-
creasing initial factor of v. Continue in this way, alternating between decreasing and
increasing factors to get a factorization of w′. We call the factors runs and the corre-
sponding indices run indices. We denote by Ij the set of run indices corresponding to
a factor set Rj . Note that any extension w′ will start with a decreasing run and end
with an increasing run, which implies that the number of runs is always even.

Take

w = 1 2 3 4 5 6
1 4 3 2 5 6

as an example. The corresponding natural extension

w′ = 0 1 2 3 4 5 6 7
∞ 1 4 3 2 5 6 ∞

has four runs
R1 = ∞1, R2 = 4, R3 = 32, R4 = 56∞,

where the decreasing runs are in bold, and the corresponding set of run indices are

I1 = {0, 1}, I2 = {2}, I3 = {3, 4}, I4 = {5, 6, 7}.

Suppose that the permutation w′ has r runs. We have the following observations:
(1) The parity of i indicates the type of the run Ri. If i is even, then Ri is

increasing. If i is odd, then Ri is decreasing.
(2) The total number of runs r is closely related to the peak number pkw:

r = 2 pkw + 2.

We now decorate permutations with bars and marks. Bars can be inserted between
adjacent columns in the two-line notation (including the space before the first column
and the space after the last), whereas a column of w with index i ∈ [n] can be marked
if and only if i, i+ 1 ∈ Ij for some j; in other words, if i and i+ 1 are in the same run
index set. There can be multiple bars between two adjacent columns and we count
them with multiplicity, while each column can be marked at most once. We will denote
by Mw the set of indices of the columns that can be marked,

Mw := {i ∈ [n] | i, i+ 1 ∈ Ij for some j}.

We note that for a given w, the cardinality of the complement of the set Mw in [n]
is 2 pkw + 1. Equivalently, one has |Mw| = n− 2 pkw − 1.

Definition 5.14 ((w,m)-marking). Suppose that w is a linear permutation and m is
a positive integer. A (w,m)-marking is a marking of w using b bars and d marked
columns, satisfying that b+ d = m− 1 − pkw.

Example 5.15. If we set w = 143256 as before, and take m = 5, then a (w, 5)-
marking has b bars and d marked columns, such that b+ d = 3. Two (w, 5)-markings
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are provided as follows. Both have two bars and one marked column, where the marked
column is in blue.

1 2 3 4 5 6
1 4 3 2 5 6

1 2 3 4 5 6
1 4 3 2 5 6

Proposition 5.16. For a given w ∈ Sn, one has

(22) Ω(w,m) = 22 pkw+1
m−1−pkw∑

k=0

((
n+ 1
k

)) (
n− 2 pkw − 1

m− 1 − pkw − k

)
,

where
((
n+1
k

))
denotes the number of multisets on [n+ 1] with cardinality k.

Proof. It is clear by definition that the number of possible choices for (w,m)-markings
is ∑
b+d=m−1−pkw

((
n+ 1
b

)) (
n− 2 pkw − 1

d

)
=
m−1−pkw∑

k=0

((
n+ 1
k

)) (
n− 2 pkw − 1

m− 1 − pkw − k

)
.

Therefore, it suffices to construct a 22 pkw+1-to-one map from the set of enriched
w-partitions with absolute value at most m to the set of all (w,m)-markings.

Given an enriched w-partition f with absolute value at most m, we can inductively
associate to it a unique (w,m)-marking as follows:

We first determine, for each k ∈ Mw, whether column k gets marked. Suppose
k ∈ Ii for some i ∈ [r]. We mark column k if and only if δk + γk = 1 where

δk := δ (i is even and f(wk) < 0), γk := δ (i is odd and f(wk) > 0).

Here the Kronecker function on a statement R is defined by

δ(R) =
{

1 if R is true,
0 if R is false.

.

As for the placement of bars, we start by putting |f(w1)| − 1 bars before the first
column. Inductively, suppose that k ∈ Ii for some k ∈ [2, n], i ∈ [r] and we have
already constructed the markings and bars on and before the (k− 1)st column. Then
the number of marks and bars strictly before the kth column is constructed to be

(23) |f(wk)| − ⌈i/2⌉ − δk.

Finally we add bars after the last column so that the total number of marks and bars
is m − pkw − 1. In this manner, we can inductively define a unique (w,m)-marking
for f .

We must verify that the constructed marking is indeed a (w,m)-marking. Firstly
we will verify that (23) is a weakly increasing function of k, and strictly increasing
from the kth to the (k + 1)st term if column k is marked. In other words, if k ∈ Ii
and k + 1 ∈ Ij , it suffices to show that

|f(wk)| − ⌈i/2⌉ − δk ⩽ |f(wk+1)| − ⌈j/2⌉ − δk+1,

for all k, and that

|f(wk)| − ⌈i/2⌉ − δk < |f(wk+1)| − ⌈j/2⌉ − δk+1,

if column k is marked. Notice that

(δk + γk) · δ(k ∈ Mw) = 1

if column k is marked and 0 otherwise. Hence it suffices to show that

(24) |f(wk)| − ⌈i/2⌉ − δk + (δk + γk) · δ(k ∈ Mw) ⩽ |f(wk+1)| − ⌈j/2⌉ − δk+1.
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By the definition of enriched P -partitions, we have
(25) |f(wk)| ⩽ |f(wk+1)|.
Let us consider the following cases:

(a) If j = i, it follows that k ∈ Mw. Hence inequality (24) simplifies to
|f(wk)| + γk ⩽ |f(wk+1)| − δk+1.

If i is even, then γk = 0 and wk < wk+1. By inequality (25), one only
needs to consider whether the inequality holds when δk+1 = 1, which im-
plies f(wk+1) < 0. It follows from the definition of enriched P -partitions that
f(wk) ⪯ f(wk+1), namely |f(wk)| < |f(wk+1)| or f(wk) = f(wk+1) < 0, but
the second possibility contradicts wk < wk+1. This proves (24) in this case.
The proof is similar when i is odd.

(b) If j = i+ 1, then k /∈ Mw. Inequality (24) reduces to
|f(wk)| − ⌈i/2⌉ − δk ⩽ |f(wk+1)| − ⌈(i+ 1)/2⌉ − δk+1.

If i is even, then wk > wk+1, ⌈i/2⌉ + 1 = ⌈(i + 1)/2⌉ and j is odd, hence
δk+1 = 0. Therefore one only needs to prove

|f(wk)| − δk ⩽ |f(wk+1)| − 1.
The inequality clearly holds when δk = 1, so it suffices to consider the case
when δk = 0. In this case, f(wk) > 0, hence by the definition of enriched
P -partitions, or equivalently |f(wk+1)| ⩾ |f(wk)| + 1, proves (24). The case
when i is odd is similar and left to the reader.

Secondly, one also needs to check that it is possible to add bars (possibly 0) after
the last column so that the total number of marks and bars is m− pkw− 1. In other
words, the number of bars we add after the nth column is nonnegative. Notice that
⌈ i2 ⌉ − 1 counts the number of peaks before the k-th column. Since n ∈ Ir, this implies
that ⌈ r2 ⌉ = pkw + 1. By (23) the total number of bars and marked columns before
the nth column is |f(wn)|−pkw−1−δn. Together with the fact that the nth column
is marked if and only if δn + γn = 1 and n ∈ Mw, the total number of bars that
should be added after the nth column is

m− pkw − 1 − (|f(wn)| − pkw − 1 − δn) − (δn + γn) · δ(n ∈ Mw)
=m− |f(wn)| + δn − (δn + γn) · δ(n ∈ Mw).

Hence the nonnegativity condition becomes
m− |f(wn)| + δn − (δn + γn) · δ(n ∈ Mw) ⩾ 0,

or equivalently,
(26) m− |f(wn)| ⩾ (δn + γn) · δ(n ∈ Mw) − δn.

By assumption f has absolute value at most m, hence m− |f(wn)| ⩾ 0. Therefore,
one only needs to check that the inequality holds when (δn+γn) ·δ(n ∈ Mw)−δn = 1,
namely δn + γn = 1, δ(n ∈ Mw) = 1 and δn = 0, or equivalently, n ∈ Ii where i is
odd, f(wn) > 0 and n ∈ Mw. This is a contradiction since n + 1 must be in a run
where the index is even by definition, which implies that n and n + 1 cannot be in
the same run index set, hence n /∈ Mw. This completes the proof of inequality (26).
It therefore follows that the marking we constructed is indeed a (w,m)-marking.

Now we need to show that for a given (w,m)-marking, there are 22 pkw+1 different
associated functions. From the above construction we notice that for each k ∈ Mw,
f(wk) is uniquely determined. More precisely, whether column k gets marked deter-
mines δk and γk as k determines the parity of i, hence the sign of f(wk) is determined
by the definitions of δk and γk. Suppose k ∈ Ii. The number of marks and bars strictly
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before the kth column determines the value |f(wk)| − ⌈i/2⌉ − δk, therefore it deter-
mines f(wk) as well. The only ambiguity is about f(wk) for k /∈ Mw. As the number of
marks and bars strictly before the kth column fixes the value L = |f(wk)|−⌈i/2⌉−δk,
there are two possible choices of the value f(wk) for each k /∈ Mw: if i is even, then
either f(wk) = −(L + ⌈i/2⌉ + 1) or f(wk) = L + ⌈i/2⌉; if i is odd, then either
f(wk) = L+ ⌈i/2⌉ or f(wk) = −(L+ ⌈i/2⌉). It follows that there are 22 pkw+1 differ-
ent functions corresponding to a given (w,m)-marking. □

Example 5.17. Consider again the permutation w = 143256, and an enriched w-
partition f defined as follows:

f(1) = 1, f(4) = −2, f(3) = −4, f(2) = −4, f(5) = −5, f(6) = 5.

The corresponding marking is the first one in Example 5.15.

We now give a combinatorial derivation of the order polynomial Ωcyc([w],m) by
using Proposition 5.16, which was also proved combinatorially.

Corollary 5.18. For a given [w] ∈ [Sn], one has

Ωcyc([w],m) = (n− 2 cpkw) · 22 cpkw+1
m−1−cpkw∑

k=0

((
n+ 1
k

)) (
n− 2 cpkw − 1

m− 1 − cpkw − k

)

+ cpkw · 22 cpkw
m−cpkw∑
k=0

((
n+ 1
k

)) (
n− 2 cpkw + 1
m− cpkw − k

)
.

This right side of the equation does not depend on the choice of representative w, as
they all have the same cyclic peak number.

Proof. Notice that any representative w′ of [w] satisfies pkw′ = cpk[w]−1 if w′ starts
or ends with a cyclic peak, and pkw′ = cpk[w] otherwise. Among the n represen-
tatives of [w], there are 2 cpk[w] with a cyclic peak at one end. Therefore, applying
equation (13) we have

Ωcyc([w],m) = ∆cyc
[w] (1

m) =
∑
v∈[w]

∆v(1m) =
∑
v∈[w]

Ω(v,m),

and by the previous observation and Proposition 5.16, one has∑
v∈[w]

Ω(v, m) =
∑

v∈[w]

22 pk v+1
m−1−pk v∑

k=0

((
n + 1

k

)) (
n − 2 pk v − 1

m − 1 − pk v − k

)

= (n − 2 cpk[w]) · 22 cpk[w]+1
m−1−cpk[w]∑

k=0

((
n + 1

k

)) (
n − 2 cpk[w] − 1

m − 1 − cpk[w] − k

)

+ 2 cpk[w] · 22(cpk[w]−1)+1
m−1−(cpk[w]−1)∑

k=0

((
n + 1

k

)) (
n − 2(cpk[w] − 1) − 1

m − 1 − (cpk[w] − 1) − k

)

= (n − 2 cpk w) · 22 cpk w+1
m−1−cpk w∑

k=0

((
n + 1

k

)) (
n − 2 cpk w − 1

m − 1 − cpk w − k

)

+ cpk w · 22 cpk w

m−cpk w∑
k=0

((
n + 1

k

)) (
n − 2 cpk w + 1
m − cpk w − k

)
The conclusion follows immediately. □
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We note that the generating function of order polynomials in Proposition 5.13 can
also be deduced from the corollary above. Explicitly,∑
m

Ωcyc([w],m)tm = (n− 2 cpkw) · 22 cpkw+1 (1 + t)n−2 cpkw−1

(1 − t)n+1 tcpkw+1

+ cpkw · 22 cpkw (1 + t)n−2 cpkw+1

(1 − t)n+1 tcpkw

=
(

4t
(1 + t)2

)cpkw (
1 + t

1 − t

)n+1 (
(n− 2 cpkw) · 2t

(1 + t)2 + cpkw
)

=
(

4t
(1 + t)2

)cpkw (
1 + t

1 − t

)n−1 (
cpkw + 2nt

(1 − t)2

)
.

5.5. The shuffle algebra of the peak number. In [6], Gessel and Zhuang
discussed shuffle-compatible permutation statistics in terms of shuffle algebras. In
Theorem 4.8, they proved that the peak number pk is shuffle compatible and also
characterized its shuffle algebra Apk. It turns out that Proposition 5.16 gives another
characterization of Apk. Before we state and prove the theorem, we review some def-
initions and results from [6].

Suppose π and σ are two disjoint permutations of lengths m and n respectively.
Then the shuffle set of π and σ is

π� σ = {τ : |τ | = m+ n, π and σ are subsequences of τ}.
A statistic st is (linear) shuffle compatible if for disjoint permutations π and σ, the
multiset {{ st(τ) : τ ∈ π� σ }} only depends on st(π), st(σ), |π| and |σ|.

Every linear permutation statistic st induces an equivalence relation on permuta-
tions. More precisely, two permutations π and σ are st-equivalent if st(π) = st(σ)
and |π| = |σ|, and the st-equivalence class of π is denoted by [π]st. Moreover, if st is
shuffle compatible, one can associate to st a Q-algebra as follows: first we associate
to st a Q-vector space by taking the st-equivalence classes as a basis, then define
multiplication by

[π]st[σ]st =
∑

τ∈π�σ
[τ ]st.

Here the shuffle-compatibility of st guarantees that the above multiplication is well-
defined. In this case, we call the resulting algebra the shuffle algebra of st and denote
it by Ast.

We recall the characterization of the peak shuffle algebra Apk from [6]:

Theorem 5.19 ([6, Theorem 4.8 (b)]). The linear map on Apk defined by

[π]pk 7→


22 pkπ+1tpkπ+1(1 + t)|π|−2 pkπ−1

(1 − t)|π|+1 x|π|, if |π| ⩾ 1;
1

1 − t
, if |π| = 0,

is a Q-algebra isomorphism from Apk to the span of{
1

1 − t

} ⋃ {
22j+1tj+1(1 + t)n−2j−1

(1 − t)n+1 xn
}
n⩾1, 0⩽j⩽⌊ n−1

2 ⌋

a subalgebra of Q[[t∗]][x], where multiplication of formal power series in t is by
Hadamard product.

Now we give another characterization of Apk which follows from our Proposi-
tion 5.16.
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Theorem 5.20. The linear map on Apk defined by

[π]pk 7→ 22 pkπ+1
m−1−pkπ∑

k=0

((
|π| + 1
k

)) (
|π| − 2 pk π − 1
m− 1 − pk π − k

)
x|π|

is a Q-algebra isomorphism from Apk to the span of

{1}
⋃ {

22j+1
m−1−j∑
k=0

((
n+ 1
k

)) (
n− 2j − 1

m− 1 − j − k

)
xn

}
n⩾1, 0⩽j⩽⌊ n−1

2 ⌋

a subalgebra of Q[x]N, the algebra of functions N → Q[x] in the non-negative integer
value m, with pointwise addition and multiplication.

Proof. Define a map κm : QSym → Q[x] by
κm(Fn,L) = Kn,Pk(L)(1m)xn,

linearly extended to all of QSym. The following equation, [11, Equation (3.1)],

Kn,Pkπ ·Kn,Pkσ =
∑

τ∈π�σ
Kn,Pk τ ,

implies that κm is a Q-algebra homomorphism. The map that takes Fn,L to the
function θn,L : m 7→ κm(Fn,L) is therefore a homomorphism from QSym to Q[x]N. It
follows from Proposition 5.16 that

κm(Fn,L) = 22 pk(L)+1
m−1−pk(L)∑

k=0

((
n+ 1
k

)) (
n− 2 pk(L) − 1

m− 1 − pk(L) − k

)
xn.

Moreover, from Theorem 5.12 one has
∞∑
m=0

22 pk(L)+1
m−1−pk(L)∑

k=0

((
n+ 1
k

)) (
n− 2 pk(L) − 1

m− 1 − pk(L) − k

)
tm

= 1
2

(
1 + t

1 − t

)n+1 (
4t

(1 + t)2

)1+pk(L)

which is the generating function of θn,L and only depends on n and pkL. For a fixed n,
these functions are clearly linearly independent for sets L with distinct peak numbers.
The result follows immediately from [6, Theorem 4.3]. □
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