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On the WL-dimension of circulant graphs of
prime power order

Ilia Ponomarenko

Abstract The WL-dimension of a graph X is the smallest positive integer m such that the
m-dimensional Weisfeiler–Leman algorithm correctly tests the isomorphism between X and any
other graph. It is proved that the WL-dimension of any circulant graph of prime power order is
at most 3, and this bound cannot be reduced. The proof is based on using theories of coherent
configurations and Cayley schemes over a cyclic group.

1. Introduction
A (not necessarily undirected) graph is said to be circulant if it is a Cayley graph over
a cyclic group. A main motivation of the present paper is the following computational
problem: given a circulant graph G and a graph G′ test whether or not G is isomorphic
to G′. A polynomial-time algorithm constructed in [7] solves this problem, but is
largely based on computational group theory. It is natural to ask if the problem can
be solved in a purely combinatorial way.

One of the most famous purely combinatorial methods for testing graph isomor-
phism goes back to paper [17], where the classical Weisfeiler–Leman algorithm was
introduced. The method first uses this algorithm which, for a given graph G, con-
structs a (in a sense) canonical coloring of all pairs of vertices. Then the resulting
coloring is compared with similar coloring constructed for a graph G′; the graphs G
and G′ are declared isomorphic if and only if the colorings have the same sets of col-
ors (this can be checked quite easily). This method tests isomorphism of G and G′
correctly in many (but not all) cases [15].

A generalization of the above method is obtained if the classical Weisfeiler–Leman
algorithm is replaced by its m-dimensional (m ⩾ 3) analog, in which the m-tuples of
vertices are canonically colored. In this case, for every graph G there is a minimal m
with the following property: any graph G′ such that the set of colors in the canonical
coloring of the m-tuples of the vertices of G′ is equal to that for G, is isomorphic
to G. This minimal m is called the Weisfeiler–Leman dimension (the WL-dimension)
of G and is denoted by dimWL(G). Now we can refine the question posed in the first
paragraph as follows.

Question. Is it true that there exists m ∈ N such that dimWL(G) ⩽ m for every
circulant graph G?
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Although we cannot answer this question in full, our main result, presented by the
theorem below, says that for circulant graphs of prime power order (i.e. those with
the number of vertices equal to the power of a prime), as such a constant one can
take 3.

Theorem 1.1. The WL-dimension of every circulant graph of prime power order is
at most 3.

Every Paley graph G of prime order p is circulant. It is also known (see, e.g. [3,
Subsec. 4.5]) that for some p, one can find a graph G′ of order p such that G and G′
are nonisomorphic but have the same sets of colors in the colorings constructed by the
classical Weisfeiler–Leman algorithm. It follows that dimWL(G) > 2, which shows that
the estimate in Theorem 1.1 is sharp. An infinite family of such examples is obtained
if one replaces G and G′ by the disjoint unions nG and nG′ (n ⩾ 2), respectively.

Let us discuss some ideas underlying the proof of Theorem 1.1. The classical
Weisfeiler–Leman algorithm can be considered as an (efficiently computable) func-
tor which given a graph G defines a coherent configuration X = WL(G) (the exact
definitions are in Sections 2 and 3). It was proved in [10] that dimWL(G) ⩽ 2 if and
only if the coherent configuration X is separable, i.e. every algebraic isomorphism
from X to another coherent configuration is induced by isomorphism.

A weakening of the property of a coherent configuration to be separable is to
consider not all algebraic isomorphisms, but only those that have one-point extensions.
In this way, we arrive at a concept of sesquiseparable coherent configuration, which is
introduced and studied in Section 4. In fact, if G is a vertex-transitive graph and the
coherent configuration X is sesquiseparable, then dimWL(G) ⩽ 3. We show that X is
sesquiseparable if G is a circulant graph of prime power order.

Now let G be a circulant graph. Then the coherent configuration X = WL(G) is a
circulant scheme (a Cayley scheme over a cyclic group; for details, see Section 6) and
its structure is fairly well controlled by the Leung–Man theory (see, for example, [6]).
In particular, X can be constructed from trivial and normal circulant schemes by
using tensor and wedge products. The normal circulant schemes and the operation of
wedge (or generalized wreath) product of (association) schemes have been introduced
and studied in [6] and [14], respectively. It seems that a recent paper [2] opens up a
way to formulate the Leung–Man theory directly in terms of graph theory, bypassing
association schemes.

When G is of prime power order, the tensor product is irrelevant and we prove
that X is sesquiseparable by induction on the length of a decomposition of X into a
series of the wedge products (Lemma 6.8). The central part of the proof is focused
on studying algebraic and combinatorial isomorphisms of the wedge product and
establishing a sufficient condition for the wedge product to be sesquiseparable (see
Section 5 and Remark 5.1).

We conclude the introduction with a brief remark about Theorem 6.4 obtained in
the course of the proof and which is of independent interest. In fact, this theorem says
that Theorem 1.1 holds for much wider class of circulant graphs. Among these graphs
are those G for which the scheme X is the wedge product of normal circulant schemes
(such schemes cover the counterexamples constructed in [5] for p2 = p3 and n′ = 1).

The author thanks the anonymous referees for many valuable comments and sug-
gestions improving the presentation of the text.

2. Preliminaries
In order to make the paper as self-contained as possible, we present in this section
a necessary background of the theory of coherent configurations. Our notation is
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compatible with the notation in monograph [3]; the proofs of the statements below
can be found there.

2.1. Notation. Throughout the paper, Ω denotes a finite set. For ∆ ⊆ Ω, the Carte-
sian product ∆ × ∆ and its diagonal are denoted by 1∆ and 1∆, respectively. If ∆ =
{α}, we abbreviate 1α := 1{α}. For a relation s ⊆ 1Ω, we set s∗ = {(α, β) : (β, α) ∈ s},
αs = {β ∈ Ω : (α, β) ∈ s} for all α ∈ Ω, and define ⟨s⟩ as the minimal (with respect
to inclusion) equivalence relation on Ω, containing s. For any collection S of relations,
we denote by S∪ the set of all unions of elements of S, and consider S∪ as a poset
with respect to inclusion.

The set of classes of an equivalence relation e on Ω is denoted by Ω/e. For ∆ ⊆ Ω,
we set ∆/e = ∆/e∆, where e∆ = 1∆ ∩ e. If the classes of e∆ are singletons, ∆/e is
identified with ∆. Given a relation s ⊆ 1Ω, we put

(1) s∆/e = {(Γ,Γ′) ∈ 1∆/e : sΓ,Γ′ ̸= ∅},

where sΓ,Γ′ = s ∩ (Γ × Γ′). We also abbreviate sΓ := sΓ,Γ. Among all equivalence
relations e on Ω, such that

(2) s =
⋃

(∆,∆′)∈s∆/e

∆ × ∆′,

there is the largest (with respect to inclusion) one, which is denoted by Rad(s) and
called the radical of s. Obviously, Rad(s) ⊆ ⟨s⟩.

For a set B of bijections f : Ω → Ω′, subsets ∆ ⊆ Ω and ∆′ ⊆ Ω′, equivalence
relations e and e′ on Ω and Ω′, respectively, we put

B∆/e,∆′/e′
= {f∆/e : f ∈ B, ∆f = ∆′, ef = e′},

where f∆/e is the bijection from ∆/e onto ∆′/e′ induced by f ; we also abbreviate
B∆/e := B∆/e,∆′/e if ∆′ is clear from context.

2.2. Coherent configurations. Let S be a partition of 1Ω. A pair X = (Ω, S) is
called a coherent configuration on Ω if

(C1) 1Ω ∈ S∪,
(C2) s∗ ∈ S for all s ∈ S,
(C3) given r, s, t ∈ S, the number ctrs = |αr ∩ βs∗| does not depend on (α, β) ∈ t.

The number |Ω| is called the degree of X . We say that X is trivial if S = S(X ) consists
of 1Ω and its complement (unless Ω is not a singleton), homogeneous or a scheme if
1Ω ∈ S, and commutative if ctrs = ctsr for all r, s, t ∈ S.

2.3. Isomorphisms and schurity. A combinatorial isomorphism or, briefly, iso-
morphism from X to a coherent configuration X ′ = (Ω′, S′) is defined to be a bijection
f : Ω → Ω′ such that sf = {(αf , βf ) : (α, β) ∈ s} belongs to S′ for all s ∈ S. In this
case, X and X ′ are said to be isomorphic; the set of all isomorphisms from X to X ′ is
denoted by Iso(X ,X ′). The group of all isomorphisms of X to itself contains a normal
subgroup

Aut(X ) = {f ∈ Sym(Ω) : sf = s for all s ∈ S}
called the automorphism group of X .

LetG ⩽ Sym(Ω). Denote by S the set of all orbits (α, β)G in the induced action ofG
on Ω × Ω, where α, β ∈ Ω. Then the pair Inv(G) = (Ω, S) is a coherent configuration.
Any coherent configuration associated with a permutation group in this way is said
to be schurian. Note that X is schurian if and only if X = Inv(Aut(X )).
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2.4. Extensions. There is a natural partial order ⩽ on the set of all coherent con-
figurations on Ω. Namely, given two such coherent configurations X and Y, we set

X ⩽ Y ⇔ S(X )∪ ⊆ S(Y)∪,
and say that Y is the extension of X . The minimal and maximal elements with respect
to this order are the trivial and discrete coherent configurations, respectively; in the
last case, S consists of singletons. Note that the functor X → Aut(X ) reverse the
inclusion, namely,
(3) X ⩽ Y ⇒ Aut(X ) ⩾ Aut(Y).

2.5. Algebraic isomorphisms and separability. A bijection φ : S → S′ is called
an algebraic isomorphism from X to X ′ if for all r, s, t ∈ S, we have

ct
φ

rφsφ = ctrs.

In this case, |Ω′| = |Ω|, 1Ω′ = φ(1Ω), and X ′ is commutative if and only if so is X .
Every f ∈ Iso(X ,X ′) induces the algebraic isomorphism φf : X → X ′, s 7→ sf ; we
put

Iso(X ,X ′, φ) = {f ∈ Iso(X ,X ′) : φf = φ}.
Note that Aut(X ) = Iso(X ,X , id), where id is the trivial (identical) algebraic auto-
morphism of X . Finally, for any α ∈ Ω and α′ ∈ Ω′, we put
(4) Isoα,α′(X ,X ′, φ) = {f ∈ Iso(X,X ′, φ) : αf = α′}.

A coherent configuration X is said to be separable if every algebraic isomorphism
from X is induced by isomorphism, equivalently, Iso(X ,X ′, φ) ̸= ∅ for all X ′ and φ.
Any trivial coherent configuration is separable.

2.6. Relations. The elements of S and of S∪ are called basis relations and relations
of the coherent configuration X . The unique basis relation containing the pair (α, β)
is denoted by r(α, β). The set of all relations is closed with respect to intersections
and unions.

Any ∆ ⊆ Ω such that 1∆ ∈ S is called a fiber of X . In view of condition (C1), the
set F = F (X ) of all fibers forms a partition of Ω. Every basis relation is contained
in the Cartesian product of two uniquely determined fibers. When X is a scheme,
F = {Ω}, whereas when X is schurian, F is just the set of orbits of the group Aut(X ).

Every algebraic isomorphism φ : X → X ′ is extended in a natural way to a poset
isomorphism S∪ → (S′)∪, denoted also by φ. Then φ induces a poset isomorphism
F∪ → (F ′)∪, ∆ 7→ ∆φ, where the set ∆φ is defined by the equality φ(1∆) = 1∆φ .

Let X ⩽ Y and X ′ ⩽ Y ′. We say that the algebraic isomorphism φ is extended to
an algebraic isomorphism ψ : Y → Y ′ if ψ(s) = φ(s) for all s ∈ S.

2.7. Parabolics and quotients. A relation of X that is an equivalence relation
on Ω is called a parabolic of X ; the set of all parabolics is denoted by E = E(X ). It
contains the equivalence relations ⟨s⟩ and Rad(s) for s ∈ S∪. Given a parabolic e ∈ E,
we define SΩ/e = {sΩ/e : s ∈ S}, and S∆ = {s∆ : s ∈ S, s∆ ̸= ∅} for any ∆ ∈ Ω/e.
Then

XΩ/e = (Ω/e, SΩ/e) and X∆ = (∆, S∆)
are coherent configurations, called a quotient of X modulo e and a restriction of X
to ∆, respectively. Their fibers are obtained from fibers Γ ∈ F as follows: ΓΩ/e in the
first case, and Γ ∩ ∆ in the second. In particular, XΩ/e and X∆ are schemes if so is X .

Let φ : X → X ′ be an algebraic isomorphism and e ∈ E. Then φ(e) is a parabolic
of X ′ with the same number of classes. Moreover,
(5) φ(⟨s⟩) = ⟨φ(s)⟩ and φ(Rad(s)) = Rad(φ(s)).
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The algebraic isomorphism φ induces the algebraic isomorphism
φΩ/e : XΩ/e → X ′Ω′/e′ , sΩ/e 7→ s′Ω′/e′ ,

where e′ = φ(e) and s′ = φ(s). Now let ∆ ∈ Ω/e and ∆′ ∈ Ω/e′. Assume that there
is Γ ∈ F such that ∆ ∩ Γ ̸= ∅ ̸= ∆′ ∩ Γ′, where Γ′ = Γφ. Then φ induces an algebraic
isomorphism
(6) φ∆,∆′ : X∆ → X ′∆′ , s∆ 7→ s′∆′ .

This algebraic isomorphisms always exists for all ∆ and ∆′ if X (and hence X ′) is a
scheme.

2.8. Sections. Let X be a coherent configuration, e ∈ E, and ∆ a class of a parabolic
containing e. The quotient set S = ∆/e is called a section of X . Any element of S
is of the form αS = αe for some α ∈ ∆; when ∆ is implicit, we write αS = ∅ for
all α ̸∈ ∆. For any s ∈ S, we define the relation sS on S by formula (1). The set
of all sections of X is denoted by S(X ). This set is partially ordered: ∆/e ⩽ ∆′/e′,
whenever ∆ ⊆ ∆′ and e′ ⊆ e.

Lemma 2.1. Let X be a commutative scheme, S ∈ S(X ), and s ∈ S. Then αSsS =
(αs)S for all α ∈ Ω such that αS ̸= ∅.

Proof. Obviously, αSsS ⊇ (αs)S. Conversely, without loss of generality, we assume
that sS ̸= ∅. Let S = ∆/e and α ∈ ∆. Assume that βS ∈ αSsS for some β ∈ ∆.
Then there are α′ ∈ αe and β′ ∈ βe such that (α′, β′) ∈ s. Then ctrs ̸= 0, where
r = r(α, α′) and t = r(α, β′). By the commutativity, ctsr ̸= 0. It follows that there
exists β′′ ∈ βe such that (α, β′′) ∈ s. Thus, βS = βe = β′′e ⊆ (αs)S. □

For a section S = ∆/e ∈ S(X ), we put XS = (X∆)∆/e. Then XS is schurian
if so is X . Now let φ : X → X ′ be an algebraic isomorphism, e′ = φ(e), and ∆′
a class of the φ-image of the parabolic of X , containing the class ∆. The algebraic
isomorphism (6) (if it is defined) induces the algebraic isomorphism

φS,S′ = (φ∆,∆′)∆/e,∆′/e′

between the coherent configurations XS and X ′S′ .

2.9. Point extensions. The point extension Xα,β,... of the coherent configuration X
with respect to the points α, β, . . . ∈ Ω is defined to be the smallest coherent configura-
tion Y = (Ω, T ) such that Y ⩾ X and 1α, 1β , . . . ∈ T . When the points are irrelevant,
we use the term “point extension” and “one-point extension” if α = β = . . ..

Let φ : X → X ′ be an algebraic isomorphism, and let α ∈ Ωm, α′ ∈ Ω′m. We say
that algebraic isomorphism ψ : Xα → X ′α′ extending φ is an (α, α′)-extension of φ if

ψ(1α
i
) = 1α′

i
, i = 1, . . . ,m.

Note that the (α, α′)-extension is unique if it exists.
When m = 1, the (α, α′)-extension ψ exists only if ψ(r(α, α)) = r(α′, α′), or,

equivalently, ∆φ = ∆′, where ∆ (respectively, ∆′) is the fiber of X (respectively, X ′),
containing the point α (respectively, α′).

2.10. Partly regular coherent configurations. A coherent configuration X
is said to be partly regular if there exists a point α ∈ Ω such that |αs| ⩽ 1 for all
s ∈ S; the point α is said to be regular. In this case, the set αAut(X ) is a faithful regular
orbit of Aut(X ). Note that every extension of partly regular coherent configuration is
partly regular.

Lemma 2.2 ([3, Theorem 3.3.19]). Every partly regular coherent configuration is
schurian and separable.
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Corollary 2.3. Let X be a partly regular coherent configuration and X ′ ⩾ X . Then
X ′ = X if and only if F (X ′) = F (X ).

Proof. It suffices to verify the “if” part only. Assume that F (X ′) = F (X ). We take
∆ ∈ F (X ) that contains a regular point of X . Since X is schurian (Lemma 2.2), ∆
is a faithful regular orbit of the group G = Aut(X ) and hence |G| = |∆|. The same
argument applied to partly regular coherent configuration X ′ ⩾ X and ∆ ∈ F (X ′),
shows that |G′| = |∆|, where G′ = Aut(X ′). Thus,

|G| = |∆| = |G′|.

Since G′ ⩽ G (see (3)), this yields G = G′, and X = Inv(G) = Inv(G′) = X ′. □

3. Multidimensional coherent configurations and WL-dimension
The concept of the WL-dimension of a graph was introduced in [12] in terms of the
multidimensional Weisfeiler–Leman algorithm. A goal of this section is to analyze
this definition in terms of coherent configurations. Our approach is based on the
multidimensional coherent configurations defined in [1]; all the necessary information
and results about them are taken from [13].

Throughout this section, we fix an integer m ⩾ 2, and put M = {1, . . . ,m}. The
monoid of all mappings σ : M → M is denoted by Mon(M). Elements of the Cartesian
m-power Ωm are m-tuples x = (x1, . . . , xm) with xi ∈ Ω for all i ∈ M . For a tuple
x ∈ Ωm, denote by ρ(x) the equivalence relation on M such that (i, j) ∈ ρ(x) if and
only if xi = xj . For α ∈ Ω, we put

(7) xi←α = (x1, . . . , xi−1, α, xi+1, . . . , xm).

For a set X ⊆ Ωm and a mapping σ ∈ Mon(M), we put Xσ = {xσ : x ∈ X}, where
xσ = (x1σ , . . . , xmσ ).

3.1. The multidimensional Weisfeiler–Leman algorithm. Them-dimensional
Weisfeiler–Leman algorithm constructs for a given graph G = (Ω, D) a certain color-
ing c(m,G) of the set Ωm; a coloring is meant as a function from Ωm to a linearly
ordered set the elements of which are called colors.

At the first stage, an initial coloring c0 = c0(m,G) of Ωm is constructed from a
coloring c′ defined by the following condition: given x, y ∈ Ωm, we have c′(x) = c′(y)
if and only if ρ(x) = ρ(y) and for all i, j ∈ M ,

(xi, xj) ∈ D ⇔ (yi, yj) ∈ D.

Namely, the color c0(x) of every x is set to be the tuple (c′(xσ))σ∈Mon(M).
Starting from the second stage, the initial coloring is refined step by step. Namely,

if ci is the coloring constructed at the ith step (i ⩾ 0), then the color of an m-tuple x
in the coloring ci+1 is defined to be

ci+1(x) = (ci(x), {{(ci(x1←α), . . . , ci(xm←α)) : α ∈ Ω}}),

where {{·}} denotes a multiset. The algorithm stops when | im(ci)| = | im(ci+1)| and
the final coloring c(m,G) is set to be ci.

The coloring cG = c(m,G) defines a partition WLm(G) of Ωm into the color classes
X = c−1

G (i), where i runs over the colors of cG . In particular, the color cG(X) = cG(x)
does not depend on x ∈ X. Since the final coloring is a refinement of the initial one,
we have the following statement.

Lemma 3.1. Let X ∈ WLm(G) and i, j ∈ M . Then (xi, xj) ∈ D either for all or for
no x ∈ X.
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Another important property of the coloring cG is that it defines a monoid ho-
momorphism τ : Mon(M) → Mon(im(cG)) such that for all X ∈ WLm(G) and
all σ ∈ Mon(M), we have

(8) cG(X)τ(σ) = cG(Xσ).

Note that this equality holds for cG replaced with ci for i = 0, 1 . . . (this is obvious
for i = 0 and then one can use induction on the number of iterations). According with
interpretation given in [13], equality (8) means that the color of X “knows” the color
of Xσ.

Two graphs G and G′ are said to be WLm-equivalent(1) if im(cG ) = im(cG′). The
Weisfeiler–Leman dimension dimWL(G) of a graph G is defined to be the smallest
natural m such that every graph WLm-equivalent to G is isomorphic to G. It should
be noted that these definitions can be extended to the case m = 1.

For m = 2, the partition WL(G) = WL2(G) coincides with the set S(X ) for some
coherent configuration on Ω, called the coherent configuration of the graph G; in fact,
X is the smallest coherent configuration for which D ∈ S∪. The graphs G and G′ are
WL2-equivalent (briefly, WL-equivalent) if and only if the mapping X → c−1

G′ (cG (X))
is an algebraic isomorphism from WL(G) to WL(G′) (see [10]), where cG = c(2,G)
and cG′ = c(2,G′). A goal of this section is to prove an analog of the “only if” part of
this statement for m ⩾ 3.

3.2. Multidimensional coherent configurations. For any X1, . . . , Xm ⊆ Ωm,
denote by n(x;X1, . . . , Xm) the number of α ∈ Ω such that xi←α ∈ Xi for all i ∈ M .

Definition 3.2. A partition X of Ωm is called an m-ary coherent configuration on Ω
if the following conditions are satisfied for all X ∈ X:

(C1’) ρ(X) := ρ(x) does not depend on x ∈ X,
(C2’) Xσ ∈ X for all σ ∈ Mon(M),
(C3’) for any X0, X1, . . . , Xm ∈ X, the number nX0

X1,...,Xm
= n(x0;X1, . . . , Xm) does

not depend on x0 ∈ X0.

For m = 2, conditions (C1’), (C2’), and (C3’) imply conditions (C1), (C2),
and (C3), respectively. In fact, the coherent configurations are just the 2-ary coherent
configurations. An example of m-ary coherent configuration is a partition of Ωm into
the orbits of a permutation group on Ω, acting on Ωm coordinatewise.

The set of all m-ary configurations on Ω is partially ordered. Namely, X ⩽ Y if
every class of X is a union of some classes of Y, or equivalently, if X∪ ⊆ Y∪, where X∪

(respectively, Y∪) is the set of all unions of classes of X (respectively, Y). The largest
m-ary coherent configuration is the discrete one in which every class is a singleton; the
smallest m-ary coherent configuration consists of the orbits of the symmetric group
Sym(Ω) in its componentwise action on Ωm (this easily follows from the fact that the
orbits are in one-to-one correspondence with the equivalence relations on M).

An algebraic isomorphism of m-ary coherent configurations X and X′ is a bijection
φ : X → X′ such that for all X,X0, . . . , Xm ∈ X and σ ∈ Mon(M),

(9) φ(Xσ) = φ(X)σ and nX0
X1,...,Xm

= n
φ(X0)
φ(X1),...,φ(Xm).

For m = 2, one can easily verify that our definition is agreed with that in Subsec-
tion 2.5.

(1)In terms of [12], this means that the m-dimensional Weisfeiler–Leman algorithm does not
distinguish G and G′.
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Note that if X ∈ X and i, j ∈ M , then (i, j) ∈ ρ(X) if and only if Xσ = X, where
σ ∈ Mon(M) is identical on M ∖ {i} and takes i to j. It follows that

(10) ρ(φ(X)) = ρ(X).

We extend φ to a bijection X∪ → (X′)∪ in a natural way; then X ⊆ Y implies
φ(X) ⊆ φ(Y ) for all X,Y ∈ X∪.

An example of an algebraic isomorphism of m-ary coherent configurations is ob-
tained for any two WLm-equivalent graphs G and G′. In this case, we have im(cG ) =
im(cG′) and the mapping

(11) φG,G′ : WLm(G) → WLm(G′), X 7→ c−1
G′ (cG (X)),

is a bijection. In view of equality (8), it satisfies the first relation in (9), whereas the
second relation follows from the description of the m-dimensional Weisfeiler–Leman
algorithm. Thus, φG,G′ is an algebraic isomorphism from WLm(G) to WLm(G′).

3.3. Projections. Let k ∈ M . The k-projection of Ωm is defined to be the mapping

prk : Ωm → Ωk, (α1, . . . , αm) 7→ (α1, . . . , αk).

The statement below follows from [13, Exercises 2.7, 2.11] (and their proofs). Below,
for every X ⊆ Ωk, we put

(12) X̂ = {(x1, . . . , xk, xk, . . . , xk) ∈ Ωm : (x1, . . . , xk) ∈ X}.

Lemma 3.3. Let X be an m-ary coherent configuration. Then

prk(X) = {prk(X) : X ∈ X}

is a k-ary coherent configuration.(2) Moreover,

(13) nX0
X1,...,Xk

=
∑

Y1,...,Ym−k∈X

nX̂0

X̂1,...,X̂k,Y1,...,Ym−k

for all X0, X1, . . . , Xk ∈ prk(X).

Let G = (Ω, D) be a graph, X = WLm(G), and k = 2. From Lemma 3.1, it follows
that D̂ ∈ X∪. Therefore, D = pr2(D̂) is a relation of the coherent configuration
pr2(X). Thus,

(14) pr2(WLm(G)) ⩾ WL(G).

Let φ : X → X′ be an algebraic isomorphism of m-ary coherent configurations. We
define a mapping φk : prk(X) → prk(X′) by setting

φk(prk(X)) = prk(φ(X))

for all X ∈ X. Note that if prk(X) = prk(Y ) for some Y ∈ X, then Xσ = Y σ, where
σ ∈ Mon(M) takes i to min{i, k}. For this σ, we have

prk(φ(X)) = prk(φ(X)σ) and prk(φ(Y )) = prk(φ(Y )σ).

Since also φ(X)σ = φ(Xσ) = φ(Y σ) = φ(Y )σ, we conclude that prk(φ(X)) =
prk(φ(Y )). Thus the mapping φk is well-defined. Reversing the above argument, one
can see that it is injective. Finally, φk is surjective, because it is a composition of the
surjections prk and φ.

Lemma 3.4. Let φ : X → X′ be an algebraic isomorphism of m-ary coherent configu-
rations. Then the bijection φk : prk(X) → prk(X′) is an algebraic isomorphism.

(2)In [1, 13], the partition prk(X) is called the k-skeleton of X.
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Proof. Let X ∈ prk(X) and σ ∈ Mon(K) with K = {1, . . . , k}. Then, obviously,

Xσ = prk(X̂)σ = prk(X̂ σ̂),
where σ̂ ∈ Mon(M) is the mapping identical on M ∖K and coinciding with σ on K.
It follows that

φk(Xσ) = φk(prk(X̂ σ̂)) = prk(φ(X̂ σ̂)) = prk(φ(X̂)σ̂) = (prk(φ(X̂)))σ = φk(X)σ,
which proves the first part of (9). To prove the second relation, let Xi ∈ prk(X),
where i = 0 or i ∈ K. In view of formula (10), we have ρ(φ(X̂i)) = ρ(X̂i). It follows
that φ(X̂i) = X̂ ′ for some X ′ ∈ prk(X′). Moreover,

X ′ = prk(X̂ ′) = prk(φ(X̂i)) = φk(prk(X̂i)) = X ′i,

where X ′i = φk(Xi). Consequently, φ(X̂i) = X̂ ′i for all i. Now, the required statement
follows from formula (13). □

For arbitrary K ⊆ M and X ⊆ Ωm, one can define prK(X) = (prk(Xσ))σ−1 ,
where σ ∈ Sym(M) is such that Kσ = {1, . . . , k} with k = |K|. Using condition (C2’),
one can easily prove Lemmas 3.3 and 3.4 with prk and φk replaced by prK and φK ,
respectively.

3.4. Residues. Let again k ∈ M and y ∈ Ωm−k. The residue of X ⊆ Ωm with respect
to y is defined to be the set

Xy = {x ∈ prk(X) : (x1, . . . , xk, y1, . . . , ym−k) ∈ X}.

For any X ∈ prk(X), there is a unique X ∈ X such that X = Xy; we denote X by Xy.
The statement below follows from [13, Exercise 2.13] (and its proof).

Lemma 3.5. Let X be an m-ary coherent configuration. Then for any y ∈ Ωm−k,
Xy = {Xy : X ∈ X, Xy ̸= ∅}

is a k-ary coherent configuration. Moreover, Xy ⩾ prk(X) and

(15) nX0
X1,...,Xk

=
∑

Y1,...,Ym−k∈X

nX0y
X1y,...,Xky,Y1,...,Ym−k

for all X0, X1, . . . , Xk ∈ Xy.

The k-ary coherent configuration Xy contains the singleton {(yi, . . . , yi)} for i =
1, . . . ,m−k. For k = 2, it is just 1yi

, and the coherent configuration WLm(G)y is larger
than or equal to the smallest coherent configuration on Ω, for which D and the 1yi

are relations. The latter coherent configuration is the point extension of WL(G) with
respect to y1, . . . , ym−2. Thus,
(16) (WLm(G))y ⩾ WL(G)y1,...,ym−2 .

Let φ : X → X′ be an algebraic isomorphism of m-ary coherent configurations
and K ′ = {k + 1, . . . ,m}. Assume that Y ∈ prK′(X) and Y ′ ∈ prK′(X′) be such that
φK′(Y ) = Y ′; in this case any two tuples one from Y and another from Y ′ will be
called φ-similar. By Lemma 3.4,

prK′(Z) = Y ⇔ prK′(φ(Z)) = Y ′

for all Z ∈ X. It follows that if y ∈ Y and y′ ∈ Y ′ (i.e. y and y′ are φ-similar),
then the sets {Xy : X ∈ Xy} and {X ′y′ : X ′ ∈ X′y′} are in a natural one-to-one
correspondence. This enables us to define a mapping

φy,y′ : Xy → X′y′ , X 7→ φ(Xy)y′ ,
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which is a bijection, because the mappings Xy → X, X 7→ Xy, and X′y′ → X′,
X ′ 7→ X ′y′, are injective.

Lemma 3.6. Let φ : X → X′ be an algebraic isomorphism of m-ary coherent config-
urations, and let y ∈ Ωm−k and y′ ∈ Ω′m−k be φ-similar tuples. Then the bijection
φy,y′ : Xy → X′y′ is an algebraic isomorphism. Moreover, it extends the algebraic
isomorphism φk.

Proof. Let X ∈ Xy and σ ∈ Mon(K) with K = {1, . . . , k}. Then, obviously, Xσy =
(Xy)σ̂, where σ̂ ∈ Mon(M) is the mapping identical on M ∖K and coinciding with σ
on K. It follows that

φy,y′(Xσ) = φ(Xσy)y′ = φ((Xy)σ̂)y′ = (φ(Xy)σ̂)y′ = (φ(Xy)y′)σ = φy,y′(X)σ,

which proves the first part of (9). To prove the second relation, it suffices to note that
φ(Xy) = φy,y′(X)y′ and make use of formula (15). □

3.5. Reduction to coherent configurations. The main result of this subsec-
tion (Theorem 3.7 below) establishes a necessary condition for two graphs to be
WLm-equivalent in terms of their coherent configurations.

Theorem 3.7. Let G = (Ω, D) and G′ = (Ω′, D′) be WLm-equivalent graphs, m ⩾ 2.
Then there is an algebraic isomorphism φ : WL(G) → WL(G′) such that φ(D) = D′.
Moreover, if m ⩾ 3, and x ∈ Ωm and x′ ∈ Ω′m are such that cG (x) = cG′(x′), then φ
has the (y, y′)-extension, where y = prK(x), y′ = prK(x′), and K = {3, . . . ,m}.

Proof. Denote by ψ the algebraic isomorphism defined by (11). By Lemma 3.4 for
k = 2, there is an algebraic isomorphism ψ2 : pr2(WLm(G)) → pr2(WLm(G′)). Note
that D is a relation of the coherent configuration X = WL(G) (see formula (14)), and
also

ψ2(D) = pr2(ψ(D̂)) = pr2(D̂′) = D′,

where the second equality holds by formula (8) and the fact that ψ respects the
initial colorings c0(m,G) and c0(m,G′). Since X is the smallest coherent configuration
containing D as a relation, ψ2(X ) is the smallest coherent configuration containing D′
as a relation, i.e. ψ2(X ) is equal to X ′ = WL(G′). Thus as the required algebraic
isomorphism φ one can take the restriction of ψ2 to X .

Now, let x ∈ Ωm and x′ ∈ Ω′m be such that cG (x) = cG′(x′). Then the algebraic
isomorphism ψ takes the class X ∋ x to the class X ′ ∋ x′. It follows that

ψK(prK(X)) = prK(X ′).

Since y ∈ prK(X) and y′ ∈ prK(X ′), we can apply Lemma 3.6 to find an algebraic
isomorphism

ψy,y′ : WLm(G)y → WLm(G′)y′

which extends ψ2 and hence extends φ. On the other hand, y ∈ Ωm−2, y′ ∈ Ω′m−2,
and the inclusion (16) yields

WLm(G)y ⩾ Xy1,...,ym−2 and WLm(G′)y′ ⩾ X ′y′
1,...,y

′
m−2

.

Furthermore, the pairs (1, 2), (1, i+ 2) belong to the equivalence relation ρ(1yi
y). By

formula (10), this implies that these pairs also belong to ρ(ψ(1yiy)). It follows that
ψy,y′(1yi) = ψ(1yiy)y′ = 1y′

i
for i = 1, . . . ,m− 2. Thus,

ψy,y′(Xy1,...,ym−2
) = X ′y′

1,...,y
′
m−2

,

and the restriction of ψy,y′ to Xy1,...,ym−2 is the (y, y′)-extension of φ. □
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4. Sesquiclosed coherent configurations and algebraic
isomorphisms

4.1. Sesquiclosed algebraic isomorphisms. In this subsection, we introduce a
notion of a sesquiclosed algebraic isomorphism, which weakens the notion of an (al-
gebraic) 2-isomorphism studied in [3, Section 3.5.2].

Definition 4.1. An algebraic isomorphism φ : X → X ′ is said to be sesquiclosed
if φ has the (α, α′)-extension for all α ∈ ∆ ∈ F (X ) and α′ ∈ ∆′ ∈ F (X ′) such that
∆φ = ∆′.

Examples of sesquiclosed algebraic isomorphisms arise naturally in the context
of WL3-equivalent graphs, namely the following statement is an almost immediate
consequence of Theorem 3.7.

Lemma 4.2. Let G and G′ be WL3-equivalent graphs. Assume that G is vertex-
transitive. Then there is a sesquiclosed algebraic isomorphism φ : WL(G) → WL(G′)
such that φ(D) = D′, where D and D′ are the arc sets of G and G′, respectively.

Proof. By the first part of Theorem 3.7 (for m = 3), there is an algebraic isomorphism
φ : WL(G) → WL(G′) such that φ(D) = D′. It suffices to verify that φ has the (α, α′)-
extension for all α ∈ Ω and α′ ∈ Ω′. Because G is vertex-transitive, X = Diag(Ω3)
is a class of WL3(G). Since G and G′ be WL3-equivalent, X ′ = Diag(Ω′3) is a class
of WL3(G′), and cG (X) = cG′(X ′). It follows that cG (x) = cG′(x′), where x = (α, α, α)
and x′ = (α′, α′, α′). By the second part of Theorem 3.7, this implies that φ has
(α, α′)-extension. □

Not every algebraic isomorphism is sesquiclosed, e.g. a straightforward compu-
tation shows that a unique nontrivial algebraic automorphism of the antisymmet-
ric scheme of rank 3 and degree 15 is not sesquiclosed. On the other hand, [3,
Lemma 3.5.25] shows that every algebraic 2-isomorphism is sesquiclosed.

Lemma 4.3. Let X be a coherent configuration, φ : X → X ′ a sesquiclosed algebraic
isomorphism, S ∈ S(X ), and S′ ∈ S(X ′). Assume that φ induces an algebraic
isomorphism ψ : XS → X ′S′ . Then ψ is sesquiclosed.

Proof. Let ᾱ ∈ ∆̄ ∈ F (XS) and ᾱ′ ∈ ∆̄′ ∈ F (X ′S′) be such that ∆̄ψ = ∆̄′. Then there
exist ∆ ∈ F (X ) and ∆′ ∈ F (X ′) for which

∆S = ∆̄, ∆′S′ = ∆̄′, ∆φ = ∆′.
Let α ∈ ∆ and α′ ∈ ∆′ be such that αS = α and α′S′ = α′. The algebraic isomor-
phism φ being sesquiclosed has (α, α′)-extension φα,α′ . Since φ induces ψ, one can
define the algebraic isomorphism

ψα,α′ = (φα,α′)S,S′

from (Xα)S to (X ′α′)S′ . For any s ∈ S(XS), we have
ψα,α′(s) = (φα,α′)S,S′(sS) = (φα,α′(s))S′ = φ(s)S′ = ψ(sS),

where s ∈ S is such that sS = s, and
ψα,α′(1ᾱ) = (φα,α′)S((1α)S) = (φα,α′(1α))S = (1α′)S = 1ᾱ′ ,

Thus the algebraic isomorphism ψᾱ,ᾱ′ is the (ᾱ, ᾱ′)-extension of the algebraic isomor-
phism ψ. □

A coherent configuration X is said to be sesquiseparable if every sesquiclosed al-
gebraic isomorphism is induced by isomorphism. Clearly, every separable coherent
configuration is sesquiseparable; the converse is not true, see Subsection 6.2.
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Lemma 4.4. A coherent configuration X is sesquiseparable if every one-point extension
of X is separable.

Proof. Let φ : X → X ′ be a sesquiclosed algebraic isomorphism. Then it has an
(α, α′)-extension φα,α′ for all appropriate α and α′. Since the coherent configu-
ration Xα is separable, φα,α′ is induced by a certain isomorphism f . Then sf =
φα,α′(s) = φ(s) for all s ∈ S. Hence, f ∈ Iso(X ,X ′, φ) and X is sesquiseparable. □

4.2. Sesquiclosed coherent configurations. In parallel with sesquiclosed al-
gebraic isomorphisms, we introduce a notion which weakens the notion of 2-closed
coherent configuration studied in [3, Section 3.5.3]. Namely, in Lemma 3.5.25 there,
it was proved that a coherent configuration X is 2-closed only if for every α ∈ Ω the
following conditions are satisfied:

(S1) F (Xα) = {αs : s ∈ S, αs ̸= ∅},
(S2) the trivial algebraic automorphism of X is sesquiclosed.

Definition 4.5. A coherent configuration X satisfying (S1) and (S2) for all α is said
to be sesquiclosed.

Though conditions (S1) and (S2) are satisfied in the schurian case, not every
sesquiclosed coherent configuration is schurian, for example, those coherent config-
urations constructed in [3, Theorem 4.2.4]. The same example shows that the class
of sesquiclosed coherent configurations is not invariant with respect to algebraic iso-
morphisms.

Lemma 4.6. Let X be a sesquiclosed coherent configuration and S ∈ S(X ). Then the
coherent configuration XS is sesquiclosed.

Proof. Condition (S2) is satisfied for the coherent configuration XS by Lemma 4.3
with X = X ′ and φ = id. Assume that condition (S1) is not satisfied for XS. Then
there are α ∈ Ω and s ∈ S such that

(17) ∅ ̸= αSsS ̸∈ F ((XS)αS
).

Without loss of generality, we may assume that αs ̸= ∅. By condition (S1), we have
αs ∈ F (Xα) and hence (αs)S ∈ F ((Xα)S). However, (Xα)S ⩾ (XS)αS

. Therefore,
(αs)S is contained in some ∆ ∈ F ((XS)αS

). Since (αs)S ⊆ αSsS, we have

(18) (αs)S ⊆ ∆ ⊆ αSsS.

In view of (17), there is ∆′ ∈ F ((XS)αS
) such that ∆ ̸= ∆′ ⊆ αSsS. Take any

point α′ for which (α′s)S intersects ∆′. Then as above

(19) (α′s)S ⊆ ∆′ ⊆ αSsS.

Note that α and α′ lie in the same fiber of X , because αs ̸= ∅ ̸= α′s and s ∈ S.
By condition (S2), the trivial algebraic automorphism of X has the (α, α′)-extension;
denote it by ψ. Then there is an algebraic isomorphism ψS : (Xα)S → (Xα′)S that
induces the trivial algebraic automorphism of XS. Using formulas (18) and (19), and
taking into account that αs is a union of fibers of Xα, we obtain

∆ψS ⊇ ((αs)S)ψS = ((αs)ψ)S = (α′s)S ⊆ ∆′,

whence ∆ = ∆′, a contradiction. □

Lemma 4.7. Let X be a sesquiclosed coherent configuration and φ : X → X ′ a
sesquiclosed algebraic isomorphism. Then the coherent configuration X ′ is sesqui-
closed.
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Proof. Let α′ ∈ Ω′ and s′ ∈ S′. Since the algebraic isomorphism φ : X → X ′ is
sesquiclosed, it has the (α, α′)-extension ψ for some α ∈ Ω such that αs ̸= ∅, where
s = φ−1(s′). Since the coherent configuration X is sesquiclosed, αs ∈ F (Xα). Conse-
quently, the set α′s′ = ψ(αs) belongs to F (X ′α′). This shows that X ′ satisfies condi-
tion (S1).

Let α′, α′′ ∈ Ω′ lie in the same fiber of X ′. Since the algebraic isomorphism φ is
sesquiclosed, it has an (α, α′)-extension ψ and (α, α′′)-extension ψ′ for some α ∈ Ω.
It follows that ψ−1ψ′ is the (α′, α′′)-extension of the trivial algebraic automorphism
of X ′. This shows that X ′ satisfies condition (S2). □

When a coherent configuration X is not sesquiclosed, one can construct a uniquely
determined sesquiclosed extension X ′ such that Aut(X ′) = Aut(X ). However, the
explicit definition of X ′ is outside the scope of the present paper.

4.3. Partly regular sections. In this subsection, we prove two auxiliary lemmas
for the sections of sesquiclosed schemes, the restriction to which is partly regular.
They will be used in Subsection 5.4.

Lemma 4.8. Let X be a commutative sesquiclosed scheme, S0,S ∈ S(X ), and α a
point such that αS0 ̸= ∅. Assume that S0 ⩽ S and ((XS)αS

)S0 is partly regular.
Then
(20) ((XS)αS

)S0 = ((Xα)S)S0 .

Proof. The obvious inclusion (XS)αS
⩽ (Xα)S implies ((XS)αS

)S0 ⩽ ((Xα)S)S0 .
The coherent configuration on the left-hand side is partly regular by the hypothesis.
By Corollary 2.3, it suffices to verify that every fiber ∆ of ((Xα)S)S0 is also a fiber
of ((XS)αS

)S0 .
By condition (S1), one can find s ∈ S such that ∆ = (αs)S0 . Since X is commu-

tative, Lemma 2.1 yields
∆ = (αs)S0 = ((αs)S)S0 = (αSsS)S0 .

On the other hand, the scheme XS is sesquiclosed by Lemma 4.6. Therefore, the set
αSsS is a fiber of the coherent configuration (XS)αS

. It follows that (αSsS)S0 and
hence ∆ is a fiber of the coherent configuration ((XS)αS

)S0 . □

Lemma 4.9. Let X and X ′ be schemes, φ : X → X ′ an algebraic isomorphism having
an (α, α′)-extension φα,α′ for some α and α′, and f ∈ Isoα,α′(X ,X ′, φ). Assume that

(i) X is schurian,
(ii) (Xα)S is partly regular for some S ∈ S(X ) such that αS ̸= ∅.

Then
(21) Iso(Xα ,X ′α′ , φα,α′)S = Iso((Xα)S , (X ′α′)S′ , (φα,α′)S,S′),

where S′ = Sf .

Proof. By formula (4), the bijection fS belongs to the left-hand side of (21). Further-
more, since αf = α′ and S′ = Sf , this bijection takes (Xα)S to (X ′α′)S′ . It follows
that fS induces (φα,α′)S,S′ and hence belongs to the right-hand side of (21). Thus
the sets on the left- and right-hand sides are not empty. Consequently,

| Iso(Xα ,X ′α′ , φα,α′)S| = | Aut(Xα)S|,
and

| Iso((Xα)S , (X ′α′)S′ , (φα,α′)S,S′)| = | Aut((Xα)S)|
and it suffices to verify that
(22) Aut((Xα)S) = Aut(Xα)S .
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Obviously, Aut(Xα)S ⩽ Aut((Xα)S). Conversely, by condition (ii), the group
Aut((Xα)S) has a faithful regular orbit ∆. Since the coherent configuration (Xα)S
is schurian (Lemma 2.2), ∆ = ΛS for some fiber Λ ∈ F (Xα). By the first part of
condition (i), Λ is an orbit of the group Aut(Xα). It follows that ∆ = ΛS is an orbit
of the group Aut(Xα)S ⩽ Aut((Xα)S). This proves (22), because ∆ is a faithful
regular orbit of the last group. □

5. e1/e0-condition
5.1. Definition. Let X = (Ω, S) be a scheme, and let e0 and e1 be parabolics of X
such that e0 ⊆ e1. Following [7], we say that X satisfies the e1/e0-condition if for all
s ∈ S,

s ∩ e1 = ∅ ⇒ e0 ⊆ Rad(s).
This is always true if e0 = 1Ω or e1 = 1Ω; in the other cases, we say that the e1/e0-
condition is satisfied nontrivially. When e0 = e1, the condition exactly means that
the scheme X is isomorphic to the wreath product X∆ ≀ XΩ/e0 for any ∆ ∈ Ω/e0.
Finally, we note that if e′0 ⊆ e0 and e′1 ⊇ e1 are parabolics, then X satisfies also the
e′1/e

′
0-condition.

Remark 5.1. The e1/e0-condition provides internal definition of the operation wedge
product of association schemes, introduced and studied in [14]. Namely, X satisfies
the e1/e0-condition if and only if X is isomorphic to the wedge product of the family
of schemes X∆, ∆ ∈ Ω/e1, and the scheme XΩ/e0 .

In the sequel, we simplify the notation as follows. First, we put Ω0 = Ω/e0, X0 =
XΩ/e0 , and Ω1 = Ω/e1. Second, for every ∆ ∈ Ω1, we put ∆0 = ∆/e0. Finally, for an
algebraic isomorphism φ : X → X ′, we put φ0 = φΩ0 .

5.2. Admissible pairs. Let φ : X → X ′, s 7→ s′ be an algebraic isomorphism,
where X ′ = (Ω′, S′). In view of formula (5), X ′ satisfies the e′1/e′0-condition, where
e′0 = φ(e0) and e′1 = φ(e1). As above, we define the sets Ω′0, Ω′1, and ∆′0 for all
∆′ ∈ Ω′1. In what follows, we are interested in determining the set Iso(X ,X ′, φ);
for φ = id, this was done in [7].

Suppose we are given a bijection f0 : Ω0 → Ω′0 taking (e1)Ω0
to (e′1)Ω′

0
, and

bijections f∆ : ∆ → ∆′ for each ∆ ∈ Ω1, taking (e0)∆0
to (e′0)∆′

0
, where ∆′ is a

uniquely determined class of e′1, for which (∆0)f0 = ∆′0. The pair P = ({f∆}∆∈Ω1 , f0)
is said to be e1/e0-admissible if

(23) (f∆)∆0 = (f0)∆0

for all ∆ ∈ Ω1. In this case there exists a uniquely determined bijection f : Ω → Ω′
for which fΩ0 = f0 and f∆ = f∆ for all ∆ ∈ Ω1. We say that f is induced by the
pair P .

Theorem 5.2. Let X be a scheme satisfying the e1/e0-condition, X ′ a scheme on Ω′,
and φ : X → X ′ an algebraic isomorphism. Then f ∈ Iso(X ,X ′, φ) if and only if f is
induced by an e1/e0-admissible pair ({f∆}, f0) such that

(24) f0 ∈ Iso(X0,X ′0, φ0) and f∆ ∈ Iso(X∆ ,X ′∆′ , φ∆,∆′) for all ∆ ∈ Ω1.

Proof. The “only if” part is clear, because every f ∈ Iso(X ,X ′, φ) is obviously induced
by the pair ({f∆}, fΩ0) which satisfies the conditions (24). Conversely, suppose that f
is induced by an e1/e0-admissible pair ({f∆}, f0) satisfying conditions (24). We need
to verify that sf = φ(s) for all s ∈ S.
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Let s ⊆ e1. Then s is equal to the union of s∆, ∆ ∈ Ω1. By the second part of (24),
this implies that

sf =
⋃

∆∈Ω1

(s∆)f∆ =
⋃

∆∈Ω1

φ∆,∆′(s∆) =
⋃

∆′∈Ω′
1

φ(s)∆′ = φ(s).

Now, we may assume that s ∩ e1 = ∅. Then e0 ⊆ Rad(s), because X satisfies the
e1/e0-condition. It follows that s is equal to the union of all Γ × Λ for which (Γ,Λ)
lies in s0 = sΩ/e0 . Because fΩ/e0 = f0, we obtain

sf =
( ⋃

(Γ,Λ)∈s0

Γ × Λ
)f =

⋃
(Γf ,Λf )∈sf

0

Γf × Λf =
⋃

(Γ′,Λ′)∈s′
0

Γ′ × Λ′,

where s′0, Γ′, and Λ′ are the f0-images of s0, Γ, and Λ, respectively. As was noted
above, X ′ satisfies the e′1/e′0-condition with e′0 = φ(e0), and e′1 = φ(e1). Since also f0
induces φ0, the relation φ(s) equals the union of all Γ′ × Λ′ with (Γ′,Λ′) ∈ s′0. Thus,

sf =
⋃

(Γ′,Λ′)∈s′
0

Γ′ × Λ′ = φ(s),

as required. □

5.3. General sufficient condition. A quite natural sufficient condition for a
bijection, induced by an admissible e1/e0-pair, to satisfy condition (24), could be
given in the notation of Subsection 5.1 by the equality

Iso(X0,X ′0, φ0)∆0 = Iso(X∆ ,X ′∆′ , φ∆,∆′)∆0

for all ∆ ∈ Ω1 (cf. (23)). In this subsection, we weaken this equality by considering
smaller sets of isomorphisms, while assuming that the algebraic isomorphism φ has a
one-point extension.

Lemma 5.3. Let X be a scheme on Ω, satisfying the e1/e0-condition, X ′ a scheme on
Ω′, and φ : X → X ′ an algebraic isomorphism. Assume that for all α ∈ Ω, α′ ∈ Ω′,
(25) Isoα0,α

′
0
(X0,X ′0, φ0)∆0 = Isoα,α′(X1,X ′1, φ1)∆0 ,

where α0 = αe0, α′0 = α′e′0, X1 = X∆ with ∆ ∈ Ω1 containing α, X ′1 = X ′∆′ with
∆′ ∈ Ω′1 containing α′, and φ0 = φΩ0 , φ1 = φ∆,∆′ . Then for all α ∈ Ω and α′ ∈ Ω′,

(i) Isoα,α′(X ,X ′, φ)Ω0 = Isoα0,α
′
0
(X0,X ′0, φ0),

(ii) Isoα,α′(X ,X ′, φ)∆ = Isoα,α′(X1,X ′1, φ1).

Proof. In both cases, it suffices to verify only the inclusion ⊇ under the assumption
that the set on the right-hand side is nonempty. In the case (i), we take arbitrary
f0 ∈ Isoα0,α

′
0
(X0,X ′0, φ0). For every ∆ ∈ Ω1, we define a certain bijection f∆ : ∆ → ∆′,

where ∆′ is a unique class of e′1, for which (∆0)f0 = ∆′0. First, assume that α ∈ ∆.
Then α′ ∈ ∆′ and

(f0)∆0 ∈ Isoα0,α′
0
(X0,X ′0, φ0)∆0 .

In view of (25), one can find an isomorphism f∆ ∈ Isoα,α′(X1,X ′1, φ1) for which
(f∆)∆0 = (f0)∆0 ; in particular, αf∆ = α′. Now if α ̸∈ ∆, then we define f∆ as above,
but instead of α and α′ we take arbitrary points δ ∈ ∆ and δ′ ∈ (δ0)f0 , respectively.

The constructed family {f∆ : ∆ ∈ Ω1} together with the isomorphism f0 forms an
e1/e0-admissible pair. Let f : Ω → Ω′ be the bijection induced by this pair. By defi-
nition, f satisfies conditions (24) for all ∆. Hence, f ∈ Iso(X ,X ′, φ) by Theorem 5.2.
Since also αf = α′ and fΩ0 = f0, we are done.

In the case (ii), let f1 ∈ Isoα,α(X1,X ′1, φ1), where α ∈ ∆ and α′ ∈ ∆′. In view
of (25), one can find

f0 ∈ Isoα0,α
′
0
(X0,X ′0, φ0)
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such that (f1)∆0 = f0. Let Γ ∈ Ω1 be the class of e1, other that ∆. Denote by Γ′ a
unique class of e′1, for which (Γ0)f0 = Γ′0, and take arbitrary γ ∈ Γ. Then (γ0)f0 = γ′0
for some γ′0 ∈ Γ′. Using (25) again, we find fΓ ∈ Isoγ,γ′(XΓ ,X ′Γ′ , φΓ,Γ′) such that
(fΓ)Γ0 = (f0)Γ0 .

The constructed family {fΛ : Λ ∈ Ω1} together with the isomorphism f0 forms
an e1/e0-admissible pair. Let f : Ω → Ω′ is the bijection induced by this pair. By
definition, f satisfies conditions (24). Hence, f ∈ Iso(X ,X ′, φ) by Theorem 5.2. Since
also α′ = αf1 = αf and f∆ = f1, we are done. □

Corollary 5.4. In the hypothesis and notation of Lemma 5.3, the following state-
ments are equivalent for all α ∈ Ω and α′ ∈ Ω′:

(1) Isoα,α′(X ,X ′, φ) ̸= ∅,
(2) Isoα0,α

′
0
(X0,X ′0, φ0) ̸= ∅,

(3) Isoα,α′(X1,X ′1, φ1) ̸= ∅.

Corollary 5.5. In the hypothesis and notations of Lemma 5.3, assume that X = X ′
and φ = id. Then X is schurian if and only if X0 is schurian and X1 is schurian for
some α.

Proof. It suffices to prove the “if” part only. Assume that X0 is schurian and X1
is schurian for some α ∈ Ω. Since φ = id, we have X ′0 = X0 (but not necessarily
X ′1 = X1, because, in general, α ̸= α′). Let α′ ∈ Ω. By the schurity of X0, there exists
f ∈ Aut(X0) such that (α0)f = α′0, or, equivalently,

Isoα0,α
′
0
(X0,X0, id) ̸= ∅.

By Lemma 5.3(i), this yields Isoα,α′(X ,X , id) ̸= ∅. Since α′ is arbitrary, this means
that the group Aut(X ) = Iso(X ,X , id) is transitive. Moreover, by statements (i)
and (ii) of Lemma 5.3 for α = α′, we have, respectively,

(Aut(X )α)Ω0 = Aut(X0)α0 and (Aut(X )α)∆ = Aut(X1)α.
By the transitivity of Aut(X ) and the schurity of X0 and X1, this implies that X is
schurian. □

5.4. Concrete sufficient condition. The key point in our general sufficiency
condition established in Lemma 5.3 is equality (25). In general, checking this equality
is not an easy task. The lemma below gives a more or less simple criterion to be used
in Section 6.

Lemma 5.6. Let X be a sesquiclosed commutative scheme on Ω, satisfying the e1/e0-
condition, X ′ a scheme on Ω′, and φ : X → X ′ a sesquiclosed algebraic isomorphism.
In the notation of Lemma 5.3, assume that for α ∈ Ω and α′ ∈ Ω′,

(i) X0 and X1 are schurian, Iso(X0,X ′0, φ0) ̸= ∅ ̸= Iso(X1,X ′1, φ1),
(ii) ((X0)α0)∆0 and ((X1)α)∆0 are partly regular.

Then equality (25) holds.

Proof. Let f0 ∈ Iso(X0,X ′0, φ0). Because X0 is a schurian scheme, we may assume
that (α0)f0 = α′0. Then the algebraic isomorphism ψ0 induced by f0 is the (α0, α

′
0)-

extension of the algebraic isomorphism φ0. It easily follows that
(26) Isoα0,α′

0
(X0,X ′0, φ0)∆0 = Iso((X0)α0

, (X ′0)α′
0
, ψ0)∆0 .

Next, by the first parts of conditions (i) and (ii), the scheme X0 and algebraic iso-
morphism φ0 satisfy the hypothesis of Lemma 4.9 for S = ∆0, S′ = ∆′0, and α = α0.
Therefore,
(27) Iso((X0)α0

, (X ′0)α′
0
, ψ0)∆0 = Iso(((X0)α0

)∆0 , ((X ′0)α′
0
)∆′

0
, (ψ0)∆0,∆′

0
).
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Furthermore, the scheme X , sections S = Ω0, S0 = ∆0, and point α satisfy the
hypothesis of Lemma 4.8. Therefore,
(28) ((X0)α0

)∆0 = ((Xα)Ω0)∆0 = (Xα)∆0 .

By Lemma 4.7, the scheme X ′ is sesquiclosed. Furthermore, the isomorphism f0
induces an isomorphism from ((X0)α0

)∆0 to the coherent configuration ((X ′0)α′
0
)∆′

0
,

which is therefore partly regular. Thus, the scheme X ′, sections S = Ω′0, S0 = ∆′0,
and point α′ satisfy the hypothesis of Lemma 4.8, whence
(29) ((X ′0)α′

0
)∆0 = ((X ′α′)Ω′

0
)∆′

0
. = (X ′α′)∆′

0
.

Since the algebraic isomorphism φ is sesquiclosed, it has the (α, α′)-extension φα,α′

taking α0 to α′0, and hence extending φ0 and taking ∆0 to ∆′0. It follows that the
algebraic isomorphism ψ∆0,∆′

0
defined as the restriction of φα,α′ to ((X0)α0)∆ coincides

with (ψ0)∆0,∆′
0
. With taking equalities (28) and (29) into account, we can continue

formula (27) as follows:
Iso(((X0)α0

)∆0 , ((X ′0)α′
0
)∆′

0
, (ψ0)∆0,∆′

0
) = Iso((Xα)∆0

, (X ′α′)∆′
0
, ψ∆0,∆′

0
).

This together with (26), yields

Isoα0,α′
0
(X0,X ′0, φ0)∆0 = Iso((Xα)∆0

, (X ′α′)∆′
0
, ψ∆0,∆′

0
).

Arguing in a similar way with X0 and φ0 replaced by X1 and φ1, we obtain
Isoα,α′(X1,X ′1, φ1)∆0 = Iso((Xα)∆0

, (X ′α′)∆′
0
, ψ∆0,∆′

0
).

Comparing the expressions on the right-hand sides of the last two equalities, we
get (25). □

6. Circulant sesquiseparable schemes
6.1. Circulant schemes. In this subsection, we follow [3, Sections 2.4 and 4.4].
Let G be a cyclic group. A coherent configuration X on the elements of G is said to
be circulant if for every g ∈ G, the permutation

ρg : x 7→ xg, x ∈ G,

is an automorphism of X ; in particular, X is a commutative scheme. There is a one-to-
one correspondence between circulant schemes and the Schur rings over cyclic groups
(see, e.g. [6]). The reader should not be embarrassed that most of the results cited in
the present paper were formulated and proved in the language of Schur rings. In the
rest of this subsection, we will change our terminology slightly to match that used
for circulant schemes (and Schur rings). In the sequel, X is a circulant scheme on G,
S = S(X ), E = E(X ), and α is the identity element of G.

Every group H ⩽ G defines an equivalence relation e = e(H) on G, the classes of
which are the cosets of H in G. In particular, e(α) = Diag(G×G) and e(G) = G×G.
Note that H = αe and H ⩽ H ′ if and only if e(H) ⊆ e(H ′).

We say that H is an X -group if e(H) ∈ E. The mapping H 7→ e(H) defines a one-
to-one correspondence between the X -groups and parabolics of X . The parabolics ⟨s⟩
and Rad(s), where s ∈ S, correspond to e(H) with H = ⟨αs⟩ and H = {h ∈ G :
(αs)h = αs}, respectively. Note that the parabolic Rad(s) = e(H), and hence the
group H, does not depend on the relation s = r(α, g), where g is a generator of G.
This group is called the radical of X and is denoted by Rad(X ).

In the context of circulant schemes, we are interested in those sections S = ∆/e
for which α ∈ ∆. In this case, ∆ = U and e = e(L) for some X -groups U and L
such that L ⩽ U ; in particular, S = U/L. The set of all such sections is denoted
by S0(X ). It is important to note that every S ∈ S0(X ) is treated as a cyclic group
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and the scheme XS is treated as a circulant scheme on S. We say that a section S
is trivial (respectively, primitive) if the scheme XS is trivial (respectively, primitive,
i.e. contains no XS-group different from the trivial one and S). It is known that every
primitive section of composite order is trivial.

6.2. Normal circulant schemes. The scheme X is said to be normal if the group
⟨ρg : g ∈ G⟩ is normal in Aut(X ), or equivalently, Aut(X )α ⩽ Aut(G). This condition
is always satisfied when G is of prime order and X is not trivial.

Lemma 6.1 ([6, Theorem 6.1 and Corollary 6.2]). Every normal circulant scheme X
is schurian. Moreover, any one-point extension of X is partly regular.

There are normal circulant schemes that are not separable, see, e.g. [3, Section 4.5].
However, from Lemmas 6.1 and 2.2, it follows that every normal circulant scheme is
schurian and any one-point extension of it is separable. By Lemma 4.4, this proves
the following statement.

Corollary 6.2. Every normal circulant scheme is sesquiseparable.

The following auxiliary statement is crucial for the proof of Theorem 6.4 below,
because it enables us to verify condition (ii) in Lemma 5.6.

Lemma 6.3. Let X be a normal circulant scheme and α the identity element of G.
Then the coherent configuration (Xα)S is partly regular for every section S ∈ S0(X ).

Proof. Let S = U/L, where U and L are X -subgroups, and let u be a generator of U .
It suffices to verify that ū = uL is a regular point of the coherent configuration (Xα)S.
Assume on the contrary that there exist x, x′ ∈ U such that

(30) x̄ ̸= x̄′ and r̄(ū, x̄) = r̄(ū, x̄′),

where x̄ = xL, x̄′ = x′L, and for all y, z ∈ S we denote by r̄(y, z) the basis relation of
the coherent configuration (Xα)S, containing the pair (y, z). By the second equality
in (30), there is u′ ∈ ū such that

r(u, x) = r(u′, x′).

The normality of X implies that every element of Aut(Xα) = Aut(X )α is induced
by raising to a power coprime to the order n of the underlying cyclic group G. Fur-
thermore, the coherent configuration Xα is partly regular by Lemma 6.1 and hence is
schurian by Lemma 2.2. Thus there is an integer m coprime to n and such that

xm = x′ and um = u′.

In particular, x̄m = x̄′ and ūm = ū′ = ū. On the other hand, since u is a generator
of U ⩾ L, there is an integer a for which x = ua. Furthermore, (uL)m = ūm = ū = uL
and hence um = yu for some y ∈ L. Thus for every ℓ ∈ L, we have

(xℓ)m = (uaℓ)m = (ua)mℓm = (um)aℓm = (yu)aℓm = ua(yaℓm) = xℓ′,

where the element ℓ′ = yaℓm belongs to L. Consequently, x̄m = x̄, implying x̄′ =
x̄m = x̄ in contrast to the first inequality in (30). □

Let X be an arbitrary circulant scheme. A section S ∈ S0(X ) is said to be normal
if the (circulant) scheme XS is normal, and subnormal if there exists a normal section
S′ ∈ S0(X ) such that S ⩽ S′. Note that every normal section is subnormal and any
primitive section of composite order greater than 4 is not subnormal.
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6.3. The S-wreath product of circulant schemes. Let X be a circulant
scheme and S ∈ S0(X ). Assume that X satisfies the e(U)/e(L)-condition, where U
and L are X -groups such that S = U/L. In this case, we say that X is the S-
wreath product of schemes X1 = XU and X0 = XG/L. The S-wreath product is
nontrivial if 1 < L ⩽ U < G, i.e. if X satisfies the e(U)/e(L)-condition nontrivially.
When U = L, we say that X is a wreath product.

The main result of this subsection is to establish a simple criterion for the S-wreath
product to be schurian and sesquiseparable.

Theorem 6.4. Let X be a circulant sesquiclosed scheme on G. Assume that X is the
S-wreath product of (circulant) schemes X0 and X1 for some S ∈ S0, and also

(1) the section S is subnormal in both X0 and X1,
(2) the schemes X0 and X1 are schurian and sesquiseparable.

Then X is schurian and sesquiseparable.

Proof. By condition (1), the section S is contained in certain sections S0 ∈ S(X0)
and S1 ∈ S(X1) such that the schemes

XS0 = (X0)S0 and XS1 = (X1)S1

are normal circulant. By Lemma 6.1, the one-point extensions (XS0)α and (XS1)β
are partly regular, where α = 1S0 and β = 1S1 treated as points of the schemes XS0

and XS1 , respectively. By Lemma 6.3, the coherent configurations

((XS0)α)S ⩽ ((X0)α)S and ((XS1)β)S ⩽ ((X1)β)S
are partly regular. It follows that so are the coherent configurations ((X0)α)S and
((XS1)β)S. Consequently, condition (ii) of Lemma 5.6 is satisfied for e0 = e(L),
e1 = e(U), and α = 1G. Since Aut(X ) is transitive, this condition is true for all points
of X .

The schemes X0 and X1 are schurian by the first part of condition (2). Thus con-
dition (i) of Lemma 5.6 is satisfied for φ = id (the condition Iso(X1,X ′1, φ1) ̸= ∅ is
true, because the group Aut(X ) is transitive). By that lemma, equality (25) holds for
all α and α′, and hence the scheme X satisfies the hypothesis of Corollary 5.5. Thus,
X is schurian.

Let φ : X → X ′ be a sesquiclosed algebraic isomorphism. Then the algebraic
isomorphisms φ0 and φ1 are also sesquiclosed by Lemma 4.3. By the second part
of condition (2), this implies that Iso(X0,X ′0, φ0) ̸= ∅, and Iso(X1,X ′1, φ1) ̸= ∅ .
Thus condition (i) of Lemma 5.6 is satisfied. By that lemma, equality (25) holds for
all α ∈ Ω and α′ ∈ Ω. Thus, Iso(X ,X ′, φ) ̸= ∅ by Corollary 5.4, and hence X is
sesquiseparable. □

The conditions of Theorem 6.4 are always true when the circulant schemes X0
and X1 are normal. Thus this theorem implies the following statement.

Corollary 6.5. Let X be a circulant sesquiclosed scheme on G. Assume that X is
the S-wreath product for some S ∈ S0(X ) such that the both operands are normal.
Then X is schurian and sesquiseparable.

6.4. Circulant schemes of prime power degree. In this subsection, X is a
circulant scheme on a cyclic p-group G. The structure of X has been completely
described in [16] and [11] for p ⩾ 3 and p = 2, respectively. In particular, X is schurian.
Another important consequence of the description is the radical monotonicity for
p ⩾ 3, namely,

(31) ⟨s⟩ ⩽ ⟨t⟩ ⇒ Rad(s) ⩽ Rad(t).
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for all s, t ∈ S. Using this fact, we show in the lemma below that the wreath product
can be lifted from any section of X .

Lemma 6.6. Let p ⩾ 3 and S ∈ S0(X ). If XS is a nontrivial wreath product, then so
is X .

Proof. Let S = U/L and XS a nontrivial wreath product. Then there is an X -
subgroup H such that L < H < U and for every s ∈ S,

s ⊆ e(U) ∖ e(H) ⇒ e(H/L) ⊆ Rad(sS),

Without loss of generality, we may assume that H is the only X -subgroup strictly
between L and U (here we use the fact that G is a cyclic p-group and hence the
X -groups are linearly ordered with respect to inclusion). It suffices to verify that

(32) s ⊆ e(U) ∖ e(H) ⇒ Rad(s) ⩾ e(H).

Indeed, then by formula (31), we have Rad(s) ⩾ e(H) for all s ∈ S not contained
in eH . But this means that X satisfies the e(H)/e(H)-condition, i.e. X is a nontrivial
wreath product.

Suppose on the contrary that (32) is not true for some s. Then the X -subgroup L′,
for which Rad(s) = e(L′), is strictly contained in H. By the assumption on H, this
implies that L′ < L, and hence S is a subsection of S′ = U/L′. Note that

Rad(XS) ̸= 1 and Rad(XS′) = 1.

However, this contradicts the fact (see [4, Corollary 7.4]) that if a circulant scheme
(in our case XS′) of odd prime power degree is of trivial radical, then every its section
(in our case S) is also of trivial radical. □

In the following lemma, we collect some known properties of circulant schemes of
prime power degree, that will be used in the proof of Theorem 6.8. Below, we say that
a circulant scheme X is dense if S0(X ) contains no trivial section of composite order.

Lemma 6.7. Let X be a circulant scheme of prime power degree. Then
(1) if Rad(X ) = 1, then X is trivial or normal,
(2) if Rad(X ) ̸= 1 and X is dense, then X is a nontrivial S-wreath product, and

also Rad(XS) = 1 or |S| = 4,
(3) if S0(X ) contains a proper primitive non-subnormal section, then X is a

nontrivial wreath product.

Proof. Statements (1) and (3) are consequences of [6, Corollary 6.4], and the statement
cited in [9, p.29] (and proved in [8, Theorem 4.6]), specified for schemes of prime power
degree. Statement (2) is exactly [9, Lemma 6.1]. □

Now we are ready to prove the main result of this subsection.

Theorem 6.8. Every circulant scheme of prime power degree is sesquiseparable.

Proof. Let X be a circulant scheme of degree pn, where p is a prime and n ⩾ 1.
Assume first that X is trivial or normal. In the former case, X is separable and hence
sesquiseparable. In the latter case, X is sesquiseparable by Corollary 6.2. Thus, the
statement is true if n = 1. Assume by induction that it is true for all circulant scheme
of degree pm, where m < n.

Claim. Let X be neither trivial nor normal. Then X is a nontrivial S-wreath
product with S subnormal in both operands.
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Proof. By Lemma 6.7(3), we may assume that S0(X ) contains no proper primitive
non-subnormal section (otherwise we have a section S for which |S| = 1). Then S0(X )
contains no trivial section of composite order, i.e. X is dense. By statements (1)
and (2) of Lemma 6.7, the scheme X is a nontrivial S-wreath product, and also
Rad(XS) = 1 or |S| = 4. In the last case, S is normal (because all circulant schemes
of degree at most 4 are normal) and hence is subnormal in both operands.

Let Rad(XS) = 1. Then by Lemma 6.7(1), the section S is either normal or trivial.
In the first case, we are done as above. In the second case, |S| = p ⩾ 5 (otherwise S
is normal). It remains to verify that S is subnormal in both operands. But if this is
not true, then one of the operands is a nontrivial wreath product by Lemma 6.7(3).
Then so is X by Lemma 6.6, and we are done as above. The claim is proved. □

To complete the proof of the theorem, we may assume by the claim that X is a
nontrivial S-wreath product of circulant schemes X0 and X1 such that the section S
is subnormal both in X0 and X1. Note that X0 and X1 are circulant schemes of
prime power degrees, which are less than pn. By induction, this implies that they are
sesquiseparable. Because they are also schurian, the scheme X is sesquiseparable by
Theorem 6.4. □

6.5. Proof of Theorem 1.1. Let G be a circulant graph of prime power order; in
particular, G is vertex-transitive and WL(G) is a schurian circulant scheme. Let G′
be a graph WL3-equivalent to G. By Lemma 4.2, there is a sesquiclosed algebraic
isomorphism φ : WL(G) → WL(G′) such that φ(D) = D′, where D and D′ are the arc
sets of G and G′, respectively. On the other hand, the scheme WL(G) is sesquiseparable
by Theorem 6.8. Thus the algebraic isomorphism φ is induced by an isomorphism f .
It follows that Df = φ(D) = D′. Hence, f ∈ Iso(G,G′), i.e. the graphs G and G′ are
isomorphic. Consequently, dimWL(G) ⩽ 3.

References
[1] L. Babai, Group, graphs, algorithms: the graph isomorphism problem, in Proceedings of the

International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, World
Sci. Publ., Hackensack, NJ, 2018, pp. 3319–3336.

[2] J. Bagherian and H. Memarzadeh, The generalized X-join of Cayley graphs and their automor-
phisms, Ars Math. Contemp. 24 (2024), article no. 6 (23 pages).

[3] G. Chen and I. Ponomarenko, Coherent configurations, Central China Normal University Press,
2019, the updated version is available at http://www.pdmi.ras.ru/~inp/ccNOTES.pdf.

[4] S. Evdokimov, I. Kovács, and I. Ponomarenko, Characterization of cyclic Schur groups, St.
Petersburg Math. J. 25 (2014), 755–773.

[5] S. Evdokimov and I. Ponomarenko, On a family of Schur rings over a finite cyclic group, St.
Petersburg Math. J. 13 (2002), no. 3, 441–451.

[6] , Characterization of cyclotomic schemes and normal Schur rings over a cyclic group,
St. Petersburg Math. J. 14 (2003), no. 2, 189–221.

[7] , Recognizing and isomorphism testing circulant graphs in polynomial time, St. Peters-
burg Math. J. 15 (2004), no. 6, 813–835.

[8] , Schurity of S-rings over a cyclic group and generalized wreath product of permutation
groups, St. Petersburg Math. J. 24 (2013), no. 3, 431–460.

[9] , On the separability problem for circulant S-rings, St. Petersburg Math. J. 28 (2017),
no. 1, 21–35.

[10] F. Fuhlbrück, J. Köbler, and O. Verbitsky, Identifiability of graphs with small color classes by
the Weisfeiler–Leman algorithm, SIAM J. Discrete Math. 35 (2021), no. 3, 1792–1853.

[11] Y. Y. Gol’fand, M. H. Klin, and N. L. Naimark, The structure of S-rings over Z2m , Sixteenth
All Union Algebraic Conference. Part 2, Leningrad, 1981, pp. 195–196.

[12] M. Grohe, Descriptive complexity, canonisation, and definable graph structure theory, Cam-
bridge University Press, 2017.

[13] H. Helfgott, J. Bajpai, and D. Dona, Graph isomorphisms in quasi-polynomial time, 2017,
https://arxiv.org/abs/1710.04574.

Algebraic Combinatorics, Vol. 6 #6 (2023) 1489

http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
https://arxiv.org/abs/1710.04574


Ilia Ponomarenko

[14] M. Muzychuk, A wedge product of association schemes, European J. Combin. 30 (2009), no. 3,
705–715.

[15] O. Pikhurko and O. Verbitsky, Logical complexity of graphs: a survey, in Model theoretic meth-
ods in finite combinatorics, Amer. Math. Soc., Providence, RI, 2011, pp. 129–179.

[16] R. Pöschel, Untersuchungen von S-Ringen, insbesondere im Gruppenring von p-Gruppen, Math.
Nachr. 60 (1974), 1–27.

[17] B. Yu. Weisfeiler and A. A. Leman, The reduction of a graph to canonical form and the algebra
which appears therein, NTI, Ser. 2 9 (1968), 12–16, English translation is available at https:
//www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

Ilia Ponomarenko, Steklov Institute of Mathematics at St. Petersburg, Russia
E-mail : inp@pdmi.ras.ru

Algebraic Combinatorics, Vol. 6 #6 (2023) 1490

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
mailto:inp@pdmi.ras.ru

	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Coherent configurations
	2.3. Isomorphisms and schurity
	2.4. Extensions
	2.5. Algebraic isomorphisms and separability
	2.6. Relations
	2.7. Parabolics and quotients
	2.8. Sections
	2.9. Point extensions
	2.10. Partly regular coherent configurations

	3. Multidimensional coherent configurations and WL-dimension
	3.1. The multidimensional Weisfeiler–Leman algorithm
	3.2. Multidimensional coherent configurations
	3.3. Projections
	3.4. Residues
	3.5. Reduction to coherent configurations

	4. Sesquiclosed coherent configurations and algebraic isomorphisms
	4.1. Sesquiclosed algebraic isomorphisms
	4.2. Sesquiclosed coherent configurations
	4.3. Partly regular sections

	5. e1/e0-condition
	5.1. Definition
	5.2. Admissible pairs
	5.3. General sufficient condition
	5.4. Concrete sufficient condition

	6. Circulant sesquiseparable schemes
	6.1. Circulant schemes
	6.2. Normal circulant schemes
	6.3. The fS-wreath product of circulant schemes
	6.4. Circulant schemes of prime power degree
	6.5. Proof of Theorem 1.1

	References

