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The poset of Specht ideals for
hyperoctahedral groups

Sebastian Debus, Philippe Moustrou, Cordian Riener
& Hugues Verdure

Abstract Specht polynomials classically realize the irreducible representations of the sym-
metric group. The ideals defined by these polynomials provide a strong connection with the
combinatorics of Young tableaux and have been intensively studied by several authors. We
initiate similar investigations for the ideals defined by the Specht polynomials associated to the
hyperoctahedral group Bn. We introduce a bidominance order on bipartitions which describes
the poset of inclusions of these ideals and study algebraic consequences on general Bn-invariant
ideals and varieties, which can lead to computational simplifications.

1. Introduction
Symmetries provide beautiful connections between algebra, geometry and efficient
computations: on the one hand, the symmetries of geometrical objects can be de-
scribed with the algebraic language of group theory, while on the other hand algebraic
problems affording additional structure can be solved more efficiently once symmetry
is appropriately taken into consideration. A particular incarnation of these phenom-
ena occurs when studying algebraic systems of polynomial equations whose solution
set is invariant under a group action. In this set-up, when looking at the corresponding
polynomial ideal, the machinery of invariant and representation theory can be em-
ployed to gain information about the solutions of the initial system, and to simplify
its resolution.

These kinds of questions have been extensively studied in the literature for the
symmetric group Sn, acting on the polynomial ring K[x1, . . . , xn] over a field K by
permuting variables. In particular, it has been observed in different computational
tasks that the understanding of this action can lead to substantial algorithmic im-
provements (see for example [14, 29, 28, 18, 6, 23, 5, 19]). These improvements mostly
build on the fact that in this situation, both representation and invariant theory are
classically understood, and are closely related to the combinatorics of partitions and
Young Tableaux. More precisely, the irreducible representations of Sn are in bijection
with the partitions of n, through a construction due to Specht: for every partition,
one can define a polynomial whose Sn-orbit spans an irreducible Sn-module, called
Specht module [32]. This motivates the study of Specht ideals, the ideals generated by
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such modules, since they can be seen as building blocks of the action of the symmet-
ric group on a polynomial ring. The study of these objects has shown to be fruitful
from various aspects, and the connection between these ideals and the combinatorics
of partitions turns out to be deeper: not only there is a bijection between Sn-Specht
ideals and partitions of n, but this correspondence respects the poset structures. First
results were proven by Li and Li [20] and Haiman and Woo (see Woo’s doctoral thesis
[33]), and then independently revisited and extended for algorithmic purposes in [24].
In turn, this combinatorial understanding also provides information on these ideals
from the point of view of commutative algebra: for instance they all are radical [25],
and the partitions for which they are Cohen-Macaulay are understood [35]. The study
of these ideals has also paved algorithmic ways to simplify calculations for Sn-closed
ideals and their corresponding varieties. They allow to understand the symmetry of
the coordinates of the points in the variety, which in turn gives information on their
dimension. This information can then be used to design more efficient algorithms by
reducing the number of variables.

In this article, we initiate a similar study for the action of the hyperoctahedral group
Bn on a polynomial ring K[x1, . . . , xn]. The field K is assumed to be of characteristic
0, although many results remain valid in positive characteristic. In this representa-
tion, this group can be seen as the group generated by permutations of variables and
sign switches of variables, namely maps sending xi to −xi. The group is isomorphic
to the Weyl group of type B and appears in several different areas, as hyperplane ar-
rangements ([2, Section 6.7],[1]), representation theory [9, 8, 26], and has applications
in the study of non negative even symmetric polynomials [11, 17] and optimization
[13]. Similarly to the case of permutations, this situation is profoundly connected to
combinatorics. In this case, instead of partitions, the irreducible representations of
Bn are in bijection with bipartitions of n. Furthermore, polynomial generators of the
irreducible Bn-modules can be constructed in a similar way [31, 26]. We aim at a
first investigation of the corresponding ideals with the goal to extend the connec-
tions between algebra and combinatorics as far as possible. In contrast to the Sn-case
where there is a natural order on partitions, several orders are possible on biparti-
tions [15, 3, 12]. However, while in the Sn case the poset of the standard order on
partitions reflects the corresponding poset of ideal inclusions, none of the previously
studied orders of bipartitions satisfy this property. Therefore, we define another or-
der on bipartitions. After studying the basic properties of this order, we are able to
show that it indeed translates well to the ideal inclusion. Similarly to the case of Sn,
this combinatorial connection finds consequences for the corresponding varieties. In
addition to the inclusion of varieties we are able to give a complete characterization
in terms of orbit types of the points in these varieties. Further, this gives information
on the possible orbit types of points in general Bn-invariant varieties, allowing for
complexity reduction in the resolution of Bn-closed polynomial systems.

The paper is structured as follows: Section 2 overviews the situation of Sn-Specht
ideals. We initiate the study of Bn-Specht ideals in Section 3 with definitions and
natural connections to the Sn case. In Section 4 we define our order for bipartitions
and study its combinatorial properties. Following this, we show equivalence between
our poset of bipartitions and the posets of Specht ideals and varieties in Section
5. In Section 6, study possible decompositions of Specht varieties in terms of orbit
types. Finally, we extend our study to general Bn-invariant ideals in Section 7, before
concluding the paper with closing remarks and open questions in Section 8.
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2. Sn-Specht ideals
2.1. Definitions. A partition λ = (λ1, . . . , λl) of n is a sequence of non-increasing
non negative integers such that

∑
i⩾1 λi = n. We write λ ⊢ n when λ is a partition

of n and say that ∅ is the unique partition of 0. The size of a partition λ is | λ |=∑
i⩾1 λi. The length of a non-empty partition λ = (λ1, λ2, . . .) ⊢ n is the maximal

l ∈ N0 := N ⊎ {0} with λl > 0, while the length of ∅ is 0. We denote the length by
len(λ). For any partition λ = (λ1, . . . , λl) ⊢ n we use the convention that λs = 0 for
every s ⩾ l + 1.

Let λ, µ ⊢ n be partitions of the same size. Then λ dominates µ if and only if∑k
j=1 λj ⩾

∑k
j=1 µj for any k. We denote domination by µ⊴ λ. A partition λ can be

represented via its (Young) diagram, i.e. the ordered sequence of boxes from the left
to the right and the top to the bottom, where the i-th line contains λi many boxes.
We say that the associated diagram has shape λ. A tableau of shape λ is a filling of a
diagram of shape λ with all the numbers [n] = {1, . . . , n}. Then, we write sh(T ) = λ

if T is a tableau of shape λ. For instance, S =
9 3 6 4
2 1 8
5 7

is a tableau of shape (4, 3, 2).

A generalized tableau is a filling of a diagram with elements in K. The conjugate
partition λ⊥ of a partition λ is the partition whose diagram is the one obtained from
the diagram of λ by interchanging the rows and columns.

For a sequence (i1, . . . , im) of natural numbers, we define the associated Vander-
monde polynomial in the variables xi1 , . . . , xim as

∆(i1,...,im)(x) =
∏

j<k∈[m]

(xij − xik
),

while ∆(i) =
∏

∅(xij
− xik

) = 1.

Definition 2.1. Let T be a tableau of shape λ ⊢ n with m columns and let Ti be the
sequence of natural numbers containing the entries of the i-th column of T from above
to below. Then, the associated Sn Specht polynomial spT (x) is the product of all the
column Vandermonde polynomials of the columns, i.e.

spT (x) =
m∏

j=1
∆Tj

.

For the tableau S of shape (4, 3, 2) above, we have

spS(x) = ∆(9,2,5)(x)∆(3,1,7)(x)∆(6,8)(x)∆(4)(x)
= (x9 − x2)(x9 − x5)(x2 − x5)(x3 − x1)(x3 − x7)(x1 − x7)(x6 − x8).

Definition 2.2. Let λ be a partition of n. We define the Sn-Specht ideal

Iλ = ⟨spT (x) : T is a tableau of shape λ⟩ ⊂ K[x1, . . . , xn]

and the Sn-Specht variety

Vλ = {a ∈ Kn : f(a) = 0 for all f ∈ Iλ} ⊂ Kn

associated to λ.

The group Sn acts transitively on the set of tableaux of shape λ, where an element
σ ∈ Sn acts on a tableau T by replacing every entry i in a box by σ(i). Thus, the
Sn-Specht ideal Iλ is the ideal generated by the Sn-orbit of a Specht polynomial of a
tableau of shape λ.
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Definition 2.3. For a partition λ ⊢ n we write Sλ = Sλ1 × Sλ2 × · · · ⊂ Sn and define
the Sn-orbit set

Hλ = {z ∈ Kn : StabSn(z) ≃ Sλ} .

If z ∈ Hλ we call λ the Sn-orbit type of z.

The orbit set of any partition is non-empty and the Hλ’s define a set partition of
Kn. For instance, H(3,2,2,1) is the Sn orbit of the set

{(a1, a1, a1, a2, a2, a3, a3, a4) ∈ Kn : ai ̸= aj , ∀i ̸= j} .

2.2. Inclusions and applications. The dominance order for integer partitions is
well studied and understood. We recall that if (P,≼) is a poset and p, q ∈ P then
p covers q if and only if p ̸= q, q ≼ p, and for any r ∈ P , q ≼ r ≼ p implies
r ∈ {p, q}. Brylawski studied the lattice of integer partitions of n with respect to
the dominance order and classified the covering relations ([7, Proposition 2.3]). Let
λ, µ ⊢ n be partitions. Then, µ ⊴ λ is a covering if and only if λ is of the form

λ = (µ1, . . . , µi−1, µi + 1, µi+1, . . . , µj−1, µj − 1, µj+1, . . . , µl),
and either j = i + 1 or µi = µj−1 (and µi−1 > µi and µj > µj+1 to ensure that µ is
a partition). In particular, the diagram of shape µ can be obtained from the diagram
of shape λ via moving one box from the end of row i to row j.

Example 2.4. The following are two coverings of partitions displayed by their dia-
grams.

⊵ and ⊵ .

The following theorem shows the equivalences of the posets of partitions with
respect to dominance order, and the posets of Sn-Specht ideals and varieties with
respect to inclusion.

Theorem 2.5 ([24], Theorem 1). Let λ and µ be partitions of n. Let Iλ, Iµ denote their
associated Sn-Specht ideals and Vλ, Vµ their associated Sn-Specht varieties. Then, the
following assertions are equivalent:

(1) The partition λ dominates µ, i.e. λ ⊵ µ;
(2) The Sn-Specht ideal Iλ contains the Sn-Specht ideal Iµ, i.e. Iλ ⊃ Iµ;
(3) The Sn-Specht variety Vλ is contained in the Sn-Specht variety Vµ, i.e. Vλ ⊂

Vµ.

The Sn-Specht varieties can be decomposed using Sn orbit sets.

Theorem 2.6 ([24], Corollary 1). Let µ ⊢ n be a partition. Then, the associated Sn-
Specht variety is

Vµ =
( ⋃

λ⊴µ

Hλ

)c

=
⋃

λ ̸⊴µ

Hλ.

This characterization already shows that in general K[x1, . . . , xn]/Iλ is not Cohen-
Macaulay for a Sn-Specht ideal Iλ, since the varieties are not equidimensional. Yana-
gawa classified the few cases when a Specht ideal is Cohen-Macaulay.

Theorem 2.7 ([35], Corollary 4.4). The ring K[x1, . . . , xn]/Iλ is Cohen-Macaulay if
and only if λ is one of the following form

(1) λ = (n − d, 1, . . . , 1);
(2) λ = (n − d, d);
(3) λ = (a, a, 1).
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The authors in [33, 25] prove that a Sn-Specht ideal is radical. Their proof uses
Theorem 2.6, i.e. that Sn-Specht varieties can be written as disjoint unions of Sn orbit
sets, and the non-emptyness of any orbit set Hλ.

3. Definition and first properties of Bn-Specht ideals
The hyperoctahedral group Bn is the symmetry group of the n-dimensional hypercube.
It can be written as the wreath product S2 ≀Sn ≃ {±1}n⋉Sn, acting on the polynomial
ring K[x1, . . . , xn] in the following natural way. An element (τ, ρ) ∈ Bn, where τ ∈
{±1}n ∼= Sn

2 and ρ ∈ Sn, acts on a monomial xi by (τ, ρ) · xi = τρ(i) · xρ(i). We call
an ideal I ⊂ K[x] Bn-invariant if for all f ∈ I and all σ ∈ Bn we have σ · f ∈ I.

3.1. Definitions. A bipartition of n is a pair (λ, µ), where λ ⊢ n1, µ ⊢ n2 are
partitions and n1 + n2 = n. We denote the set of all bipartitions of n by BPn. A
(Young) bidiagram of a bipartition (λ, µ) is the pair of diagrams of shape λ and µ. A
bitableau is a filling of a bidiagram with all the numbers in [n]. We write sh(T, S) =
(λ, µ) if (T, S) is a bitableau of shape (λ, µ). For example,

(T ′, S′) =
(

4 3
2
5

,
6
1

)
is a bitableau of shape ((2, 1, 1), (1, 1)). When considering representatives of Bn-orbits
of points, we do not need to distinguish between the signs of coordinates. Thus, we
write x2 = (x2

1, . . . , x2
n) and analogously z2 = (z2

1 , . . . , z2
n) for points z ∈ Kn. A

generalized bitableau is a filling of a bidiagram with elements in K.

Definition 3.1. Let (T, S) be a bitableau and let Ti, Si be the sequences of natural
numbers containing the entries of the i-th column of T and S from above to below.
Then, the associated Bn Specht polynomial is

sp(T,S)(x) = spT (x2) spS(x2)
∏
k∈S

xk =
∏
i⩾1

∆Ti
(x2)

∏
j⩾1

∆Sj
(x2)

∏
k∈S

xk

where the notation spT is naturally adapted in this context to a Tableau T which
is not necessarily filled with the integers 1, . . . , k. For the bitableau (T ′, S′) of shape
((2, 1, 1), (1, 1)) above, we have

sp(T ′,S′)(x) = ∆(4,2,5)(x2) · ∆(3)(x2) · ∆(6,1)(x2) · x6x1

= (x2
4 − x2

2)(x2
4 − x2

5)(x2
2 − x2

5)(x2
6 − x2

1)x1x6.

The Bn Specht polynomials are defined in works of Specht [31] who proved that
the vector space of all Bn Specht polynomials associated with a fixed bipartition
is an irreducible Bn-representation if the characteristic is 0. Moreover, for pairwise
different bipartitions the associated irreducible representations are non-isomorphic
and all irreducible representations arise as the vector spaces of certain Bn Specht
polynomials. A constructive proof can also be found in [26, Chapter 7].

From now on, if not specified, Specht polynomials will stand for Bn-Specht poly-
nomials.

Definition 3.2. Let (λ, µ) be a bipartition of n. We define the Bn-Specht ideal

I(λ,µ) = ⟨sp(T,S)(x) : (T, S) is a bitableau of shape (λ, µ)⟩ ⊂ K[x1, . . . , xn]

and the Bn-Specht variety

V(λ,µ) = {z ∈ Kn : f(z) = 0 for all f ∈ I(λ,µ)} ⊂ Kn

associated to (λ, µ).
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Again, the Bn-Specht ideal I(λ,µ) is the ideal generated by the Sn orbit of a Specht
polynomial of a bitableau of shape (λ, µ). We observe that switching of signs of vari-
ables in a Specht polynomial sp(T,S) returns ± sp(T,S). Thus, I(λ,µ) also equals the Bn

orbit of sp(T,S).

3.2. Relations between Bn and Sn Specht polynomials.

Definition 3.3. Let λ ⊢ n1, µ ⊢ n2 be partitions. Then, the glueing of λ and µ is the
partition λ ⊎ µ = (λ1 + µ1, λ2 + µ2, . . .) ⊢ n1 + n2. The concatenation λ ∨ µ ⊢ n1 + n2
is the partition obtained by rearranging (λ1, . . . , λs, µ1, . . . , µt) in decreasing order.

The glueing λ ⊎ µ defines indeed again a partition. Since λi ⩾ λi+1 and µi ⩾ µi+1
we have λi + µi ⩾ λi+1 + µi+1 for any i.

Example 3.4. The glueing of the partitions (3, 2, 2), (4, 1) with diagrams

,

is the partition (7, 3, 2) with diagram

.

As observed in [16], if λ, µ are two partitions, then (λ ⊎ µ)⊥ = λ⊥ ∨ µ⊥. This
observation provides a natural connection between bitableaux of shape (λ, µ) and
tableaux of shape λ ⊎ µ. Concretely, let (T, S) be a bitableau of shape (λ, µ). Then,
we can consider the tableau T ⊎ S of shape λ ⊎ µ, where the columns of T ⊎ S are
filled like the columns of T and S. When two columns in λ ⊎ µ have the same length,
they are ordered by their occurrence in the bitableau (T, S) from the left to the right.
For instance, for

(T ∗, S∗) =
(

1 2 10 9
4 8 7
6

,
3
5

)
we have

T ∗ ⊎ S∗ =
1 2 10 3 9
4 8 7 5
6

.

Since this map is invertible we get:

Proposition 3.5. The tableaux of shape λ ⊎ µ are in 1:1 correspondence with the
bitableaux of shape (λ, µ). A bijection is given by (T, S) 7→ T ⊎ S.

The lemma below describes the connection between Sn and Bn-Specht polynomials.
In particular, it motivates the definition of the same operations on the bidiagram of
shape (λ, µ) and on the diagram of its glueing λ ⊎ µ via moving some of the boxes in
a diagram in Section 4.

Lemma 3.6. Let (λ, µ) ∈ BPn be a bipartition and let (T, S) be a bitableau of shape
(λ, µ). Then

sp(T,S)(x1, . . . xn) = spT ⊎S(x2
1, . . . , x2

n)
∏
j∈S

xj .

Proof. It is an immediate consequence of Proposition 3.5, since the Specht polynomi-
als are defined as product of Vandermonde polynomials on the columns of the glued
partition. □
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3.3. Existing orders on bipartitions. As mentioned in the introduction, par-
tial orders on the set of bipartitions of n have been studied by several authors. Let
(λ, µ), (λ′, µ′) ∈ BPn be bipartitions. For instance the following statements define
partial orders:

(1) (λ′, µ′) ≼ (λ, µ) ⇔

{∑
j⩽k λ′

j ⩽
∑

j⩽k λj , for all k, and
| λ′ | +

∑
j⩽k µ′

j ⩽| λ | +
∑

j⩽k µj , for all k

was introduced in [12] to study Hecke algebras of type Bn, and was recently proven
to occur naturally in the field of spin group theory [34]. Ariki generalized their order
to multipartitions to study Hecke algebras of type G(m, 1, n) [4]. The partial order

(2) (λ′, µ′) ≼ (λ, µ) ⇔

{
| λ′ |<| λ |, or
| λ′ |=| λ |, and λ′ ⊴ λ, µ′ ⊴ µ

was formalized in [3] to construct Bn-irreducible representations based on a more
general procedure valid for finite groups. In [15], the authors introduce a partial order
on bipartitions that extends the dominance order on partitions in the following way:

(3) (λ′, µ′) ≼ (λ, µ) ⇔ χ(λ,µ) − χ(λ′,µ′) is zero or proper,

where χ(λ,µ) is the character of IndB(n)
S(λ)×B(µ)(1). The partial orders (1), (2) and (3)

are not equivalent.
Moreover, these orders do not capture inclusions of ideals and varieties. Namely,

for (1) and (2), we have the following ordering of bipartitions of n = 2:

((2),∅) ≻ ((1, 1),∅) ≻ ((1), (1)),

and for (3),
((2),∅) ≻ ((1, 1),∅) and ((1), (1)) ≻ ((1, 1),∅)

while the corresponding ideals are

I((1,1),∅) =< x2
1 − x2

2 >⊊ I((1),(1)) =< x1, x2 >⊊ I((2),∅) =< 1 > .

In the next section, we introduce a new order on bipartitions that will capture inclu-
sion of Specht ideals.

4. The poset of bipartitions
In this section we introduce our new order for bipartitions:

Definition 4.1. Let (λ, µ), (λ′, µ′) ∈ BPn be biparitions of n. We say that (λ, µ)
bidominates (λ′, µ′) if and only if

k∑
j=1

(λ′
j + µ′

j) ⩽
k∑

j=1
(λj + µj), and

k−1∑
j=1

(λ′
j + µ′

j) + λ′
k ⩽

k−1∑
j=1

(λj + µj) + λk

for all positive integers k. If (λ, µ) bidominates (λ′, µ′) we write (λ′, µ′) ⊴ (λ, µ). We
call ⊴ the bidominance order.

We point out that the first condition is just a condition on the glueing of the
bipartitions, i.e.

λ′ ⊎ µ′ ⊴ λ ⊎ µ.
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Example 4.2. The following bipartitions of 8 are comparable: ((2, 1, 1), (3, 1)) ⊴
((3, 2), (2, 1)), since

2 ⩽ 3, 5 ⩽ 5, 6 ⩽ 7, 7 ⩽ 8, 8 ⩽ 8.

However, the bipartitions ((2), (1, 1)) and (∅, (4)) are not comparable, since 2 > 0
but 3 < 4.

Although we use the same symbol for dominance and bidominance, this should not
create any confusion, as they are defined on sets with empty intersection. We identify
bipartitions with their associated bidiagrams and speak about boxes in a bipartition.
It follows from the definition that our bidominance order is a partial order on BPn,
and the previous example shows that it is not a total order.

Before proving our main theorem in the next section, we need a better understand-
ing of our poset of bipartitions.

The smallest element in (BPn,⊴) is (∅, (1, . . . , 1)), while the largest element is
((n),∅). The following theorem characterizes the covering relations in the poset
(BPn,⊴). It turns out that there are four different cases, that are illustrated in Ex-
ample 4.4.
Theorem 4.3. Let (λ, µ), (λ′, µ′) ∈ BPn be bipartitions and let i = min{j ∈ [n] :
(λj , µj) ̸= (λ′

j , µ′
j)}. Then, (λ, µ) covers (λ′, µ′) if and only if one of the following

statements is true:
(1) µ = µ′, λ covers λ′ with respect to the dominance order on partitions with

λ′
i = λi − 1, and for k such that λ′

k = λk + 1, we have µi−1 = µi = · · · = µk;
(2) λ = λ′, µ covers µ′ with respect to the dominance order on partitions, with

µ′
i = µi −1, and for k such that µ′

k = µk +1, we have λi = λi+1 = · · · = λk+1;
(3) λ ̸= λ′, µ ̸= µ′ and λi > λ′

i. If k is maximal with λi = λk, then µi = µk,
(λ′

j , µ′
j) = (λj − 1, µj + 1) for any integer i ⩽ j ⩽ k, and (λ′

j , µ′
j) = (λj , µj)

otherwise;
(4) λ ̸= λ′, µ ̸= µ′, λi = λ′

i (and therefore µi > µ′
i). If k is maximal with µi = µk,

then λi+1 = λk+1, (µ′
j , λ′

j+1) = (µj − 1, λj+1 + 1) for any integer i ⩽ j ⩽ k
and there is equality otherwise.

Example 4.4. In the following, we exemplify instances for all the covering cases of
bipartitions. In each of the cases, the boxes moved are colored in red.

(1) An example of a covering of type (1), where i = 2 and k = 4: ,

 ⊵

 ,

 .

(2) An example of a covering of type (2), where i = 1 and k = 4: ,

 ⊵

 ,

 .

(3) An example of a covering of type (3), where i = 2: ,

 ⊵

 ,

 .

(4) An example of a covering of type (4), where i = 1: ,

 ⊵

 ,

 .
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One can think of the cases (3) and (4) as moving a partial column from the left
diagram in the bidiagram (λ, µ) to the right side and staying in the same row, or
moving a partial column from the right diagram to the left and going down one row.

Now we present a proof of the theorem.

Proof of Theorem 4.3. We start the proof by showing that operations (1) − (4) de-
fine covering relations. Suppose that (λ′, µ′) is obtained from (λ, µ) by one of these
operations. We need to show that (λ, µ) covers (λ′, µ′), that is, if (λ∗, µ∗) is such that
(λ, µ) ⊵ (λ∗, µ∗) ⊵ (λ′, µ′), then either (λ∗, µ∗) = (λ, µ) or (λ∗, µ∗) = (λ′, µ′). Since
the proofs for operations (2) and (4) are respectively similar to (1) and (3), we will
focus on these two operations.

(A) Suppose that (λ′, µ′) is obtained from (λ, µ) by operation (1). In particular, µ = µ′,
and there exists 1 < i < k such that λ′

i = λi − 1, λ′
k = λk + 1, λ′

j = λj for j ̸= i, k
and µi−1 = · · · = µk. It is not difficult to show, by taking the difference between
two consecutive partial sums, that

∀j ∈ {1, . . . , i − 1, k + 1, . . .}, λj = λ∗
j = λ′

j and µj = µ∗
j = µ′

j ,

as well as µ∗
k = µk = µ′

k. Since µ∗
i−1 = µi−1 = µk = µ∗

k, this implies that
µ∗

i−1 = · · · = µ∗
k as well. In turn, this means that

λ = (λi, . . . , λk) ⊵ λ∗ = (λ∗
i , . . . , λ∗

k) ⊵ (λ′
i, . . . , λ′

k) = λ′.

By hypothesis, λ covers λ′, so that either λ∗ = λ or λ∗ = λ′. In turn, this shows
that (λ, µ) covers (λ′, µ′).

(B) Now, we assume that (λ′, µ′) is obtained from (λ, µ) by operation (3). This means,
that there exists i ⩽ k such that λi = λk > λk+1, µi−1 > µi = µk and λ′

j = λj −1,
µ′

j = µj + 1, for i ⩽ j ⩽ k and otherwise λ′
j = λj and µ′

j = µj .
As above we observe that

∀j < i or j > k, λj = λ∗
j = λ′

j and µj = µ∗
j = µ′

j .

In the same way, it is easy to show that

∀j, i ⩽ j ⩽ k, λj + µj ⩾ λ∗
j + µ∗

j ⩾ λ′
j + µ′

j = λj + µj ,

and
∀j, i ⩽ j ⩽ k, λj ⩾ λ∗

j ⩾ λ′
j = λj − 1.

Together, this implies that

∀j, i ⩽ j ⩽ k, λ∗
j ∈ {λj , λj − 1} and µ∗

j ∈ {µj , µj + 1}.

(a) Assume first that λ∗
i = λi − 1. Then for i ⩽ j ⩽ k,

λj − 1 ⩽ λ∗
j ⩽ λ∗

i = λi − 1 = λj − 1

which implies λ∗
j = λj − 1 and µ∗

j = µj + 1, that is, (λ∗, µ∗) = (λ′, µ′).
(b) On the other hand, if λ∗

i = λi or equivalently µ∗
i = µi, then for i ⩽ j ⩽ k, we

have
µj ⩽ µ∗

j ⩽ µ∗
i = µi = µj

which implies that µ∗
j = µj and λ∗

j = λj , that is (λ∗, µ∗) = (λ, µ).
Thus, they describe a covering relation in the poset (BPn,⊴).

Now, we prove the converse. Let (λ, µ) and (λ′, µ′) be two different bipartitions of
n and assume that (λ′, µ′) ⊴ (λ, µ). We show that there exists a bipartition (λ∗, µ∗)
of n that can be obtained from (λ, µ) through one of the cases (1)-(4), and (λ′, µ′) ⊴
(λ∗, µ∗) ⊴ (λ, µ). Let i ∈ N be minimal with (λi, µi) ̸= (λ′

i, µ′
i).
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(A) We consider first the case where λi > λ′
i and show that we can obtain (λ∗, µ∗)

using one of the operations (1),(3), or (4). Let k ∈ N be maximal with λi = λk.
We begin our analysis with distinguishing between the following two cases.

Either there exists a p ∈ N such that i ⩽ p ⩽ k and µp < µp−1 or not, with the
convention that µ1 < µ0.
(a) First, we assume that there exists such a p and we fix the minimal p with this

property. Then µp is the first place after µi−1 where we can put a box to still
obtain a partition. Let q ∈ N be minimal such that p ⩽ q ⩽ k and µq = · · · =
µk. We define (λ∗, µ∗) as the bipartition of n with (λ∗

j , µ∗
j ) = (λj − 1, µj + 1)

for every q ⩽ j ⩽ k and otherwise (λ∗
j , µ∗

j ) = (λj , µj). We observe easily that
(λ∗, µ∗)⊴(λ, µ) and λ∗ ⊎µ∗ = λ⊎µ⊵λ′ ⊎µ′, and we are just left with verifying

λ∗
t +

t−1∑
j=1

(λ∗
j + µ∗

j ) ⩾ λ′
t +

t−1∑
j=1

(λ′
j + µ′

j),

for any t ∈ N. However, this is clear for any t < q and t > k. If q ⩽ t ⩽ k, we
have

λ′
t ⩽ λ′

i ⩽ λi − 1 = λt − 1 = λ∗
t

and
t−1∑
j=1

(λ∗
j + µ∗

j ) =
t−1∑
j=1

(λj + µj) ⩾
t−1∑
j=1

(λ′
j + µ′

j)

so that we also have

λ∗
t +

t−1∑
j=1

(λ∗
j + µ∗

j ) ⩾ λ′
t +

t−1∑
j=1

(λ′
j + µ′

j).

This is operation (3).
(b) Next, we assume that no such p exists. In particular, i > 1 and µi−1 = · · · = µk.

We consider the closest possible free place in the bidiagram (λ, µ), namely
we take r > k to be the minimal integer with λr < λk − 1 or (λr = λk − 1
and µr < µk). Such an r always exists, since we allow ourselves to extend
the partitions with empty rows. If it did not exist, that would mean that
λk = 1 and µk = 0. By definition of k and i, this would mean that λ′

j = λj

for 1 ⩽ j < i, µ′
j = µj for 1 ⩽ j < i, that 1 = λk = · · · = λi > λ′

i = 0.
Also, we have 0 = µk = · · · = µi−1 = µ′

i−1. That means that the sizes of
the bipartitions (λ, µ) and (λ′, µ′) are different, which is absurd. We proceed
again with a case distinction.

(i) Let us start with assuming that λr = λk − 1 and µr < µk. We define
µ∗

j = µj − 1 and λ∗
j+1 = λj+1 + 1 for all k ⩽ j ⩽ r − 1, while µ∗

j = µj and
λ∗

j+1 = λj+1 for any other j ∈ N0. Since λk+1 < λk and µr−1 = µk > µr,
(λ∗, µ∗) is a bipartition. Clearly (λ∗, µ∗)⊴ (λ, µ). By construction we have

λ∗
t +

t−1∑
j=1

(λ∗
j + µ∗

j ) = λt +
t−1∑
j=1

(λj + µj) ⩾ λ′
t +

t−1∑
j=1

(λ′
j + µ′

j)

for any t ∈ N. Also, for t < k or t ⩾ r, we have
t∑

j=1
(λj + µj) =

t∑
j=1

(λ∗
j + µ∗

j )
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Thus, it remains to show this inequality holds for k ⩽ t < r. The following
inequalities follow from the definitions of k, i and r:

λ∗
k = λk = λi ⩾ λ′

i + 1 ⩾ λ′
k + 1,

λ∗
t = λt + 1 = λk − 1 + 1 ⩾ λ′

k + 1 ⩾ λ′
t + 1 for k < t ⩽ r

µ∗
t + 1 = µt = µk = µi−1 = µ′

i−1 ⩾ µ′
t for k ⩽ t < r.

This shows that λ∗ ⊎ µ∗ ⊵ λ′ ⊎ µ′, and we obtain (λ∗, µ∗) from (λ, µ) by
operation (4).

(ii) Finally, we assume that λr < λk −1. In particular, µi−1 = · · · = µr−1 and
λr−1 = · · · = λk+1 = λk − 1 = · · · = λi − 1. We distinguish between two
cases:
First, assume that µr−1 > µr. We define λ∗

r = λr + 1 ⩽ λr−1 and µ∗
r−1 =

µr−1 − 1 ⩾ µr, while µ∗
j = µj and λ∗

j = λj otherwise. Then (λ∗, µ∗) is a
well-defined bipartition, and as usual, (λ∗, µ∗)⊴ (λ, µ). Also, proving that
(λ′, µ′) ⊴ (λ∗, µ∗) is straightforward, except maybe proving that

r−1∑
j=1

(λ∗
j + µ∗

j ) ⩾
r−1∑
j=1

(λ′
j + µ′

j).

But as previously, we have:

λ∗
j = λj = λ′

j for 1 ⩽ j < i
µ∗

j = µj = µ′
j for 1 ⩽ j < i

λ∗
j = λj = λi ⩾ λ′

i + 1 ⩾ λ′
j + 1 for i ⩽ j ⩽ k

λ∗
j = λj = λk − 1 = λi − 1 ⩾ λ′

i ⩾ λ′
j for k < j ⩽ r − 1

µ∗
j = µj = µi−1 = µ′

i−1 ⩾ µ′
j for i ⩽ j ⩽ r − 2

µ∗
r−1 = µi−1 − 1 = µ′

i−1 − 1 ⩾ µ′
r−1 − 1

All together, this gives
r−1∑
j=1

(λ∗
j + µ∗

j ) ⩾
r−1∑
j=1

(λ′
j + µ′

j) + (k − i) ⩾
r−1∑
j=1

(λ′
j + µ′

j)

as wanted. This also means that we obtain (λ∗, µ∗) from (λ, µ) by opera-
tion (4).
We are left with the case µr = µr−1. By a previous remark, this means that
µi−1 = · · · = µr. We set µ∗ = µ and λ∗

k = λk−1, λ∗
r = λr+1, and otherwise

λ∗
j = λj . Then, by assumption (λ∗, µ∗) is a bipartition and (λ∗, µ∗)⊴(λ, µ).

It is also straightforward to show that (λ∗, µ∗)⊵ (λ′, µ′) except maybe the
partial sums inequalities in rows k to r. Since λ∗

k + λ∗
r = λk + λr, we only

need to look at rows k to r − 1. To this purpose, we remark that:

λ∗
j = λj = λ′

j for 1 ⩽ j < i
µ∗

j = µj = µ′
j for every j

λ∗
j = λj = λi ⩾ λ′

i + 1 ⩾ λ′
j + 1 for i ⩽ j < k

λ∗
k = λk − 1 = λi − 1 ⩾ λ′

i ⩾ λ′
k

λ∗
j = λj = λk − 1 = λi − 1 ⩾ λ′

i ⩾ λ′
j for k < j ⩽ r − 1

Then for any k ⩽ j < r, we have
j∑

t=1
(λ∗

t + µ∗
t ) ⩾

j∑
t=1

(λ′
t + µ′

t) + (k − i) ⩾
j∑

t=1
(λ′

t + µ′
t)
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and in the same way

λ∗
j +

j−1∑
t=1

(λ∗
t + µ∗

t ) ⩾ λ′
j +

j−1∑
t=1

(λ′
t + µ′

t).

Thus we obtain (λ∗, µ∗) from (λ, µ) by operation (1).
(B) It remains to deal with the case λi = λ′

i, and µi > µ′
i. It can easily be deduced

from the previous case, by noticing the following: let ρ = (µ1, µ1, µ2, . . .) and
ρ′ = (µ1, µ′

1, µ′
2, . . .), then (ρ, λ) and (ρ′, λ′) are bipartitions of n + µ1 such that

(ρ, λ) ⊵ (ρ′, λ′). If j is minimal such that (ρj , λj) ̸= (ρ′
j , λ′

j), then j = i + 1 and
ρj = µi > µ′

i = ρ′
j . From what we have just seen, there exists (ρ∗, λ∗), obtained

from (ρ, λ) by operations (1), (3) or (4), such that (ρ, λ) ⊵ (ρ∗, λ∗) ⊵ (ρ′, λ′). It is
then clear that ρ∗

1 = ρ1 = ρ′
1 = µ1. Let µ∗ = (ρ∗

2, ρ∗
3, . . .). It is clear that (λ∗, ρ∗)

is a bipartition and obviously (λ, µ) ⊵ (λ∗, µ∗) ⊵ (λ′, µ′). Moreover if we obtained
(µ∗, ρ∗) from (µ, ρ) by operations (1), (3) or (4) respectively, we obtain (λ∗, µ∗)
from (λ, µ) by operations (2), (4) or (3) respectively.

□

It is in general not true that if λ is a partition covering λ′, then (λ, µ) covers (λ′, µ),
as the following example shows:

Example 4.5. Consider
(λ, µ) = ((3, 3, 2, 1), (2, 2, 2, 1)), and (λ′, µ′) = ((3, 2, 2, 2), (2, 2, 2, 1)).

Indeed, it is µ1 = µ2 = µ3 > µ4. Thus, there exist bipartitions which lie in between. ,

 ⊵

 ,

 ⊵

 ,

 ⊵

 ,

 .

Since the poset of partitions for the standard dominance order is a lattice, it is
natural to ask whether this holds for our order on bipartitions. However, this is not
the case already for n = 4. Consider a = ((2), (1, 1)) and b = ((2, 2),∅). Now take
c = ((2, 1, 1),∅). It is covered by both a and b, so if a and b have a meet, that is a
greatest lower bound, it has to be c. However, for d = (∅, (2, 2)), d < a and d < b, but
c and d are not comparable. Similarly, one can ask if the poset (BPn,⊴) is graded,
i.e. any maximal chain has equal length. However, already for n = 3 the poset is
non-graded since there exist maximal chains of length 6 and 7.

5. The posets of Specht ideals and varieties
In this section, we state and prove our main theorem:

Theorem 5.1. Let (λ, µ) and (θ, ω) be bipartitions of n. Let I(λ,µ), I(θ,ω) denote their
associated Specht ideals and V(λ,µ), V(θ,ω) their associated Specht varieties. Then, the
following assertions are equivalent:

(1) The bipartition (λ, µ) bidominates (θ, ω), i.e. (λ, µ) ⊵ (θ, ω);
(2) The Bn-Specht ideal I(λ,µ) contains the Bn-Specht ideal I(θ,ω), i.e. I(λ,µ) ⊃

I(θ,ω);
(3) The Bn-Specht variety V(λ,µ) is contained in the Bn-Specht variety V(θ,ω), i.e.

V(λ,µ) ⊂ V(θ,ω).

We start with the first implication, namely that a dominance of bipartitions implies
the containment of the corresponding Bn-Specht ideals.

Proposition 5.2. Let (λ, µ), (λ′, µ′) ∈ BPn be bipartitions of n and let (λ′, µ′)⊴(λ, µ).
Then, I(λ′,µ′) ⊂ I(λ,µ).
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Proof. It is sufficient to prove the theorem in the four covering cases in Theorem 4.3.
In cases (1) and (2), we have in particular (λ′ ⊴ λ and µ′ = µ) or (µ′ ⊴ µ and

λ′ = λ), and the result follows from the proof of ([24, Theorem 1]), combined with
the definition of Bn-Specht polynomials.

Now, we consider case (3). In this case, to go from (λ′, µ′) to (λ, µ), we remove
a number a of boxes from a column U1 in µ′, that will be added to a column U2
in λ. We can restrict our attention to these two columns. Let b =| U2 |, we then
have | U1 |= a+ | U2 |= a + b. Let A = {1, . . . , a}, B1 = {a + 1, . . . , a + b} and
B2 = {a+b+1, . . . , a+2b}. Up to permutation, it suffices to show that the polynomial

P (x) = ∆B2(x2)∆A∪B1(x2)
∏

i∈A∪B1

xi

is in the ideal generated by polynomials of the form ∆S(x2)∆S(x2)
∏

i∈S xi, where
{1, . . . , a + 2b} is the disjoint union of S and S, and | S |= a + b. Let us consider

Q(x) = ∆A∪B2(x2)∆B1(x2)
∏

i∈B1

xi,

which is a polynomial of the expected form, and

Q̃(x) = Q(x)
∏
i∈A

xi

= ∆A∪B2(x2)∆B1(x2)
∏

i∈A∪B1

xi.

Note that we have:
deg(P ) = b(b − 1) + (a + b)(a + b − 1) + a + b = 2b2 + a2 + b(2a − 1)

and
deg(Q) = (a + b)(a + b − 1) + b(b − 1) + b = 2b2 + a2 + b(2a − 1) − a

so that P and Q̃ have the same degree. We are going to show that P is a combination
of ϵ(σ)σ · Q̃ for σ’s in G = SA∪B1 . Note that we can rewrite

∆A∪B2(x2) = ∆A(x2)∆B2(x2)
∏
i∈A

R(x2
i )

where
R(y) =

∏
j∈B2

(y − x2
j ).

Since
∏

i∈A∪B1
xi and ∆B2(x2) are invariant by G, we can factor them out and focus

on the remaining terms, and we look therefore at
P ∗(x) = ∆A∪B1(x2)

and

Q∗(x) = ∆A(x2)∆B1(x2)
∏
i∈A

R(x2
i ).

Also consider the subgroup H = SA ×SB1 of G. Then, for τ1 ∈ SA, τ2 ∈ SB1 , we have
τ1τ2(∆A(x2)) = ϵ(τ1)(∆A(x2)) and τ1τ2(∆B1(x2)) = ϵ(τ2)(∆B1(x2)), and because∏

i∈A R(x2
i ) is H-invariant, we get

ϵ(τ1τ2)τ1τ2Q∗ = Q∗,

allowing us to consider the sum

Q =
∑

σ∈G/H

ϵ(σ)σQ∗,
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and we claim that P ∗ = Q.
First, we show that P ∗ divides Q, namely that for every i ̸= j ∈ A ∪ B1, x2

i − x2
j

divides Q. Since for every σ ∈ G, σQ = ±Q, and G acts transitively on pairs (i, j), it
is enough to check that x2

1 − x2
2 divides Q. We hence have to show that Q vanishes

when imposing x2
1 = x2

2. To see this, first observe that the terms in the sum are
in correspondence with set partitions K ∪ K of A ∪ B1, where | K |= a. Indeed,
up to permutation by elements of H, we only need to choose where to send the
subset A = {1, . . . , a}. Now, if σ sends 1 and 2 in the same subset, the corresponding
Vandermonde determinant in ϵ(σ)σQ∗ vanishes whenever x2

1 = x2
2. We then only

need to focus on partitions where 1 and 2 are not in the same subset. There are
two kinds of such partitions: those with 1 ∈ K and 2 ∈ K, and those 2 ∈ K and
1 ∈ K. The transposition (12) naturally induces a bijection between these sets of
partitions. If σ ∈ G is a representative for a partition of the first kind, then (12)σ is a
representative for the corresponding partition of the second kind. When x2

1 = x2
2, we

have (12)σQ∗(x) = σQ∗(x), and because ϵ((12)σ) = −ϵ(σ), the two corresponding
terms cancel out.

Then, we need to check that P ∗ and Q have the same leading term with respect to
the lexicographical ordering. The leading term of P ∗ is x2(a+b−1)

1 x2(a+b−2)
2 · · · x2

a+b−1.
Then, for σ ∈ G sending {1, . . . , k} onto K, the partial degree of σQ∗ in x1 is{

2(a − 1) + 2b if 1 ∈ K

2(b − 1) if 1 /∈ K

and therefore σQ∗ can give a contribution to the leading term of Q only if 1 ∈ K. By
the same argument, 2 has to be in K, and in the end, K = {1, . . . , a}: Indeed, assume
there is a minimal i ⩽ a with i /∈ K. Then, the leading term of σQ∗ is of the form
x2(a+b−1)

1 x2(a+b−2)
2 · · · x2(a+b−j+1)

j−1 x2(b−1)
j m where m is a monomial in the variables

xj+1, . . . , xa+b. Since, j ⩽ a, then 2(b − 1) < 2(a + b − j), and therefore the leading
monomial of σQ∗ is strictly lower than that of Q∗. Thus, the leading term of Q is
exactly the leading term of Q∗, which is x2(a+b−1)

1 x2(a+b−2)
2 · · · x2

a+b−1, as expected.
This concludes the covering case (3).

The proof for the covering case (4) is very similar. In this situation, to go from
(λ′, µ′) to (λ, µ), we remove a boxes from a column U1 in λ′, before adding them
to a column U2 in µ, with | U2 |= b and | U1 |= a + b + 1. We can apply the
previous argument, where this time A = {1, . . . , a}, B1 = {a + 1, . . . , a + b + 1},
B2 = {a + b + 2, . . . , a + 2b + 1},

P = ∆A∪B1(x2)∆B2(x2)
∏

i∈B2

xi

Q = ∆B1(x2)∆A∪B2(x2)
∏

i∈A∪B2

xi

and
Q̃ = (

∏
j∈A

xj)Q

= ∆B1(x2)∆A∪B2(x2)
∏
i∈A

x2
i

∏
i∈B2

xi.

□

The second implication ((2) implies (3)) of Theorem 5.1 is clear, it remains to prove
that (3) implies (1):
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Proposition 5.3. Let (λ, µ), (θ, ω) be bipartitions and V(λ,µ) ⊂ V(θ,ω). Then, (λ, µ)⊵
(θ, ω).

To prove this implication, we will consider two types of points in Kn:

Lemma 5.4. Let (θ, ω) ∈ BPn and Λ = θ ⊎ ω be a partition of n. Consider the point

z = (a1, . . . , a1︸ ︷︷ ︸
Λ1

, a2, . . . , a2︸ ︷︷ ︸
Λ2

, . . . , am, . . . , am︸ ︷︷ ︸
Λm

)

with a2
i ̸= a2

j if i ̸= j and ai ̸= 0 if i ⩽ len(ω).

i) z /∈ V(θ,ω).
ii) If (λ, µ) ∈ BPn is a bipartition such that z /∈ V(λ,µ), then λ ⊎ µ ⊵ Λ.

Proof. i) Let (T, S) be the generalized bitableau of shape (θ, ω) which has the filling



a1 a1 · · · a1

a2 a2 · · ·
...
...

ah · · ·

,

a1 a1 · · · · · · a1

a2 a2 · · · · · ·
...

al · · ·


,

i.e. the i-th row of both T and S contains only ai’s. The assumption ai ̸= 0 for
i ⩽ len(ω) ensures that S contains no 0 entry, and by construction the squares of
column entries are pairwise different. Thus, z ∈ V c

(θ,ω).
ii) By assumption, there is a bitableau (T, S) of shape (λ, µ) such that sp(T,S)(z) ̸= 0.

Then, according to Lemma 3.6, there is a tableau U = T ⊎ S of shape λ ⊎ µ such
that spU (z2) ̸= 0. Therefore z2 does not belong to the Sn-Specht variety Vλ⊎µ,
and since z and z2 have the same Sn-orbit type, ([24, Prop 1.ii)]) gives

Λ = (Λ1, . . . , Λm) ⊴ λ ⊎ µ,

which proves the lemma.
□

Lemma 5.5. Let (θ, ω) ∈ BPn be a bipartition of n. Let m = max{len(θ), len(ω)}.
Consider the point

z = (0, . . . , 0︸ ︷︷ ︸
θ1

, a1, . . . , a1︸ ︷︷ ︸
ω1+θ2

, a2 . . . , a2︸ ︷︷ ︸
ω2+θ3

, . . . , am, . . . , am︸ ︷︷ ︸
ωm+θm+1

)

with a2
i ̸= a2

j if i ̸= j and ai ̸= 0. Then:

i) z /∈ V(θ,ω).
ii) If (λ, µ) ∈ BPn is a bipartition such that z /∈ V(λ,µ), then

k−1∑
j=1

(λj + µj) + λk ⩾
k−1∑
j=1

(θj + ωj) + θk

for any integer k ⩾ 1.
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Proof. i) Let (T, S) be the generalized bitableau of shape (θ, ω) which has the filling

0 0 · · · 0

a1 a1 · · ·
...

ah · · ·

,

a1 a1 · · · a1

a2 a2 · · ·
...
...

al · · ·


i.e. θi contains only ai−1’s and ωi contains only ai’s, where a0 = 0. We observe
that no entry in S equals 0 and the squares of column entries are pairwise different.
Thus, we have z ∈ V c

(θ,ω).
ii) By assumption, there exists a bitableau (T, S) of shape (λ, µ) such that

0 ̸= sp(T,S)(z) = spT (z2) spS(z2) ·
∏
j∈S

zj .

Let (T ∗, S∗) be the generalized bitableau obtained from (T, S) by replacing i with
zi in any box. This means that the zeros of z are written in T ∗ and no column
in T ∗ or S∗ contains entries with equal squares. Since permutation of the column
entries can only change the sign of sp(T,S)(z), we can assume that the entries in
every column in (T ∗, S∗) are sorted increasingly by the indices of the ai’s from
above to below, and with a0 = 0.
We obtain that all the 0’s must be written in the first row of T ∗ which implies
λ1 ⩾ θ1. Now, for an integer k ⩾ 1 the ak’s in (T ∗, S∗) must be written in different
columns in the generalized bitableau (T ∗, S∗). Since the entries in (T ∗, S∗) are
written with increasing indices in each column from the top to the bottom, we
know that the aj ’s with 0 ⩽ j ⩽ k must be written within the first k rows of S
and the first k + 1-rows in T . Thus, by the pigeon hole principle, we have

k∑
j=1

(λj + µj) + λk+1 ⩾
k∑

j=1
(θj + ωj) + θk+1.

□

Now, we can prove Proposition 5.3:

Proof of Proposition 5.3. The assumption is equivalent to V c
(θ,ω) ⊂ V c

(λ,µ). We have
to prove that λ ⊎ µ ⊵ θ ⊎ ω and that

∑k−1
j=1 (λj + µj) + λk ⩾

∑k−1
j=1 (θj + ωj) + θk for

every integer k ⩾ 1.
For the first claim, consider the point

z = (a1, . . . , a1︸ ︷︷ ︸
θ1+ω1

, a2, . . . , a2︸ ︷︷ ︸
θ2+ω2

, . . . , am, . . . , am︸ ︷︷ ︸
θm+ωm

)

with a2
i ̸= a2

j for i ̸= j, and ai ̸= 0 if i ⩽ len(ω). According to i) in Lemma 5.4,
z ∈ V c

(θ,ω). By assumption, we then have z ∈ V c
(λ,µ), and ii) in Lemma 5.4 gives

λ ⊎ µ ⊵ Λ(z) = θ ⊎ ω.

For the second claim, consider the point

z = (0, . . . , 0︸ ︷︷ ︸
θ1

, a1, . . . , a1︸ ︷︷ ︸
ω1+θ2

, a2 . . . , a2︸ ︷︷ ︸
ω2+θ3

, . . . , am, . . . , am︸ ︷︷ ︸
ωm+θm+1

)
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with a2
i ̸= a2

j for i ̸= j, and ai ̸= 0. According to i) in Lemma 5.5, z ∈ V c
(θ,ω). By

assumption, we then have z ∈ V c
(λ,µ), and ii) in Lemma 5.5 gives

k−1∑
j=1

(λj + µj) + λk ⩾
k−1∑
j=1

(θj + ωj) + θk

for any integer k ⩾ 1. □

6. Orbit types
In this section we define orbit types of elements in Kn with respect to the action of
the hyperoctahedral group. Compared with the Sn-orbit types, they allow a finer set
decomposition of Kn since one distinguishes whether coordinates are 0 or not. This
leads to a set partition of the Bn-Specht varieties based on the combinatorics of the
poset (BPn,⊴).

Recall that if z = (a1, . . . , an) ∈ Kn, then the Sn-orbit type of z is the
unique partition Λ(z) = (Λ1, . . . , Λl) ⊢ n such that StabSn

(z) ≃ Z/Λ1Z ×
· · · × Z/ΛlZ, or equivalently, there exists b1, . . . , bl pairwise distinct such that
z ∈ Sn · (b1, . . . , b1︸ ︷︷ ︸

Λ1

, . . . , bl, . . . , bl︸ ︷︷ ︸
Λl

).

Definition 6.1. Let λ = (λ1, . . . , λm) ⊢ n be a partition and t ∈ N0. Let j = min{i :
λi < t} with the convention that j = m + 1 if t = 0. Then the t-cut of λ is the
bipartition (ρ, σ) defined as ρ = (t, · · · , t, λj , · · · , λm) and σ = (λ1 − t, · · · , λj−1 − t).
We denote it by cut(λ, t).

We have cut(λ, 0) = (∅, λ) while cut(λ, t) = (λ,∅) for any t ⩾ λ1. We observe that
if cut(λ, t) = (σ, ρ), then σ ⊎ ρ = λ.

We are now ready to define the Bn-orbit type of a point in Kn and the notion of
Bn-orbit set:

Definition 6.2. Let z ∈ Kn. The Bn-orbit type of z is
Ω(z) = cut(Λ(z2), tz)

where tz is the number of 0 coordinates of z.
For (λ, µ) ∈ BPn, the Bn-orbit set associated to (λ, µ) is then

H(λ,µ) = {z ∈ Kn : Ω(z) = (λ, µ)} .

We observe that Bn-orbits sets might be empty. The non-empty Bn-orbits sets
correspond to bipartitions (λ, µ) such that λ1 = · · · = λlen(µ)+1. Moreover, if (λ, µ)
is such that H(λ,µ) ̸= ∅, then any point z ∈ H(λ,µ) is of the following form: let
m = len(µ). Then there exist non-zero elements a1, . . . , al ∈ K, with distinct squares
such that

z = σ · (a1, . . . , a1︸ ︷︷ ︸
λ1+µ1

, . . . , am, . . . , am︸ ︷︷ ︸
λ1+µm

, 0, . . . , 0︸ ︷︷ ︸
λ1

, am+1, . . . , am+1︸ ︷︷ ︸
λm+2

, . . . , al, . . . , al︸ ︷︷ ︸
λl+1

)

for some σ ∈ Bn. It is straightforward that l = m if len(λ) ⩽ m (which implies λ = ∅)
and l = len(λ) − 1 if len(λ) > m. With such a point of view, this notion of Bn-orbit
type is a natural generalization of Sn-orbit type in terms of hyperplane arrangements.
While Sn-orbit types correspond with unions of intersections of hyperplanes of type
An−1 of the form xi − xj = 0, Bn-orbit types correspond with unions of intersections
of hyperplanes of type Bn, of the form xi ± xj = 0 and xi = 0.

Example 6.3. We present the orbit types of K3. Let a, b, c ∈ K∗ be such that they
have distinct squares.
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z Ω(z)
(0, 0, 0) ((3),∅)

(±a, 0, 0) ((2, 1),∅)
(±a, ±b, 0) ((1, 1, 1),∅)
(±a, ±a, 0) ((1, 1), (1))

(±a, ±a, ±a) (∅, (3))
(±a, ±a, ±b) (∅, (2, 1))
(±a, ±b, ±c) (∅, (1, 1, 1))

The remaining bipartitions ((2), (1)), ((1), (2)), ((1), (1, 1)) of 3 have an empty orbit
set.

The following proposition follows from the previous definitions and comments:

Proposition 6.4. Let z ∈ Kn and (λ, µ) = Ω(z). Then Λ(z2) = λ ⊎ µ. Moreover, the
Bn-orbit sets define a set partition of Kn, namely Kn =

⊎
(λ,µ)∈BPn

H(λ,µ).

Proposition 6.5. Let z ∈ Kn, and (λ, µ) ∈ BPn. Then:
(1) z ̸∈ VΩ(z),
(2) z ̸∈ V(λ,µ) ⇒ (λ, µ) ⊵ Ω(z).

Proof. Let (θ, ω) = Ω(z) and m = len(ω). Then there exist σ ∈ Bn and a1, . . . , al ∈ K∗

with distinct squares such that z = σz′ with

z′ = (a1, . . . , a1︸ ︷︷ ︸
θ1+ω1

, . . . , am, . . . , am︸ ︷︷ ︸
θ1+ωm

, 0, . . . , 0︸ ︷︷ ︸
θ1

, am+1, . . . , am+1︸ ︷︷ ︸
θm+2

, . . . , al, . . . , al︸ ︷︷ ︸
θl+1

).

Since the Specht varieties are invariant under the action of Bn, we can assume that
z = z′. With this shape, we can apply Lemma 5.4 to z which gives immediately (1),
and partly (2): if z /∈ V(λ,µ), then λ ⊎ µ ⊵ θ ⊎ ω. It remains to prove that if z ̸∈ V(λ,µ),
then

∑k−1
j=1 (λj + µj) + λk ⩾

∑k−1
j=1 (θj + ωj) + θk for any integer k ⩾ 1. To do so, it is

enough to observe that since θ1 = · · · = θm+1, the point

z′′ = (0, . . . , 0︸ ︷︷ ︸
θ1

, a1, . . . , a1︸ ︷︷ ︸
ω1+θ2

, a2 . . . , a2︸ ︷︷ ︸
ω2+θ3

, . . . , am, . . . , am︸ ︷︷ ︸
ωm+θm+1

, am+1, . . . , am+1︸ ︷︷ ︸
θm+2

, . . . , al, . . . , al︸ ︷︷ ︸
θl+1

)

is in the same orbit, and we can apply Lemma 5.5 to conclude the proof.
□

As a consequence of our previous results, we get a decomposition of Bn-Specht
varieties in terms of orbit sets:

Theorem 6.6.

V(λ,µ) =
( ⋃

(θ,ω)∈BPn,(θ,ω)⊴(λ,µ)
H(θ,ω)

)c

=
⋃

(θ,ω)∈BPn,(θ,ω)̸⊴(λ,µ)
H(θ,ω).

Proof. The collection
{

H(θ,ω) : (θ, ω) ∈ BPn

}
defines a set partition of Kn by defini-

tion, which explains the second equality.
In order to prove the first one, we first assume that z ̸∈ V(λ,µ). By part (2) in Propo-
sition 6.5 we obtain that (λ, µ) ⊵ Ω(z). Thus z ∈

⋃
(θ,ω)∈BPn,(θ,ω)⊴(λ,µ) H(θ,ω).

Conversely, let z ∈
⋃

(θ,ω)⊴(λ,µ) H(θ,ω). In other words, Ω(z)⊴(λ, µ). Then, part (1) in
Proposition 6.5 implies z ̸∈ VΩ(z). On the other hand, by Theorem 5.1, V(λ,µ) ⊂ VΩ(z).
Therefore z ̸∈ V(λ,µ). □
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Example 6.7. We calculate the Specht variety corresponding with the bipartition
((1, 1), (2)) using Theorem 6.6. The bipartitions (θ, ω) encoding non-empty orbit sets
such that (θ, ω) ̸ ⊴((1, 1), (2)) are the bipartitions in

Ω = {((2, 2),∅), ((2, 1, 1),∅), (∅, (4)), ((3, 1),∅), ((4),∅)} ⊂ BP4 .

Then,

V((1,1),(2)) =
⋃

(λ,µ)∈Ω
H(λ,µ)

= H((2,2),∅) ∪ H((2,1,1),∅) ∪ H(∅,(4)) ∪ H((3,1),∅) ∪ H((4),∅),

which means

V((1,1),(2)) = B4 · {(0, 0, a, a), (0, 0, a, b), (a, a, a, a), (0, 0, 0, a), (0, 0, 0, 0) : a, b ∈ K>0}.

One might look for a more natural orbit-type, only involving the number of zeroes of
a point, and the Sn-orbit-type of the remaining non-zero squared coordinates. Indeed,
our previous decomposition can be reformulated in such a way, and it can be obtained
either using Sn-invariance and results of [24], or as a consequence of our previous
results on bipartitions. We just briefly describe here the latter approach because such
a point of view, even if it gives a natural decomposition, does not give information
on inclusions of Bn-Specht varieties, which will be needed for our applications in the
next section.

If z = (a1, . . . , an) ∈ Kn is a point, then

StabSn
(a2

1, . . . , a2
n) ≃ SΛ1 × · · · × SΛl

× St

where Λ1 ⩾ . . . ⩾ Λl and t is the number of zero coordinates of z. We could have
defined the orbit type of z as

Λ(z) = (t, (Λ1, . . . , Λl)).

Then, there is a bijection ϕ between the set of pairs (t, Λ) where n ⩾ t ⩾ 0 and
Λ ⊢ n − t and the set of bipartitions (λ, µ) such that H(λ,µ) ̸= ∅ given by

(t, Λ) 7→ cut((Λ1, Λ2, . . . , Λl, t), t)

where (Λ1, Λ2, . . . , Λl, t) is the partition obtained by rearranging (Λ1, Λ2, . . . , Λl, t) in
non increasing order.

Now, for t ⩽ 0 and Λ ⊢ n − t, if we denote by Gt,Λ = {z ∈ Kn; Λ(z) = (t, Λ)}, we
have by construction

Gt,Λ = Hϕ(t,Λ).

Moreover, ϕ preserves the orders in the following sense: for t fixed, ϕ(t, Λ) ⊴ ϕ(t, Λ′)
in our poset of bipartitions if and only if Λ ⊴ Λ′ in the poset of partitions. Also, it is
obvious that if t > λ1, then z ∈ V(λ,µ).

As a consequence, our decomposition in Theorem 6.6 becomes in this context(
V(λ,µ)

)c =
λ1⋃

t=1

⋃
Λ,

ϕ(t,Λ)⊴(λ,µ)

Gt,Λ.

Actually, if one fixes 0 ⩽ t ⩽ λ1, one can prove that

ϕ(t, Λ) ⊴ (λ, µ) ⇔ Λ ⊴ λ(t) ⊎ µ,

where λ(t) is defined as follows: if s = max{i; λi ⩾ t}, then

λ(t) = (λ1, . . . , λs−1, λs + λs+1 − t, λs+2, . . . , λl).
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Finally, we can reformulate the decomposition as:(
V(λ,µ)

)c =
λ1⋃

t=1

⋃
Λ⊴λ(t)⊎µ

G(t,Λ).

7. Applications to Bn-invariant ideals
7.1. Specht ideals in Bn-invariant ideals. The main result in the article [24]
studies the Sn-Specht ideals contained in an ideal I which is globally invariant under
the action of Sn. We give here the main ideas of this statement, before extending it
to the case of Bn.

For P a polynomial in an Sn-invariant ideal I ⊂ K[x1, . . . , xn] of degree d, we
denote by wt(Pd) the number of variables appearing in the highest component Pd of
P . Moreover, for a monomial m of degree d in P , the partial degrees of m induce a
partition (k1, . . . , kℓ), and under the assumption wt(Pd)+d ⩽ n, we have in particular
d + ℓ ⩽ n, and therefore we can define the partition

µ(m) = (k1 + 1, k2 + 1, . . . , kℓ + 1, 1, . . . , 1︸ ︷︷ ︸
n−d−ℓ

)

of n. It is then proved ([24, Theorem 4]) that for every monomial m ∈ Mon(Pd), the
ideal I contains every spT for which sh(T ) ⊴ µ(m)⊥.

The proof works as follows: up to permutation of the variables, we may assume
that

m = xk1
1 xk2

2 · · · xkℓ

ℓ

and since wt(Pd) + d ⩽ n, there exists d = k1 + . . . + kℓ many variables in {x1, . . . xn}
that do not appear in Pd. More precisely, we can take I1, . . . , Iℓ, disjoint subsets of
{1, . . . , n} such that for any 1 ⩽ i ⩽ ℓ, there are ki elements in Ii, and none of them
appears in Pd. Then, if for 1 ⩽ i ⩽ ℓ, Ji = {i} ∪ Ii, we can prove

(4) ∆J1 · · · ∆Jℓ
= k

k1! · · · kℓ!
∑

σ∈SJ1 ×···×SJℓ

ϵ(σ)σ(∆I1 · · · ∆Iℓ
P )

where ∆I is the Vandermonde polynomial of the ordered set I and k ̸= 0.
Now, we want to generalize this result to Bn-invariant ideals. First, we need to

associate a bipartition to a given monomial:

Definition 7.1. Let m be a monomial in K[x1, . . . , xn]. There exist unique sets I1
and I2 such that we can write m as

m =
∏
i∈I1

x2ki
i

∏
i∈I2

x2ri
i

∏
i∈I2

xi

and ki ̸= 0. Denote ℓ =| I1 |, d1 =
∑

i∈I1
ki, s =| I2 |, and d2 =

∑
i∈I2

ri. The
sets {ki, i ∈ I1} and {ri, i ∈ I2} respectively induce partitions (λ1, . . . , λℓ) of d1 and
(µ1, . . . , µs) of d2. If moreover we assume that ℓ + s + d1 + d2 ⩽ n, we can define a
bipartition Γ(m) of n by

Γ(m) = (λ̃, µ̃) = ((λ1 +1, λ2 +1, . . . , λℓ +1, 1, . . . , 1︸ ︷︷ ︸
n−(ℓ+s+d1+d2)

), (µ1 +1, µ2 +1, . . . , µs +1)).

Finally, we define
Γ∗(m) = (λ̃⊥, µ̃⊥) = (n − (s + d1 + d2), ℓ, λ̃⊥

3 , . . .), (s, µ̃⊥
2 , . . .)),

which is a bipartition of n as well.

With this notion, we get, for Bn-invariant ideals:
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Theorem 7.2. Let I ⊂ K[x1, . . . , xn] be a Bn-invariant ideal, and let P ∈ I. Assume
that m is a monomial in the homogeneous component of highest degree of P . Using
the notation of Definition 7.1, assume that wt(Pd) + d1 + d2 ⩽ n. Then, we have the
ideal inclusion

IΓ∗(m) ⊂ I.

Proof. Up to permutation, we may assume that

m =
ℓ∏

i=1
x2ki

i

ℓ+s∏
i=ℓ+1

x2ri
i

ℓ+s∏
i=ℓ+1

xi

and that the coefficient of m in P is 1. Let ϵi ∈ Bn the map changing xi in −xi.
Then, the polynomial

P − ϵiP

2
is a polynomial in I whose terms are exactly the terms of P having an odd degree
in xi, and therefore divisible by xi. After applying this transformation for every
i ∈ {ℓ + 1, . . . , ℓ + s}, we may substitute P with a polynomial of the form

P̃ (x)
ℓ+s∏

i=ℓ+1
xi,

containing m in its leading term, and where every term in P̃ has even degree in xi,
for every i ∈ {ℓ + 1, . . . , ℓ + s}. Further, for i /∈ {ℓ + 1, . . . , ℓ + s}, we can apply the
transformation

P̃ (x) + ϵiP̃ (x)
2

to get a polynomial which is still in I, but its terms are exactly the terms of P having
an even degree in xi. In the end, we may assume that P is of the form:

P (x) = Q(x2)
ℓ+s∏

i=ℓ+1
xi,

where m is still a monomial of the leading term.
Now we can apply a strategy similar to the one described for Sn-invariant ideals.

Since ℓ+s+d1+d2 ⩽ wt(Pd)+d1+d2 ⩽ n, there exists d1+d2 = k1+· · ·+kℓ+r1+· · ·+rs

many variables in {x1, . . . xn} that do not appear in Pd, and we can take I1, . . . , Iℓ,
Iℓ+1, . . . , Iℓ+s, disjoint subsets of {1, . . . , n} such that for any 1 ⩽ i ⩽ ℓ, there are ki

elements in Ii, for any ℓ + 1 ⩽ i ⩽ ℓ + s, there are ri elements in Ii, and none of them
appears in Pd. Then, for 1 ⩽ i ⩽ ℓ + s, denote

Ji = {i} ∪ Ii,

and ∆̃J(x) = ∆J(x2) the Vandermonde polynomial associated with the variables x2
i

for i ∈ J . Consider

R(x) = P (x)∆̃I1 · · · ∆̃Iℓ+s

∏
i∈Iℓ+1∪···∪Iℓ+s

xi
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We then have∑
σ∈SJ1 ×···×SJℓ+s

ϵ(σ)σ(R(x)) =
∑

σ∈SJ1 ×···×SJℓ+s

ϵ(σ)σ(P (x)∆̃I1 · · · ∆̃Iℓ+s

∏
i∈Iℓ+1∪···∪Iℓ+s

xi)

=
∑

σ∈SJ1 ×···×SJℓ+s

ϵ(σ)σ

Q(x2)∆̃I1 · · · ∆̃Iℓ+s

∏
i∈Jℓ+1∪···∪Jℓ+s

xi


=

∏
i∈Jℓ+1∪···∪Jℓ+s

xi

∑
σ∈SJ1 ×···×SJℓ

ϵ(σ)σ
(
Q(x2)∆̃I1 · · · ∆̃Iℓ+s

)
= k1! · · · kℓ! · rℓ+1! · · · rℓ+s!∆̃J1 · · · ∆̃Jℓ

∆̃Jℓ+1 · · · ∆̃Jℓ+s

∏
i∈Jℓ+1∪···∪Jℓ+s

xi

where the last equality follows from (4). Therefore, I contains the polynomial

∆̃J1 · · · ∆̃Jℓ
∆̃Jℓ+1 · · · ∆̃Jℓ+s

∏
i∈Jℓ+1∪···∪Jℓ+s

xi

which is one of the generators of IΓ∗(m). By symmetry, we get the theorem. □

Corollary 7.3. Let I ⊂ K[x1, . . . , xn] be a Bn-invariant ideal, and let P ∈ I. Assume
that m is a monomial in the leading term of P . Using the notation of Definition 7.1,
assume that wt(Pd) + d1 + d2 ⩽ n. Then, we have the inclusion of varieties

V (I) ⊂ V (IΓ∗(m))
and V (I) ∩ H(θ,ω) = ∅ for any bipartition (θ, ω) ∈ BPn bidominated by Γ∗(m).

Proof. The inclusion of varieties follows immediately from the set inclusion in Theo-
rem 7.2, while the second claim follows from the set partition of Specht varieties in
Theorem 6.6. □

We illustrate how this can be applied:

Example 7.4. Let P = x2x3(x2
1 − 1) ∈ K[x1, . . . , x4]. The polynomial P contains a

unique monomial m = x2
1x2x3 of highest degree. Using the notation of Definition 7.1

we obtain wt(P4) = 3, l = 1, s = 2, d1 = 1, d2 = 0, Γ(m) = ((2), (1, 1)), and Γ∗(m) =
((1, 1), (2)). Let I denote the ideal that is generated by the Bn orbit of P . Then, by
Corollary 7.3 it must be V (I) ⊂ V((1,1),(2)). Thus, we have

V (I) ⊂ B4 · {(0, 0, a, a), (0, 0, a, b), (a, a, a, a), (0, 0, 0, a), (0, 0, 0, 0) : a, b ∈ K>0}.

We observe that V (I) = {(1, 1, 1, 1), (0, 0, 0, a), (0, 0, 0, 0) : a ∈ K}. Thus V (I) con-
tains already points of three of the five possible orbit types.

7.2. Connections with Representation Theory. We assume that K = C, or
K = R if G is a real reflection group. Let G be a finite group acting linearly on the poly-
nomial ring K[x1, . . . , xn]. The polynomials fixed by this action form a finitely gen-
erated subalgebra K[x1, . . . , xn]G. Moreover, each finite group admits - up to isomor-
phism - a finite number of irreducible K[G]-modules and the action on K[x1, . . . , xn]
can be decomposed into isotypic components, i.e. we have a decomposition of the form
(5) K[x1, . . . , xn] = ⊕χK[x1, . . . , xn]χ,

where χ runs over the pairwise non-isomorphic representations and each isotypic com-
ponent K[x1, . . . , xn]χ contains only pairwise isomorphic K[G]-submodules. Notice,
that with this notion the invariant polynomials K[x1, . . . , xn]G correspond to the
trivial representation. Clearly, K[x1, . . . , xn] has the structure of a K[x1, . . . , xn]G-
module. Finally, let J+ ⊂ K[x1, . . . , xn] be the ideal generated by invariant poly-
nomials of positive degree. Then the algebra K[x1, . . . , xn]G := K[x1, . . . , xn]/J+ is
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called the coinvariant algebra. Whereas these algebras can be defined and studied
for all finite groups, it was shown by Chevalley ([10, Theorem (B)]) and Sephard-
Todd ([30]) that for finite reflection groups, these algebras are very regular and more-
over that they charaterize finite reflection groups by what is now known as Cheval-
ley–Shephard–Todd theorem:

Theorem 7.5 ([10, 30]). Let G be a finite group. Then, the following are equivalent
(1) G is a group generated by reflections.
(2) The algebra of polynomial invariants K[x1, . . . , xn]G is a (free) polynomial

algebra.
(3) The algebra K[x1, . . . , xn] is a free module over K[x1, . . . , xn]G.
(4) K[x1, . . . , xn]G affords the regular representation of G, i.e.

K[x1, . . . , xn]G ≃ ⊕χ dim(χ)χ,

where χ runs over the pairwise non-isomorphic representations of G.

Let (λ, µ) ∈ BPn be a bipartition, denote by K[x1, . . . , xn](λ,µ) the isotypic com-
ponent corresponding to (λ, µ), and by I(λ,µ) the associated Specht ideal. Notice that
by Theorem 7.5, K[x1, . . . , xn](λ,µ) is also a finitely generated K[x1, . . . , xn]G module,
generated by s2

λ,µ many elements, where sλ,µ denotes the dimension of the corre-
sponding irreducible representation. It follows from ([22, Theorem 1 (2)]) that sλ,µ

is in fact equal to the number of standard bitableaux of shape λ, µ. We note the
following proposition:

Proposition 7.6. Let d be minimal with
V := K[x1, . . . , xn](λ,µ) ∩ K[x1, . . . , xn]⩽d ̸= ∅.

Then, the multiplicity of an irreducible representation of type (λ, µ) in V is 1. This
unique irreducible representation is given by the Bn-Specht polynomials of shape (λ, µ).
Moreover, K[x1, . . . , xn](λ,µ) is contained in the ideal generated by this unique irre-
ducible representation, i.e.

K[x1, . . . , xn](λ,µ) ⊂ I(λ,µ).

Proof. Since K[x1, . . . , xn](λ,µ) is a direct sum of irreducible Bn-modules isomorphic
to the standard Bn-Specht module, W(λ,µ), it is enough to show that for every Specht
polynomial Q = sp(T,S) with sh(T, S) = (λ, µ), and every Bn-isomorphism ϕ, the
polynomial

P = ϕ(Q)
is divisible by Q. First, for every i ∈ {1, . . . , n}, if ϵi is the map replacing xi with
−xi, since ϕ respects the action of Bn, we must have

ϵiP =
{

−P if i ∈ S

P if i /∈ S
,

which implies that P is of the form

P (x) = P̃ (x2)
∏
i∈S

xi.

Then, for every τ switching two elements in a same column of T or S, we must have
τP̃ = −P̃ , so that P is divisible by Q. □

Remark 7.7. We remark that the statement about multiplicity 1 of an irreducible
representation in Proposition 7.6 does not apply in general. Consider the real reflection
group Dn ⊂ Bn which is generated by all permutations and those maps that switch
an even number of signs. Then the Bn-irreducible representation of type (λ, µ) and
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(µ, λ) remain Dn-irreducible if λ ̸= µ, but are Dn-isomorphic. By Theorem 5.1 we
have

I((2),(1,1)) ̸⊂ I((1,1),(2)) and I((1,1),(2)) ̸⊂ I((2),(1,1)).

Thus, no polynomial in the Bn-orbit of (x2
3 − x2

4)x3x4 divides the polynomial (x2
1 −

x2
2)x3x4 although

⟨sp(T,S) : sh(T, S) = ((2), (1, 1))⟩K ≃Dn
⟨sp(T,S) : sh(T, S) = ((1, 1), (2))⟩K.

The Dn-irreducible representation of type ((2), (1, 1)) occurs for the first time in
K[x1, . . . , x4]⩽4 but with multiplicity 2.

Combining Corollary 7.3 with Proposition 7.6 we obtain the following:

Theorem 7.8. Let I ⊂ K[x1, . . . , xn] be a Bn-invariant ideal satisfying the conditions
of Corollary 7.3 and let (λ, µ) = Γ∗(m). Consider the the associated coordinate ring

RI = K[x1, . . . , xn]/I.

Then, viewed as a K[Bn]-module, RI does not contain any irreducible K[Bn]-
submodule which is isomophic to Wλ,µ. Moreover, consider

Ĩ = I ∩ K[x1, . . . , xn]Bn , and RĨ = K[x1, . . . , xn]Bn/Ĩ

the corresponding quotient. Then, RI is a finite RĨ module of rank bounded by∑
(θ,ω)̸⊴(λ,µ) s2

θ,ω.

Proof. By Theorem 7.5 (3) we have that K[x1, . . . , xn] is a free K[x1, . . . , xn]Bn mod-
ule, i.e. it is possible to find a basis B = {b1, . . . , bm}, with m = |Bn| = 2n · n!,
such that every f ∈ K[x1, . . . , xn] can be uniquely represented with respect to B by
coefficients in K[x1, . . . , xn]Bn . Now it follows directly that for any basis B we obtain
a generating set for RI over RĨ by the elements ϕI(bi) ∈ RI , where ϕI denotes the
canonical homomorphism. Thus, RI is a finite module over RĨ - not necessarily free.
To establish the announced statements, we first remark that we can assume that B
respects the decomposition in (5), i.e. that B can be partitioned in such a way that
for every (θ, ω) ∈ BPn there exists a unique subset B(θ,ω) ⊂ B consisting of s2

θ,ω many
elements which generate the free module K[x1, . . . , xn](θ,ω). Indeed, for example the
so called higher Specht polynomials explicitly constructed in [22] constitute such a ba-
sis. Since Proposition 7.6 and Corollary 7.3 yield that K[x1, . . . , xn](θ,ω) ⊂ I(θ,ω) ⊂ I
for all bipartitions bidominated by (λ, µ) we immediately see that ϕI(B(θ,ω)) = {0}
for all such bipartitions. Therefore, already the set

ϕI

( ⋃
(θ,ω)̸⊴(λ,µ)

B(θ,ω)

)
generates RI , which directly yields the announced bound on the rank. Furthermore,
since the action on R/Ĩ is trivial we can conclude that the only irreducible representa-
tions which appear in R/I are the ones stemming from this basis and the associated
list of partitions, i.e. RI does not contain any irreducible K[Bn]-submodule which
is isomophic to Wθ,ω, for bipartitions (θ, ω) which are bidominated by (λ, µ). This
completes the proof. □

8. Conclusion and open questions
We initiated in this article the investigation of a class of polynomial ideals which are
naturally linked to the action of a group on a polynomial ring. Our results provide
an analogue of the relation of the combinatorics of integer partitions and Sn-Specht
ideals to bipartitions and Bn-Specht ideals. The present work shows that it is indeed
possible to derive an analogous connection between combinatorics and algebra for the

Algebraic Combinatorics, Vol. 6 #6 (2023) 1616



The poset of Specht ideals for hyperoctahedral groups

case of the hyperoctahedral group as was observed in the case of the symmetric group.
Both groups are finite reflection groups, and they thus share important similarities
from a view point of invariant theory and representation theory. Our results here
lead to the natural question, if similar relations between integer (bi)-partitions and
ideals can be derived for other (pseudo)-reflection groups. Indeed, in [22] a similar
basis of the coinvariant algebra is provided for complex reflection groups of type
G(r, p, n), where r, p, n ∈ Z⩾1 and p | n. We recover G(1, 1, n) ≃ Sn, G(2, 1, n) ≃
Bn, and G(2, 2, n) ≃ Dn. It seems plausible to envision similar results to the ones
presented here in these cases as well. More precisely, that there is a partial order on
r-multipartitions, which are linked to the irreducible representations of the complex
reflection group G(r, 1, n), which transfers to the inclusion of the G(r, 1, n)-Specht
ideals and their corresponding varieties. Furthermore, it remains to investigate if the
Bn-Specht ideals also have similarly nice algebraic properties as their Sn counter parts.
Indeed, it is known that the Sn-Specht ideals are radical (see [25, Theorem 1.1] and
[33, Proposition 4]). Both proofs rely on the understanding of the Sn-Specht varieties
in terms of orbit sets, i.e. Theorem 6.6, and crucially depend on the property that
any Sn-orbit set is non-empty which is not true for Bn-Specht varieties. Nevertheless,
computational evidence for small number of variables motivates the conjecture, similar
to the Sn situation ([21, 33, 25, 27]).

Conjecture 8.1. The Bn-Specht ideals are radical. Moreover, for a bipartition
(λ, µ) ∈ BPn the Bn-Specht polynomials

{sp(T,S) : (T, S) is a bitableau of shape (θ, ω) ⊴ (λ, µ)}
form a universal Gröbner basis of I(λ,µ).

Finally, Yanagawa [35] classified the partitions for which the associated Sn-Specht
ideals are Cohen-Macaulay and it would be interesting to derive a similar character-
ization of bipartitions (λ, µ) for which the corresponding Bn-Specht ideals have this
property.
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