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Regularity of Edge Ideals Via Suspension

Arindam Banerjee & Eran Nevo

Abstract We study the Castelnuovo–Mumford regularity of powers of edge ideals for arbitrary (finite simple) graphs.
It has been repeatedly conjectured that for every graph G, reg(I(G)s) ⩽ 2s + reg I(G) − 2 for all s ⩾ 2, which is the
best possible upper bound for any s. We prove this conjecture for every s for all bipartite graphs, and for s = 2 for all
graphs. The s = 2 case is crucial for our work and suspension plays a key role in its proof.

1. Introduction

Let M be a finitely generated graded module over a polynomial ring R = K[x1, . . . , xn], where K is a
field. The Castelnuovo–Mumford regularity (or simply, regularity) reg(M) of M is defined as

reg(M) = max{j − i | TorRi (M,K)j ̸= 0}.

Regularity is an important invariant in commutative algebra and algebraic geometry that measures in
some sense the complexity of ideals, modules, and sheaves. A question that has been studied by many is
how the regularity behaves with respect to taking powers of homogeneous ideals. It is known that in the
long-run reg(Ik) is linear in k, that is, there exist integers a(I), b(I), c(I) such that reg(Ik) = a(I)k +b(I)
for all k ⩾ c(I) (see [9, 20]). For various classes of ideals people have studied these integers and also
have looked for various upper and lower bounds for reg(Ik). For monomial ideals these invariants, as
well as bounds on them, reflect the underlying combinatorics (see e.g. [3, 15, 16, 22, 25, 26] for various
works under this theme). For monomial ideals I generated in same degree d, Kodiyalam [20] showed that
a(I) = d.

One important class of monomial ideals is the class of edge ideals I(G) of finite simple graphs, namely
the ideals generated by squarefree monomials of degree two. For edge ideals, c(I(G)) ⩽ 2 for various
cases: for example when the underlying graph is either cochordal or gap and cricket free or bipartite with
reg(I(G)) ⩽ 3 (see [1, 2, 3, 14]). As of b(I(G)), all known examples have

(1.1) b(I(G)) ⩽ reg(I(G)) − 2

and it is conjectured by Alilooee–Banerjee–Beyarslan–Hà–Jayanthan–Selvaraja (see e.g. [3, 19]) that this
inequality holds for every graph. In fact, the conjecture is slightly stronger:

Conjecture 1.1. (Alilooee–Banerjee–Beyarslan–Hà–Jayanthan–Selvaraja) For every finite graph G, ev-
ery s ⩾ 1 and every field K,

reg(I(G)s) ⩽ 2s + reg(I(G)) − 2.

Manuscript received 29th December 2022, revised 20th May 2023, accepted 23rd May 2023.
Keywords. Edge ideals, regularity, suspension.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.317
http://algebraic-combinatorics.org/


A. Banerjee & E. Nevo

Note that the values reg(I(G)s) and even b(I(G)) may depend on the characteristic of the field, as was
shown recently in [23, Exa. 1.2], and earlier for monomial ideals generated in higher degrees in [6]. For
various classes of graphs (e.g. cochordal) Conjecture 1.1 is known to be true.

Our Theorem 1.2 below proves this conjecture for all graphs for second powers and for all bipartite
graphs for all powers. As a result it verifies inequality (1.1) for all bipartite graphs. To demonstrate that
this bound is sharp, we observe that all complete bipartite graphs G with nonempty edge set satisfy
reg(I(G)s) = 2s for all s, by the well known Theorem 2.7 below.

Our main theorem is the following:

Theorem 1.2. (i) Let G be a finite simple graph. Then

reg(I(G)2) ⩽ reg(I(G)) + 2.

(ii) Further, if G is also bipartite, then for all s ⩾ 1 we have

reg(I(G)s) ⩽ 2s + reg(I(G)) − 2.

Part (i) is proved topologically, via Hochster’s formula and various uses of Mayer–Vietoris long exact
sequence. Suspension plays a key role here. Part (ii) for s > 2 is proved algebraically, via various uses of
short exact sequences for related ideals. Part (ii) improves the main result of [18], which proves that if
G is bipartite, then for all s ⩾ 2 there holds reg(I(G)s) ⩽ 2s + cochord(G) − 1, where cochord(G) is the
cochordal number of G (see [18] for definition).

Outline: Preliminaries are given in Section 2, Theorem 1.2 is proved in Section 3, and concluding
remarks are given in Section 4.

2. Preliminaries

In this section, we set up the basic definitions and notation needed for the main results. Let M be a
finitely generated graded R = K[x1, . . . , xn]-module. Write the graded minimal free resolution of M in
the form:

0 −→
⊕
j∈Z

R(−j)βp,j(M) ψp−→ · · · ψ1−→
⊕
j∈Z

R(−j)β0,j(M) ψ0−→ M −→ 0,

where p ⩽ n, R(−j) indicates the ring R with the shifted grading such that, for all a ∈ Z, R(−j)a = Ra−j .
The nonnegative integers β(i,j)(M) are called ith-graded Betti numbers of M in degree j.

The Castelnuovo-Mumford regularity (or regularity) of M is defined to be

reg(M) = max{j − i | βi,j(M) ̸= 0}.

Let I be a nonzero proper homogeneous ideal of R. Then it follows from the definition that reg(I) =
reg(R/I) + 1.

Let I be any ideal of R and a ∈ R any element, the the colon ideal (I : a) is defined as the ideal
(I : a) := (b |b ∈ R, ab ∈ I).

Polarization is a process that creates a squarefree monomial out of a monomial, possibly in a larger
polynomial ring. If f = xe1

1 · · · xen
n is a monomial in K[x1, . . . , xn] then the polarization of f is defined as

f̃ = x11 · · · x1e1x21 · · · x2e2 · · · xn1 · · · xnen
in the ring K[x11, . . . x1e1 , x21, . . . x2e2 , . . . , xn1, . . . , xnen

]. For
convenience we identify the variable xi1 with xi, so the new polynomial ring extends the old one. For
a monomial ideal I with minimal monomial generators {m1, . . . , mk}, we define the polarization of I as
Ĩ := (m̃1, · · · , m̃k) in a suitable ring, see e.g [16] or [21, Sec. 1.6]. In the special case where degree of a
variable u = xi is two in one or more generators then we call the unique new variable xi2 a whisker variable
and denote it by u′ for short. In this paper we repeatedly use an important property of polarization:

Theorem 2.1 (e.g. [21, Cor. 1.6.3(a)]). Let I be a monomial ideal in R. Then

reg(I) = reg(Ĩ).
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One of the main techniques that is used in this paper is that of short exact sequences. In particular
we shall use the following well known result [2, Lemma. 2.11]:

Theorem 2.2. (i) Let I be a homogeneous ideal in a polynomial ring R and m be an element of
degree d in R. Then the following is a short exact sequence:

0 −→ R

(I : m)
·m−→ R

I
−→ R

I + (m) −→ 0.

Hence
reg(I) ⩽ max{reg(I : m) + d, reg(I + (m))}.

(ii) In case I is squarefree and x a variable, then also reg(I, x) ⩽ reg I.

Let G be a (finite simple) graph with vertex set V (G) = {x1, . . . , xn} and the edge set E(G). The edge
ideal I(G) of G is defined as the ideal in R:

I(G) = (xixj |xixj ∈ E(G)).
For example, edge ideal of a 5-cycle is (x1x2, x2x3, x3x4, x4x5, x5x1).

The next couple of theorems allow for induction when increasing the power of an edge ideal.

Theorem 2.3 ([2, Thm. 5.2]). For any graph G and any s ⩾ 1, let the set of minimal monomial generators
of I(G)s be {m1, . . . , mk}. Then

reg(I(G)s+1) ⩽ max{reg(I(G)s), reg((I(G)s+1) : ml) + 2s, 1 ⩽ l ⩽ k}.

By identifying the variables with the vertices of G, interpreting edges as squarefree quadratic mono-
mials, defining neighborhood for any vertex c, N(c) := {z ∈ V (G) : cz ∈ E(G)} and using [2, Thm. 5.2]
we get the following corollary:

Corollary 2.4. (i) The ideal (I(G)s+1 : ml) is a quadratic monomial ideal.
(ii) For the special case where s = 1 and m = ab is an edge we have

(I(G)2 : ab) = I(G) + (xy|x ∈ N(a), y ∈ N(b)).

For bipartite graphs we further have:

Theorem 2.5 ([1, Lem. 3.2, Prop. 3.4]). Let G be a bipartite graph and s ⩾ 1 an integer. Then (I(G)s+1 :
e1 · · · es) is a quadratic squarefree monomial ideal where for all i we have ei ∈ E(G). Moreover, the graph
G′ associated to (I(G)s+1 : e1 · · · es) is bipartite on the same vertex set and same bipartition as G.

For any bipartite graph G we have
(I(G)s+1 : e1 · · · es) = ((I(G)2 : ei)s : Πj ̸=iej)

where for all l ∈ {1, . . . , s} we have el ∈ E(G).

Remark 2.6. From Theorem 2.5 one can show a slightly more general equality involving colons, under
the same assumptions: for all k and any s ⩾ k + 1,

(I(G)s+1 : e1 · · · es) = ((I(G)k+1 : e1 · · · ek)s−k+1 : ek+1 · · · es).
This follows from the following sequence of arguments:

(a) From Theorem 2.5 for i = 1 it follows that:

(I(G)s+1 : e1 · · · es) = ((I(G)2 : e1)s : e2 · · · es).
(b) The first part of the Theorem 2.5 tells us that (I(G)2 : e1) is a bipartite edge ideal.
(c) By Corollary 2.4 above we get that each ei is an edge of the bipartite graph associated to (I(G)2 : e1).
(d) Applying the Theorem 2.5 again on the edge ideal (I(G)2 : e1) we get:

((I(G)2 : e1)s : e2 · · · es) = (((I(G)2 : e1)2 : e2)s−1 : e3 · · · es).
(e) By a similar application of the last result with s = 2 we have

(I(G)3 : e1e2) = ((I(G)2 : e1)2 : e2).

Algebraic Combinatorics, Vol. 6 #6 (2023) 1689
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(f) Combining these we get

(I(G)s+1 : e1 · · · es) = ((I(G)3 : e1e2)s−1 : e3 · · · es).
(g) Inductively, assuming that for a fixed k one has for any s ⩾ k + 1

(I(G)s+1 : e1 · · · es) = ((I(G)k+1 : e1e2 · · · ek)s−k+1 : ek+1 · · · es).
(h) Again applying Theorem 2.5 on the bipartite edge ideal (I(G)k+1 : e1 · · · ek) we get

((I(G)k+1 : e1 · · · ek)s−k+1 : ek+1 · · · es) = (((I(G)k+1 : e1 · · · ek)2 : ek+1)s−k : ek+2 · · · es).
(i) But by induction

(I(G)k+2 : e1 · · · ek+1) = ((I(G)k+1 : e1 · · · ek)2 : ek+1).
So we get

((I(G)k+1 : e1 · · · ek)s−k+1 : ek+1 · · · es) = ((I(G)k+2 : e1 · · · ek+1)s−k : ek+2 · · · es),
as claimed.

Now we recall some basic definitions about graphs and simplicial complexes that will be useful.
Let G be a graph with vertex set V (G) and edge set E(G). A subgraph H ⊆ G is called induced if

{u, v} is an edge of H if and only if u and v are vertices of H and {u, v} is an edge of G. A clique in a
graph is an induced subgraph that is a complete graph.

For u ∈ V (G), let NG(u) = {v ∈ V (G) | {u, v} ∈ E(G)} and NG[u] = NG(u) ∪ {u}. For U ⊆ V (G),
denote by G ∖ U the induced subgraph of G on the vertex set V (G) ∖ U .

Let G be a graph. We denote the graph consisting of two disjoint edges by 2K2. A graph without
induced copy of 2K2 is called 2K2-free or gap-free graph. The complement of a graph G, denoted by Gc,
is the graph on the same vertex set in which {u, v} is an edge of Gc if and only if it is not an edge of G.
Then G is gap-free if and only if Gc contains no induced 4-cycle.

A graph G is chordal (also called triangulated) if every induced cycle in G has length 3, and is co-
chordal if the complement graph Gc is chordal. The following important theorem(s) characterizes the
edge ideals with regularity 2, and the regularity of their powers.

Theorem 2.7. (1) (Fröberg [14, Thm.1]) For any graph G, we have Gc is chordal if and only if
reg(I(G)) = 2.

(2) (Herzog–Hibi–Zheng [17, Thm.1.2]) Further, in this case reg(I(G)s) = 2s for any s.

A simplicial complex ∆ on a vertex set {1, . . . , n} is a collection of subsets of {1, . . . , n} such that
if τ ∈ ∆, σ ⊆ τ then we have σ ∈ ∆ and all singletons belong to that collection; if τ is such a subset
belonging to ∆ then τ is called a face of ∆. The induced subcomplex ∆[A] of ∆ on vertex set A ⊂ {1, . . . , n}
is the collection of faces τ ′ of ∆ such that τ ′ ⊂ A. Clearly the induced subcomplex is a simplicial complex
itself. We denote by V(∆) the set of vertices of ∆.

For sets A and B we sometimes write A ∪C B for the set A ∪ B as a shorthand for denoting their
intersection by C = A ∩ B. Likewise for simplicial complexes.

The link of a vertex v in ∆ is
linkv(∆) = {τ |τ ∪ {v} ∈ ∆, {v} ∩ τ = ∅}.

The (open) star of a vertex v in a simplicial complex ∆ is the set of all faces that contain v, namely
stv(∆) = {τ |τ ∈ ∆, v ∈ τ}. The closed star s̄tv(∆ ) of v is defined by the smallest subcomplex that
contains stv(∆). The antistar of vertex v is defined as the subcomplex astv(∆) = {τ ∈ ∆|τ ∩ {v} = ∅}.

The join of two simplicial complexes ∆1 and ∆2 is defined by ∆1 ∗ ∆2 = {σ ∪ τ |σ ∈ ∆1, τ ∈ ∆2}. The
suspension of a simplicial complex ∆, w.r.t. two points a and b not vertices of ∆, is the join defined by
Σa,b∆ = ∆ ∗ {{a}, {b},∅}; its geometric realization is homeomorphic to the topological suspension of the
space ∆.

For H a graph let cl(H) denote its clique complex, i.e. the simplicial complex whose faces are the
cliques of H.

Algebraic Combinatorics, Vol. 6 #6 (2023) 1690
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The following formulation of regularity follows from the so called Hochster’s formula (see [22] for
further details):

Theorem 2.8 (Hochster’s formula). For every graph G whose edge set is nonempty and ∆ = cl(Gc) we
have:

reg(G) := reg(I(G)) = max{l + 2 : ∃W ⊆ V(∆), H̃l(∆[W ]; k) ̸= 0}.

(Sometimes Hochster’s formula is phrased with the extra condition on W that |W | = l +2+ i for some
i ⩾ 0. However, this condition is superfluous: if |W | ⩽ l + 1 then either dim(∆[W ]) < l or ∆[W ] is the
simplex on l + 1 vertices. In both cases H̃l(∆[W ]) = 0.)

3. Main Results

We first prove that reg(I(G)2 : e) ⩽ reg(I(G)) for every edge e of a graph G. This will lead us to our
main result via a series of short exact sequence arguments. For that we first prove the following:

Theorem 3.1. Let G be a graph, ab ∈ E(G) and G′ = G ∪ {xy : x ̸= y, ax, by ∈ E(G)}. Then

reg(I(G′)) ⩽ reg(I(G)).

Proof. Denote ∆ = cl(Gc) and ∆′ = cl(G′c). Let A = V(s̄ta(∆)), B = V(s̄tb(∆)), C = A ∩ B and
D = V(∆) − (A ∪ B). With this notation we observe the following crucial relation between ∆ and ∆′:

(3.1) ∆′ = (∆[A] ∪∆[C] ∆[B]) ∪∆[C] (∆[C] ∪d∈D ({d} ∗ ∆[C ∩ V(std(∆))])).

We obtain this equality simply from the definition of G′, where every neighbour of a is connected to
every neighbour of b. The above decomposition of ∆′ shows us how to prove the theorem using Hochster’s
formula and Mayer–Vietoris sequences, detailed next.

Let reg(I(G′)) = l + 2 and W be a subset of the vertices of minimal size such that H̃l(∆′[W ]) ̸= 0.
Decompose W = W1 ∪WC

W2 ⊆ V where W1 = W ∩ (A ∪C B) (recall C = A ∩ B), W2 = W ∩ (C ∪ D)
and WC = W1 ∩ W2 = C ∩ W .

If W ∩ D = ∅ then Eq.(3.1) implies ∆′[W ] = ∆[W ] and thus reg(I(G)) ⩾ l + 2 as claimed. Thus, we
may assume W ∩ D ̸= ∅, so |W1| < |W | and thus, by minimality of W , H̃l(∆′[W1]) = 0.

If |W2| < |W | then minimality of |W | also imply H̃l(∆′[W2]) = 0. By (3.1) the decomposition ∆′[W ] =
∆′[W1] ∪∆′[WC ] ∆′[W2] holds. Consider the following Mayer–Vietoris exact sequence:

H̃l∆′[W1]
⊕

H̃l∆′[W2] −→ H̃l∆′[W ] −→ H̃l−1(∆′[WC ]).

As the two summands on the left term vanish, exactness implies H̃l−1(∆′[WC ]) ̸= 0. Now by (3.1) we
have ∆′[WC ] = ∆[WC ], hence suspension gives 0 ̸= H̃l(∆[WC ] ∗ {{a}, {b},∅}) = H̃l(∆[{a, b} ∪ WC ]). We
conclude reg(∆) ⩾ l + 2 as claimed.

Thus we may assume additionally that W2 = W . Denote X = ∆′[W ] = ∆′[W2] and let d ∈ W ∩ D.
By (3.1) linkdX is an induced subcomplex of ∆[C], and further, the suspension of linkdX by the vertices
a and b is an induced subcomplex of ∆.

Thus, if H̃l−1(linkdX) ̸= 0 then 0 ̸= H̃l({{a}, {b},∅} ∗ linkdX) = H̃l(∆[{a, b} ∪ V (linkdX)]), and thus
reg(I(G)) ⩾ l + 2 as claimed. So we may assume H̃l−1(linkdX) = 0.

Consider the Mayer–Vietoris long exact sequence corresponding to the union X = astdX ∪linkdX S̄tdX:

H̃l(astdX)
⊕

H̃l(StdX) −→ H̃l(X) −→ H̃l−1(linkdX).

By assumption, the right term is zero while the middle term is nonzero, and closed stars have vanishing
homology, hence H̃l(astdX) = H̃l(∆′[W ∖ {d}]) ̸= 0. This contradicts the minimality of W , so in fact
this last case cannot occur. □

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. (i) By Theorem 2.3 we just need to prove
(3.2) reg(I(G)2 : ab) ⩽ reg(I(G)) for all ab ∈ E(G).

Let J = I(G) + (uv|u ̸= v, u ∈ N(a), v ∈ N(b)). By Corollary 2.4 we have:
(I(G)2 : ab) = J + (u2|u ∈ N(a) ∩ N(b)).

By Theorem 2.1, reg(I(G)2 : ab) = reg( ˜(I(G)2 : ab)), the polarization. Here L := ˜(I(G)2 : ab) = J +
(uu′|u ∈ N(a) ∩ N(b)) for new whisker variables u′ in a larger polynomial ring (defined in Section 2). So,
it is enough to prove that reg(L) ⩽ reg(I(G)).

If N(a) ∩ N(b) = ∅ then the assertion follows by Theorem 3.1. Now let N(a) ∩ N(b) = {u1, . . . , uk}.
Consider the following short exact sequences:

0 −→ R

(L : u1) (−1) → R

L
→ R

(L, u1) → 0

0 −→ R

((L, u1) : u2) (−1) → R

(L, u1) → R

(L, u1, u2) → 0

...
0 −→ R

((L, u1, . . . , uk−1) : uk) (−1) → R

(L, u1, . . . , uk−1) → R

(L, u1, . . . , uk) → 0.

Now observe that (L, u1, . . . , uk) = J + (variables) and for every i, ((L, u1, . . . ui−1) : ui) = (L : ui) +
(variables). By repeated use of Theorem 2.2 (both parts) we have that reg(L) ⩽ max{reg(J), reg(L :
u) + 1, u ∈ N(a) ∩ N(b)}. Now by Theorem 3.1 reg(J) ⩽ reg(I(G)). It is enough to show that reg(L :
u) + 1 ⩽ reg(I(G)) for all u ∈ N(a) ∩ N(b).

To prove this we use three facts:
A. Going mod any set of variables makes the regularity stay same or go down (follows from Theorem 2.2

(ii)).
B. Adjoining a disjoint set of variables keeps the regularity same (follows directly from Hochster’s

formula (Theorem 2.7)).
C. Adding a disjoint edge makes the regularity go up by one. (This follows from Hochster’s formula

(Theorem 2.7) applied for the suspension of the original clique complex; e.g. by Künneth formula (see
e.g. [5, 9.12]) or [30, Lemma.8]).

Now, (L : u) = L + (u′) + (s : u ̸= s ∈ NG(u) ∪ NG(a) ∪ NG(b)) = I(G′[U ]) + (s : s ∈ NG′(u)) where
G′ is the polarization graph with L = I(G′) and U is the set of non-neighbours of u in G′. By Fact B,
reg((L : u)) = reg(I(G′[U ])).

Note that a, b /∈ U , and that G′[U ] = G[U ], as u ∈ NG(a) ∩ NG(b) and no edge involving a whisker
vertex has its other vertex in U . By Fact C, reg(I(G[U ]) + (ab)) = 1 + reg(I(G[U ])).

By Fact A, modding I(G) by the variables in (N(a) ∪ N(b)) ∖ {a, b}, we obtain the inequality
reg(I(G[U ]) + (ab)) ⩽ reg(I(G)).

Combined, we have:
reg(L : u) + 1 = reg(I(G[U ])) + 1 ⩽ reg(I(G)),

as desired. This proves (3.2) and hence proves part (i) of the theorem.
(ii) Here the underlying graph is bipartite. In part (i) we have already proved that reg(I(G)2 : e) ⩽

reg(I(G)) for any graph G with e ∈ E(G). We may assume s ⩾ 3 by part (i).
By the second part of Theorem 2.5 we get

(I(G)s : e1 . . . es−1) = ((I(G)2 : e1)s−1 : e2 · · · es−1) = ((I(G)2 : e1)2 : e2)s−2 : e3 · · · es−1)
= . . . = (. . . ((I(G)2 : e1)2 : e2)2 . . . : es−2)2 : es−1).

Hence using the first part of Theorem 2.5 and (3.2) that reg(I(G)2 : e) ⩽ reg(I(G)) for all graph G
and for all e ∈ E(G) we get that:

reg(I(G)s : e1 . . . es−1) = . . . = reg(. . . ((I(G)2 : e1)2 : e2)2 . . . : es−2)2 : es−1)
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⩽ reg(. . . ((I(G)2 : e1)2 : e2)2 . . . : es−1)
⩽ reg(. . . ((I(G)2 : e1)2 : e2)2 . . . : es−2) ⩽ . . . ⩽ reg(I(G)2 : e1) ⩽ reg((I(G)).

This gives us the result by Theorem 2.3. □

4. Further Research

In this section we discuss some questions for further research.
In the introduction we mentioned the constants a(I), b(I), c(I) related to asymptotic stability of the

regularity of powers of a homogenous ideal I. So far we focused on b(I) for edge ideals, now we turn to
discuss c(I).

Due to the asymptotic stability we have that for a homogeneous ideal I generated in degree d there
exists a minimal integer c(I) such that reg(Is+1) − reg(Is) = d for all s ⩾ c(I). We have proved that for
all bipartite graphs G we have reg(I(G)s) − reg(I(G)) ⩽ 2s − 2. However the behaviour of the sequence
{reg(Is)} can be irregular for smaller s values even for edge ideals. In fact there are examples of bipartite
graphs where reg(I(G)2) = reg(I(G))+1 (for example one can check that this is the case for the bipartite
edge ideal of the 8-cycle (x1y1, x2y2, x3y3, x4y4, x1y2, x2y4, x3y1, x4y3)).

Can c(I) be bounded by some simple invariants of I, for homogenous ideals? Conca [7] showed that for
any given integer d > 1 there exists an ideal J generated by d+5 monomials of degree d+1 in 4 variables
such that reg(Jk) = k(d + 1) for every k < d and reg(Jd) ⩾ d(d + 1) + d − 1. In particular, c(I) cannot be
bounded above in terms of the number of variables only, not even for monomial ideals in general. Further,
a result of Raicu [29] gives binomial ideals In on n2 variables, generated in degree 2, with c(In) = n − 1.
All these fit into the framework of the following question that served as broad aim for various researchers
since the works of Cutkosky, Herzog and Trung, and Kodiyalam ([3, 7, 8, 9, 10, 15, 17, 19, 20, 26, 27]):

Question 4.1. For homogeneous ideals I on n variables, generated in degree d, is c(I) bounded above by
a function of d and n?

It has been conjectured by Banerjee and Mukundan [4] that for all bipartite graphs G, we have
c(I(G)) ⩽ 2. It is known for cochordal, gap free plus cricket/diamond/4-cycle free graphs [2, 17, 13,
12]. Apart from edge ideals, it was shown by Conca and Herzog [8] that polymatroidal ideals have
linear resolutions and powers of polymatroidal ideals are polymatroidal ideals. So for the class of all
polymatroidal ideals c(I) = 1.

Finally we conclude by a discussion on a related conjecture by [27]:

Conjecture 4.2 ([27]). If reg(I(G)) ⩽ 3 and Gc has no induced 4-cycle then for all s ⩾ 2 we have
reg(I(G)s) = 2s.

Very recently this conjecture was verified for s = 2 and s = 3 by Minh and Vu [24]. Theorem 2.3
was proved by Banerjee in his thesis to study this conjecture and related other problems, based on
Theorem 2.2. We now explain why this inductive approach via colon ideals that is used in this paper
(and also in [1, 2, 3, 26, 27, 18, 19]) can not be used directly to settle Conjecture 4.2.

Every 2-dimensional simplicial complex ∆ can be subdivided so that the resulted complex is flag-
no-square, see [11] or [28, Lem. 2.3], i.e. ∆ = cl(H) where H is a graph with no induced 4-cycles. In
particular, we choose such H so that ∆ triangulates the dunce hat, a contractible 2-dimensional complex.
Thus, all subcomplexes of ∆ have vanishing homology in dimension ⩾ 2. Further, the link of every vertex
a ∈ ∆ is an induced subcomplex (as ∆ is a clique complex) with nonzero first homology. For an edge
ab ∈ G := Hc, the construction of ∆′ = cl(G′c) from Theorem 3.1 satisfies linka∆′ = linka∆ is an induced
subcomplex of ∆′.

We conclude that reg(I(G)) = 3 and by Corollary 2.4(ii) for every edge ab ∈ G also reg((I(G)2 : ab) =
3. Thus, if reg(I(G)2) = 4 as Conjecture 4.2 suggests, then Theorem 2.2 cannot be directly applied to
prove it.

On the other hand, if reg(I(G)2) > 4 then this will be a counterexample. Unfortunately we could not
verify the value of reg(I(G)2) due to computational limitations. It will be great if this can be verified in
the future.

Algebraic Combinatorics, Vol. 6 #6 (2023) 1693



A. Banerjee & E. Nevo

Acknowledgements. We thank Aldo Conca for pointing us to [29], and the referees for very helpful remarks
on the presentation.

Most of this work was done when first author was visiting the Institute of Mathematics of He-
brew University and he would like to thank faculty and staff of Hebrew University for their hos-
pitality. Also, the first author was partially supported by DST INSPIRE (India) research grant
(DST/INSPIRE/04/2017/000752) and he would like to acknowledge that.

The second author was partially supported by Israel Science Foundation grants ISF-1695/15 and ISF-
2480/20, by grant 2528/16 of the ISF-NRF Singapore joint research program, and by ISF-BSF joint grant
2016288.

References
[1] Ali Alilooee and Arindam Banerjee, Powers of edge ideals of regularity three bipartite graphs, J. Commut. Algebra 9

(2017), no. 4, 441–454.
[2] Arindam Banerjee, The regularity of powers of edge ideals, J. Algebraic Combin. 41 (2015), no. 2, 303–321.
[3] Arindam Banerjee, Selvi Kara Beyarslan, and Huy Tài Hà, Regularity of powers of edge ideals: from local properties

to global bounds, Algebr. Comb. 3 (2020), no. 4, 839–854.
[4] Arindam Banerjee and Vivek Mukundan, The powers of unmixed bipartite edge ideals, J. Algebra and Its Appl. 26

(2019), 57–70.
[5] A. Björner, Topological methods, handbook of combinatorics, Elsevier, Amsterdam 1,2 (1995), no. 1, 1819–1872.
[6] D. Bolognini, A. Machia, F. Strazzanti, and V. Welker, Powers of monomial ideals with characteristic-dependent Betti

numbers, Research in the Mathematical Sciences 9 (2022), no. 26, 630–645.
[7] Aldo Conca, Regularity jumps for powers of ideals, in Commutative algebra, Lect. Notes Pure Appl. Math., vol. 244,

Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 21–32.
[8] Aldo Conca and Jürgen Herzog, Castelnuovo-Mumford regularity of products of ideals, Collect. Math. 54 (2003), no. 2,

137–152.
[9] S. Dale Cutkosky, Jürgen Herzog, and Ngô Viêt Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity,

Compositio Math. 118 (1999), no. 3, 243–261.
[10] Hailong Dao, Craig Huneke, and Jay Schweig, Bounds on the regularity and projective dimension of ideals associated

to graphs, J. Algebraic Combin. 38 (2013), no. 1, 37–55.
[11] A.N. Dranishnikov, Boundaries of Coxeter groups and simplicial complexes with given links, J. Pure and Appl. Alg.

137 (1999), no. 1, 139–151.
[12] N. Erey, Powers of edge ideals with linear resolutions, Comm. in Alg. 46 (2018), no. 9, 4007–4020.
[13] , Powers of ideals associated to (c4, 2k2)-free graphs, J. Pure Appl. Algebra 223 (2019), no. 7, 3071–3080.
[14] Ralf Fröberg, On Stanley-Reisner rings, in Topics in algebra, Part 2 (Warsaw, 1988), Banach Center Publ., vol. 26,

PWN, Warsaw, 1990, pp. 57–70.
[15] Huy Tài Hà and Adam Van Tuyl, Resolution of squarefree monomial ideals via facet ideals: A survey, Contemporary

Mathematics 448 (2007), no. 2, 91–117.
[16] Jürgen Herzog and Takayuki Hibi, Monomial ideals, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London,

Ltd., London, 2011.
[17] Jürgen Herzog, Takayuki Hibi, and Xinxian Zheng, Monomial ideals whose powers have a linear resolution, Math.

Scand. 95 (2004), no. 1, 23–32.
[18] A. V. Jayanthan, N. Narayanan, and S. Selvaraja, Regularity of powers of bipartite graphs, J. Algebraic Combin. 47

(2018), no. 1, 17–38.
[19] A. V. Jayanthan and S. Selvaraja, Upper bounds for the regularity of powers of edge ideals of graphs, J. Algebra 574

(2021), 184–205.
[20] Vijay Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000), no. 2,

407–411.
[21] Manoj Kummini, Homological invariants of monomial and binomial ideals, Ph.D. thesis, University of Kansas, 2008.
[22] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227,

Springer-Verlag, New York, 2005.
[23] C. Minh and T. Vu, Integral closure of powers of edge ideals and their regularity., J. Algebra 609 (2022), no. 5, 120–144.
[24] , Characterization of graphs whose a small power of their edge ideals has a linear free resolution, Combinatorica

(2023), https://doi.org/10.1007/s00493-023-00074-z.
[25] Susan Morey and Rafael H. Villarreal, Edge ideals: algebraic and combinatorial properties, in Progress in commutative

algebra 1, de Gruyter, Berlin, 2012, pp. 85–126.
[26] Eran Nevo, Regularity of edge ideals of C4-free graphs via the topology of the lcm-lattice, J. Combin. Theory Ser. A

118 (2011), no. 2, 491–501.
[27] Eran Nevo and Irena Peeva, C4-free edge ideals, J. Algebraic Combin. 37 (2013), no. 2, 243–248.
[28] P. Przytycki and J. Swiatkowski, Flag-no-square triangulations and Gromov boundaries in dimension 3, Groups Geom.

Dyn. 3 (2009), no. 1, 453–468.
[29] Claudiu Raicu, Regularity and cohomology of determinantal thickenings, Proc. Lond. Math. Soc. (3) 116 (2018), no. 2,

248–280.

Algebraic Combinatorics, Vol. 6 #6 (2023) 1694

https://doi.org/10.1007/s00493-023-00074-z


Regularity of Edge Ideals Via Suspension

[30] Russ Woodroofe, Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra 6 (2014), no. 2,
287–304.

Arindam Banerjee, Indian Institute of Technology, Kharagpur
E-mail : 123.arindam@gmail.com

Eran Nevo, Einstein Institute of Mathematics, The Hebrew University of Jerusalem.
E-mail : nevo@math.huji.ac.il

Algebraic Combinatorics, Vol. 6 #6 (2023) 1695

mailto:123.arindam@gmail.com
mailto:nevo@math.huji.ac.il

	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Further Research
	References

