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h∗-vectors of graph polytopes using
activities of dissecting spanning trees

Tamás Kálmán & Lilla Tóthmérész

Abstract Symmetric edge polytopes of graphs and root polytopes of semi-balanced digraphs
are two classes of lattice polytopes whose h∗-polynomials have interesting properties and gener-
alize important graph polynomials. For both types of polytopes there is a large, natural class of
dissections into unimodular simplices. These are such that the simplices correspond to certain
spanning trees.

We show that for any “spanning tree dissection” of the symmetric edge polytope of a graph,
or the root polytope of a semi-balanced digraph, the h∗-polynomial of the polytope can be
computed as a generating function of certain activities of the corresponding spanning trees.
Apart from giving simple and flexible algorithms for computing these polynomials, our results
also reveal that all dissections in question are surprisingly similar to each other: the distributions
of many statistics of spanning tree dissections are in fact independent of the actual dissection.

1. Introduction
1.1. Aim of the paper. Let G be a simple undirected graph with vertex set V (G)
and edge set E(G). The polyhedron

PG = Conv{1u − 1v, 1v − 1u | uv ∈ E(G)} ⊂ RV (G)

is called the symmetric edge polytope of G [11]. (Here 1u, 1v stand for generators
of RV (G) that correspond to u, v ∈ V (G).) Symmetric edge polytopes have recently
garnered considerable interest [4, 3, 11, 12]. Most of the literature concentrates on the
computation and properties of their h∗-vectors (a.k.a. h∗-polynomials). In particular,
the h∗-vector of a symmetric edge polytope is conjectured to be γ-positive [12].

Directed graphs (digraphs) have an associated graph polytope with a definition
similar to that of the symmetric edge polytope [13]. More concretely, the root polytope
of a directed graph G = (V, E) is the convex hull

QG = Conv{ 1h − 1t |
−→
th ∈ E }.
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In fact, symmetric edge polytopes are root polytopes of bidirected graphs, where a
bidirected graph is the directed graph obtained from an undirected graph by replacing
each edge uv with two directed edges −→uv and −→vu.

We will be interested in root polytopes of so-called semi-balanced digraphs, which
are directed graphs so that each cycle has the same number of edges oriented in the
two cyclic directions. There are two reasons to consider this class of digraphs: it turns
out that connected semi-balanced digraphs are exactly the connected digraphs where
the dimension of QG is |V (G)| − 2 (otherwise the dimension is |V (G)| − 1) [9], that
is, QG has rather special properties for semi-balanced digraphs. Moreover, all facets
of symmetric edge polytopes are root polytopes of certain semi-balanced digraphs [4],
i.e., these polytopes are relevant also for the investigation of symmetric edge poly-
topes. The h∗-polynomial of QG is called the interior polynomial of G in [9]. This
polynomial generalizes the interior polynomial of a hypergraph, as well as the gree-
doid polynomial of a planar branching greedoid. Here the interior polynomial of a
hypergraph is itself a generalization of T (x, 1) (associated to a graph), where T (x, y)
is the Tutte polynomial.

In this paper, we give graph-theoretic formulas for the h∗-polynomials of PG and
QG (for arbitrary G and semi-balanced G), namely we express them as generating
functions of certain activity statistics on certain spanning trees. We also pose some
open questions.

The paper is structured as follows. In Section 1.2, we informally explain the setup
and our results. In Section 2 we introduce the necessary tools. We prove our theorems
in Section 3. Finally, in Section 4, we mention some open problems and further explain
the motivation for our work.

1.2. Setup and results. For both the symmetric edge polytope of a graph and
the root polytope of a semi-balanced digraph, h∗-polynomials are typically computed
by first dissecting the polytope, using only the vertices of the polytope (and, in the
former case, the origin) as 0-simplices. Here a dissection into simplices means a set
of maximal dimensional simplices with disjoint interiors, so that their union is the
whole polytope. A triangulation is a dissection into simplices where we additionally
require that the intersection of any two simplices be a common face. Triangulations
are more often used than dissections, but everything we say in this paper applies also
in the broader case of dissections.

The vertices of QG correspond to the (directed) edges of G. For a semi-balanced
digraph G, a set of vertices is affine independent if and only if the corresponding
subgraph is a forest [9]. (Thus if G is connected then dim QG = |V (G)| − 2. Without
semi-balancedness, the ‘only if’ direction fails.) Therefore, if we are to dissect QG using
only its vertices, maximal simplices will correspond to spanning trees. In other words,
dissecting the root polytope QG amounts to finding a subset T of the spanning trees
of G that satisfies the requirement that the corresponding simplices {QT | T ∈ T } are
interior disjoint and cover the polytope. We will call such a set T of spanning trees a
dissecting tree set for G. (See Figures 2 and 3 for examples.)

It is easy to show that for each spanning tree T , the simplex QT is unimodular [9].
This turns out to be crucial for the computation that we intend to carry out. In
fact, the abundance of unimodular simplices within QG and PG , and their scarcity
in general, explains why we only consider these particular polytopes. We have of
course well-established methods for finding (say, regular) triangulations of polytopes.
There are also natural ways of producing dissections (which in general fail to be
triangulations) for QG and PG . One such construction is based on ribbon structures [9,
8]. Arguably, its most important special case is the following.
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Example 1.1. Let G be a connected plane semi-balanced digraph, with planar dual
G∗, and let r be an arbitrary vertex of G∗. Notice that in this case G∗ naturally
becomes an Eulerian digraph. It is well known in general that the spanning trees of G
are exactly the complements of the spanning trees of G∗. Now the complements of the
spanning arborescences of G∗, rooted at r, form a dissecting (in fact, triangulating)
tree set for G [9, Proposition 8.5]. Figure 2 shows an instance of this phenomenon (r
corresponds to the unbounded region of the embedding).

To the symmetric edge polytope PG of an undirected graph G, each edge of G
contributes two vertices: they correspond to the two orientations of the edge. If G is
connected then PG has dimension |V (G)|−1. As alluded to earlier, the facets of PG are
root polytopes of spanning subgraphs of G that are oriented in a semi-balanced way.
As the origin is in the relative interior of PG , one can dissect PG by first dissecting
the facets of the boundary, then coning at the origin. For any directed graph G, let
Q̃G = Conv({0} ∪ { 1h − 1t |

−→
th ∈ E(G) }). Then our strategy for dissecting PG calls

for appropriately taking simplices of the type Q̃T for some oriented spanning trees
of G. Here again, any such dissection is automatically unimodular. For an undirected
graph G, we will call a set of oriented spanning trees T a dissecting tree set for G if
the corresponding simplices QT , for T ∈ T , dissect the boundary of PG . Dissections,
and even triangulations, of this type are not hard to construct and this has been done
in various concrete ways [4, 8].

We need one more definition in order to state our first result. Let T be a directed
tree, and let v be one of its vertices. If e ∈ T is an edge, then T −e has two components.
We say that e ∈ T is pointing away from v in T if v is in the component of T − e that
contains the tail of e.

Theorem 1.2. Let G be a connected graph and let us denote the h∗-vector of the
symmetric edge polytope PG by h∗

G. Let T be any dissecting tree set for G, and let v
be any vertex of G. Then

(h∗
G)i = |{T ∈ T | T has exactly i edges pointing away from v}|.

Let us stress again that even though G is unoriented, its dissecting trees T are
oriented. We prove Theorem 1.2 in section 3. We note that the (short) proof follows
closely the proof of [4, Proposition 4.6] where this formula is established for the
h-vector of a certain triangulation of the symmetric edge polytope of a complete
bipartite graph.

As a corollary we obtain an interesting identity, namely that the distribution of
the number of edges pointing away from an arbitrary given node is independent of
which node and which dissecting tree set we consider.

Corollary 1.3. Let G be an undirected graph, and let 0 ⩽ i ⩽ |V (G)|−1 be arbitrary.
For any dissecting tree set T for G and any fixed vertex v ∈ V (G), the value

|{T ∈ T | T has exactly i edges pointing away from v}|
is the same.

Example 1.4. The upper left panel of Figure 1 shows the undirected triangle K3,
drawn as a bidirected graph. PK3 has dimension 2, and in fact it is easy to check that
it is a regular hexagon. The six facets of PK3 correspond to the six subgraphs drawn
by thick edges in panels 2 through 7. All of these facets are simplices, hence the six
spanning trees in the last six panels form a dissecting tree set for K3 (which happens
to be unique in this case).

One can easily check that whichever vertex we choose as base vertex, there is one
tree with 0 edges pointing away from the base vertex, four trees with 1 edge pointing
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Figure 1. The complete graph K3, drawn as a bidirected graph,
and a dissecting tree set.

away from the base vertex, and one tree with 2 edges pointing away from the base
vertex. Hence by Theorem 1.2, the h∗-polynomial of the symmetric edge polytope is
x2 + 4x + 1.

For our other results we need some further preparation on directed graphs. Let G
be an arbitrary digraph, and let T be a spanning tree of G. For an edge e ∈ T , the
fundamental cut of e with respect to T , denoted by C∗(T, e), is the set of edges of G
connecting the two components of T − e (which are called the shores of the cut). We
say that an edge e′ ∈ C∗(T, e) stands parallel to e if the heads of e and e′ are in the
same shore. Otherwise we say that e′ stands opposite to e.

Example 1.5. In the second panel of Figure 1, the edges labeled 4 and 5 form a
spanning tree (thick edges). The fundamental cut of the edge 4 is {1, 2, 3, 4}, with 2
and 4 standing parallel to 4, and 1 and 3 standing opposite to it.

We will also need the following notion.

Definition 1.6 (internal semi-activity in digraphs [7]). Let G be a digraph with a
fixed ordering of the edges. Let T be a spanning tree of G. An edge e ∈ T is internally
semi-active for T if in the fundamental cut C∗(T, e), the maximal edge (with respect
to the fixed ordering) stands parallel to e. If the maximal edge stands opposite to e,
then we say that e is internally semi-passive for T .

The internal semi-activity of a spanning tree (with respect to the fixed order) is
the number of its internally semi-active edges, while the internal semi-passivity is the
number of internally semi-passive edges.

This notion of activity is the dual pair of “external semi-activity” that was pri-
vately communicated to us by Alex Postnikov. Internal semi-activity is similar to
Tutte’s concept of internal activity [14], but instead of requiring e ∈ T to be the
maximal element in C∗(T, e), it only requires e to stand parallel to the maximal edge
of C∗(T, e).

Example 1.7. The second panel of Figure 1 shows the spanning tree {4, 5}. We use
the ordering of the edges given by the labeling. The edge 4 is the maximal element
in its fundamental cut, and each edge is parallel to itself, thus 4 is internally semi-
active. On the other hand, the maximal element of the fundamental cut of 5 is 6,
which stands opposite to 5, whence 5 is internally semi-passive.

These concepts lead to our second expression for the h∗-polynomial of PG . In order
for them to apply, we need to think of G as a bidirected graph. That is, for any
uv ∈ E(G), we take two directed edges −→uv and −→vu.
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Figure 2. A semi-balanced digraph (first panel), and four of its
spanning trees (panels 2-5) that form a dissecting tree set.

Theorem 1.8. Let T be any dissecting tree set for the undirected graph G. Consider
G as a bidirected graph, and fix an ordering of the (directed) edges of G. Then the
h∗-vector of the symmetric edge polytope PG satisfies

(h∗
G)i = |{T ∈ T | T has exactly i internally semi-passive edges}|.

Example 1.9. Regarding Figure 1, using the labeling of the edges as the ordering, the
internal semi-passivities of the spanning trees of panels 2 through 7 are, respectively,
1, 1, 0, 2, 1, and 1. Hence we again (cf. Example 1.4) conclude that the h∗-polynomial
of the symmetric edge polytope of K3 is x2 + 4x + 1.

We now turn our attention to root polytopes of semi-balanced digraphs, where we
obtain literally the same formula.

Theorem 1.10. Let G be a semi-balanced digraph and let us denote the h∗-vector of
its root polytope QG by h∗

QG
. Let T be any set of dissecting spanning trees for G, and

fix any ordering of the edges of G. Then

(h∗
QG

)i = |{T ∈ T | T has exactly i internally semi-passive edges}|.

Example 1.11. Figure 2 shows a semi-balanced digraph in its left panel, and four
spanning trees in panels 2 through 5 that form a dissecting tree set. To check that
this is so, note that these are exactly the Jaeger trees (see subsection 4.2 for the
definition) of the digraph if we choose the ribbon structure induced by the positive
orientation of the plane, moreover, the base vertex is the lower left vertex and the base
edge is the one connecting the lower left and lower right vertices [9, Theorem 5.8]. In
fact, our set of four trees is even triangulating [5, Theorem 1.1].

For the edge ordering indicated in the figure, the trees T1, T2, T3, T4 have internal
semi-passivities 1, 0, 2, 1, respectively. Hence the h∗-polynomial of the root polytope
is x2 + 2x + 1.

The proofs of Theorems 1.8 and 1.10 are almost identical, too. In fact, even the
proof of Theorem 1.2 uses the same underlying principle, although in a substantially
different way. That principle, cf. Lemma 2.1 and Proposition 2.4, was discerned from
Higashitani et al.’s work [4], where it appears under more restrictive conditions. It
states that if we fix a dissection and a generic interior point q of the polytope P ,
then the parts of the simplices that are invisible from q form a decomposition of P ;
furthermore, if the simplices are unimodular, then the decomposition can be used to
compute the h∗-vector of P . With that, our proofs become a matter of finding the
right q so that ‘visibility’ takes on a suitable interpretation.
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As corollaries to Theorems 1.8 and 1.10, we obtain that both for symmetric edge
polytopes and for root polytopes of semi-balanced digraphs, the distribution of inter-
nal semi-passivity over a dissecting tree set is independent of the edge ordering, and
even the actual dissection.

Corollary 1.12. Let G be a bidirected graph and let i ∈ {0, . . . , |V (G)| − 1} be
arbitrary. For any dissecting tree set T , and any ordering of the (directed) edges
of G, the value

|{T ∈ T | T has exactly i internally semi-passive edges}|

is the same.

Corollary 1.13. Let G be a semi-balanced digraph. Let i ∈ {0, . . . , |V (G)| − 1} be
arbitrary. For any dissecting tree set T , and any ordering of the edges of G, the value

|{T ∈ T | T has exactly i internally semi-passive edges}|

is the same.

We end this introduction by drawing attention to a certain dichotomy of approaches
to activity statistics, and by positioning our work in it. The Tutte polynomial was
originally constructed as the generating function of activities with respect to a fixed
edge order [14]. On the other hand, Bernardi presents the Tutte polynomial as a
generating function of embedding activities [2] that depend not on a fixed order but
on a ribbon structure. Of course, neither type of auxiliary data influences the final
outcome. Also, neither definition is a special case of the other.

In the previous papers [9, 8] we gave formulas for the h∗-polynomials of symmetric
edge polytopes and of root polytopes (of semi-balanced digraphs) that were inspired
by Bernardi’s ideas. The results of this paper, especially Theorems 1.8 and 1.10,
follow Tutte’s approach instead. Between the formulas of [9, 8] and those of this
paper, neither generalizes the other. However, in some sense, the claims of this paper
are more robust because they work for any dissecting tree set, while in [9, 8] we
considered a specific dissecting tree set (the aforementioned Jaeger trees) that also
depended on the embedding. In Section 4, we explore this “lack of robustness” in
more detail, and pose it as an open question to explain its background.

2. Preliminaries on h∗-polynomials and dissections
Suppose that P ⊂ Rn is a d-dimensional lattice polytope, that is a polytope with
vertices in Zn. Its Ehrhart polynomial εP associates, to each t ∈ N, the point count
εP (t) = |(t · P ) ∩ Zn|. This is indeed known to be a polynomial in t (which then can
be extended to arbitrary reals).

It is easy to check that the polynomials Ck(t) =
(

t+d−k
d

)
, for k = 0, . . . , d, pro-

vide a basis over Q for the space of polynomials, of degree d or lower, with rational
coefficients [6, Lemma 3.8]. Hence one can uniquely write the Ehrhart polynomial as

εP (t) =
d∑

k=0
akCk(t),

and define the h∗-polynomial (or h∗-vector) of P as h∗(x) =
∑d

k=0 akxk. (There is
another common way to define the h∗-polynomial, namely as the numerator of the
Ehrhart series. That definition is equivalent to the one given above.)

In this paper we will compute the h∗-polynomials of polytopes by dissecting them
into unimodular simplices, and then counting facets visible from an interior point of
general position. This is a slight modification of the method of [10], where h-vectors
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of triangulations are computed using the distribution of visible facets. Another in-
spiration is [4], where the method of [10] is applied to unimodular triangulations to
compute h∗-vectors. Our approach is stronger in that we do not require a unimodu-
lar triangulation, only a unimodular dissection. That is, we consider subdivisions of
polytopes into full-dimensional simplices whose relative interiors are pairwise disjoint.

Let us take a short digression here to argue that our widening of the class of trian-
gulations to that of dissections is not just a ‘generalization for generalization’s sake.’
In our previous work we studied at length a natural extension of Example 1.1, where
a ribbon structure for a semi-balanced digraph G (plus a base node and a base edge)
induces a dissecting tree set. We called the trees Jaeger trees and pointed out that
in general they do not triangulate the root polytope. Nevertheless, they have very
nice properties. [9, Section 10] is devoted to finding the line between triangulating
and non-triangulating sets of Jaeger trees, albeit without reaching a definitive an-
swer. Examples of non-triangulations can be found there and elsewhere in [7, 9]. In
Subsection 4.2 we recall the definition of Jaeger trees and work out Example 4.4 of a
non-triangulating Jaeger tree set, where we aim at making the failure to triangulate
visible in concrete terms.

Let now P be a d-dimensional lattice polytope and ∆1, . . . , ∆s a dissection of P into
unimodular simplices. Here a d-simplex Conv{p0, p1, . . . , pd} ⊂ Rn is called unimod-
ular if its vertices satisfy p0, p1, . . . , pd ∈ Zn and, in addition to p1 − p0, . . . , pd − p0
being linearly independent over R, we also have that

(2.1) Z⟨p1 − p0, . . . , pd − p0⟩ = R⟨p1 − p0, . . . , pd − p0⟩ ∩ Zn.

Whether this condition holds is independent of the choice of p0, and certainly of the
rest of the order of the vertices.

Let q ∈ P be a point of general position with respect to the dissection ∆1, . . . , ∆s.
By this, we mean that q is not contained in any facet-defining hyperplane of any of
the simplices ∆1, . . . , ∆s.

For two points p, q ∈ Rn, let us denote by [p, q] the closed segment connecting
them, and let us denote by (p, q) the relative interior of this segment.

We say that a point p ̸= q of a simplex ∆i is visible from q if (p, q) is disjoint
from ∆i. We say that a facet of ∆i is visible from q if all points of the facet are
visible from q. It is easy to see that a facet of ∆i is visible from q if and only if its
hyperplane separates q from the interior of ∆i.

Note that a point p ∈ ∆i is visible from q if and only if it belongs to a facet of ∆i

visible from q. The “if” direction is clear by definition. For the “only if” direction,
take a point p ∈ ∆i visible from q. As (p, q) is disjoint from ∆i, we can take a
supporting half-space of ∆i that does not contain q, moreover, p is on the supporting
hyperplane. But then, by the general position of q, there is also a facet-defining
hyperplane containing p and separating q from the interior of ∆i. Now this facet will
be visible from q, and it contains p.

For a simplex ∆, let Visq(∆) be the set of facets of ∆ that are visible from q. Let
also Hq(∆) = ∆ −

⋃
F ∈Visq(∆) F . I.e., we remove the visible facets from ∆. By the

above, this is the same as removing all the visible points from ∆.

Lemma 2.1. Let ∆1, . . . , ∆s be a dissection of the polytope P , and let q ∈ P be a point
in general position with respect to the dissection. Then P = Hq(∆1) ⊔ · · · ⊔ Hq(∆s)
is a disjoint union.

We will refer to this decomposition as a half-open cover of P .

Algebraic Combinatorics, Vol. 6 #6 (2023) 1643
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Remark 2.2. The statement of Lemma 2.1 is motivated by [10, Theorem 3], which
deals with how an identity of indicator functions of polyhedra behaves under the
operation Hq, and by its application in [4].

Proof. The containment P ⊃ Hq(∆1) ∪ · · · ∪ Hq(∆s) is clear from the definitions. Let
now p ∈ P be an arbitrary point. We need to show that it is contained by exactly one
set Hq(∆i) of the half-open cover. If p = q, then by general position, p is interior to
one of the ∆i, whence it is contained only by Hq(∆i).

By renumbering the simplices of the dissection, we can suppose that p ∈ ∆1 ∩
· · · ∩ ∆r and p ̸∈ ∆r+1 ∪ · · · ∪ ∆s, where r ⩾ 1. Since the latter set is closed, p has
a neighborhood U ⊂ P (with respect to the relative topology of P ) that is disjoint
from it. We claim that if p ̸= q, then the open segment (p, q) intersects exactly one
of ∆1, . . . , ∆r. We start by showing that it intersects at least one of those simplices.
By convexity, we have (p, q) ⊂ P = ∆1 ∪ · · · ∪ ∆s; we also have that a sub-segment of
(p, q) (‘near’ p) lies in U . Therefore (p, q) needs to intersect a simplex incident to p.

Now suppose that (p, q) intersects more than one of ∆1, . . . , ∆r. If the segment
intersects ∆i at x ̸= p and ∆j at y ̸= p, then by the convexity of simplices, we have
[x, p] ⊂ ∆i and [y, p] ⊂ ∆j . Hence one of the points x and y, say x, is in ∆i ∩ ∆j .
Now p ∈ ∆i ∩ ∆j implies [x, p] ⊂ ∆i ∩ ∆j , in particular we see that [x, p] lies along
the boundary of ∆i. That means that the whole segment [p, q] is in a facet-defining
hyperplane of ∆i, contradicting the general position of q.

Hence there is exactly one simplex ∆i, with i ⩽ r, such that (p, q) intersects ∆i.
I.e., ∆i is the only simplex containing p such that p is not visible from q. Thus, in
the half-open cover, Hq(∆i) is the unique set that contains p. □

The following well-known lemma plays a crucial role for us. We include a short
proof for completeness.

Lemma 2.3. Let ∆ = Conv{p0, . . . , pd} be a unimodular d-simplex. For any positive
integer t, a point p ∈ t · ∆ is a lattice point if and only if p =

∑d
i=0 µipi, where∑d

i=0 µi = t and each µi is a non-negative integer.

Proof. If p ∈ t · ∆ then p =
∑d

i=0 µipi, where µ0, . . . , µd ⩾ 0 and
∑d

i=1 µi = t. This
can be re-written as

∑d
i=0 µi(pi − p0) = p − t · p0. The right hand side here is an

integer vector if and only if p is a lattice point. By (2.1), this is also equivalent to
the claim that the left hand side is not only in the R-span, but also in the Z-span
of {pi − p0 | 1 ⩽ i ⩽ d}; by linear independence, this happens exactly when the
coefficients µi are integer. □

Putting the ingredients together leads to the following proposition, which general-
izes [4, Proposition 2.1] to unimodular dissections.

Proposition 2.4. Let ∆1, . . . , ∆s be a dissection of the d-dimensional lattice polytope
P ⊂ Rn into unimodular simplices, and let q ∈ P be a point in general position with
respect to the dissection. Then the h∗-polynomial h∗(x) = h∗

dxd + · · · + h∗
1x + h∗

0 of P
has the coefficients

h∗
i = |{j | 1 ⩽ j ⩽ s and | Visq(∆j)| = i}|.

Remark 2.5. The unimodularity of the dissection is crucial for the above statement
to hold.

Proof. By Lemma 2.1, we have the disjoint union (half-open cover)

P = Hq(∆1) ⊔ · · · ⊔ Hq(∆s).
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Let t ∈ N be a positive integer, and let us compute the cardinality εP (t) = |(t·P )∩Zn|.
We have t · P = t · Hq(∆1) ⊔ · · · ⊔ t · Hq(∆t), which is still a disjoint union, hence
it is enough to determine the number of lattice points in t · Hq(∆) for a unimodular
simplex ∆. We claim that if | Visq(∆)| = k, then |(t ·Hq(∆))∩Zn| = Ck(t) =

(
t+d−k

d

)
.

First, suppose that | Visq(∆)| = 0. Then we need to count lattice points within
t · ∆. By Lemma 2.3, the number of lattice points equals the number of non-negative
integer (d+1)-tuples summing to t. This is indeed equal to

(
d+t

d

)
= C0(t) by a classical

argument.
Now if Visq(∆) = k, then we remove k facets from ∆ to get Hq(∆). A (lattice)

point lies along a certain facet of ∆ if and only if in the convex combination of the
vertices that produces it, the coefficient of the opposite vertex is zero. Hence in this
case we need to count non-negative (d + 1)-tuples where elements of a prescribed set
of k entries are strictly positive. The number of such tuples is

(
d+t−k

d

)
= Ck(t) by

another classical argument.
Now if we let ak = |{∆j | | Visq(∆j)| = k}| and summarize our count of lattice

points across the pieces of the half-open cover, we get εP (t) =
∑d

k=0 akCk(t) for each
non-negative integer t. Hence indeed h∗

k = ak for all k. □

3. Proofs of Theorems 1.2, 1.8, and 1.10

Let us use the notation xe for the vector 1h − 1t ∈ RV , where e =
−→
th is a directed

edge in some graph on the vertex set V .

Proof of Theorem 1.2. Our proof is a very slight modification of the proof of [4,
Proposition 4.6], that concerns a special case: a concrete family of triangulations
of symmetric edge polytopes of complete bipartite graphs. The main engine of the
proof is Proposition 2.4.

Let us fix a dissecting tree set T and a vertex v ∈ V = V (G). We look for a point q
in the interior of PG , such that for each tree T ∈ T the number of facets, visible
from q, of the simplex Q̃T of the dissection is equal to the number of edges of T
pointing away from v.

We choose q =
∑

u∈V qu1u so that qv > 0 and for u ̸= v we have qu < 0; moreover,
we let

∑
u∈V qu = 0. As PG contains a ball around the origin within the subspace

{z ∈ RV |
∑

u∈V zu = 0}, by multiplying q with an appropriately small constant, we
may also suppose that q ∈ PG . We show that this q has the properties that we are
looking for.

Let T ∈ T be a (directed) spanning tree from the dissecting tree set. The simplex
Q̃T has two types of facets. One facet, QT = Conv{xf | f ∈ T}, corresponds to
removing the origin. The rest of the facets correspond to removing one of the tree
edges, i.e., they take the form Q̃T −e = Conv({0} ∪ {xf | f ∈ T − e}) for some e ∈ T .

A facet QT is never visible from q since it lies along the boundary of PG . On the
other hand, a facet Q̃T −e is visible from q if any only if e is pointing away from v
in T .

To show the latter claim, let us consider the hyperplane of Q̃T −e and the funda-
mental cut C∗(T, e). Let V0 and V1 be the two shores of the cut, with V1 containing
the head of e. Take the linear functional h : RV → R with h(1u) = 1 if u ∈ V1 and
h(1u) = 0 if u ∈ V0. (This uniquely determines the values of h on RV .) Clearly
h(0) = 0, moreover, h(xf ) = 0 for each f ∈ T − e since both endpoints of these
edges are on the same shore of C∗(T, e). Hence the hyperplane {x ∈ RV | h(x) = 0}
contains Q̃T −e. Now as we also have h(xe) = 1, the facet Q̃T −e is visible from q if
any only if h(q) < 0. As

∑
u∈V qu = 0 with qv being the only positive coordinate,
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h(q) =
∑

u∈V1
qu is negative if and only if v /∈ V1 (otherwise h(q) > 0). This is

equivalent to e pointing away from v in T .
As a byproduct we also see that q does not lie on any of the supporting hyperplanes

of Q̃T for any T ∈ T , i.e., it is indeed in general position. This completes our proof. □

Proof of Theorem 1.8. We again apply Proposition 2.4.
Let us fix a dissecting tree set T for G. We think of G as a bidirected graph;

that is, we take two oppositely directed edges for each undirected edge. We fix an
ordering < of these directed edges, in other words we denote them by e1, . . . , em so
that e1 < e2 < · · · < em (here m is even). Our strategy is to find a point q in the
interior of PG , such that for each simplex Q̃T of the dissection, the number of facets
of Q̃T visible from q is equal to the internal semi-passivity of the tree T with respect
to <.

Let q ∈ RV be the point

q =
m∑

i=1

(
ti∑m

j=1 tj

)
xei ,

where t is sufficiently large. (For us, t = 2 suffices.) Then q is a convex combination
of points of the form xe, with e ∈ E, hence by definition q ∈ PG .

Next, we show that for any spanning tree simplex Q̃T , the number of facets visible
from q is equal to the internal semi-passivity of the tree. At the same time, it will also
turn out that q does not lie on any of the supporting hyperplanes of the simplices,
i.e., q is in general position.

Let T ∈ T be a tree of the dissecting tree set. The simplex Q̃T has QT as a facet;
just as before, this is never visible from q. The rest of the facets are of the form
Q̃T −ek

= Conv{xej | ej ∈ T − ek} for some edge ek ∈ T .
We show that the facet Q̃T −ek

is visible from q if any only if ek is internally semi-
passive in T . Just like in the previous proof, the hyperplane of Q̃T −ek

is described
as the kernel of the linear functional h : RV → R that has h(1u) = 1 if u ∈ V1 and
h(1u) = 0 if u ∈ V0; here V0, V1 ⊂ V are the shores of the fundamental cut C∗(T, ek),
labeled so that ek points from V0 to V1. We again have h(xek

) = 1 and thus Q̃T −ek
is

visible from q if any only if h(q) < 0. By linearity, we have

h(q) =
m∑

i=1
tih(xei)

/
m∑

j=1
tj .

Here non-zero contributions to the numerator come from the edges of C∗(T, ek).
Namely, those ei that stand parallel to ek (that is, have their heads in V1) have
h(xei

) = 1 and the edges of C∗(T, ek) standing opposite to ek have h(xei
) = −1.

Hence h(q) < 0 if and only if the largest edge of C∗(T, ek), according to <, stands
opposite to ek, i.e., if and only if ek is internally semi-passive in T . □

Proof of Theorem 1.10. We can apply the same construction for an interior point
q ∈ QG as in the proof of Theorem 1.8, only now using the vectors xe for edges of G
(and an arbitrary order). The rest of the proof carries over word-by-word. □

4. Dissections, embedding activities, and some open problems
4.1. A closer look at dissecting tree sets. We hope we have convinced the
reader that dissecting tree sets are quite remarkable objects. In this section we take
a closer look at them, and indicate directions for future research.

First, it would be interesting to see a graph-theoretic characterization of dissecting
tree sets.
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Problem 4.1. Give a combinatorial characterization of dissecting tree sets for undi-
rected graphs and semi-balanced digraphs.

We saw that the distributions of many activity statistics agree for all dissecting
tree sets. We wonder if the reverse of this statement is true in some sense.

Question 4.2. If for a set T of spanning trees (either in an undirected graph or in
a semi-balanced digraph), the distribution of the internal semi-activity statistic agrees
with the h∗-vector (of the relevant polytope) for any fixed edge ordering, does it follow
that T is a dissecting tree set?

Even though we are unaware of an answer to Problem 4.1, we can at least give a
simple sufficient condition for a set of spanning trees that ensures interior disjointness
of the corresponding simplices. We state it in the case of semi-balanced digraphs,
which means that it can also be applied facet-by-facet to the symmetric edge polytope
of any graph.

Proposition 4.3. Let T be a set of spanning trees of the semi-balanced digraph G
such that for any T1, T2 ∈ T there exists a cut C∗ in G such that T1 ∩ C∗ ⊆ (C∗)+

and T2 ∩ C∗ ⊆ (C∗)−. (Here by (C∗)+ we mean the edges of C∗ = (V0, V1) pointing
from the shore V0 to V1, and by (C∗)− we mean the edges of C∗ pointing from V1
to V0.) Then the simplices {QT | T ∈ T } are interior disjoint.

Proof. If T is a set of spanning trees so that the above ‘cut condition’ holds, then for
any two trees T1, T2 ∈ T , it suffices to find a hyperplane separating the interiors of
QT1 and QT2 .

Let C∗ be a cut, with shores V0 and V1, as stipulated in the Proposition. We define
the linear functional h : RV → R by h(1u) = 1 for u ∈ V1 and h(1u) = 0 for u ∈ V0.
Then h(xe) ̸= 0 if and only if e ∈ C∗, furthermore h(xe) = 1 when e ∈ (C∗)+ and
h(xe) = −1 when e ∈ (C∗)−. Hence for each p ∈ QT1 we have h(p) ⩾ 0, and for each
p ∈ QT2 we have h(p) ⩽ 0; moreover, for interior points, we have strict inequalities.
Therefore indeed, QT1 and QT2 are interior disjoint. □

Note the level of similarity between this condition and Postnikov’s necessary and
sufficient local condition for triangulations of root polytopes [13, Lemma 12.6] (which
is extended to the semi-balanced case in [9, Lemma 8.7]).

4.2. Non-robustness of embedding activities. Important motivation of the
present paper comes from our earlier work [9, 8], where we gave formulas that are
analogous to Theorems 1.10 and 1.8, but use semi-activities defined via a ribbon
structure (embedding semi-activities) instead of semi-activities defined via a fixed
edge order. In this section, we show that the formulas using embedding semi-activities
are less robust than the formulas using semi-activities with respect to a fixed order,
in that they do not work for any dissecting tree set. (Unlike the formulas of Theo-
rems 1.10 and 1.8.) The background of this phenomenon is unclear, and we pose it
as an open problem to explain it.

Let us start with the necessary definitions. For more examples and explanations,
see [9, Section 5].

Let G be a directed graph. A ribbon structure of G is an assignment of a cyclic
ordering of the (in- and out-) edges incident to v for each vertex v. For an edge vu,
we denote by vu+ the edge following vu in the cyclic order around v. In addition to
the ribbon structure, let us also fix a vertex v0 and an edge v0v1 of G (we do not care
about the orientation of v0v1). We call the pair (v0, v0v1) the basis.

Let T be a spanning tree of G. Given a ribbon structure and the basis (v0, v0v1),
the tour of T , originally defined by Bernardi [1], is a sequence of node-edge pairs
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with the following rule. The first node-edge pair is (v0, v0v1). For a node-edge pair
(u, uv), if uv /∈ T , then the next node-edge pair is (u, uv+). If uv ∈ T , then the next
node-edge pair is (v, vu+). The sequence ends when the next node-edge pair would
again be (v0, v0v1). (Note that the orientations do not matter in the definition.) By [2,
Lemma 5], each incident node-edge pair occurs exactly once in this sequence.

If our digraph G is semi-balanced, then we can use our ribbon structure and the
resulting tours of our trees to define a specific dissecting tree set. We call a spanning
tree T of a directed graph a Jaeger tree if, in the tour of T , for every non-edge −→uv of T
the pair (u, −→uv) precedes (v, −→uv). It is proved in [9] that (for any ribbon structure and
basis of a semi-balanced digraph) Jaeger trees form a dissecting tree set. We include
here an example of a set of Jaeger trees and point out that in this particular case
they do not induce a triangulation, only a dissection.

p

qr

s

3 · 1s

3 · 1p

3 · 1q

3 · 1r

Figure 3. A dissecting tree set for a semi-balanced digraph that fails
to induce a triangulation. The right-hand panel shows a cross-section
of the root polytope, after dilating by a factor of 3 and appropriately
translating.

Example 4.4. Figure 3 shows a seven-element dissecting tree set for a semi-balanced
digraph G. The graph has a standard orientation (meaning that every edge points from
the blue color class W to the green color class U = {p, q, r, s}), i.e., this belongs to the
class of examples that we first discussed in [7], cf. [7, Example 8.1], and then extended
in [9]. Let us show that the dissection induced by these trees is not a triangulation.

The root polytope QG in this case is five-dimensional, but the phenomenon is
already visible in a 3-dimensional cross-section. Namely, take the set S ⊂ QG where
all three coordinates corresponding to blue vertices are −1/3. A calculation due to
Postnikov [13] (which in this case is not hard to see directly) has it that S is a dilate
of the Minkowski sum

∆pqs + ∆prs + ∆qrs,

where for example the simplex ∆pqs ⊂ RU is the convex hull of 1p, 1q, and 1s. There
is one such simplex for each element of W .

Our dissection of QG induces a subdivision of S and the pieces have similar
Minkowski sum descriptions. Let us concentrate on just two of them, belonging to
the second and fourth trees. The former is a prism (Minkowski sum of a line segment,
a point, and a triangle) and the latter is a parallelepiped. As shown on the right of
Figure 3, these two polytopes intersect in a triangle, which is only half of a rhombus
face of each. This clearly shows that the five-dimensional simplices induced by the
two trees do not meet along a common face, either.
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G T1 T2 T3 T4

Figure 4. A semi-balanced digraph (first panel), and four of its
spanning trees (panels 2-5) that form a triangulating tree set.

Let us now return to arbitrary digraphs and define embedding semi-activities. For
any spanning tree T , the tour of T induces the following ordering ⩽T on the edges
of G: for

−−→
t1h1 and

−−→
t2h2, we put

−−→
t1h1 ⩽T

−−→
t2h2 if (t1, t1h1) precedes (t2, t2h2) in the

tour of T .
We say that an edge e ∈ T is internally embedding semi-passive in T (with respect

to the ribbon structure and basis (v0, v0v1)) if it is internally semi-passive with re-
spect to the edge ordering ⩽T in the sense of Definition 1.6. We define the internal
embedding semi-passivity of T as the number of its internally embedding semi-passive
edges. As in general different trees T induce different orders ⩽T , internal embed-
ding semi-passivities are not determined by a fixed edge ordering. Internal embedding
semi-passivities are the analogues, and in some sense generalizations, of one of the
embedding passivities of Bernardi [2] that he used to give an alternative description
of the Tutte polynomial.

We also define another notion of activity: let us fix a vertex v0 of the directed
graph G, and call it the base point. For a spanning tree T , we say that an edge
e ∈ T is internally basepoint-passive if e points away from v0 in T , furthermore the
fundamental cut C∗(T, e) is not a directed cut (in G).

Remark 4.5. Note that in a bidirected graph no cut is directed, whence for bidirected
graphs, basepoint-passivity of e in T is equivalent to e pointing away from v0 in T .
That is exactly the notion of passivity used in Theorem 1.2.

It is proved in [9, Lemma 6.4] that for edges of Jaeger trees of semi-balanced
digraphs, embedding semi-passivity is equivalent to basepoint-passivity (where we use
the same ribbon structure and basis for defining the Jaeger trees and the embedding
semi-passivities, and we use the vertex from the basis to define basepoint-passivities).
Moreover, in [9] we proved that the generating function of internal embedding semi-
passivities for Jaeger trees gives the h∗-polynomial of the root polytope QG. However,
it is easy to see that in general the two notions of activity are different.

Here we show that if we consider an arbitrary dissecting tree set for our semi-
balanced digraph, then neither internal embedding semi-passivities, nor basepoint-
passivities give the h∗-polynomial of QG anymore.

Take the semi-balanced digraph G depicted in the left panel of Figure 4. We claim
that the trees T1, . . . , T4 of Figure 4 form a dissecting tree set for G. We have already
seen in Example 1.11 that a dissecting tree set for this graph has to have four trees.
Hence by Proposition 4.3, it suffices to find a cut for any two of the trees such that
one of them only intesects the cut in edges going in one of the directions, while the
other tree only intersects the cut in edges going in the other direction. It is not hard
to find such cuts for the trees T1, . . . , T4. For example, for T1 and T2, the elementary
cut consisting of the three horizontal edges is suitable.
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Figure 5. Edge orderings associated to various directed spanning
trees of K3 via a ribbon structure.

We note that the set of trees T1, . . . , T4 is even triangulating. For this, one can
check that the condition obtained in [9, Lemma 8.7] holds.

As we saw in Example 1.11, the h∗-polynomial of QG is x2 + 2x + 1. However,
notice that if we choose the lower left vertex of G as the basepoint v0, then both T1
and T2 have 0 edges pointing away from v0 such that their fundamental cut is not
directed. That is, there are two trees with vanishing basepoint-passivity, whereas the
constant term being 1 in the h∗-polynomial would predict just one such tree. Hence
the statistic of basepoint-passivities does not give the h∗-polynomial for an arbitrary
dissection, indeed not even for an arbitrary triangulation.

Now let us endow G with the ribbon structure induced by the positive orientation
of the plane. Moreover, let us specify a basis (v0, v0v1) by keeping the lower left vertex
as v0 and letting v1 be the lower right vertex. Then one can check that T2 has internal
embedding semi-passivity 0, while the trees T1, T3, and T4 have internal embedding
semi-passivity 1. Hence we do not get the correct h∗-polynomial for this notion of
activity, either.

Regarding symmetric edge polytopes PG of undirected graphs G, we saw in Theo-
rem 1.2 (cf. Remark 4.5) that basepoint-passivities do give the h∗-polynomial for any
dissecting tree set. Let us now show that internal embedding semi-passivities do not
necessarily yield the h∗-polynomial of PG .

For this, let us return to the graph K3. Figure 5 shows its unique dissecting tree
set (cf. Example 1.4), together with the orderings ⩽T associated to the spanning
trees T when considering the ribbon structure induced by the positive orientation
of the plane, the lower right vertex as base vertex, and base edge pointing from the
upper vertex to the lower right vertex. Notice that the first and third spanning trees
both have internal embedding semi-passivity 2; hence, as x2 has coefficient 1 in h∗

K3
(by Example 1.4), this statistic does not give the correct h∗-polynomial. As there is
only one possible choice of dissecting tree set for K3, in fact, it does not give the
h∗-polynomial for any dissecting tree set.

Problem 4.6. Characterize spanning tree statistics that yield the h∗-polynomial of the
root polytope of a semi-balanced digraph/symmetric edge polytope for any dissecting
tree set.

Problem 4.7. What is the reason that for the root polytope of a semi-balanced digraph,
internal embedding semi-passivities give the h∗-polynomial in the case of the Jaeger
tree dissection, but not for an arbitrary dissection?
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