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MAT-free graphic arrangements and a
characterization of strongly chordal graphs

by edge-labeling

Tan N. Tran & Shuhei Tsujie

Abstract Ideal subarrangements of a Weyl arrangement are proved to be free by the mul-
tiple addition theorem (MAT) due to Abe–Barakat–Cuntz–Hoge–Terao (2016). They form a
significant class among Weyl subarrangements that are known to be free so far. The concept of
MAT-free arrangements was introduced recently by Cuntz–Mücksch (2020) to capture a core
of the MAT, which enlarges the ideal subarrangements from the perspective of freeness. The
aim of this paper is to give a precise characterization of the MAT-freeness in the case of type A

Weyl subarrangements (or graphic arrangements). It is known that the ideal and free graphic
arrangements correspond to the unit interval and chordal graphs, respectively. We prove that
a graphic arrangement is MAT-free if and only if the underlying graph is strongly chordal. In
particular, it affirmatively answers a question of Cuntz–Mücksch that MAT-freeness is closed
under taking localization in the case of graphic arrangements.

1. Introduction
A hyperplane arrangement is said to be free if its logarithmic derivation module is

a free module [17, 12] (cf. Definition 2.1). An important class of free arrangements is
that of Weyl arrangements defined by the positive roots of irreducible root systems
in Euclidean spaces. There has been considerable interest in finding and characteriz-
ing free subarrangements of a Weyl arrangement by combinatorial structures. In the
case of type A, Weyl subarrangements are completely determined by graphic arrange-
ments whose freeness is fully characterized by chordal (or supersolvable) graphs [15, 5]
(cf. Theorem 2.3). Several certain cases of type B were studied in the connection with
signed graphs [5, 16, 19] yet no complete characterization is known. Arguably, the
most fundamental and significant class of Weyl subarrangements known to be free is
that of ideal subarrangements derived by the multiple addition theorem (MAT) due
to Abe–Barakat–Cuntz–Hoge–Terao [1] (cf. Theorem 2.7). In fact, the MAT applies
in a more general setting; based on that Cuntz–Mücksch [3] introduced a new class
of free arrangements, the so called MAT-free arrangements (cf. Definition 2.4). MAT-
free arrangements are new examples of arrangements having combinatorial freeness [3,
Lemma 18] that has received increasing attention in recent years (e.g. [2, 10]).
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We are especially interested in characterizations of freeness-related properties of
type A Weyl subarrangements (or graphic arrangements in Rℓ) in which consid-
erable power and development of graph theory would be brought to bear. It is
known that the ideal graphic arrangements are parametrized by unit interval graphs
e.g. [20] (cf. Theorem 2.8). Our main result is a complete characterization of MAT-
free graphic arrangements over arbitrary fields by means of strongly chordal graphs
(cf. Definition 2.9). We summarize the results in Table 1.

We find it interesting that the concept of MAT-freeness which was recently in-
troduced is captured by the notion of strongly chordal graphs which appeared much
earlier in literature. This can also be regarded as an analogue of the classical theory
of freeness and chordality. We will see in §5.1 that many important concepts in the
classical theory such as simplicial vertices and perfect elimination orderings of chordal
graphs have their analogous MAT- versions.

Graph class Weyl subarrangement class Location

chordal free [15], [5, Theorem 3.3]

strongly chordal MAT-free Theorem 2.10

unit interval ideal e.g. [20, Theorem 16]

Table 1. Interplay between graphs and Weyl arrangements in type
A. The third row (in bold) indicates the main result of the paper.

Our main result has a number of applications. From the viewpoint of arrange-
ment theory, it gives an affirmative answer to a question of Cuntz–Mücksch in
the case of graphic arrangements that MAT-freeness is closed under taking lo-
calization (cf. Corollary 2.11). Thanks to the relation {unit interval graphs} ⊊
{strongly chordal graphs}, it also gives a different and graphical proof that the ideal
graphic arrangements are MAT-free (cf. §6(A)). From the viewpoint of graph theory,
our main result contributes a new characterization of strongly chordal graphs via a
special type of edge-labelings, which we shall call MAT-labelings (cf. Definition 4.2).

A key ingredient in our proof that strong chordality implies MAT-freeness (the
harder part) is a characterization of strongly chordal graphs by their clique intersec-
tion posets due to Nevries–Rosenke [11] (cf. Theorem 3.4). Our strategy is to construct
an MAT-labeling for a given strong chordal graph which building blocks are complete
induced subgraphs of the graph. The clique intersection poset of a chordal graph
consists of all intersections of maximal cliques of the graph which serves as essential
machinery in the construction. We believe that it is worth pursuing further the notion
of clique intersection poset for MAT-freeness of larger class of arrangements (see §6(F)
for more details).

The remainder of the paper is organized as follows. In §2.1, we recall the defi-
nitions and basic facts of free arrangements and chordal graphs. In §2.2, we recall
the definitions of MAT-free arrangements and strongly chordal graphs, and give the
statement of our main result. In §3, we recall some other useful characterizations of
(strongly) chordal graphs. In §4.1, we introduce the notion of MAT-labeling of graphs.
In §4.2, we prove the “only if” part of our main Theorem 2.10 (MAT-freeness implies
strong chordality). In §5.1, we introduce the notions of MAT-simplicial vertices and
MAT-perfect elimination orderings. In §5.2, we prove the “if” part of our main The-
orem 2.10 (strong chordality implies MAT-freeness). The proof the main theorem is
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also included with an example in the end of this section. Finally, in §6, we address
some further remarks and suggest some problems for future research.

2. Arrangements, graphs and statement of the main result
2.1. Free arrangements. We first review some basic concepts and preliminary
results on free arrangements. Our standard reference is [12]. Let K be a field, ℓ be a
positive integer and V = Kℓ be the ℓ-dimensional vector space over K. A hyperplane
in V is a linear subspace of codimension one of V . An arrangement is a finite
set of hyperplanes in V . Let A be an arrangement in V . Define the intersection
lattice L(A) (of flats) of A by

L(A) :=
{ ⋂

H∈B
H

∣∣∣∣ B ⊆ A
}

,

with the partial order given by reverse inclusion: X ⩽ Y ⇔ Y ⊆ X for X, Y ∈ L(A).
We agree that V is the unique minimal element in L(A) as the intersection over
the empty set. Thus L(A) is a geometric lattice which can be equipped with rank
function r(X) := codim(X) for X ∈ L(A). We also define rank(A) as the rank of the
maximal element

⋂
H∈A H of L(A).

The characteristic polynomial χA(t) ∈ Z[t] of A is defined by

χA(t) :=
∑

X∈L(A)

µ(X)tdim X ,

where µ denotes the Möbius function µ : L(A) → Z defined recursively by

µ (V ) = 1 and µ(X) = −
∑

Y ∈L(A)
X⊊Y

µ(Y ).

Let {x1, . . . , xℓ} be a basis for the dual space V ∗ and let S = K[x1, . . . , xℓ]. The
defining polynomial Q(A) of A is given by

Q = Q(A) :=
∏

H∈A
αH ∈ S,

where αH = a1x1 + · · · + aℓxℓ (ai ∈ K) satisfies H = ker αH . The module D(A) of
logarithmic derivations is defined by

D(A) := {θ ∈ Der(S) | θ(Q) ∈ QS},

where Der(S) = {φ : S → S | φ is K-linear, φ(fg) = fφ(g) + gφ(f) for any f, g ∈ S}
is the set of all derivations of S over K. Note that Der(S) is a free S-module with ba-
sis {∂/∂x1, . . . , ∂/∂xℓ} consisting of the usual partial derivatives. A non-zero element
φ = f1 · ∂/∂x1 + · · · + fℓ · ∂/∂xℓ ∈ Der(S) is homogeneous of degree b written
deg φ = b if each non-zero polynomial fi ∈ S for 1 ⩽ i ⩽ ℓ is homogeneous of degree b.

Definition 2.1 (Free arrangements and their exponents [17, 12]). An arrangement A
is called free with the multiset exp(A) = {d1, . . . , dℓ} of exponents if D(A) is a free
S-module with a homogeneous basis {θ1, . . . , θℓ} such that deg θi = di for each i.

Remarkably, when an arrangement is free, the exponents turn out to be the roots
of the characteristic polynomial by the following result due to Terao.

Theorem 2.2 (Factorization theorem [18], [12, Theorem 4.137]). If A is free with
exp(A) = {d1, . . . , dℓ}, then

χA(t) =
ℓ∏

i=1
(t − di).
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In general it is very hard to characterize the freeness of an arrangement by com-
binatorial data. It is only possible in some very special classes of arrangements. One
of those is that of graphic arrangements which we shall recall shortly. Let G be a
simple graph (i.e. no loops and no multiple edges) with vertex set VG = {v1, . . . , vℓ}
and edge set EG. The graphic arrangement AG in Kℓ is defined by

AG := {xi − xj = 0 | {vi, vj} ∈ EG}.

A simple graph is chordal if it does not contain an induced cycle of length greater
than three, or Cn-free(1) for all n > 3 in shorthand notation. The freeness of graphic
arrangements is completely characterized by chordality.

Theorem 2.3 (Freeness and chordality [15], [5, Theorem 3.3]). Let G be a simple
graph. The graphic arrangement AG is free if and only if G is chordal.

2.2. MAT-free arrangements and the main result. Now we recall the concept
of MAT-free arrangements following [3]. For X ∈ L(A), we define the localization
of A on X by

AX := {K ∈ A | X ⊆ K},

and define the restriction AX of A to X by
AX := {K ∩ X | K ∈ A ∖ AX}.

For a positive integer n, denote [n] := {1, 2, . . . , n}.

Definition 2.4 (MAT-partition and MAT-free arrangements [3, Lemma 19 and
Definition 20]). Let A be a nonempty arrangement. A partition (disjoint union of
nonempty subsets) π = (π1, . . . , πn) of A is called an MAT-partition if the follow-
ing three conditions hold for every k ∈ [n].
(MP1) rank(πk) = |πk|.
(MP2) There does not exist H ′ ∈ Ak−1 such that

⋂
H∈πk

H ⊆ H ′, where Ak−1 :=
π1 ⊔ · · · ⊔ πk−1 (disjoint union) and A0 := ∅ℓ is the ℓ-empty arrangement.

(MP3) For each H ∈ πk, |Ak−1| − |(Ak−1 ∪ {H})H | = k − 1.
An arrangement is called MAT-free if it is empty or admits an MAT-partition.

All irreducible complex reflection arrangements that are MAT-free were character-
ized in [3]. The name “MAT-free arrangement” is made by inspiration of the multiple
addition theorem due to Abe-Barakat-Cuntz-Hoge-Terao.

Theorem 2.5 (Multiple addition theorem (MAT) [1, Theorem 3.1]). Let A′ be a free
arrangement with exp(A′) = {d1, . . . , dℓ}⩽ (this notation means d1 ⩽ · · · ⩽ dℓ),
and p ∈ [ℓ] the number of maximal exponents. Let H1, . . . , Hq /∈ A′ be hyperplanes.
Define A := A′ ∪ {H1, . . . , Hq} and A′′

j := (A′ ∪ {Hj})Hj . Assume that the following
three conditions are satisfied:

(1) X := H1 ∩ · · · ∩ Hq is q-codimensional.
(2) X ⊈

⋃
H∈A′ H.

(3) |A′| − |A′′
j | = d (j ∈ [q]).

Then q ⩽ p and A is free with exp(A) = {d1, . . . , dℓ−p, dp−q, (d + 1)q}. Here de means
d appears e ⩾ 0 times in the multiset of exponents.

The addition of {H1, . . . , Hq} to the arrangement A′ resulting in A = A′ ∪
{H1, . . . , Hq} in Theorem 2.5 is sometimes called an MAT-step [10, Definition 2.11].
Thus any MAT-free arrangement is a free arrangement which can be constructed

(1)In general, a graph is called H-free if it does not contain H as an induced subgraph. It is not
to be confused with “MAT-free arrangement.”
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inductively from the empty arrangement by MAT-steps. For later use, we state the
following corollary (see also [10, Remark 2.15]).

Corollary 2.6. Suppose that A is MAT-free with MAT-partition π = (π1, . . . , πn).
Then the following statements hold.

(1) For each k ∈ [n], Ak is MAT-free with MAT-partition (π1, . . . , πk).
(2) A is free with exp(A) = {d1, . . . , dℓ}⩽ given by the block sizes of the dual

partition of π, that is, di = |{k | |πk| ⩾ ℓ − i + 1}| for all i ∈ [n].

A remarkable application of the multiple addition theorem (MAT) is an affirmative
answer for a conjecture of Sommers–Tymoczko [14] on the freeness of ideal subarrange-
ments of Weyl arrangements.

Let us recall it. Let K = R and V = Rℓ with the standard inner product (·, ·).
Let Φ be an irreducible (crystallographic) root system in V , with a fixed positive
system Φ+ ⊆ Φ and the associated set of simple roots ∆ := {α1, . . . , αℓ}. For α ∈ Φ,
define Hα := {x ∈ V | (α, x) = 0}. For Ψ ⊆ Φ+, the Weyl subarrangement AΨ is
defined by AΨ := {Hα | α ∈ Ψ}. In particular, AΦ+ is called the Weyl arrangement.

Define the partial order ⩾ on Φ+ as follows: β1 ⩾ β2 if β1 − β2 ∈
∑ℓ

i=1 Z⩾0αi. A
subset I ⊆ Φ+ is an ideal of Φ+ if for β1, β2 ∈ Φ+, β1 ⩾ β2, β1 ∈ I implies β2 ∈ I.
For an ideal I ⊆ Φ+, the corresponding Weyl subarrangement AI is called the ideal
subarrangement.

Theorem 2.7 (Ideal MAT-free theorem [1, Theorem 1.1]). Any ideal subarrangement
AI is MAT-free, hence free.

In this paper we are mainly interested in the graphic arrangements hence root
systems of type A. We will use the following construction of type A root systems.
Let {ϵ1, . . . , ϵℓ} be an orthonormal basis for V , and define U := {

∑ℓ
i=1 riϵi ∈ V |∑ℓ

i=1 ri = 0} ≃ Rℓ−1. The set Φ(Aℓ−1) = {±(ϵi −ϵj) | 1 ⩽ i < j ⩽ ℓ} is a root system
of type Aℓ−1 in U , with a positive system Φ+(Aℓ−1) = {ϵi−ϵj | 1 ⩽ i < j ⩽ ℓ} and the
associated set of simple roots ∆(Aℓ−1) = {αi := ϵi − ϵi+1 | 1 ⩽ i ⩽ ℓ − 1}. Thus one
can see that there is a one-to-one correspondence between the graphic arrangements
in Rℓ and type Aℓ−1 Weyl subarrangements.

In the case of type A, the ideal subarrangements can be parametrized by unit
interval graphs. Recall that a simple graph is a unit interval graph if it is chordal
and (claw, net, 3-sun)-free (see Figure 1).

Theorem 2.8 (Ideals and unit interval graphs e.g. [20, Theorem 16]). Let G be a sim-
ple graph with ℓ vertices. There exists a vertex-labeling of G using elements from [ℓ] so
that the graphic arrangement AG is an ideal subarrangement of the Weyl arrangement
AΦ+(Aℓ−1) if and only if G is a unit interval graph.

In the study of interplay between arrangements and graphs it is thus natural to ask
which graph class corresponds to the MAT-free graphic arrangements? An answer to
this question concerns strongly chordal graphs, a class squeezed between the classes
of unit interval and chordal graphs.

Definition 2.9 (Strongly chordal graphs e.g. [6]). An n-sun (or trampoline) Sn

(n ⩾ 3) is a (chordal) graph with vertex set VSn
= {u1, . . . , un} ∪ {v1, . . . , vn} and

edge set

ESn = { {ui, uj} | 1 ⩽ i < j ⩽ n } ∪ { {vi, uj} | 1 ⩽ i ⩽ n, j ∈ {i, i + 1} } ,

where we let un+1 = u1. A simple graph is strongly chordal if it is chordal and
n-sun-free for n ⩾ 3. See Figure 1 for the n-suns with n = 3, 4.
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claw net 3-sun 4-sun

Figure 1. Some obstructions to unit interval and strongly chordal
graphs.

We are ready to state the main result of the paper (whose proof will be presented
in the end of §5.2).

Theorem 2.10 (MAT-freeness and strong chordality). Let G be a simple graph and K
be a field. The graphic arrangement AG in Kℓ is MAT-free if and only if G is strongly
chordal.

Cuntz–Mücksch [3, Problem 48] asked if the class of MAT-free arrangements is
closed under taking localization. An important consequence of our Theorem 2.10 is
an affirmative answer for this question in the case of graphic arrangements.

Corollary 2.11. MAT-freeness of graphic arrangements is closed under taking lo-
calization.

3. More on (strongly) chordal graphs
In this section, we recall some other characterizations of (strongly) chordal graphs

that will be useful for our discussion later.
First we collect terminology and notation from graph theory. Let G = (VG, EG)

be a simple graph. For S ⊆ VG, denote the (vertex-)induced subgraph of S by
G[S] = (S, EG[S]), where EG[S] = {{u, v} ∈ EG | u, v ∈ S}. If v is a vertex of G
(sometimes v ∈ G is used) then by G∖v we mean the induced subgraph G[VG ∖{v}].
For F ⊆ EG, define the subgraphs GF := (VG, F ) and G ∖ F := (VG, EG ∖ F ). If e is
an edge of G (sometimes e ∈ G is used) then by G∖e we mean the subgraph G∖{e}.

An n-cycle Cn (n ⩾ 3) is a graph with vertex set {v1, v2, . . . , vn} and edge
set {{vi, vi+1} | 1 ⩽ i ⩽ n} where vn+1 = v1. The 3-cycle is also called a trian-
gle. The length of a cycle is its number of edges. A chord of C is an edge not in the
edge set of C whose endvertices are in the vertex set.

A clique of G is a subset of VG such that every two distinct vertices are adjacent.
For each v ∈ VG, its neighborhood in G is NG(v) = {u ∈ VG | {u, v} ∈ EG}. A ver-
tex v ∈ VG is called simplicial if its neighborhood is a clique. An ordering (v1, . . . , vℓ)
of G (a linear order on VG) is called a perfect elimination ordering (PEO) if vi

is simplicial in the induced subgraph G[{v1, . . . , vi}] for each i ∈ [ℓ]. The following
characterization of chordal graphs is useful to determine the exponents of the corre-
sponding graphic arrangement (e.g. [5, Lemma 3.4]).

Theorem 3.1 (Chordality and PEO [7]). A simple graph is chordal if and only if it
has a perfect elimination ordering.

Let a, b ∈ VG be two distinct vertices which belong to the same connected compo-
nent of G. A subset S ⊆ VG is called an (a, b)-separator if a and b belong to different
connected components of G[VG ∖ S]. An (a, b)-separator is minimal if it does not
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properly contain any (a, b)-separator. A minimal vertex separator is a minimal
(a, b)-separator for some a, b ∈ VG. The following characterization of chordality will
also be useful for some inductive arguments later.

Theorem 3.2 ([4, Theorem 1]). A simple graph is chordal if and only if every minimal
vertex separator is a clique.

A maximal clique is a clique that it is not a subset of any other clique. A largest
(or maximum) clique is a clique that has the largest possible number of vertices.
Denote by K(G) the set of all maximal cliques of G.

Let G be a chordal graph. Let PG be the poset consisting of all possibly-empty
intersections of maximal cliques of G, i.e,

PG =
{ ⋂

C∈B
C

∣∣∣∣ ∅ ̸= B ⊆ K(G)
}

,

where the partial order is given by inclusion X1 ⩽ X2 ⇔ X1 ⊆ X2 for X1, X2 ∈ PG.
We call PG the clique intersection poset(2) of G. Note that PG is a meet-semilattice
(not necessarily graded) whose maximal elements are the maximal cliques of G, and
minimal element 0̂ :=

⋂
C∈K(G) C ∈ PG is the clique consisting of the dominating

vertices(3) of G. We call an element of PG a node.

Remark 3.3. Ho-Lee [8, Lemma 2.1] showed that a nonempty subset S ⊆ VG is a
minimal vertex separator if and only if S = C ∩ C ′ for distinct maximal cliques C
and C ′ forming an edge in some clique tree of G. Therefore every minimal vertex
separator of G belongs to PG.

A k-crown(4) (k ⩾ 1) is a poset on {x1, . . . , xk, y1, . . . , yk} with relations xi < yi

and xi < yi+1 for all 1 ⩽ i ⩽ k (counted modulo k) and there are no other relations.
See Figure 2 for the k-crowns with k = 3, 4. A poset P is called k-crown-free if
there exists no induced subposet(5) of P isomorphic to the k-crown. The following
characterization of strongly chordal graphs will play a crucial role in the proof of the
“if” part of our main Theorem 2.10 (strong chordality implies MAT-freeness §5.2).

Theorem 3.4 (Strong chordality and clique intersection poset [11, Theorem 1]). A
chordal graph G is strongly chordal if and only if its clique intersection poset PG is
k-crown-free for all k ⩾ 3.(6)

4. MAT-freeness implies strong chordality
4.1. MAT-labeling of graphs. In this subsection, we show that MAT-free graphic
arrangements (Definition 2.4) can be completely determined by a special edge-labeling

(2)The poset PG ∖{∅} where ∅ is the empty set was first defined in [11] where its Hasse diagram
is called clique arrangement. It is not to be confused with “hyperplane arrangement.”

(3)A dominating vertex is a vertex that is adjacent to all other vertices of the graph. The presence
of minimum element 0̂ (possibly the empty set) is helpful for us, e.g. to define the rank of nodes in
Lemma 5.10.

(4)The k-crown here plays a role of bad k-cycle in [11]. More precisely, there exists an induced
k-crown of the clique intersection poset if and only if there exists an induced bad k-cycle of the
clique arrangement. The bottom and top elements of a k-crown are the starters and terminals of
the corresponding bad k-cycle respectively. Also, it is not to be confused with the k-crown graph
which is a graph on {u1, . . . , un} ∪ {v1, . . . , vn} and with an edge from ui to vj whenever i ̸= j.

(5)A poset (Q,⩽Q) is an induced subposet of a poset (P,⩽P ) if Q ⊆ P and for any a, b ∈ Q it
holds that a ⩽Q b if and only if a ⩽P b.

(6)It is not hard to see that PG is k-crown-free for all k ⩾ 3 if and only if PG∖{∅} is k-crown-free
for all k ⩾ 3.
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x1 x2 x3

y1 y2 y3

3-crown

x1 x2 x3 x4

y1 y2 y3 y4

4-crown

Figure 2. Hasse diagrams of crowns.

of graphs. First we show that the condition of being admitted a “partition” of a
(nonempty) MAT-free arrangement is actually implied by the three conditions (MP1),
(MP2), and (MP3).

Proposition 4.1. An arrangement A is MAT-free if and only if A can be decomposed
into a disjoint union of possibly-empty subsets π1, . . . , πn of A satisfying (MP1),
(MP2), and (MP3).

Proof. If A = ∅, then the statement is clear. Suppose A ≠ ∅. We only need to
show the “if” part, namely, the existence of a disjoint union of possibly-empty sub-
sets π1, . . . , πn of A satisfying (MP1), (MP2), and (MP3) implies the existence of an
MAT-partition of A.

First we show that π1 ̸= ∅. Suppose to the contrary that π1 = ∅. Thus n ⩾ 2.
Let k ⩾ 2 be the minimal integer such that πk ̸= ∅. Then (MP3) yields 0 = |Ak−1| ⩾
k − 1 ⩾ 1, a contradiction. Thus π1 ̸= ∅.

Let p := max{1 ⩽ i ⩽ n | πi ̸= ∅}. We will show that πk ̸= ∅ for all k ∈ [p]
which in turn implies that (π1, . . . , πp) is an MAT-partition of A. Suppose to the
contrary that there exists 2 ⩽ k < p such that πk = ∅ and choose minimal such k. Set
B′ := π1∪· · ·∪πk−1. By definition, B′ is MAT-free with MAT-partition (π1, . . . , πk−1).
Also, the maximal exponents of B′ are equal to k−1. Let q := min{k < i ⩽ p | πi ̸= ∅}.
Since πq ̸= ∅, we can take H ∈ πq and write B := B′ ∪ {H}. It is a known fact(7)

in the theory of free arrangements that |B′| − |BH | ⩽ k − 1. However, (MP3) implies
|B′| − |BH | = q − 1 > k − 1, a contradiction. This completes the proof. □

An edge-labeled graph is pair (G, λ) where G is a simple graph and λ : EG → Z>0
is a map, called (edge-)labeling. Now we define a labeling of graphs which charac-
terizes the MAT-freeness of graphic arrangements.

Definition 4.2 (MAT-labelings). Let (G, λ) be an edge-labeled graph. Let πk :=
λ−1(k) ⊆ EG and Ek := π1 ⊔ · · · ⊔ πk for every k ∈ Z>0 and E0 := ∅. We say
that λ is an MAT-labeling if the following conditions hold for every k ∈ Z>0.
(ML1) πk is a forest.
(ML2) cl(πk) ∩ Ek−1 = ∅. Here cl(F ) for F ⊆ EG denotes the closure of F in the

matroid sense. Namely, an edge e ∈ EG is in cl(F ) when the two endvertices
of e are connected by edges in F .

(ML3) Every e ∈ πk forms exactly k − 1 triangles (3-cycles) with edges in Ek−1.

(7)Here is the precise statement: “Let A be an arrangement and let H ∈ A. If A′ := A ∖ {H} is
free with maximal exponent m, then |A′|−|AH | ⩽ m.” We believe that this fact is well known among
experts, but we give here a short proof for the sake of completeness. There exists a polynomial B
such that deg B = |A′| − |AH | and D(A′)αH is contained in the ideal (αH , B) ⊆ S [12, Lemma 4.39
and Proposition 4.41]. If deg B > m, then D(A′)αH ⊆ (αH), hence D(A′) = D(A). Therefore A is
free and exp(A) = exp(A′). This implies |A′| = |A|, a contradiction. Thus |A′| − |AH | = deg B ⩽ m.
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Proposition 4.3. Let G be a simple graph and K be a field. The graphic arrangement
AG in Kℓ is MAT-free if and only if G admits an MAT-labeling.

Proof. This is a translation of Definition 2.4 into graphical terms with the use of
Proposition 4.1. □

Thus characterizing the MAT-freeness of graphic arrangements amounts to char-
acterizing the graphs having MAT-labelings. Here are first and simple facts on MAT-
labelings. Denote by Kℓ the complete graph on ℓ vertices.

Proposition 4.4. If λ is an MAT-labeling of Kℓ, then |πk| = ℓ − k for all k ∈ [ℓ − 1].

Proof. The graphic arrangement AKℓ
(in Rℓ) is precisely the Weyl arrangement

of type Aℓ−1 (also known as the braid arrangement) which has exponents
{0, 1, 2, . . . , ℓ − 1}. Corollary 2.6 completes the proof. □

Remark 4.5. In fact, Kℓ always has an MAT-labeling λ. We can see this from The-
orem 2.7 as Kℓ corresponds to a positive system (in particular, an ideal) of a root
system of type A. More precisely, λ : EKℓ

→ Z>0 is given by λ({vi, vj}) = j − i for
1 ⩽ i < j ⩽ ℓ according to the height(8) of positive roots. Also, one can check directly
that this labeling satisfies (ML1), (ML2) and (ML3). We will see a different(9) (or
nonisomorphic) labeling of Kℓ in Lemma 5.6(2) (see also Figure 7).

It is important to know whether or not a restriction of an MAT-labeling is also
an MAT-labeling. The proposition below states that it is enough to check the third
condition.

Proposition 4.6. Let λ be an MAT-labeling of a simple graph G and F ⊆ EG. Then
the restriction λ|F is an MAT-labeling of the subgraph GF = (VG, F ) if and only if λ|F
satisfies (ML3).

Proof. Since (λ|F )−1(k) = πk ∩ F ⊆ πk and πk is a forest, (λ|F )−1(k) is also a forest.
Moreover, clGF

(πk ∩ F ) ∩ (Ek−1 ∩ F ) ⊆ clG(πk) ∩ Ek−1 = ∅. Thus (ML1) and (ML2)
are automatically satisfied. □

Lemma 4.7. Let λ be an MAT-labeling of a simple graph G and F1, F2 ⊆ EG. If λ|F1

and λ|F2 are MAT-labelings, then λ|F1∪F2 is an MAT-labeling.

Proof. For every subset F ⊆ EG and k ∈ Z>0, let πF
k := λ|−1

F (k) = πk ∩ F . By
Proposition 4.6, it suffices to prove that λ|F1∪F2 satisfies (ML3).

Let e ∈ πF1∪F2
k = πF1

k ∪ πF2
k . Without loss of generality, we may assume e ∈ πF1

k .
Since λ|F1 is an MAT-labeling, e forms at least k − 1 triangles with edges in Ek−1 ∩
(F1 ∪ F2). Moreover, since λ is an MAT-labeling, e forms at most k − 1 triangles
with edges in Ek−1 ∩ (F1 ∪ F2). Therefore e forms exactly k − 1 triangles with edges
in Ek−1 ∩ (F1 ∪ F2). □

4.2. Proof of the implication “MAT-free ⇒ strongly chordal”. In this
subsection we prove the “only if” part of our main Theorem 2.10 (MAT-freeness
implies strong chordality).

First we need a few preliminary results. Let G = (VG, EG) be a simple graph.
Let χG(t) be the chromatic polynomial of G (the polynomial that counts the
number of proper vertex colorings of G). It is known that χG(t) = χAG

(t) (e.g. [12,

(8)The height of a positive root β =
∑

α∈∆ cαα ∈ Φ+ is defined by
∑

α∈∆ cα.
(9)Two edge-labeled graphs (G1, λ1) and (G2, λ2) are isomorphic if there exists a bijection

σ : VG1 → VG2 such that {vi, vj} ∈ EG1 if and only if {σ(vi), σ(vj)} ∈ EG2 with λ1({vi, vj}) =
λ2({σ(vi), σ(vj)}). If G1 = G2 = G, then we say that two labelings λ1 and λ2 are the same (or
isomorphic) if (G, λ1) and (G, λ2) are isomorphic.
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Theorem 2.88]). Let ω(G) denote the clique number, the number of vertices in a
largest clique of G. Recall that K(G) denotes the set of all maximal cliques of G.

Proposition 4.8. Let G be a chordal graph. Then the following statements hold.
(1) The maximal exponents of AG are equal to ω(G) − 1. In addition, the number

of maximal exponents of AG equals the number of largest cliques of G.
(2) If λ is an MAT-labeling of G, then the endvertices of each e ∈ πn where

n = ω(G) − 1 are contained in a unique maximal clique of G. Further-
more, the map ϕ : πn → K(G) defined by ϕ(e) = the maximal clique con-
taining the endvertices of e induces a bijection πn ≃ ϕ(πn) and ϕ(πn) =
{all largest cliques of G}.

Proof. First we prove (1). When G = Kℓ, ω(G) = ℓ and χG(t) = t(t−1) · · · (t−ℓ+1).
The assertions clearly hold.

We may assume that ℓ ⩾ 3 and G is not complete. We proceed by induction
on ℓ = |VG|. Since G is not complete, there exist two nonadjacent vertices a, b ∈ VG.
Let S ⊆ VG be a minimal (a, b)-separator. Then VG is decomposed as VG = A⊔S ⊔B,
where a ∈ A and b ∈ B. Let G1 := G[A ⊔ S] and G2 := G[S ⊔ B]. Note that
these G1 and G2 are chordal. Moreover, G[S] is complete (Theorem 3.2) and χG(t) =
χG1(t)χG2(t)/χG[S](t) (e.g. [13, Theorem 3]).

Let m1 and m2 denote the numbers of cliques consisting of ω(G) many vertices
in G1 and G2, respectively. Since there is no clique of G containing both vertices
in A and in B, the number of largest cliques of G equals m1 + m2. By the induction
hypothesis, the chromatic polynomials of G1 and G2 can be expressed as χG1(t) =
(t−ω(G)+1)m1f(t) and χG2(t) = (t−ω(G)+1)m2g(t), where f(t), g(t) ∈ Z[t] are the
products of some linear factors with roots strictly smaller than ω(G) − 1. Therefore
χG(t) = (t−ω(G)+1)m1+m2f(t)g(t)/χG[S](t). Since χG[S](t) = t(t−1) · · · (t−|S|+1)
and |S| < ω(G) (Remark 3.3), the maximal exponents of G are equal to ω(G)−1 and
the number of maximal exponents of G is m1 + m2.

Now we prove part (2). If n = 0, the assertions hold trivially. If n = 1, then G is a
forest and λ is a constant labeling whose value is 1. Hence the assertions also hold.

Now suppose n ⩾ 2. Let e ∈ πn. Clearly, there exists C ∈ K(G) such that e ∈ G[C].
Suppose that there exist two distinct C1, C2 ∈ K(G) such that e ∈ G[C1 ∩ C2].
Since λEG∖e

is an MAT-labeling, AG∖e is free and hence G ∖ e is chordal. By the
maximality of C1, C2, there exist u ∈ C1 ∖C2 and v ∈ C2 ∖C1 such that {u, v} /∈ EG.
Then u, v and the endvertices of e form a 4-cycle which is chordless in G ∖ e, a
contradiction. Thus the endvertices of each edge in πn are contained in exactly one
maximal clique of G. Therefore the map ϕ is well-defined. Moreover, |ϕ(πn)| ⩽ |πn|.

Let G′ := G ∖ πn. The restriction λ|EG′ is an MAT-labeling of G′ hence AG′ is
MAT-free. Therefore the maximal exponents of AG′ are equal to n − 1. By part (1),
ω(G′) = ω(G) − 1. Thus every largest clique of G contains the endvertices of at least
one edge in πn. Hence every largest clique of G belongs to ϕ(πn) and |ϕ(πn)| ⩾ |πn|.
Thus ϕ(πn) is precisely the set consisting of the largest cliques. This completes the
proof. □

In general, a restriction of an MAT-labeling is not an MAT-labeling (e.g. when we
restrict to any edge in πk with k > 1). We show below that it is the case for restriction
to certain subset. Recall that PG denotes the clique intersection poset of a chordal
graph G (§3).

Lemma 4.9. If λ is an MAT-labeling of a chordal graph G, then the restriction λ|EG[X]

is an MAT-labeling of the subgraph (VG, EG[X]) for any node X ∈ PG.
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Proof. We proceed by induction on n = ω(G) − 1. Again it is easily seen that the
assertion holds true for n = 0, 1. Now suppose n ⩾ 2. First we consider the case
X = C where C is a largest clique of G. Note that by Proposition 4.6, it suffices to
prove that λ|EG[C] satisfies (ML3).

Let e = {u, v} ∈ πn be the unique edge in πn whose endvertices are contained in C
(Proposition 4.8). The clique C is the union of two largest cliques C ′ = C ∖ {v} and
C ′′ = C ∖ {u} of G′ := G ∖ πn. For W ∈ {C, C ′, C ′′}, define πW

k := λ|−1
EG[W ]

(k) =
πk ∩ EG[W ] for k ∈ [n]. Note that πC

n = {e} and πC
k = πC′

k ∪ πC′′

k for k ∈ [n − 1] since
the restrictions λ|EG[C′] and λ|EG[C′′] are MAT-labelings by the induction hypothesis.

To show (ML3) of λ|EG[C] , it suffices to prove that every edge in πC
k forms at

least k − 1 triangles with edges in Ek−1 ∩ EG[C] because every edge in πC
k forms at

most k − 1 triangles with edges in Ek−1 ∩ EG[C] by (ML3) of λ. When k = n, the
edge e ∈ πC

n forms n − 1 triangles with edges in EG[C] ∖ {e} ⊆ En−1 ∩ EG[C]. We are
left with k ∈ [n − 1]. Let f ∈ πC

k , then f ∈ πC′

k ∪ πC′′

k . Without loss of generality, we
may assume f ∈ πC′

k . Then f forms k − 1 triangles with edges in Ek−1 ∩ EG[C′] ⊆
Ek−1 ∩EG[C]. Therefore λ|EG[C] satisfies (ML3) and hence λ|EG[C] is an MAT-labeling.

Now we treat the case X ∈ PG is not a largest clique of G. First we claim
that EG[X] ∩ πn = ∅. If not, we can find an edge e ∈ EG[X] ∩ πn. Let C denote
the largest clique such that e ∈ EG[C]. By the definition of X, there exists a maximal
clique D of G such that X ⊆ D ̸= C. Thus e ∈ EG[C∩D]. Take a vertex c ∈ C ∖ D.
By the maximality of D, there exists d ∈ D such that {c, d} /∈ EG. Then we obtain
a chordless 4-cycle in G′ = G ∖ πn formed by c, d and the endvertices of e, which
contradicts to the chordality of G′. Thus EG[X] ∩ πn = ∅.

Observe that any maximal but not a largest clique of G is a maximal clique of G′.
If X is the intersection of non-largest maximal cliques in G, then X ∈ PG′ . By the
induction hypothesis, λ|EG[X] =

(
λ|EG′

)
|EG′[X] is an MAT-labeling. Otherwise, X is

contained in a largest clique of G, say C. Let e = {u, v} ∈ πn be the unique edge
in πn whose endvertices are contained in C. Then C = C ′ ∪ C ′′ where C ′ = C ∖ {v}
and C ′′ = C ∖ {u} are largest cliques of G′. By the preceding paragraph, e /∈ EG[X]
hence either u /∈ X or v /∈ X. Thus either X ⊆ C ′′ or X ⊆ C ′. Hence we may
replace C by C ′ or C ′′ in the definition of X. Therefore the node X is the intersection
of some maximal cliques of G′. Again the induction hypothesis applies. □

We are ready to prove the main result of this subsection.

Theorem 4.10 (MAT-freeness implies strong chordality). If a simple graph G admits
an MAT-labeling, then G is strongly chordal.

Proof. Suppose that G is not strongly chordal. Note that G is chordal by Proposi-
tion 4.3. Then G contains an n-sun Sn (Definition 2.9) as an induced subgraph for
some n ⩾ 3.

Let Z := {u1, . . . , un} be the central clique of Sn, Ti := {ui, vi, ui+1} the vertex
set of the triangle around Z, and Ci a maximal clique of G containing Ti for i ∈ [n].
Let G0 be the subgraph of G with vertex set VG0 := C1 ∪ · · · ∪ Cn and edge set
EG0 := EG[C1] ∪ · · · ∪ EG[Cn]. By Lemmas 4.9 and 4.7, G0 admits an MAT-labeling.

Suppose n ⩾ 4. If {ui, uj} is an edge of G0, then {ui, uj} ∈ EG[Ck] for some k ∈ [n].
Therefore both ui and uj are adjacent to vk. This implies {ui, uj , vk} = Tk and hence
j = i ± 1. Thus the cycle in G0 consisting of edges {u1, u2}, . . . , {un−1, un}, {un, u1}
has no chords and its length is four or more. Therefore G0 is not chordal, which is a
contradiction.

Now we consider n = 3. Then Z = {u1, u2, u3} is a clique of G0. Let K be a
maximal clique of G0 containing Z. Since ui ̸∈ Ci+1 for each i ∈ {1, 2, 3} (C4 = C1),
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the clique K is neither C1, C2, nor C3. Let Xi := Ci ∩ K ⊊ K for each i ∈ {1, 2, 3}.
Then the restrictions λ|EG0[K] and λ|EG0[Xi] are MAT-labelings by Lemma 4.9, where λ
denotes an MAT-labeling of G0. Since EG0 = EG[C1] ∪ EG[C2] ∪ EG[C3], we have
EG0[K] = EG0[X1] ∪ EG0[X2] ∪ EG0[X3]. Therefore

max
{

λ|EG0[K](e)
∣∣∣ e ∈ EG0[K]

}
= max

{
λ|EG0[Xi](e)

∣∣∣ i ∈ {1, 2, 3}, e ∈ EG0[Xi]

}
.

Hence |K| = |Xi| for some i ∈ {1, 2, 3}, which is a contradiction. □

Corollary 4.11. The n-sun Sn admits no MAT-labelings.

5. Strong chordality implies MAT-freeness
5.1. MAT-simplicial vertices and MAT-perfect elimination orderings.
The proof of the “if” part of our main Theorem 2.10 (strong chordality implies
MAT-freeness) requires more effort. We need a deeper understanding of the structure
of graphs having MAT-labelings. In this subsection, we develop a fundamental study
on such graphs analogous to the theory of (strongly) chordal graphs by introducing
MAT- versions of simplicial vertex and perfect elimination ordering.

Definition 5.1 (MAT-simplicial vertices). Given an edge-labeled graph (G, λ), a ver-
tex v ∈ VG is said to be MAT-simplicial if the following conditions hold.
(MS1) v is a simplicial vertex of G, that is, its neighborhood NG(v) is a clique of G.
(MS2) { λ({u, v}) ∈ Z>0 | u ∈ NG(v) } = {1, 2, . . . , degG(v)}, where degG(v) =

|NG(v)| denotes the degree of v in G.
(MS3) For any distinct u1, u2 ∈ NG(v), λ({u1, u2}) < max{λ({u1, v}), λ({u2, v})}.

Next we show the existence of MAT-simplicial vertices in the graphs having MAT-
labelings.

Lemma 5.2. Let (G, λ) be an edge-labeled graph such that |VG| ⩾ 2 and λ is an MAT-
labeling of G.

(1) If G = Kℓ is a complete graph, then the endvertices of the edge with maximal
label are MAT-simplicial.

(2) If G is noncomplete, then (G, λ) has two nonadjacent MAT-simplicial vertices.

Proof. First we prove part (1). Let e0 = {u0, v0} ∈ EG be the edge with
maximal label. It suffices to prove that v0 is MAT-simplicial. First, (MS1)
is clear. Next we show (MS2). Note that λ|EG∖e0

is an MAT-labeling. Then
by Lemma 4.9, the labelings λ|EG[C] and λ|EG[X] are MAT-labelings, where
C := VG ∖ {u0} and X := VG ∖ {u0, v0}. Comparing the exponents of AG[C]
and AG[X], we have { λ({v, v0}) ∈ Z>0 | v ∈ X } = [ℓ − 2]. Since λ(e0) = ℓ − 1,
{ λ({v, v0}) ∈ Z>0 | v ∈ NG(v0) } = [ℓ − 1]. Thus (MS2) is satisfied.

Lastly, we show (MS3). Let u, v ∈ X and write λ({u, v}) = k. We want to
show k < max{λ({u, v0}), λ({v, v0})}. Since both λ|EG[C] and λ|EG[X] are MAT-
labelings, (ML3) implies k ⩽ max{λ({u, v0}), λ({v, v0})}. If the equality happens,
then it contradicts to (ML2) of λ|EG[C] . Therefore k < max{λ({u, v0}), λ({v, v0})}.
Moreover, max { λ({v, u0}) | v ∈ X } = ℓ − 2 < ℓ − 1 = λ(e0), since λ|EG∖v0

is also an
MAT-labeling by Lemma 4.9. Therefore (MS3) holds. Thus v0 is MAT-simplicial.

Now we prove part (2). We proceed induction on ℓ = |VG|. If ℓ = 2, then the
assertion holds trivially. Suppose ℓ ⩾ 3. We may assume that G is connected. So
let a, b ∈ VG be nonadjacent vertices and S a minimal (a, b)-separator. Then S is a
clique by Theorem 3.2 and S ∈ PG by Remark 3.3. Hence λ|EG[S] is an MAT-labeling
of G[S] by Lemma 4.9.
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Let A be the vertex set of the connected component containing a of G ∖ S and
B := VG ∖ (A ∪ S). We will show that λ|EG[A∪S] and λ|EG[B∪S] are MAT-labelings.
By Proposition 4.6, it suffices to show (ML3). Let e ∈ πk ∩ EG[A∪S]. Then e forms
at most k − 1 triangles with edges in Ek−1 ∩ EG[A∪S] since λ is an MAT-labeling.
When e ∈ EG[S], e forms exactly k −1 triangles with edges in Ek−1 ∩EG[S]. Therefore
e forms exactly k − 1 triangles with edges in Ek−1 ∩ EG[A∪S]. Suppose that at least
one endvertex of e belongs to A. Then e cannot form a triangle with a vertex in B.
Hence e forms exactly k − 1 triangles with edges in Ek−1 ∩ EG[A∪S]. Thus λ|EG[A∪S] is
an MAT-labeling. By a similar way, one can prove that λ|EG[B∪S] is an MAT-labeling.

Next we show that A ∖ S contains an MAT-simplicial vertex of G. Note that
if v ∈ A ∖ S is MAT-simplicial in G[A ∪ S], then v is also MAT-simplicial in G since
NG(v) ⊆ A ∪ S. If G[A ∪ S] is a complete graph, then the endvertices of the edge e0
in G[A∪S] with maximal label is MAT-simplicial in G[A∪S] by part (1). Since λ|EG[S]

is an MAT-labeling, at least one endvertex of e0 belongs to A∖S by Proposition 4.4,
which is a desired MAT-simplicial vertex. If G[A ∪ S] is not a complete graph, then
by the induction hypothesis G[A ∪ S] has two nonadjacent MAT-simplicial vertices.
At least one of them belongs to A ∖ S since S is a clique. Thus A ∖ S contains an
MAT-simplicial vertex of G.

Similarly, B ∖ S contains an MAT-simplicial vertex of G. Therefore G has two
nonadjacent MAT-simplicial vertices. □

The following is a first important property of MAT-simplicial vertices.
Proposition 5.3. Let (G, λ) be an edge-labeled graph with |VG| ⩾ 2. Suppose that
v ∈ VG is an MAT-simplicial vertex of (G, λ). The following are equivalent.

(1) λ is an MAT-labeling of G.
(2) λ|EG∖v

is an MAT-labeling of G ∖ v.
Proof. First we prove (1) ⇒ (2). Let π′

k := (λ|EG∖v
)−1(k) = πk ∩ EG∖v and E′

k−1 :=
π′

1⊔· · ·⊔π′
k−1 for k ∈ Z>0. By Proposition 4.6, we only need to prove (ML3) of λ|EG∖v

.
Let e ∈ π′

k. Since e ∈ π′
k ⊆ πk, e forms exactly k − 1 triangles with edges in Ek−1.

These triangles do not contain the vertex v because by (MS3) the number of edges
incident to v with label less than k is at most 1. Therefore e forms exactly k − 1
triangles with edges in E′

k−1. Thus λ|EG∖v
is an MAT-labeling of G ∖ v.

Next we prove (2) ⇒ (1). Let k ∈ Z>0. By (MS2), v is a leaf or an isolated vertex
of πk. Moreover, since π′

k is a forest, πk is a forest. This shows (ML1).
To show (ML2), suppose clG(πk) ∩ Ek−1 ̸= ∅ and take e ∈ clG(πk) ∩ Ek−1. Then

there exists a cycle C in G such that e ∈ C and C ∖ e ⊆ πk. If e is not incident
to v (in particular, v is not a vertex of C), then e ∈ E′

k−1 and C ∖ e ⊆ π′
k. Therefore

e ∈ clG∖v(π′
k) ∩ E′

k−1 = ∅, a contradiction. Hence e is incident to v, and C contains
an edge {v, w} with λ({v, w}) = k. Write e = {u, v}. Then {u, w} ∈ EG by (MS1)
and λ({u, w}) < max{λ({u, v}), λ({v, w})} = k by (MS3). Hence {u, w} ∈ E′

k−1 (in
particular, C has length at least 4). Moreover, {u, w} and C ∖ {{v, w}, e} ⊆ π′

k form
a cycle and hence {u, w} ∈ clG∖v(π′

k) ∩ E′
k−1 = ∅, a contradiction.

Finally, we prove (ML3). Let e ∈ πk. If e ∈ π′
k (i.e, e is not incident to v), then e

forms exactly k − 1 triangles with some edges in E′
k−1. If one endvertex of e is not

adjacent to v, then e and v cannot form a triangle. If both endvertices of e are adjacent
to v, then at least one edge of the triangle containing e and v has label greater than
k by (MS3). In either case, e forms exactly k − 1 triangles with some edges in Ek−1.
Now consider e ∈ πk∖π′

k (i.e. e is incident to v). By (MS2), we can index the elements
of NG(v) as {u1, . . . , ud} where k ⩽ d = degG(v) so that e = {uk, v} and λ({ui, v}) = i
for every i ∈ [d]. Hence e forms exactly k−1 triangles given by {ui, uk, v} for i ∈ [k−1]
with some edges in Ek−1. Thus λ is an MAT-labeling. □
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Definition 5.4 (MAT-PEO). Given an edge-labeled graph (G, λ), an ordering
(v1, . . . , vℓ) of G is said to be a MAT-perfect elimination ordering (MAT-PEO)
of (G, λ) if vi is MAT-simplicial in (Gi, λi) for each i ∈ [ℓ], where Gi := G[{v1, . . . , vi}]
and λi := λ|EGi

.

In particular, any MAT-PEO is a PEO. The theorem below exhibits a strong
connection between MAT-labelings and MAT-PEOs which can be seen as an analogue
of Theorem 3.1.

Theorem 5.5 (MAT-labelings and MAT-PEOs). Given an edge-labeled graph (G, λ),
the following are equivalent.

(1) λ is an MAT-labeling of G.
(2) There exists an MAT-PEO of (G, λ).

Proof. Both implications can be proved by induction on ℓ = |VG|. The implication
(2) ⇒ (1) is easy thanks to Proposition 5.3. Let us show the converse (which is also not
hard). When ℓ = 1, the assertion is true. Suppose ℓ ⩾ 2. By Lemma 5.2, there exists
an MAT-simplicial vertex vℓ of (G, λ). Then λ|EG∖vℓ

is an MAT-labeling of G ∖ vℓ

by Proposition 5.3. By the induction hypothesis, (G∖ vℓ, λ|EG∖vℓ
) has an MAT-PEO

(v1, . . . , vℓ−1). Thus (v1, . . . , vℓ) is an MAT-PEO of (G, λ). □

We complete this subsection by giving two lemmas on (extensions of) MAT-
labelings and MAT-PEOs of complete graphs. MAT-labelings of complete graphs will
play a crucial role in the next subsection.

Lemma 5.6. Let G = Kℓ be a complete graph and W ⊆ VG.
(1) Let λ be an MAT-labeling of G. If (v1, . . . , vr) is an MAT-PEO of

(G[W ], λ|EG[W ]), then (v1, . . . , vr) can be extended to an MAT-PEO
(v1, . . . , vr, . . . , vℓ) of (G, λ).

(2) If λW is an MAT-labeling of G[W ], then λW can be extended to an MAT-
labeling of G.

As a consequence, a complete graph always has an MAT-labeling (and an MAT-PEO)
which can be constructed inductively from any vertex of the graph.

Proof. (1) We proceed by induction on ℓ = |VG|. When ℓ = 1, we have nothing to
prove. Now suppose ℓ ⩾ 2. If W = VG, the assertion holds trivially. Suppose W ⊊ VG.
Let e0 ∈ EG be the edge with maximal label. Since max

{
λ(e) ∈ Z>0

∣∣ e ∈ EG[W ]
}

<
λ(e0) = ℓ − 1, at least one endvertex of e0, say vℓ does not belong to W . By
Lemma 5.2(1), vℓ is MAT-simplicial in G. By the induction hypothesis, there exists
an MAT-PEO (v1, . . . , vr, . . . , vℓ−1) of G∖vℓ. Hence (v1, . . . , vℓ) is a desired ordering.

(2) Without loss of generality, we may assume ℓ ⩾ 2 and |W | = ℓ − 1. By Theo-
rem 5.5, there exists an MAT-PEO (v1, . . . , vℓ−1) of (G[W ], λW ). Let vℓ denote the
vertex in VG ∖ W . We define a labeling λ of G by

λ(e) :=
{

λW (e) if e ∈ EG[W ];
i if e = {vi, vℓ} for i ∈ [ℓ − 1].

We will show that vℓ is MAT-simplicial in (G, λ). Firstly, (MS1) is clear since G
is complete. Secondly, we have { λ({vi, vℓ}) | i ∈ [ℓ − 1] } = [ℓ − 1] and hence (MS2)
holds. Thirdly, for 1 ⩽ i < j < ℓ, we have λ({vi, vj}) ⩽ j − 1 < j = λ({vj , vℓ}),
which shows (MS3). Therefore vℓ is MAT-simplicial in (G, λ). Thus (v1, . . . , vℓ) is an
MAT-PEO in (G, λ) and λ is an MAT-labeling by Proposition 5.3. □

Lemma 5.7. Let G = Kℓ. Suppose that VG = A ∪ B and there exist MAT-
labelings λA, λB , λA∩B of G[A], G[B], G[A ∩ B], respectively such that λA|EG[A∩B] =
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λB |EG[A∩B] = λA∩B. Then there exists an MAT-labeling λ of G such that λ|EG[A] = λA

and λ|EG[B] = λB.

Proof. By Lemma 5.6(1), there exists an MAT-PEO (a1, . . . , ap) of G[A ∩ B] and
its extensions (a1, . . . , ap, ap+1, . . . , ap+q) of G[A] and (a1, . . . , ap, b1, . . . , br) of G[B]
(where p + q + r = ℓ). Define a labeling λ : EG → Z>0 by

λ(e) :=


λA(e) if e ∈ EG[A];
λB(e) if e ∈ EG[B];
p + i + j − 1 if e = {ap+i, bj} (i ∈ [q], j ∈ [r]).

We claim that λ is a desired MAT-labeling of G by induction on r. If r = 0,
then λ = λA and hence the claim holds. Suppose r ⩾ 1. We will prove that br is
MAT-simplicial in (G, λ). The condition (MS1) is clear. Since br is MAT-simplicial
in (G[B], λB),

{ λ({ai, br}) | i ∈ [p] } ∪ { λ({bj , br}) | j ∈ [r − 1] } = [p + r − 1].
By the definition of λ we have λ({ap+i, br}) = p + i + r − 1 (i ∈ [q]). There-
fore { λ({v, br}) | v ∈ NG(br) } = [ℓ − 1] and hence (MS2) holds.

Next we show (MS3), i.e. λ({u, v}) < max{λ({u, br}), λ({v, br})} for any dis-
tinct vertices u, v ∈ NG(br). It is clear when u, v ∈ B since br is MAT-simplicial
in (G[B], λB). Consider the case u = ap+i ∈ A∖B, v = aj ∈ A ∩ B for some i, j with
p+i > j. Then λ({ap+i, aj}) ⩽ p+i−1 < p+i+r−1 = λ({ap+i, br}) since ap+i is MAT-
simplicial in (G, λ|EG[{a1,...,ap+i}]). Now consider u = ap+i ∈ A ∖ B, v = bj ∈ B ∖ A

for some i, j with 1 ⩽ i ⩽ q and 1 ⩽ j < r. Then λ({ap+i, bj}) = p + i + j − 1 <
p + i + r − 1 = λ({ap+i, br}). Thus (MS3) holds and br is an MAT-simplicial vertex
of (G, λ).

By the induction hypothesis, λ|EG∖br
is an MAT-labeling. Using Proposition 5.3,

we conclude that λ is an MAT-labeling. □

5.2. Proof of the implication “strongly chordal ⇒ MAT-free”. In this
subsection we prove the “if” part of our main Theorem 2.10 (strong chordality implies
MAT-freeness). To find an MAT-labeling for a given strongly chordal graph, our
strategy is to find compatible MAT-labelings of the subgraphs induced by all maximal
cliques, then combine the constructions by the following “gluing trick.”

Theorem 5.8 (“Gluing trick”). Let G be a simple graph and suppose that VG =
A ∪ B, EG = EG[A] ∪ EG[B], and A ∩ B is a clique. Assume that there exist MAT-
labelings λA, λB , λA∩B of G[A], G[B], G[A ∩ B], respectively such that λA|EG[A∩B] =
λB |EG[A∩B] = λA∩B. Define λ := λA ∪ λB : EG → Z>0 by λ|A = λA, λ|B = λB, i.e.

λ(e) :=
{

λA(e), if e ∈ EG[A],

λB(e), if e ∈ EG[B].

Then λ is an MAT-labeling of G.

Proof. We proceed by induction on ℓ = |VG|. When ℓ ⩽ 2 the assertion is trivial.
Suppose ℓ ⩾ 3. We may assume A ∖ B ̸= ∅.

We claim that G[A] has an MAT-simplicial vertex in A∖B. First consider the case A
is a clique. Then any MAT-PEO of (G[A ∩ B], λA∩B) is extended to an MAT-PEO
of (G[A], λA) by Lemma 5.6(1), which shows the claim. Next suppose that A is not
a clique. Then G[A] has two nonadjacent MAT-simplicial vertices by Lemma 5.2(2).
At least one of them belongs to A ∖ B since A ∩ B is a clique. Thus, in either case,
G[A] has an MAT-simplicial vertex, say vℓ in A ∖ B. Note that vℓ is MAT-simplicial
also in (G, λ) since NG(vℓ) ⊆ EG[A].
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By Lemma 5.3, λA|EG[A]∖vℓ
is an MAT-labeling. Consider the graph G ∖ vℓ with

the decomposition VG∖vℓ
= (A ∖ {vℓ}) ∪ B. By the induction hypothesis, we have

that λ|EG∖vℓ
is an MAT-labeling. Using Lemma 5.3 again, we conclude that λ is an

MAT-labeling of G. □

The lemma below describes an important property (of antichains) of the clique
intersection poset PG.

Lemma 5.9. Let G be a strongly chordal graph and let T ⊆ PG be an antichain
with |T | ⩾ 2. Then there exist distinct X0, Y0 ∈ T such that X0 ∩ Y0 ⊇ X0 ∩ Y
for all Y ∈ T ∖ {X0}.

Proof. Let Q be the subposet of PG induced by { X ∩ Y ∈ PG | X, Y ∈ T } ⊇ T .
We will show that there exists a node X0 ∈ T such that X0 is a leaf of the Hasse
diagram H(Q) of Q.

Consider induced subposets of Q whose Hasse diagrams have the following form:

X0

Z1

X1

Z2

X2

· · ·
Xm−1

Zm

Xm

where m ⩾ 0 and Xi ∈ T for all i ∈ {0, . . . , m}. Let F = {X0, Z1, . . . , Zm, Xm} ⊆ Q
be a poset of the form above such that m is maximum. Since the Hasse diagram does
not change when we replace Zi by Xi−1 ∩ Xi for each i ∈ {1, . . . , m}, we may assume
Zi = Xi−1 ∩ Xi.

If X0 is not a leaf of H(Q), then there exists a node Z ′ ∈ Q such that in H(Q), Z ′ is
covered by X0 and the pair {Z ′, Z1} is incomparable. Since every element in Q∖T is
the intersection of some elements in T , there exists a node X ′ ∈ T such that X ′ ⊋ Z ′

and X ′ ̸= X0. Similarly, we may assume Z ′ = X ′ ∩ X0.
Since m is maximum, either X ′ contains some Zj ∈ F , or Z ′ is contained in some

Xj ∈ F ∖ {X0}. In either case, we obtain an induced subposet of Q whose Hasse
diagram has the form:

Z ′

X0

Z1

X1

Z2
· · ·

Zj

X ′
j

where X ′
j denotes Xj or X ′.

Since G is strongly chordal, PG is k-crown-free for all k ⩾ 3 by Theorem 3.4. Hence
j = 1. Thus this leads to one of the following induced subposets:

Z ′

X0

Z1

X ′

Z ′

X0

Z1

X1

If the first case occurs, then Z1 ⊆ X0 ∩ X ′ = Z ′, which contradicts the incompara-
bility of Z1 and Z ′. When the second case occurs, Z ′ ⊆ X0 ∩X1 = Z1, a contradiction
again. In summary, X0 is a leaf of H(Q).

Now let Y0∩Y1 ∈ Q for Y0, Y1 ∈ T denote a unique node in Q that is covered by X0.
We may assume that one of Y0, Y1 is not X0, say Y0 ̸= X0. Then X0 ⊋ X0 ∩ Y0 ⊇
X0 ∩ Y0 ∩ Y1 = Y0 ∩ Y1. Hence X0 ∩ Y0 = Y0 ∩ Y1.

Finally let Y ∈ T ∖ {X0}. Then X0 ∩ Y ∈ Q and X0 ∩ Y ⊊ X0. Since every path
from X0∩Y to X0 passes through Y0∩Y1 in H(Q), we must have X0∩Y ⊆ X0∩Y0. □
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The lemma below shows the existence of constituent MAT-labelings compatible
with the “gluing trick.”

Lemma 5.10. Let G be a strongly chordal graph. Then there exists a family F(PG) =
{λX}X∈PG

consisting of MAT-labelings λX of G[X] such that F(PG) is closed under
restriction in the sense that λX |EG[Y ] = λY whenever X ⊇ Y .

Proof. We define the rank of a node X ∈ PG as the length of a maximum chain
connecting X and 0̂. Let Pr

G denote the set consisting of the nodes of rank at most r.
We will show by induction on r that there exists a family F(Pr

G) = {λX}X∈Pr
G

consisting of MAT-labelings λX of G[X] such that λX |EG[Y ] = λY whenever X ⊇ Y .
When r = 0, P0

G = {0̂}. Since G[0̂] is a complete graph (or null graph), there exists
an MAT-labeling of G[0̂] by Lemma 5.6.

Now suppose r > 0. Then by the induction hypothesis there exists a fam-
ily F(Pr−1

G ) = {λY }Y ∈Pr−1
G

consisting of MAT-labelings λY of G[Y ] such that
λY1 |EG[Y2] = λY2 whenever Y1 ⊇ Y2. We prove the following claim.

Claim 5.11. Let X ∈ Pr
G∖Pr−1

G and T ⊆ Pr−1
G a set consisting of some nodes covered

by X. Then there exists an MAT-labeling λT of G[∪Y ∈T Y ] satisfying λT |EG[Y ] = λY

for any Y ∈ T .

Proof of Claim 5.11. We prove by induction on |T |. If |T | = 1, then it is clear. Sup-
pose |T | ⩾ 2. By Lemma 5.9, there exist distinct X0, Y0 ∈ T such that X0∩Y0 ⊇ X0∩Y
for all Y ∈ T∖{X0}. By the induction hypothesis on |T |, there exists an MAT-labeling
λ′ of G[∪Y ∈T∖{X0}Y ] such that λ′|EG[Y ] = λY for any Y ∈ T ∖ {X0}. Note that

X0 ∩

( ⋃
Y ∈T∖{X0}

Y

)
=

⋃
Y ∈T∖{X0}

(X0 ∩ Y ) = X0 ∩ Y0.

By Lemma 5.7, there exists an MAT-labeling λT of G[∪Y ∈T Y ] such that λT |EG[X0] =
λX0 and λT |EG[∪Y ∈T∖{X0}Y ] = λ′. Therefore λT |EG[Y ] = λY for any Y ∈ T . □

Now we return to the proof of Lemma 5.10. Let T be the set consisting of all nodes
covered by X. Then use Lemma 5.6(2) to extend λT to λX of G[X]. □

We are ready to prove the main result of this subsection.

Theorem 5.12 (Strong chordality implies MAT-freeness). If G is a strongly chordal
graph, then G admits an MAT-labeling.

Proof. By Lemma 5.10, there exists a family {λX}X∈PG
consisting of MAT-

labelings λX of G[X] such that λX |EG[Y ] = λY whenever X ⊇ Y . Considering
the antichain K(G) of PG consisting of the maximal cliques of G, we can con-
struct an MAT-labeling λ of G by using Lemma 5.9 and the “gluing trick”
(Theorem 5.8). More precisely, we show that for any T ⊆ K(G), there exists an
MAT-labeling λT := ∪Y ∈T λY of G[∪Y ∈T Y ] satisfying λT |EG[Y ] = λY for every
Y ∈ T . This can be done by induction on |T | very similar to the proof of Claim 5.11.
Then take T = K(G). □

Finally we present the proofs of the main result of the paper and its corollary.

Proof of Theorem 2.10. It follows from Theorems 4.10, 5.12 and Proposition 4.3. □

Proof of Corollary 2.11. Taking localization on a flat of a graphic arrangement is
equivalent to taking an induced subgraph of the underlying graph. The proof follows
from Theorem 2.10 and a simple fact that the class of strongly chordal graphs is closed
under taking induced subgraphs. □
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We close this section by giving an example to illustrate the construction in Theo-
rem 5.12.

Example 5.13. Let G be a unit interval graph in Figure 3. Its clique intersection
poset PG is given in Figure 4. First we need to find a family F(PG) = {λX}X∈PG

consisting of MAT-labelings one for each G[X] such that F(PG) is closed under inclu-
sion mentioned in Lemma 5.10. This can be done inductively from the bottom to top
starting from the minimum element 0̂. For example, to find a desired MAT-labeling
λ3 ∈ F(PG) of G[X] where X = {v2, v3, v4, v5} provided that the compatible MAT-
labelings of G[Y ] for all Y ’s covered by X (in this case {v4, v5} and {v2, v3, v4}) were
given, we use Lemma 5.7 (and Lemma 5.6(2) if ∪Y ⊊ X). Combining the resulting
MAT-labelings λi ∈ F(PG) (1 ⩽ i ⩽ 4) of the maximal cliques by the “gluing trick”
(Theorem 5.8) yields an MAT-labeling of G. Figure 5 shows a gluing ((λ1∪λ2)∪λ3)∪λ4
and how the exponents change in each inductive step, which we call an “exponent
growth process.” Note that although MAT-labeling of G is uniquely determined by
λi’s, gluing order is not necessarily unique. For example, the gluing λ1∪(λ2∪(λ3∪λ4))
derived from the same method gives the same output but different exponent growth
process: {0, 1, 2, 3} → {0, 1, 2, 3, 3} → {0, 1, 2, 2, 3, 3} → {0, 1, 2, 2, 2, 3, 3}.

v3 v4 v6

v1 v5 v7

v2

2 2

2

2

2

3 3

1 1

1

1

1

1

Figure 3. A unit interval (hence strongly chordal) graph G on 7
vertices with an MAT-labeling constructed by using Theorem 5.12.
The corresponding graphic arrangement AG is free with exponents
{0, 1, 2, 2, 2, 3, 3}.

6. Further remarks and open problems
In this section we address some remarks and suggest problems for future research.
(A) As noted in Introduction, our Theorem 2.10 gives an alternative proof that

the ideal graphic arrangements are MAT-free (type A of Theorem 2.7). We
give here two examples to illustrate the difference between two methods. The
original proof of the ideal MAT-free theorem is inductive on the height of
ideals [1, §5], and in each inductive MAT-step only some of maximal exponents
get increased by 1. This yields a rigorous exponent growth process hence
differs from our construction in Theorem 5.12. For example, the unit interval
graph G in Figure 3 with the given vertex-labeling has its corresponding
graphic arrangement AG an ideal subarrangement of the Weyl arrangement
AΦ+(A6). The exponent growth process following the ideal MAT-free theorem
is given in Figure 6 which differs from that in Figure 5. Our construction
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{v1, v2, v3, v4}

λ4

{v2, v3, v4, v5}

λ3

{v4, v5, v6}

λ2

{v5, v6, v7}

λ1

{v2, v3, v4}{v4, v5}{v5, v6}

{v4}{v5}

∅

Figure 4. The clique intersection poset of the graph in Figure 3 with
MAT-labelings λi (1 ⩽ i ⩽ 4) of the maximal cliques constructed by
using Lemma 5.10.

π2

π1

2 1

λ1

π2

π1

2 2 1

λ1 ∪ λ2

π3

π2

π1

3 2 2 2 1

(λ1 ∪ λ2) ∪ λ3

π3

π2

π1

3 3 2 2 2 1

((λ1 ∪ λ2) ∪ λ3) ∪ λ4

Figure 5. An exponent growth process for the graph in Figure 3
following the “gluing trick” in Theorem 5.12.

applies also to strongly chordal graphs that are not unit interval graphs.
Another way to see the difference between two methods is to consider MAT-
labelings of complete graphs, see Remark 4.5, Lemma 5.6(2) and Figure 7.

1 1 1 1 1

π1

2 2 2 2 2 1

π1 ∪ π2

3 3 2 2 2 1

(π1 ∪ π2) ∪ π3

Figure 6. Exponent growth process for the graph in Figure 3 fol-
lowing the ideal MAT-free theorem.
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v1 v2

v4v3

2
2

3

1

1

1

v1 v2

v4v3

2 2
3

1

1
1

Figure 7. Two nonisomorphic MAT-labelings of K4 constructed by
using Lemma 5.6(2) (left) and the ideal MAT-free theorem (right).

(B) Cuntz–Mücksch [3, Example 22] showed that MAT-freeness is in general not
closed under taking restriction. Their example is a non-MAT-free restriction
to a hyperplane of the Weyl arrangement of type E6. We give here a different
example (with a smaller number of hyperplanes) thanks to the fact that the
class of strongly chordal graph is not closed under taking edge-contraction.
Consider the rising sun (which is a strongly chordal graph) with its edge e
displayed in Figure 8. Taking the contraction of e results in the 3-sun which
is not strongly chordal.

e

Figure 8. The rising sun.

(C) Strongly chordal graphs are the intersection graphs of unit balls in R-trees [9].
Therefore they can be considered as generalization of unit interval graphs in
the perspective of intersection graphs.

(D) Strongly chordal graphs are also known as the graphs having a strong per-
fect elimination ordering (SPEO) [6], i.e. a PEO (v1, . . . , vℓ) with the
property that for all i < j, k < q if {vi, vk}, {vi, vq}, {vj , vk} are edges,
then {vj , vq} is an edge. It would be interesting to find a (more direct) con-
nection between SPEO and MAT-PEO.

(E) If an arrangement A is MAT-free, then A is accurate [10, Theorem 1.2] i.e. A
is free with exp(A) = {d1, . . . , dℓ}⩽ and there exists for each 0 ⩽ p < ℓ
a p-codimensional flat X ∈ L(A) such that AX is free with exp(AX) =
{d1, . . . , dℓ−p}⩽. Characterize the accuracy of graphic arrangements. We are
able to show that if G is an n-sun, then AG is accurate (but not MAT-free).

(F) From Theorems 2.10 and 3.4, we now know that the MAT-freeness of graphic
arrangements can be characterized by a poset structure, the clique inter-
section poset of chordal graphs. Define a “clique intersection poset” of an
arbitrary (supersolvable) arrangement and characterize the MAT-freeness of
the arrangement by the poset. It is related to another question of Cuntz–
Mücksch [3, Problem 47] which asked if the MAT-freeness can be character-
ized by a partial order on the hyperplanes, generalizing the classical partial
order (§2.2) on the positive roots of an irreducible root system.
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