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Quivers of stylic algebras

Antoine Abram, Christophe Reutenauer & Franco V. Saliola

Abstract We construct a complete system of primitive orthogonal idempotents and give an
explicit quiver presentation of the monoid algebra of the stylic monoid introduced by Abram
and Reutenauer.

1. Introduction
We study the monoid algebra of the stylic monoid Styl(A) introduced by the first two
authors in [1]. We begin by recalling its definition.

Let A be a totally ordered finite alphabet and A∗ the free monoid that it generates.
The Robinson–Schensted–Knuth (RSK) correspondence associates with each word w ∈
A∗ a semistandard tableau P (w) with entries in A called its P -symbol. If w is a
decreasing word, then its P -symbol P (w) is a column, which allows us to identify
the set of decreasing words on A with the set Γ(A) of column-shaped tableaux with
entries in A. This induces a left action of A∗ on Γ(A): for a word x ∈ A∗ and a column
γ ∈ Γ(A), take x · γ to be the first column of the tableau P (xw), where w is the
decreasing word corresponding to the column γ. (This action can be defined using the
Schensted column insertion procedure; see §2.2.) The finite monoid of endofunctions
of Γ(A) obtained by this action is the stylic monoid Styl(A).

It turns out that Styl(A) is canonically isomorphic to a quotient of the celebrated
plactic monoid. Recall that the plactic monoid has appeared in many contexts in
algebraic combinatorics and was used to give the first rigorous proof of the Littlewood–
Richardson rule [30, 18, 19]. The monoid algebra KStyl(A), where K is any field, is
the first example of a finite dimensional representation of the plactic monoid that
does not pass through the abelianisation (to our knowledge). This article is a first
step towards understanding the structure of this representation.

Stylic monoids are examples of J -trivial monoids [1], which are a ubiquitous class
of monoids that arise naturally in algebraic combinatorics. Other examples include the
0-Hecke monoids associated with finite Coxeter groups, and the monoids of regressive
order-preserving functions on a poset; see [14] for many more examples. It follows
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Figure 1. A tableau

that the monoid algebra KStyl(A) admits a quiver presentation: that is, KStyl(A) is
isomorphic to a quotient of the path algebra KQ(A) of a canonical quiver Q(A).

Obtaining a quiver presentation is an essential step towards applying the tools and
techniques from the modern representation theory of finite dimensional algebras [2].
One of our main results is an explicit presentation of KStyl(A) as a quiver with rela-
tions. Our approach is constructive in the sense that we explicitly identify a complete
system of primitive orthogonal idempotents in KStyl(A) (Theorem 3.1) that we use
to define a quiver Q(A) together with a surjective map φ : KQ(A) −→ KStyl(A)
(Corollary 4.12) whose kernel is an admissible ideal (Theorem 4.14). General theory
then implies that Q(A) is the quiver of KStyl(A) (Theorem 4.15).

We remark that the representation theory of finite monoids naturally occurring in
algebraic combinatorics, especially in connection with Markov chains, has been investi-
gated by many authors: [11, 6, 7, 9, 10, 28, 29, 5, 15, 22, 23, 25, 17, 16, 4, 20, 24, 31, 21];
see especially Steinberg’s recent book and the references therein [32]. Those most
closely related to the present work are [14], [32, Chapter 17] and [24], which de-
scribe the quiver of the algebra of a J -trivial monoid. While guided by this work,
our approach is complementary and completely self-contained as their techniques do
not involve constructing primitive orthogonal idempotents or a quiver presentation.
In fact, in [24] one reads “It is notoriously difficult to write down explicit primitive
idempotents for monoids algebras (c.f. [5, 13]) and often they have complicated ex-
pressions in terms of the monoid basis, making it virtually impossible to determine
even the dimension of the corresponding projective indecomposable module let alone
construct a matrix representation out of it.”

2. Stylic monoid and algebra
We consider a totally ordered finite set A, whose elements are called letters, and the
free monoid A∗ that it generates. Its elements are called words. The alphabet of a
word x is the set of letters Alph(x) appearing in x.

2.1. Tableaux. We call a tableau what is usually called a semistandard Young
tableau: a finite lower order ideal of the poset N2, ordered naturally (that is, a finite
subset E ⊂ N2 such that x ⩽ y and y ∈ E implies x ∈ E), together with a weakly
increasing mapping into A, such that the restriction of this mapping to each subset
with given x-coordinate is injective. A tableau is usually represented as in Figure 1.
The conditions may be expressed by saying that the letters in A are weakly increasing
from left to right in each row, and strictly increasing from the bottom to top in
each column.

A column is a tableau with only one column. The set of columns on A is denoted
by Γ(A). A column is identified naturally with a subset of A, and also with the word
in A∗ that is the decreasing product of its elements.

2.2. Schensted’s column insertion procedure. Let us recall the Schensted col-
umn insertion algorithm. Let γ be a column, viewed here as a subset of A, and let
x ∈ A. There are two cases: if ∀y ∈ γ, x > y, then define γ′ = γ ∪ x. Otherwise, let y
be the smallest element in γ with y ⩾ x; then define γ′ = (γ ∖ y) ∪ x. Then γ′ is the
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column obtained by column insertion of x into γ, and in the second case, y is said to
be bumped.

We define a left action of A∗ on Γ(A), denoted u · γ, for each u ∈ A∗ and each
column γ. Since A∗ is the free monoid on A, it is enough to define the action for each
letter a ∈ A. Define

a · γ = γ′

if γ′ is obtained from γ by column insertion of a into γ.
For further use, we note that if γ is a column, then we have

γ · ∅ = γ,

where on the left-hand side, γ is viewed as a decreasing word.

2.3. Stylic monoid. We denote by Styl(A) the monoid of endofunctions of the set
Γ(A) of columns obtained by the action defined above. Thus, a typical element of
Styl(A) is a function

µw : Γ(A) → Γ(A)
γ 7→ w · γ

for some word w ∈ A∗. Since Γ(A) is finite, Styl(A) is finite. Let µ : A∗ → Styl(A)
be the canonical monoid homomorphism defined by µ(w) = µw.

We denote by ≡styl the corresponding monoid congruence of A∗, called the stylic
congruence:

u ≡styl v ⇐⇒ µ(u) = µ(v) ⇐⇒ u · γ = v · γ for all columns γ.
The monoid Styl(A) acts naturally on the set of columns, and we take the same
notation: m · γ = w · γ if m = µ(w).

2.4. Relationship with the plactic monoid. The Schensted P -symbol is a map-
ping that associates with each word w on A a tableau P (w), see [26, 19]. The rela-
tion ≡plax on A∗, defined by

u ≡plax v ⇐⇒ P (u) = P (v),
is a congruence of the monoid A∗, called the plactic congruence. The quotient
monoid A∗/≡plax is called the plactic monoid.

The column-reading word of a tableau is the word obtained by reading the columns
from left to right, each column being read as a decreasing word. For example, the
column reading word of the tableau from Figure 1 is the word dbabac. If T is a
tableau, with column-reading word w, then
(1) P (w) = T

by a theorem of Schensted.
The plactic relations, due to Knuth, are the following relations:

(2) bac ≡plax bca, acb ≡plax cab

for any choice of letters a < b < c in A, and
(3) bab ≡plax bba, aba ≡plax baa

for any choice of letters a < b in A. The plactic congruence is generated by these re-
lations.

By [1, Theorem 8.1], the stylic congruence is generated by the plactic relations (2)
and (3) together with the idempotent relations a2 = a for any letter a in A. It then
follows that if B ⊂ A, then there is a natural embedding Styl(B) → Styl(A) [1,
Corollary 8.4].
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2.5. N-tableaux. According to [1, Theorem 7.1], there is a mapping from A∗ into
the set of tableaux that induces a bijection from the stylic monoid Styl(A) onto the
set of N -tableaux on A. The image of x ∈ A∗ is denoted N(x) and is called the N -
tableau of x. We also denote by N the induced bijection from the stylic monoid onto
the set of N -tableaux. The precise definition of N is not needed here, rather we will
make use of the following properties of N .

Proposition 2.1. • The first column of N(x) is equal to that of the P -symbol P (x),
and it is x · ∅, where ∅ denotes the empty column.

• The set of a ∈ A fixing w ∈ Styl(A) on the left (aw = w) is equal to the first
column of N(w).

• If x is in Styl(A), then the column-reading word w of N(x) satisfies

(4) x = µ(w).

Proof. The first statement is [1, Lemma 7.2 (i)]. The second statement follows from
[1, Theorem 11.4] and definition of the left N -insertion. The third statement follows
from the analogous statement for row-reading words, which is [1, Equation 5], and
the fact that column-reading and row-reading words of the same tableau are plactic-,
hence stylic-, equivalent. □

2.6. The anti-automorphism θ. Recall, from [1, Section 9], the involutive anti-
automorphism θ of the monoid A∗: when restricted to A, it reverses the order of A.
It extends to an endofunction of Γ(A), if one identifies as we do columns on A and
subsets of A. Since θ preserves the plactic relations, and the idempotent relations, it
induces an anti-automorphism of the monoids A∗, Plax(A) and Styl(A).

2.7. Stylic algebra. We denote by ZStyl(A) the Z-algebra of the stylic monoid,
and we call it the stylic algebra over Z. We shall consider also the stylic algebra over
a field K, which we denote by KStyl(A).

Lemma 2.2. Let x ∈ ZStyl(A) and let a be a letter such that each letter appearing in
x is larger or equal to a.

(i) axa = xa;
(ii) (1 − a)xa = 0;
(iii) (1 − a)x(1 − a) = (1 − a)x.

Proof. (i) follows from Lemma 9.4 in [1]. Next, (ii) and (iii) follow by an evident
computation. □

The next lemma extends the plactic relations in (3).

Lemma 2.3. Let p, q ⩾ 1. Consider letters in A satisfying x1 < · · · < xp < y < z1 <
· · · < zq, then

(x1 · · · xp)(z1 · · · zq)y ≡styl (z1 · · · zq)(x1 · · · xp)y,

and
y(x1 · · · xp)(z1 · · · zq) ≡styl y(z1 · · · zq)(x1 · · · xp).

Proof. We prove the first identity by double induction. Suppose first that q = 1. If
p = 1, we are reduced to the plactic relation x1z1y ≡styl z1x1y. Suppose that p ⩾ 2.
Then, by the plactic relations, we have

(x1 · · · xp−1)xpz1y ≡styl (x1 · · · xp−1)z1xpy ≡styl z1(x1 · · · xp−1)xpy

by induction on p applied to the product (x1 · · · xp−1)z1xp.
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Suppose now that q ⩾ 2. Then, using the congruences zqy ≡styl zqyy ≡styl yzqy
twice, we have

x1 · · · xpz1 · · · zqy ≡styl x1 · · · xpz1 · · · zq−1yzqy

≡styl z1 · · · zq−1x1 · · · xpyzqy (by induction on q)
≡styl z1 · · · zq−1x1 · · · xpzqy

≡styl z1 · · · zq−1zqx1 · · · xpy (case q = 1).
By applying the anti-automorphism θ to the first identity we obtain

θ(y)θ(zq) · · · θ(z1)θ(xp) · · · θ(x1) ≡plax θ(y)θ(xp) · · · θ(x1)θ(zq) · · · θ(z1).
Note that

θ(zq) < · · · < θ(z1) < θ(y) < θ(xp) < · · · < θ(x1).
Hence we obtain the second identity of the lemma by a change of variables, after
exchanging p and q. □

3. Primitive idempotents of the stylic algebra
In this section, we construct a complete system of primitive orthogonal idempotents
in the stylic algebra ZStyl(A).

Recall that Γ(A) denotes the set of columns on the totally ordered finite alphabet A.
Let γ ∈ Γ(A) be a column and define

(5) eγ =
↗∏

a/∈γ

(1 − a)
↘∏

a∈γ

a ∈ ZStyl(A),

where the arrows indicate that the first product is in increasing order of letters, and
the second in decreasing order.

For future use, we note that the second product in (5) is the image of γ (viewed
as a word) in Styl(A); since decreasing words are idempotent in Styl(A) [1, Theorem
12.1], we have
(6) eγγ = eγ .

Theorem 3.1. The idempotents eγ , one for each γ ∈ Γ(A), form a complete system
of primitive orthogonal idempotents of ZStyl(A). Precisely, we have

(1) e2
γ = eγ and eγeδ = 0 for all γ, δ ∈ Γ(A) with δ ̸= γ;

(2)
∑

γ∈Γ(A) eγ = 1;
(3) for every γ ∈ Γ(A), the idempotent eγ cannot be written as eγ = x + y with x

and y nonzero orthogonal idempotents in ZStyl(A).

Proof. 1. We show that the elements eγ are orthogonal idempotents, by induction on
the cardinality of the alphabet A. We use the fact that Styl(B) embeds canonically
in Styl(A) if B ⊂ A, and similarly for their monoid algebras.

Let a be the smallest letter in A. Let γ and δ be two columns on A. For γ′ ∈ Γ(A∖a),
we denote by e′

γ′ the elements (5) relative to the alphabet A∖ a. We distinguish four
cases:

– If a ∈ γ ∩ δ, then by (5), eγ = e′
γ∖aa and eδ = e′

δ∖aa. Note that γ = δ if and only
if γ ∖ a = δ ∖ a, and so, by induction e′

γ∖ae′
δ∖a = e′

γ∖a if γ = δ, and e′
γ∖ae′

δ∖a = 0 if
γ ̸= δ. Thus we have eγeδ = e′

γ∖aae′
δ∖aa = e′

γ∖ae′
δ∖aa (by Lemma 2.2(i), and this is

equal to e′
γ∖aa = eγ if γ = δ, and to 0 if γ ̸= δ.

– Suppose now that a /∈ γ ∪ δ. Then eγ = (1 − a)e′
γ and eδ = (1 − a)e′

δ. By
Lemma 2.2(iii), we have eγeδ = (1 − a)e′

γ(1 − a)e′
δ = (1 − a)e′

γe′
δ. Thus, eγeδ is eγ if

γ = δ, and it is 0 if γ ̸= δ.
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– Suppose that a ∈ γ, a /∈ δ. Then γ ̸= δ and eγeδ = e′
γ∖aa(1 − a)e′

δ = e′
γ∖a(a −

a2)e′
δ = 0 since a is idempotent.

– Suppose that a /∈ γ, a ∈ δ. Then γ ̸= δ and eγeδ = (1 − a)e′
γe′

δ∖aa = 0 by
Lemma 2.2(ii).

2. We show that the sum in ZStyl(A) of all eγ is equal to 1. Actually we show
that this equality holds in the algebra of noncommutative polynomials. By inspection
of (5), one sees that this sum is equal to a linear combination of all multilinear (without
repeated letter) words on A of the form w = xy, where x is strictly increasing, and y is
strictly decreasing. Let w be such a nonempty word; then w has a unique factorization
w = uzv, where u is strictly increasing, v is strictly decreasing and z is the largest
letter in w. Denote by U the alphabet of u, and by V that of v. Then the coefficient
of w in eV is (−1)|U |+1 and in eV ∪z it is (−1)|U |, while in all other eγ it is 0 (recall
that we identify columns in Γ(A) and subsets of A). Thus the coefficient of w in the
sum is 0, and therefore the sum is equal to 1.

3. We show that the idempotents are primitive. First note that since ZStyl(A) ⊂
CStyl(A), it suffices to prove it in CStyl(A). Next, we make use of the following
characteristisation: an idempotent e of a finite dimensional C-algebra X is primitive if
and only if 0 and e are distinct and are the only idempotents in eXe (see, for instance,
[3, Section I.4], [2, Corollary 4.7], or [32, Proposition A.22]). Thus it is enough to
prove that eγCStyl(A)eγ = Ceγ , which we do by induction on the cardinality of A.
Let a = min(A) and w ∈ A∗.

– Suppose a ∈ γ. Then eγweγ = e′
γ∖aawe′

γ∖aa = e′
γ∖aw′e′

γ∖aa, by repeated ap-
plication of Lemma 2.2(i), where w′ is obtained from w by removing all occurrences
of a. Hence, e′

γ∖aw′e′
γ∖a ∈ CStyl(A\a), so by induction there exists z ∈ C such that

eγweγ = (e′
γ∖aw′e′

γ∖a)a = (ze′
γ∖a)a = zeγ .

– Suppose a /∈ γ. Then eγweγ = (1 − a)e′
γ∖aw(1 − a)e′

γ∖a. This is equal to (1 −
a)e′

γ∖awe′
γ∖a by Lemma 2.2 (iii), and by induction there exists z ∈ C such that

(1 − a)(e′
γ∖awe′

γ∖a) = (1 − a)(ze′
γ∖a) = zeγ .

To conclude, it is enough to show that the eγ are nonzero. For this, it suffices
to note that each eγ contains a unique element that is minimal with respect to the
J -order on the monoid; we delay the details to the proof of Proposition 4.11 (which
will be proved independently), in which we construct a basis of the monoid algebra
of Styl(A) that includes these idempotents. □

4. The quiver of the stylic algebra
In this section, we identify the quiver of KStyl(A) over a field K. We do this by defining
a quiver Q(A) in §4.1 together with a K-algebra morphism φ : KQ(A) → KStyl(Q) in
§4.3 that is surjective (proved in §4.5) and whose kernel is an admissible ideal (proved
in §4.6). Such a morphism uniquely determines the quiver of an algebra; see §4.7 for
details. Most of the results hold over Z, so we work over Z whenever possible.

4.1. A quiver. We define a right action of the monoid A∗ on the set Γ(A) of columns
on A. It is enough to define the action of each letter on each column. Let c be a letter
and γ a column. If c < min(γ), we let γ · c = γ ∪ c. Otherwise, c ⩾ min(γ) and we
let b = max{x ∈ γ : x ⩽ c}; then γ · c = c ∪ (γ ∖ b); we then say that b is bumped.
Compactly,

γ · c =
(
γ ∖ max{x ∈ γ : x ⩽ c}

)
∪

{
c
}

.

We say that the right action of c on γ is frank if c ⩾ min(γ) and if c /∈ γ. Note that
in this case, γ and γ · c have the same height.

We define a quiver Q(A) with edges labelled in A: its set of vertices is Γ(A); and
there is a labelled edge γ

c−→ γ′ if γ · c = γ′ and if the action is frank; see Figure 2. As
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Figure 2. The quivers for alphabets of cardinality 2, 3, 4; the
columns are represented by decreasing words and the empty word
is denoted ϵ.

usual, the label of a path is the word in A∗ that is the product of the labels of the
edges of the path.

For later use, we note the following result relating the left and right actions. The
proof is left to the reader.

Lemma 4.1. For two columns of the same height γ, δ, and two letters b, c, the two
following conditions are equivalent:

(i) b · δ = γ and c is bumped;
(ii) γ · c = δ, and b is bumped.

4.2. A lemma on edges and idempotents. We give a technical, but important,
result on the idempotents of the stylic algebra and the quiver introduced previously.
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Lemma 4.2. Let γ
c−→ δ be an edge in the quiver Q(A), and denote by b the bumped

letter, so that δ = c ∪ (γ ∖ b), and b ∈ γ, c /∈ γ, b /∈ δ, c ∈ δ. Then in ZStyl(A)

beγc = bceδ and eγceδ = eγc.

Proof. I. We prove the first identity. Let a = min(A). As in the proof of Theorem 3.1,
denote by e′

γ′ the idempotents (5) relative to the alphabet A ∖ a.
1. Suppose that a ∈ γ ∩ δ. Since the action γ · c is frank, and since a cannot be

bumped, we have a < b < c. Let γ′ = γ ∖ a and δ′ = δ ∖ a. Then δ′ = γ′ · c and the
action is frank. By induction, we deduce that be′

γ′c = bce′
δ′ . Note that the minimum

of γ′ is a letter x such that a < x < c; thus xac = xca and since x is the last factor in
the product (5) defining e′

γ′ , we have e′
γ′ac = e′

γ′ca. We have eγ = e′
γ′a and eδ = e′

δ′a.
Thus beγc = be′

γ′ac = be′
γ′ca = bce′

δ′a = bceδ.
2. Suppose that a /∈ γ ∪δ. Then a < b < c. Moreover δ

c−→ δ′ is an edge in the quiver
Q(A ∖ a) and b is bumped. With notations similar to 1, we have eγ = (1 − a)e′

γ′ and
eδ = (1 − a)e′

δ′ . Since b(1 − a)b = b2 − bab = b2 − ba = b(1 − a) and bac = bca, we have
beγc = b(1 − a)e′

γ′c = b(1 − a)be′
γ′c = b(1 − a)bce′

δ′ (by induction) = b(1 − a)ce′
δ′ =

bc(1 − a)e′
δ′ = bceδ.

3. Suppose that a ∈ γ and a /∈ δ. Then the bumped letter is b = a. We denote by γ
and δ the decreasing words associated with these two columns. Since c ∈ δ, we have
δ = δ1cδ2, where each letter in δ1 is larger than c; hence cδ ≡styl δ by Lemma 2.2(i).
Moreover, δc ≡styl δ since c is the smallest, hence last, letter of δ = δ′c and c2 = c.

We have

(7) γc ≡styl aδ,

since this holds even plactically as one sees by computing the image under P of both
sides (for P (aδ), Schensted left insert a into δ and use Lemma 4.1).

Let y1, . . . , ys, z1, . . . , zt be the letters in A that do not appear in γ nor in δ, ordered
so that

a < y1 < · · · < ys < c < z1 < · · · < zt.

Then

eγ =
s∏

j=1
(1 − yj)(1 − c)

t∏
k=1

(1 − zk)γ

eδ = (1 − a)
s∏

j=1
(1 − yj)

t∏
k=1

(1 − zk)δ.

Thus, by (7), aeγc = a
∏s

j=1(1 − yj)(1 − c)
∏t

k=1(1 − zk)aδ. Note that
∏s

j=1(1 − yj)
is equal to 1 plus a linear combination of uy, with

a < y < c < z1 < · · · < zt.

Therefore, aeγc is equal to a(1−c)
∏t

k=1(1−zk)aδ plus a linear combination of auy(1−
c)

∏t
k=1(1 − zk)aδ, and we show that each term in the linear combination vanishes.

Note that it suffices to show that y
∏t

k=1(1−zk)aδ = yc
∏t

k=1(1−zk)aδ. We prove
this equality, starting from the right-hand side: since δ = δ′c, we have yc

∏t
k=1(1 −

zk)aδ = yc
∏t

k=1(1 − zk)aδ′c = yac
∏t

k=1(1 − zk)δ′c (since by the second identity in
Lemma 2.3, we have yac

∏t
k=1(1 − zk) = yc

∏t
k=1(1 − zk)a) = ya

∏t
k=1(1 − zk)δ′c (by

Lemma 2.2(i), since all letters zi and in δ′ are > c) = y
∏t

k=1(1 − zk)aδ, by the same
identity in Lemma 2.3.
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It follows that aeγc = a(1 − c)
∏t

k=1(1 − zk)aδ = a(1 − c)
∏t

k=1(1 − zk)acδ (since
cδ = δ) = a(1 − c)a

∏t
k=1(1 − zk)cδ (by the first identity in Lemma 2.3) = a(1 −

c)ac
∏t

k=1(1 − zk)cδ (by Lemma 2.2(i)) = (ac − ca)
∏t

k=1(1 − zk)δ.
On the other hand, we have aceδ = ac(1 − a)

∏s
j=1(1 − yj)

∏t
k=1(1 − zk)δ =

(ac − ca)
∏s

j=1(1 − yj)
∏t

k=1(1 − zk)δ. Note that
∏s

j=1(1 − yj) is equal to 1 plus a
linear combination of yu, with a < y < c. Since (ac − ca)y = acy − cay = 0 (plactic
relation), we obtain aceδ = (ac − ca)

∏t
k=1(1 − zk)δ.

It follows that aeγc = aceδ.
4. The last case to consider is when a /∈ γ and a ∈ δ; however, it does not occur

because the action γ · c is frank (in particular, if a /∈ γ, then a /∈ δ).
II. We prove now the second identity. Note that γ = γ1bγ2, where each letter in

γ2 is smaller that b; hence γb = γ, by the dual statement of Lemma 2.2(i). We have,
using the fact that γ is idempotent in Styl(A) (see the sentence before (6)):

eγceδ = eγbceδ (since eγ = eγγ = eγγb = eγb)
= eγbeγc (by the first identity in the lemma, already proved)
= eγeγc (since eγb = eγ)
= eγc (since eγ is idempotent). □

4.3. A quiver map. Let Q = Q(A) be the quiver defined in Subsection 4.1. The path
algebra ZQ is the free Z-module with basis the set of paths in the quiver, including
an empty path around each vertex γ (this empty path is denoted γ); the product is
the unique product extending the natural product of paths.

We define a Z-linear mapping φ : ZQ → ZStyl(A) as follows:
• if γ is an empty path, then

φ(γ) = eγ ;

• if

(8) γ0
c1−→ γ1

c2−→ · · · cl−→ γl

is a path in Q, then its image under φ is

eγ0c1eγ1c2 · · · cleγl
.

Note that this mapping is a Z-algebra homomorphism.

Theorem 4.3. The image under φ of a path from γ to δ with label u is eγu.

Proof. This is clear if the path is of length 0. Suppose it is true for each path of length
l ⩾ 0. Consider a path γ0

c1−→ γ1
c2−→ · · · cl+1−−−→ γl+1. Its image under φ is by definition

x = φ(p)eγl
cl+1eγl+1 , where p is the path (8). Thus x = φ(p)eγl

cl+1 (by the second
equality in Lemma 4.2) = φ(p)cl+1 (since φ(p)eγl

= φ(p) by definition of φ and the
idempotence of eγl

) = eγ0c1 · · · clcl+1 (by induction). □

Corollary 4.4. Consider two paths in Q(A) starting from the same vertex γ, with
labels u, v. If γu ≡styl γv, then these paths have the same image under φ.

Proof. The images of these paths are eγu and eγv, respectively. These elements are
by (6) equal to eγγu and eγγv. Thus, the lemma follows. □
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4.4. Extended quiver. The extended quiver Q′(A) has the same set of vertices as
Q(A), has all edges of Q(A), together with new edges, which are loops: for each column
γ and each c ∈ γ, we have in Q′(A) the edge

γ
c−→ γ.

It is clearly a deterministic automaton. Note that if c ∈ A and γ ∈ Γ(A), there is an
edge labelled c starting from γ in Q′(A) if and only if c ⩾ min(γ). Moreover, if for
γ, δ ∈ Γ(A), w ∈ A∗, there is a path γ

w−→ δ in Q′(A), then δ = γ · w.

Proposition 4.5. Let x ∈ Styl(A) and denote by γw the column-reading word of the
N -tableau N(x) of x, with γ being the first column of N(x). Then there is a unique
path in the extended quiver, starting from γ, with label w.

Before proving the proposition, we prove a useful lemma, showing that the involu-
tion θ defined in Section 2.6 conjugates the left and right actions.

Lemma 4.6. Let w ∈ A∗ and γ ∈ Γ(A). Then

γ · w = θ(θ(w) · θ(γ)).

Proof. For w ∈ A, the formula follows from the definitions of the left and right actions
on columns. To conclude, it is enough to prove that if the formula holds for u, v ∈ A∗,
then also for w = uv. We have γ · w = γ · (uv) = (γ · u) · v = θ(θ(v) · θ(γ · u)) =
θ(θ(v) · (θ(u) · θ(γ)) = θ((θ(v)θ(u)) · θ(γ)) = θ(θ(uv) · θ(γ)) = θ(θ(w) · θ(γ)). □

Proof of Proposition 4.5. Uniqueness follows from the deterministic property of
Q′(A) viewed as an automaton.

To prove the existence of this path, it is enough, by the definition of the right
action and of the extended quiver, to show that the height of γ · p is equal to the
height k of γ, for each prefix p of w.

Since γw is the column-reading word of N(x), it follows from (1) that the P -tableau
of γw is equal to N(x). Thus, by Schensted’s theorem, the height k of N(x) is equal
to the length of the longest strictly decreasing subsequence of γw. Now, the length of
the longest strictly decreasing subsequence of θ(γw) is k, too. Hence, the height of the
P -tableau of θ(γw) is k; by the definition of left action, the first column of this tableau
is θ(γw) ·∅, and this column is equal to (θ(w)θ(γ)) ·∅ = θ(w) ·(θ(γ) ·∅) = θ(w) ·θ(γ).
Therefore, applying θ and using Lemma 4.6, we see that γ · w is of height k.

Since the (left and right) action on columns never decreases the height, it follows
that for each prefix p of w, the height of γ · p is equal to k. □

Lemma 4.6 has the following corollary.

Corollary 4.7. Let w be a word and γ be a column. Then γw ≡styl u(γ ·w) for some
word u.

Proof. We know that w · γ is the first column of P (wγ). It follows by column reading
and Schensted’s theorem that wγ ≡plax (w · γ)u for some word u. Applying θ and
using Lemma 4.6, we find that for each word w and each column γ, γw ≡plax u(γ · w)
for some word u; therefore γw ≡styl u(γ · w). □

Each path

(9) γ
w−→ γ · w

in the extended quiver Q′(A), starting from vertex γ and with label w, defines a path

(10) γ
w′

−→ γ · w
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in the quiver Q(A), by removing the loops. Precisely, we define the label w′ of the
associated path in Q(A) recursively as follows: if w is empty, w′ = w; otherwise
w = uc, u ∈ A∗, c ∈ A, u′ is constructed by induction, and then:

– first case: w′ = u′ if γ · u = (γ · u) · c (equivalently c ∈ γ · u);
– second case: w′ = u′c otherwise.

We call this construction loops removal.

Lemma 4.8. With these notations, γ · w′ = γ · w.

Proof. We follow the construction. If w is empty, then w′ is empty, and the equality
is evident. Suppose now that w = uc. In the first case, γ · w′ = γ · u′ = γ · u (by
induction) = γ ·(uc) = γ ·w. In the second case, γ ·w′ = γ ·(u′c) = (γ ·u′) ·c = (γ ·u) ·c
(by induction) = γ · (uc) = γ · w. □

Lemma 4.9. With these notations, γw′ ≡styl γw.

Proof. 1. Let δ
c−→ δ · c be a an edge in the extended quiver Q′(A). Then c ⩾ min(δ).

Next, δc ≡styl b(δ ·c), with b ∈ A: this equality holds indeed plactically, as a particular
case of the presentation by columns of the plactic monoid due to [8, 12], after applying
θ and Lemma 4.6 (see also [1, Proposition 12.3 (v)]).

Suppose that moreover c ∈ δ, equivalently δ · c = δ. Then δ = δ1cδ2 with each
letter in δ2 smaller than c. Then δ2c ≡styl δ2, by the dual form of Lemma 2.2(i), from
which follows δc ≡styl δ.

2. We prove the lemma by following the recursive construction of w′. If w is empty, it
is evident. Suppose now that w = uc and assume by induction that γu ≡styl γu′, where
u′ is obtained from u by loops removal. By Corollary 4.7, we have γu ≡styl v(γ ·u) for
some word v. By 1 and 2, we have (γ · u)c ≡styl b(γ · w), with b = 1 if γ · u = γ · (uc),
and b ∈ A otherwise.

In the first case, we have γ · u = γ · (uc) = γ · w, w′ = u′, b = 1. Then γw =
γuc ≡styl v(γ · u)c ≡styl v(γ · w), and γw′ = γu′ ≡styl γu ≡styl v(γ · u) = v(γ · w).

In the second case, we have γ · w = γ · (uc) ̸= γ · u, w′ = u′c, b ∈ A. Then
γw = γuc ≡styl v(γ ·u)c ≡styl vb(γ ·w), and γw′ = γu′c ≡styl γuc ≡styl v(γ ·u)c ≡styl

vb(γ · w). □

Corollary 4.10. The image under φ of the path (10) in Q(A), obtained from the
path (9) in Q′(A) by loops removal, is equal to eγw.

Proof. Suppose that w is the label of a path in Q′(A) starting form γ; define w′ by
loops removal. The image under φ of our path of Q(A) is by Theorem 4.3 equal to
y = eγw′. By (6), we have y = eγγw′. Hence by Lemma 4.9, the corollary follows. □

4.5. The surjectivity of the quiver map. Let x ∈ Styl(A) and denote by
η(x)wx the column-reading word of the N -tableau N(x) of x, with η(x) being the
first column of N(x). Recall from Proposition 4.5, that we have constructed a path,
in the extended quiver Q′(A), starting form η(x) and with label wx. From this path
in Q′(A), we obtain by loops removal in Section 4.4, a path in Q(A) starting form
η(x) and with label w′

x; we call such a path an N -path.

Proposition 4.11. The set {eη(x)wx : x ∈ Styl(A)} is a basis of ZStyl(A).

Proof. Recall from [1] that Styl(A) is a J -trivial monoid, and that it has therefore
the J -order ⩽J . One has x ⩽J y if and only if for some u, v, x = uyv (all these
elements are in Styl(A)).
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Let x ∈ Styl(A), with η(x) = γ; then by (4), x = γwx in ZStyl(A), and by (5),

eη(x)wx =
↗∏

a/∈γ

(1 − a)x.

Let a /∈ γ; then ax ⩽J x; moreover by Proposition 2.1, and since γ is the first column
of N(x), ax ̸= x and therefore ax <J x. It follows from the displayed formula that
eη(x)wx is equal to x plus a linear combination of elements strictly smaller than x
in the J -order. Hence, by triangularity, the elements eη(x)wx, x ∈ Styl(A), form a
basis of ZStyl(A). □

Corollary 4.12. The quiver map φ is surjective.

Proof. The element eη(x)wx is the image under φ of the path constructed in Corol-
lary 4.10. Hence, by Proposition 4.11, φ is surjective. □

Corollary 4.13. The N -paths are linearly independent modulo ker(φ).

4.6. The kernel of the quiver map. The following result shows that ker(φ) is
completely described by Corollary 4.4.

Proposition 4.14. The kernel of φ is spanned by the elements which are differences
of two paths in Q(A) starting from the same vertex γ and having labels u, v satisfying
γu ≡styl γv.

Proof. Denote by H the subspace described in the statement. We know by Corol-
lary 4.4 that H is a subspace of ker(φ).

Consider a path starting from γ and with label u. Let x = γu.
1. We show that the first column of N(x) is γ.
If a ∈ γ, by Lemma 2.2(i), we have aγ = γ in Styl(A); hence, a is in the first

column of N(x) (by Proposition 2.1), and this column therefore contains γ.
Moreover, by definition of the quiver and of paths, the height of γ · u is the same

as the height h of γ; thus the height of θ(γ · u) is h, and so is that of θ(u) · θ(γ)
by Lemma 4.6; but this column is the first column of N(θ(u)θ(γ)) = N(θ(γu)) =
N(θ(x)). By [1, Theorem 9.1], N(x) and N(θ(x)) have the same height; the height of
N(x) is therefore h. It follows that its first column is γ.

2. Consider now the path (9) of Q′(A) constructed in Proposition 4.5, and the
associated path (10) in Q(A), obtained by removing the loops: it starts at γ and has
w′ as label.

We know that γu = x ≡styl γw, by (4) since the latter word is the column-reading
word of N(x). Hence by Lemma 4.9, γu ≡styl γw′ and therefore the two paths of Q(A)
starting at γ and with labels u and w′ have the same image under φ, by Corollary 4.4.

It follows that each element in the quiver algebra is congruent modulo H to a
linear combination of N -paths. Since by Corollary 4.13 these N -paths are linearly
independant modulo ker(φ), it follows that ker(φ) ⊂ H. □

4.7. The quiver of the stylic algebra. Now, let K be a field of characteristic
0. We apply a theorem from the book of Auslander, Reiten and Smalø [3], in order to
prove that Q(A) is the quiver of KStyl(A).

Theorem 4.15. The quiver of the stylic algebra over K is Q(A).

We first prove the following useful lemma.

Lemma 4.16. Let γ be a column, and u, v ∈ A∗. If γu ≡styl γv, then γ · u = γ · v.
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Proof. By Lemma 4.6, it is enough to prove the dual statement: if uγ ≡styl vγ,
then u · γ = v · γ. The hypothesis implies that (uγ) · ∅ = (vγ) · ∅. This implies
u · (γ · ∅) = v · (γ · ∅), thus u · γ = v · γ. □

Proof of Theorem 4.15. According to a theorem in [3], in the formulation of [14, The-
orem 3.3.4], it is enough to show that the ideal ker(φ) is admissible. This means that
F m ⊂ ker(φ) ⊂ F 2, where F is the ideal in KQ(A) generated by the arrows of Q(A).

The first inclusion is clear, since the quiver has no closed path, so that for m large
enough, F m = 0.

We know that ker(φ) is spanned by the elements, differences of two paths, described
in Proposition 4.14, whose notations we use now. In particular, γu ≡styl γv. Thus it
is enough to show that u, v are both of length at least 2. We may assume that the
element is nonzero.

Observation 1: the alphabet of γu and γv must be equal, since these words are
stylically congruent.

Observation 2: assuming that the alphabet is 1, 2, 3, . . ., call weight of a column the
sum of its elements. Then by definition of frank action, the weight of γ · a is larger
that the weight of γ, and so the weight of the vertices strictly increases along a path
in Q(A).

Suppose by contradiction that u is of length 0 or 1, and we begin by length 0. If
v also is of length 0, the element is 0, which was excluded. If v is of positive length
then, since the action is frank, the alphabet of γv is strictly larger than that of γ;
hence the alphabets of γu = γ and of γv differ, so that by Observation 1, we cannot
have γu ≡styl γv.

Thus we may assume that u = b is of length 1. Then v cannot be of length 0, by
the same argument just given. If v is of length 1, then by Observation 1, and since
the two actions are frank (so that u, v /∈ γ), we must have u = v, and the element
is 0, which was excluded. Thus v is of length at least 2: v = cv′, v′ nonempty; then
by Observation 1, c appears in γb, but not in γ, since the action γ · c is frank, hence
c = b; but then by Observation 2, the weight of γ ·v is larger than that of γ · b, and we
cannot have the equality γ · u = γ · v, contradicting γu ≡styl γv by Lemma 4.16. □

4.8. Cartan invariants and Indecomposable Projective Modules. The Car-
tan invariants of a finite dimensional K-algebra Λ are the numbers dimK(eiΛej), where
{e1, . . . , en} is a complete system of primitive orthogonal idempotents of Λ. They do
not depend on the choice of the complete system.

In the case of the stylic monoid, we are therefore interested in computing the
dimension of the subspaces eγKStyl(A)eγ′ for γ, γ′ ∈ Γ(A).

Proposition 4.17. For γ, γ′ ∈ Γ(A),

dim
(

eγKStyl(A)eγ′

)
=

∣∣∣{x ∈ Styl(A) : η(x) = γ and θ(η(θ(x))) = γ′}∣∣∣.
Proof. By Proposition 4.11, we have that {eη(x)wx : x ∈ Styl(A)} is a basis of
ZStyl(A). Moreover, each eη(x)wx is the image under φ of a path in Q′(A) that
starts at η(x), is labelled wx, and ends at θ(η(θ(x))); see §4.5. Thus,

eη(x)wx = eη(x)wxeθ(η(θ(x))).

It follows that {eη(x)wxeθ(η(θ(x))) : x ∈ Styl(A)} is a basis of ZStyl(A), and that

{eη(x)wxeθ(η(θ(x))) : x ∈ Styl(A) with η(x) = γ and θ(η(θ(x))) = γ′}

is a basis of eγZStyl(A)eγ′ . □
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We remark that an alternative proof of Proposition 4.17 can be obtained by ap-
pealing to [14, Theorem 3.20], which gives a formula for the Cartan invariants for any
J -trivial monoid M . Applied to Styl(A), the formula says that the Cartan invariants
are given by

{x ∈ Styl(A) : lfix(x) = γ and rfix(x) = γ′},

where
• lfix(x) = min⩽J

{
e ∈ Styl(A) : e2 = e and ex = x

}
• rfix(x) = min⩽J

{
e ∈ Styl(A) : e2 = e and xe = x

}
.

Proposition 4.17 then follows by observing that lfix(x) = η(x) and rfix(x) = θ(η(θ(x)))
for all x ∈ Styl(A).

Finally, using a similar argument to the proof of Proposition 4.17, one obtains
bases for the right and left indecomposable projective Styl(A)-modules.

Proposition 4.18. For γ ∈ Γ(A),
(1) {eη(x)wx : x ∈ Styl(A) with η(x) = γ} is basis of eγKStyl(A), and
(2) {eη(x)wx : x ∈ Styl(A) with θ(η(θ(x))) = γ} is basis of KStyl(A)eγ .
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