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A q-analog of the Markoff injectivity
conjecture holds

Sébastien Labbé, Mélodie Lapointe & Wolfgang Steiner

Abstract The elements of Markoff triples are given by coefficients in certain matrix products
defined by Christoffel words, and the Markoff injectivity conjecture, a longstanding open prob-
lem (also known as the uniqueness conjecture), is then equivalent to injectivity on Christoffel
words. A q-analog of these matrix products has been proposed recently, and we prove that
injectivity on Christoffel words holds for this q-analog. The proof is based on the evaluation at
q = exp(iπ/3). Other roots of unity provide some information on the original problem, which
corresponds to the case q = 1. We also extend the problem to arbitrary words and provide a
large family of pairs of words where injectivity does not hold.

1. Introduction
Christoffel words are words over the alphabet {0, 1} that can be defined recursively
as follows: 0, 1 and 01 are Christoffel words and if u, v, uv ∈ {0, 1}∗ are Christoffel
words then uuv and uvv are Christoffel words [3]. The shortest Christoffel words are:
0, 1, 01, 001, 011, 0001, 00101, 01011, 0111, 00001, 0001001, 00100101, 0010101, . . . .

Note that these are also named lower Christoffel words.
A Markoff triple is a positive solution of the Diophantine equation x2 + y2 + z2 =

3xyz [13, 12]. Markoff triples can be defined recursively as follows: (1, 1, 1), (1, 2, 1)
and (1, 5, 2) are Markoff triples and if (x, y, z) is a Markoff triple with y ⩾ x and
y ⩾ z, then (x, 3xy − z, y) and (y, 3yz − x, z) are Markoff triples. A list of small
Markoff numbers (elements of a Markoff triple) is

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897, 4181, . . .
referenced as sequence A002559 in OEIS [16].

It is known that each Markoff number can be expressed in terms of a Christoffel
word. More precisely, let µ be the monoid homomorphism {0, 1}∗ → GL2(Z) defined
by

µ(0) =
(

2 1
1 1

)
and µ(1) =

(
5 2
2 1

)
.
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Each Markoff number is equal to µ(w)12 for some Christoffel word w [18], where M12
denotes the element above the diagonal in a matrix M =

(
M11 M12
M21 M22

)
∈ GL2(Z).

For example, the Markoff number 194 is associated with the Christoffel word 00101
as it is the entry at position (1, 2) in the matrix

µ(00101) =
(

2 1
1 1

) (
2 1
1 1

) (
5 2
2 1

) (
2 1
1 1

) (
5 2
2 1

)
=

(
463 194
284 119

)
.

Whether the map w 7→ µ(w)12 provides a bijection between Christoffel words and
Markoff numbers is a question (stated differently in [5]) that has remained open for
more than 100 years [1]. The conjecture can be expressed in terms of the injectivity
of the map w 7→ µ(w)12 [19, §3.3].

Conjecture 1.1 (Markoff Injectivity Conjecture). The map w 7→ µ(w)12 is injective
on the set of Christoffel words.

In [15], a q-analog of rational numbers and of continued fractions were introduced.
This was the inspiration for several advances [14, 17, 4, 2, 7] and among them a q-
analog of Markoff triples [8]. A q-analog of the matrices µ(0) and µ(1) was proposed
in [11], which in terms of

Lq =
(
q 0
q 1

)
and Rq =

(
q 1
0 1

)
,

can be written as

µq(0) = RqLq =
(
q + q2 1
q 1

)
,

µq(1) = RqRqLqLq =
(
q + 2q2 + q3 + q4 1 + q

q + q2 1

)
.

It extends to a morphism of monoids µq : {0, 1}∗ → GL2(Z[q±1]). This q-analog
satisfies that µ1(w) = µ(w) for every w ∈ {0, 1}∗. Thus if w is a Christoffel word,
then the entry above the diagonal µq(w)12 is a polynomial of indeterminate q with
nonnegative integer coefficients such that it is a Markoff number when evaluated at
q = 1. For example,

µq(00101)12 = 1+4q+10q2 +18q3 +27q4 +33q5 +33q6 +29q7 +21q8 +12q9 +5q10 +q11

which, when evaluated at q = 1, is equal to

µ1(00101)12 = 1 + 4 + 10 + 18 + 27 + 33 + 33 + 29 + 21 + 12 + 5 + 1 = 194.

In [9], a q-analog of the Markoff Injectivity Conjecture was considered based on
the map w 7→ µq(w)12. It was proved that the map is injective over the language of
any fixed Christoffel word, extending a result proved when q = 1 [10]. In this work,
we go one step further and prove a q-analog of the Markoff Injectivity Conjecture.

Theorem 1.2. The map w 7→ µq(w)12 is injective on the set of Christoffel words.

Theorem 1.2 is proved in Section 2. In Section 3, we give examples where the map
w 7→ µq(w)12 is not injective when considered on the language {0, 1}∗.

2. Proof of Theorem 1.2
The main idea of this section is to evaluate the polynomial µq(w)12 at primitive root
of unity ζk = exp(2πi/k), in particular when k = 6.

First, we observe that when w ∈ {0, 1}∗, the matrix µζ6(w) can be expressed in
terms of ζ6, the length |w| of w and the number |w|1 of occurrences of 1 in w.
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ζ6

1

|w| + |w|1 ≡ 2
mod 6

|w| + |w|1 ≡ 3
mod 6

|w| + |w|1 ≡ 4
mod 6

|w| + |w|1 ≡ 5
mod 6

|w| + |w|1 ≡ 0
mod 6

|w| + |w|1 ≡ 1
mod 6

µq(011)12

Figure 1. A partition of the complex plane C∖{0} into six disjoint
cones spanned by the vectors ζk

6 and ζk+1
6 , k ∈ {0, 1, 2, 3, 4, 5}. For

every w ∈ {0, 1}∗ ∖ {ε}, µq(w)12 lies in the cone corresponding to
|w| + |w|1 mod 6. For instance, µq(011) = ζ5

6 (3 − 5ζ6) = 3ζ5
6 − 5 and

|w| + |w|1 = |011| + |011|1 = 3 + 2 ≡ 5 mod 6.

Lemma 2.1. For every w ∈ {0, 1}∗, we have

(1) µζ6(w) = ζ
|w|+|w|1
6

[(
|w| −|w|−|w|1

−|w|1 −|w|

)
ζ6 +

(
|w|1 |w|

|w|+|w|1 −|w|1

)
+

(
1 0
0 1

)]
.

Proof. The proof is done by recurrence on the length of w. We have µζ6(ε) = ( 1 0
0 1 ).

Thus, the formula works for w = ε. If (1) holds for w, then we have

µζ6(w0) = ζ
|w|+|w|1
6

(
|w|1 + 1 + |w| ζ6 |w| − (|w|+|w|1) ζ6

|w| + |w|1 − |w|1 ζ6 1 − |w|1 − |w| ζ6

)
ζ6

(
1+ζ6 1−ζ6

1 1−ζ6

)
= ζ

|w|+|w|1+1
6

(
|w|1 + 1 + (|w|+1) ζ6 |w| + 1 − (|w|+|w|1+1) ζ6

|w| + |w|1 + 1 − |w|1 ζ6 1 − |w|1 − (|w|+1) ζ6

)
,

µζ6(w1) = ζ
|w|+|w|1
6

(
|w|1 + 1 + |w| ζ6 |w| − (|w|+|w|1) ζ6

|w| + |w|1 − |w|1 ζ6 1 − |w|1 − |w| ζ6

)
ζ2

6

(
2+ζ6 1−2ζ6
2−ζ6 −ζ6

)
= ζ

|w|+|w|1+2
6

(
|w|1 + 2 + (|w|+1) ζ6 |w| + 1 − (|w|+|w|1+2) ζ6

|w| + |w|1 + 2 − (|w|1+1) ζ6 −|w|1 − (|w|+1) ζ6

)
,

hence (1) holds for w0 and w1. □

In particular, Equation (1) implies that the entry above the diagonal is

(2) µζ6(w)12 = ζ
|w|+|w|1
6

(
|w| − (|w| + |w|1)ζ6

)
∈ C.

The next result shows that when w ∈ {0, 1}∗ ∖ {ε}, the number µζ6(w)12 lies in one
of the six cones of angle π

3 that partition the complex plane according to the value of
|w| + |w|1, see Figure 1.

Lemma 2.2. For every w ∈ {0, 1}∗ ∖ {ε}, we have

µζ6(w)12 ∈
{
ρ · eiθ | ρ > 0, (|w| + |w|1 + 4) π

3 < θ ⩽ (|w| + |w|1 + 5) π
3

}
.

Moreover, w = ε if and only if µζ6(w)12 = 0.

Proof. Let w ∈ {0, 1}∗ ∖ {ε}. Since |w| + |w|1 ⩾ |w| > 0, then observe that

|w| − (|w| + |w|1)ζ6 ∈
{
ρ · eiθ | ρ > 0, 4π

3 < θ ⩽ 5π
3

}
.
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Since ζ6 = e
iπ
3 , from Equation (2), we have

µζ6(w)12 = ζ
|w|+|w|1
6

(
|w| − (|w| + |w|1)ζ6

)
∈ e

iπ
3 (|w|+|w|1) {

ρ · eiθ | ρ > 0, 4π
3 < θ ⩽ 5π

3
}

=
{
ρ · eiθ | ρ > 0, (|w|+|w|1+4)π

3 < θ ⩽ (|w|+|w|1+5)π
3

}
.

We have µζ6(w)12 = 0 if w = ε and, from above, µζ6(w)12 ̸= 0 if w ∈ {0, 1}∗ ∖ {ε}.
Thus, if µζ6(w)12 = 0, then w = ε. □

The next result shows that we can recover the number of 0’s and 1’s occurring in
a word w ∈ {0, 1}∗ from the polynomial µq(w)12 evaluated at q = ζ6.

Proposition 2.3. Let w,w′ ∈ {0, 1}∗. If µζ6(w)12 = µζ6(w′)12, then |w|0 = |w′|0 and
|w|1 = |w′|1.

Proof. If µζ6(w)12 = µζ6(w′)12 = 0, then from Lemma 2.2, we have w = ε = w′, thus
|w|0 = 0 = |w′|0 and |w|1 = 0 = |w′|1. Now, assume that µζ6(w)12 = µζ6(w′)12 ̸= 0.
From Lemma 2.2, we have

µζ6(w)12 ∈
{
ρ · eiθ | ρ > 0, (|w| + |w|1 + 4) π

3 < θ ⩽ (|w′| + |w′|1 + 5) π
3

}
,

µζ6(w′)12 ∈
{
ρ · eiθ | ρ > 0, (|w′| + |w′|1 + 4) π

3 < θ ⩽ (|w′| + |w′|1 + 5) π
3

}
,

which are two disjoint cones in the complex plane when |w|+|w|1 ̸≡ |w′|+|w′|1 mod 6.
Since µζ6(w)12 = µζ6(w′)12, the two cones must intersect and be equal. Therefore, we
have |w| + |w|1 ≡ |w′| + |w′|1 mod 6. From Lemma 2.1, we have

|w′| − (|w′| + |w′|1)ζ6 = ζ
−|w′|−|w′|1
6 µζ6(w′)12

= ζ
−|w′|−|w′|1
6 µζ6(w)12

= ζ
−|w′|−|w′|1
6 ζ

|w|+|w|1
6

(
|w| − (|w| + |w|1)ζ6

)
= |w| − (|w| + |w|1)ζ6.

This implies that |w′| = |w| and |w′| + |w′|1 = |w| + |w|1. Then |w|1 = |w′|1 and
|w|0 = |w| − |w|1 = |w′| − |w′|1 = |w′|0. □

We may now prove the main result. It is based on the isomorphism between the tree
of Christoffel words and the Stern–Brocot tree, a tree of positive rational numbers.
Indeed, the set of Christoffel words has the structure of a binary tree: if u, v, uv ∈
{0, 1}∗ are Christoffel words, then uuv and uvv are the left and right children of
the node uv [3, §3.2]. The Christoffel tree is isomorphic to the Stern–Brocot tree
via the map that associates to a vertex w of the Christoffel tree the fraction |w|1

|w|0
[3,

Proposition 7.6].

Proof of Theorem 1.2. We want to show the injectivity of the map w 7→ µq(w)12
over the set of Christoffel words. Let w,w′ ∈ {0, 1}∗ be two Christoffel words such
that µq(w)12 = µq(w′)12. In particular, we have µζ6(w)12 = µζ6(w′)12. From Proposi-
tion 2.3, |w|0 = |w′|0 and |w|1 = |w′|1.

Suppose by contradiction that w ̸= w′. This implies that the fraction |w|1
|w|0

= |w′|1
|w′|0

appears twice in the Stern–Brocot tree. This is a contradiction because every positive
rational number appears in the Stern–Brocot tree exactly once [6, §4.5]. Thus w = w′.
Therefore the map w 7→ µζ6(w)12 is injective over the set of Christoffel words, and so
is the map w 7→ µq(w)12. □

Algebraic Combinatorics, Vol. 6 #6 (2023) 1680
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Figure 2. For w ∈ {0, 1}∗, µζ5(w)12 takes 31 different values. The
set Ak = {µζ5(w)12 | µ1(w)12 ≡ k mod 5, w ∈ {0, 1}∗} consists of
the vertices of a regular pentagon when k ∈ {1, 2, 3, 4}, of the vertices
of a regular decagon and the origin when k = 0.

Remark 2.4. The monoid generated by µζk
(0) and µζk

(1) is a finite group if and
only if k ∈ {2, 3, 4, 5}. Indeed, the monoid generated by ζ−1

k µζk
(0) and ζ−2

k µζk
(1) is

isomorphic to the cyclic group C3 when k = 2, the quaternion group Q8 when k = 3,
the special linear groups SL2(F3) and SL2(F5) when k = 4 and k = 5 respectively;
since ζk

k = 1, the corresponding monoids generated by µζk
(0) and µζk

(1) are also finite
groups. For k = 6, the monoid is by Lemma 2.1 isomorphic to the abelianization of
{0, 1}∗, i.e. (N2, +). For k � 7, the matrix ζ−1

k µζk
(0) has an eigenvalue > 1 since

ζk + ζ−1
k > 1 and the characteristic polynomial of q−1µq(0) is x2 − (q+1+q−1)x + 1,

which implies that the generated monoid is infinite, thus the monoid generated by
µζk

(0) is also infinite.
For k ∈ {2, 3, 4, 5}, we also observe the following relations between the residue class

of µ1(w)12 (mod k) and µζk
(w)12 for w ∈ {0, 1}∗ (these relations hold not only for

the 12-coefficient but for all coefficients of µ1(w) and µζk
(w) and can be verified by

induction on the length of w):

• µ1(w)12 (mod 2) ≡
�

0 if and only if µ−1(w)12 = 0,

1 if and only if µ−1(w)12 ∈ {−1, 1},

• µ1(w)12 (mod 3) ≡





0 if and only if µζ3(w)12 = 0,

1 if and only if µζ3(w)12 ∈ {1, ζ3, ζ2
3 },

2 if and only if µζ3(w)12 ∈ {−1, −ζ3, −ζ2
3 },

• µ1(w)12 (mod 4) ≡





0 if and only if µi(w)12 = 0,

1 or 3 if and only if µi(w)12 ∈ {±1, ±i},

2 if and only if µi(w)12 ∈ {1 ± i, −1 ± i}.
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Figure 2. For w ∈ {0, 1}∗, µζ5(w)12 takes 31 different values. The
set Ak = {µζ5(w)12 | µ1(w)12 ≡ k mod 5, w ∈ {0, 1}∗} consists of
the vertices of a regular pentagon when k ∈ {1, 2, 3, 4}, of the vertices
of a regular decagon and the origin when k = 0.

Remark 2.4. The monoid generated by µζk
(0) and µζk

(1) is a finite group if and
only if k ∈ {2, 3, 4, 5}. Indeed, the monoid generated by ζ−1

k µζk
(0) and ζ−2

k µζk
(1) is

isomorphic to the cyclic group C3 when k = 2, the quaternion group Q8 when k = 3,
the special linear groups SL2(F3) and SL2(F5) when k = 4 and k = 5 respectively;
since ζk

k = 1, the corresponding monoids generated by µζk
(0) and µζk

(1) are also finite
groups. For k = 6, the monoid is by Lemma 2.1 isomorphic to the abelianization of
{0, 1}∗, i.e. (N2,+). For k ⩾ 7, the matrix ζ−1

k µζk
(0) has an eigenvalue > 1 since

ζk + ζ−1
k > 1 and the characteristic polynomial of q−1µq(0) is x2 − (q+1+q−1)x+ 1,

which implies that the generated monoid is infinite, thus the monoid generated by
µζk

(0) is also infinite.
For k ∈ {2, 3, 4, 5}, we also observe the following relations between the residue class

of µ1(w)12 (mod k) and µζk
(w)12 for w ∈ {0, 1}∗ (these relations hold not only for

the 12-coefficient but for all coefficients of µ1(w) and µζk
(w) and can be verified by

induction on the length of w):

• µ1(w)12 (mod 2) ≡

{
0 if and only if µ−1(w)12 = 0,
1 if and only if µ−1(w)12 ∈ {−1, 1},

• µ1(w)12 (mod 3) ≡


0 if and only if µζ3(w)12 = 0,
1 if and only if µζ3(w)12 ∈ {1, ζ3, ζ

2
3 },

2 if and only if µζ3(w)12 ∈ {−1,−ζ3,−ζ2
3 },

• µ1(w)12 (mod 4) ≡


0 if and only if µi(w)12 = 0,
1 or 3 if and only if µi(w)12 ∈ {±1,±i},
2 if and only if µi(w)12 ∈ {1 ± i,−1 ± i}.
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The value µ1(w)12 mod 5 can also be deduced from µζ5(w)12, which takes 31 distinct
values in the complex plane, see Figure 2. For k ⩾ 6, we have not found relations
between the residue class of µ1(w)12 (mod k) and µζk

(w)12.

3. w 7→ µq(w)12 is not injective on {0, 1}∗

In this section, we provide a list of pairs of words over the alphabet {0, 1} for which
w 7→ µq(w)12 is not injective. For example, 00011 and 01001 have the same image as
we have

µq(00011)12 = 1+4q+10q2+19q3+27q4+33q5+34q6+29q7+21q8+12q9+5q10+q11

= µq(01001)12.

The section contains two results: Theorem 3.1 and Theorem 3.2. All pairs of words we
know of are of form of Equation (4) or Equation (7). So we believe they completely
describe the pairs of words x, y ∈ {0, 1}∗ such that µq(x)12 = µq(y)12.

3.1. First result. To state the results, we need the two involutions w 7→ w̃ and w 7→
w on {0, 1}∗ which are defined by w̃ = wk · · ·w1 and w = wk · · ·w1 if w = w1 · · ·wk,
with 0 = 1, 1 = 0, i.e. w̃ is the mirror image of w and w is obtained from w̃ by
exchanging 0 and 1. Also, more generally, we consider images of the homomorphism

Mq : {0, 1}∗ → GL2(Z[q±1]), 0 7→ Lq, 1 7→ Rq

which will be used to prove identities for µq since µq(0) = Mq(10) and µq(1) =
Mq(1100).

Theorem 3.1. For all w ∈ {0, 1}∗, k,m, n ⩾ 0, we have

Mq

(
0k1w10m

)
12 = Mq

(
0k1w10n

)
12,(3)

µq(0w1)12 = µq(0w̃1)12.(4)

Proof. We have Mq(0kw0m)12 = qkMq(w)12 for all w ∈ {0, 1}∗, k,m ⩾ 0, because
(1, 0)Lq = (q, 0) and Lq

t(1, 0) = t(1, 0). Hence, it suffices to prove (3) for k = m =
n = 0. Since

Qq Lq Q
−1
q = tRq, and Qq Rq Q

−1
q = tLq, with Qq =

(
q 0
0 1

)
,

we have, for w = w1 · · ·wℓ ∈ {0, 1}∗,

(5) Qq Mq(w)Q−1
q = tMq(w1) · · · tMq(wℓ) = tMq(wℓ · · ·w1) = tMq(w)

and thus
Mq(1w1)12 =

(
RqQ

−1
q

tMq(w)QqRq

)
12 = (1, 1) tMq(w) t(q, 1) = (q, 1)Mq(w) t(1, 1)

= Mq(1w1)12,

using that 1 × 1 matrices are invariant under transposition. This proves (3).
Let σ : {0, 1}∗ → {0, 1}∗ be the homomorphism given by σ(0) = 10 and σ(1) =

1100. Then we have µq(w) = Mq(σ(w)) and σ(w) = σ(w̃) for all w ∈ {0, 1}∗, thus

µq(0w1)12 = Mq

(
10σ(w)1100

)
12 = Mq

(
10σ(w)1100

)
12 = Mq

(
10σ(w̃)1100

)
12

= µq(0w̃1)12,

where we have used (3) and 0w1 = 0w1 for the second equation. □

Recall that if 0w1 ∈ {0, 1}∗ is a Christoffel word, then w is a palindrome [19,
Theorem 2.3.1]. Therefore Theorem 3.1 is compatible with Theorem 1.2.
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3.2. Second result. We obtain more identities by images of the homomorphisms
(with w ∈ {0, 1}∗)

φw : {0, 1, 2, 3}∗ → {0, 1}∗, 0 7→ w0110w0110, 2 7→ w0110w1001,

1 7→ w1001w1001, 3 7→ w1001w0110,

ψw : {0, 1, 2, 3}∗ → {0, 1}∗, 0 7→ w01w̃01, 2 7→ w01w̃10,

1 7→ w10w̃10, 3 7→ w10w̃01.

We extend the involution w 7→ w to {0, 1, 2, 3}∗ by setting 2 = 3 and 3 = 2.

Theorem 3.2. For all w ∈ {0, 1}∗, v ∈ {0, 1, 2, 3}∗, k,m, n ⩾ 0, we have
Mq

(
0k1φw(v)w10m

)
12 = Mq

(
0k1φw(v)w10n

)
12.(6)

µq

(
0ψw(v)w1

)
12 = µq

(
0ψw(v)w1

)
12.(7)

For the proof of the theorem, we decompose φw = ηw ◦ τ with
ηw : {0, 1, 2, 3}∗ → {0, 1}∗, 0 7→ w0110, 2 7→ w0110,

1 7→ w1001, 3 7→ w1001,

τ : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗, 0 7→ 02, 2 7→ 12,

1 7→ 13, 3 7→ 03,

and we use the homomorphism
η′

w : {0, 1, 2, 3}∗ → {0, 1}∗, 0 7→ 0110w, 2 7→ 0110w,

1 7→ 1001w, 3 7→ 1001w,

satisfying φw(v)w = ηw(τ(v))w = wη′
w(τ(v)). We have to show that the difference

∆w(v) = Mq

(
1ηw(v)w1

)
12 −Mq

(
1wη′

w(v)1
)

12

is zero for all v ∈ τ({0, 1, 2, 3}∗) = {02, 03, 12, 13}∗ = ({0, 1}{2, 3})∗.

Lemma 3.3. Let a ∈ {2, 3}, v ∈ ({0, 1}{2, 3})∗, w ∈ {0, 1}∗. If ∆w(v) = 0, then
∆w(u0uav) = ∆w(u1uav)

for all u ∈ ({0, 1}{2, 3})∗ and
∆w(u2uav) = ∆w(u3uav)

for all u ∈ ({0, 1}{2, 3})∗{0, 1}.

Proof. Assume first that |u| is even. Then
∆w(u0ūav) − ∆w(u1ūav)
= Mq

(
1ηw(u0ūav)w1

)
12 −Mq

(
1ηw(u1ūav)w1

)
12

+Mq

(
1wη′

w(v̄āu0ū)1
)

12 −Mq

(
1wη′

w(v̄āu1ū)1
)

12

=
(
Mq

(
1ηw(u)w

)(
Mq(0110) −Mq(1001)

)
Mq

(
ηw(ūav)w1

))
12

+
(
Mq

(
1wη′

w(v̄āu)
)(
Mq(0110) −Mq(1001)

)
Mq

(
wη′

w(ū)1
))

12

= (q3 + 1)
(
Mq

(
1ηw(u)w

)
SQqMq

(
ηw(ūav)w1

))
12

+ (q3 + 1)
(
Mq

(
1wη′

w(v̄āu)
)
SQqMq

(
wη′

w(ū)1
))

12

= (q3 + 1) q|ηw(u)w|(RqSQqMq

(
w−1ηw(av)w1

))
12

+ (q3 + 1) q|ηw(u)w|(Mq

(
1wη′

w(v̄ā)w−1)
SQqRq

)
12

= (q3 + 1) q|ηw(u)w|da

(
Mq

(
1ηw(v)w1

)
12 −Mq

(
1wη′

w(v̄)1
)

12

)
= (q3 + 1) q|ηw(u)w|da ∆w(v),
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with d2 = −q and d3 = q4. Here, we use for the third equation that

Mq(0110) = Mq(1001) + (q3+1)SQq, where S =
(

0 −1
1 0

)
, Qq =

(
q 0
0 1

)
.

For the fourth equation, we use that, by (5),

Mq(z)S Qq Mq(z) = Mq(z)S tMq(z)Qq = det(Mq(z))SQq = q|z|SQq

for all z ∈ {0, 1}∗, in particular for z = ηw(u)w (with z = ηw(u)w) and for z = wη′
w(u)

(with z = wη′
w(u)). For the fifth equation, we use that

(1, 0)RqSQqMq(w−1ηw(2)) = (1, 0)RqSQqMq(0110) = −(q2, q) = −q (1, 0)Rq,

(1, 0)RqSQqMq(w−1ηw(3)) = (1, 0)RqSQqMq(1001) = (q5, q4) = q4(1, 0)Mq(1),
Mq(η′

w(3)w−1)
SQqRq

t(0, 1) = Mq(1001)SQqRq
t(0, 1) = t(q, q) = qMq(1) t(0, 1),

Mq(η′
w(2)w−1)

SQqRq
t(0, 1) = Mq(0110)SQqRq

t(0, 1) = −t(q4, q4) = −q4Rq
t(0, 1).

Therefore, ∆w(v) = 0 implies that ∆w(u0ūav) = ∆w(u1ūav).
The proof of ∆w(u2ūav) = ∆w(u3ūav) for odd |u| runs along the same lines. □

Lemma 3.4. For all v ∈ ({0, 1}{2, 3})∗, w ∈ {0, 1}∗, we have ∆w(v) = 0.

Proof. We proceed by induction on the length of v. The statement is trivially true for
|v| = 0. Suppose that it is true up to length k − 1 and consider it for length k.

We claim that the value of ∆w(v1 · · · v2k) does not depend on the choice of v1 · · · vj ,
for any j ⩽ k. The claim is true for j = 1, by Lemma 3.3 with u = ε and the induction
hypothesis. If the claim is true up to j−1, then it gives together with Lemma 3.3, for
any u1 · · ·uj ∈ ({0, 1}{2, 3})∗ ∪ ({0, 1}{2, 3})∗{0, 1}, that

∆w(u1 · · ·ujvj+1 · · · v2k) = ∆w(vj+1 · · · v2j−1ujvj+1 · · · v2k)
= ∆w(vj+1 · · · v2j−1vjvj+1 · · · v2k) = ∆w(v1 · · · v2k).

This proves the claim.
Since ηw(uu)w = wη′

w(uu) for all u ∈ ({0, 1}{2, 3})∗ ∪ ({0, 1}{2, 3})∗{0, 1}, we
have ∆w(vk+1 · · · v2kvk+1 · · · v2k) = 0, thus ∆w(v1 · · · v2k) = 0 for all v1 · · · v2k ∈
({0, 1}{2, 3})∗. □

Proof of Theorem 3.2. As for (3), it suffices to prove (6) for k = m = n = 0. Since
φw(v) = ηw(τ(v)) and φw(v)w = wη′

w(τ(v)) for all w ∈ {0, 1}∗, v ∈ {0, 1, 2, 3}∗,
Lemma 3.4 implies that (6) holds.

Let σ be as in the proof of Theorem 3.1. Then
µq

(
0ψw(v)w1

)
12 = Mq(1η0σ(w)1(v)0σ(w)1100) = Mq(1η0σ(w)1(v)0σ(w)1100)

= µq

(
0ψw(v)w1

)
12,

using that 0σ(ψw(v))1 = η0σ(w)1(v), and using (6) for the second equation. □

The equation Mq(x)12 = Mq(y)12 has many solutions x, y ∈ {0, 1}∗ which are not
of the form of Equation (3) or (6), for example

Mq(110000011)12 = 1+2q+3q2 +4q3 +4q4 +4q5 +3q6 +2q7 +q8 = Mq(100010001)12,

but we believe that Equations (4) and (7) are complete.

Question 3.5. Do there exist x, y ∈ {0, 1}∗ satisfying µq(x)12 = µq(y)12 which are
not given by Equation (4) or (7)?
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