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Higher Lie characters and
cyclic descent extension on conjugacy classes

Ron M. Adin, Pál Hegedüs & Yuval Roichman

Abstract A now-classical cyclic extension of the descent set of a permutation has been in-
troduced by Klyachko and Cellini. Following a recent axiomatic approach to this notion, it is
natural to ask which sets of permutations admit such a (not necessarily classical) extension.

The main result of this paper is a complete answer in the case of conjugacy classes of
permutations. It is shown that the conjugacy class of cycle type λ has such an extension if and
only if λ is not of the form (rs) for some square-free r. The proof involves a detailed study of
hook constituents in higher Lie characters.

1. Introduction
1.1. Background and main result. The study of descent sets for permutations
may be traced back to Euler. A cyclic extension of this classical concept was intro-
duced in the study of Lie algebras [20] and descent algebras [8]. Surprising connections
of the cyclic descent notion to a variety of mathematical areas were found later.

The descent set of a permutation π = [π1, . . . , πn] in the symmetric group Sn on n
letters is

Des(π) := {1 ⩽ i ⩽ n− 1 : πi > πi+1} ⊆ [n− 1],
where [m] := {1, 2, . . . ,m}. Cellini [8] introduced a natural notion of cyclic descent
set:

CDes(π) := {1 ⩽ i ⩽ n : πi > πi+1} ⊆ [n],
with the convention πn+1 := π1. The more restricted notion of cyclic descent number
had been used previously by Klyachko [20]. This cyclic descent set was further studied
by Dilks, Petersen and Stembridge [10] and others.

There exists a well-established notion of descent set for standard Young tableaux
(SYT), but it has no obvious cyclic analogue. In a breakthrough work, Rhoades [27]
defined a notion of cyclic descent set for standard Young tableaux of rectangular
shape. The properties common to Cellini’s definition (for permutations) and Rhoades’

Manuscript received 13th November 2019, revised 10th February 2023 and 29th June 2023, accepted
30th June 2023.
Keywords. Cyclic descent, conjugacy class, symmetric group, higher Lie character, hook
constituent.
Acknowledgements. PH was partially supported by Hungarian National Research, Development
and Innovation Office (NKFIH) Grant No. K138596 and by Bar-Ilan University visiting grant. The
project leading to this application has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme, Grant agreement No.
741420. RMA and YR were partially supported by the Israel Science Foundation, grant no. 1970/18
and by an MIT-Israel MISTI grant.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.323
http://algebraic-combinatorics.org/


R. M. Adin, P. Hegedüs & Y. Roichman

construction (for SYT) appeared in other combinatorial settings as well [24, 23, 11, 1].
This led to an abstract definition, as follows.

Definition 1.1 ([3]). Let T be a finite set, equipped with a set valued map (called
descent map) Des : T −→ 2[n−1]. Let shift : 2[n] −→ 2[n] be the mapping on subsets
of [n] induced by the cyclic shift i 7→ i + 1 (mod n) of elements i ∈ [n]. A cyclic
extension of Des is a pair (cDes, p), where cDes : T −→ 2[n] is a map and p : T −→ T
is a bijection, satisfying the following axioms: for all T in T ,

(extension) cDes(T ) ∩ [n− 1] = Des(T ),
(equivariance) cDes(p(T )) = shift(cDes(T )),
(non-Escher) ∅ ⊊ cDes(T ) ⊊ [n].

The term “non-Escher” refers to M. C. Escher’s drawing “Ascending and Descend-
ing”, which illustrates the impossibility of the cases cDes(π) = ∅ and cDes(π) = [n]
for permutations π ∈ Sn.

A ribbon is a skew shape which contains no 2× 2 square.

Theorem 1.2 ([3, Theorem 1.1]). Let λ/µ be a skew shape with n cells. The descent
map Des on SYT(λ/µ) has a cyclic extension (cDes, p) if and only if λ/µ is not a
connected ribbon.

The original proof used Postnikov’s toric symmetric functions. A constructive proof
was recently given by Huang [17].

For connections of cyclic descents to Kazhdan–Lusztig theory see [27]; for topologi-
cal aspects and connections to the Steinberg torus see [10]; for twisted Schützenberger
promotion see [27, 17]; for cyclic quasisymmetric functions and Schur-positivity see [2];
for Postnikov’s toric Schur functions see [3]. The goal of this paper is to determine
which conjugacy classes of the symmetric group carry a cyclic descent extension.

Observation 1.3. Let Des and CDes denote the classical descent set and Cellini’s
cyclic descent set on permutations, respectively. Let p : Sn → Sn be the rotation

[π1, π2, . . . , πn−1, πn] p7−→ [πn, π1, π2, . . . , πn−1].
Then the pair (CDes, p) is a cyclic descent extension of Des on Sn in the sense of
Definition 1.1.

Cellini’s definition provides a cyclic extension of Des on the full symmetric group,
but not on some of its subsets – for example, on many conjugacy classes; see Section 7.2
below.

Example 1.4. Consider the conjugacy class of 4-cycles in S4,
C(4) = {2341, 2413, 3142, 3421, 4123, 4312}.

Cellini’s cyclic descent sets are
{3}, {2, 4}, {1, 3}, {2, 3}, {1}, {1, 2},

respectively; this family is not closed under cyclic rotation. On the other hand, re-
defining the cyclic descent sets to be

cDes(2341) = {3, 4}, cDes(2413) = {2, 4}, cDes(3142) = {1, 3},
cDes(3421) = {2, 3}, cDes(4123) = {1, 4}, cDes(4312) = {1, 2}

and defining the map p by
2341→ 4123→ 4312→ 3421→ 2341

and
3142→ 2413→ 3142,
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the pair (cDes, p) does determine a cyclic extension of Des for this conjugacy class.

The goal of this paper is to show that most conjugacy classes in Sn carry a cyclic
descent extension. In fact, we obtain a full characterization.

Recall that an integer is square-free if no prime square divides it; in particular, 1
is square-free. Our main result is the following.

Theorem 1.5. Let λ be a partition of n, and let Cλ ⊆ Sn be the corresponding con-
jugacy class. The descent map Des on Cλ has a cyclic extension (cDes, p) if and only
if λ is not of the form (rs) for some square-free r.

1.2. Proof method. The proof of Theorem 1.5 is non-constructive and involves a
detailed study of the hook constituents in higher Lie characters. Here is an overview
of the main ingredients.

1.2.1. Higher Lie characters.

Definition 1.6. For a partition λ of n, let Cλ be the conjugacy class consisting of all
the permutations in Sn of cycle type λ, and let χλ denote the irreducible Sn-character
corresponding to λ. Let Zλ be the centralizer of a permutation in Cλ (defined up to
conjugacy). If ki denotes the number of parts of λ equal to i, then Zλ is isomorphic
to the direct product ×n

i=1Zi ≀ Ski . Here and in the rest of the paper Zi denotes the
cyclic group of order i, using additive notation (integers modulo i).

For each i, let ωi be the linear character on Zi ≀ Ski
indexed by the i-tuple of

partitions (∅, (ki),∅, . . . ,∅). In other words, let ζi be a primitive linear character on
the cyclic group Zi, and extend it to the wreath product Zi ≀Ski

so that it is ζki
i on the

base subgroup Zki
i and trivial on the wreathing subgroup Ski

. Denote this extension
by ωi. Now let

ωλ :=
n⊗

i=1
ωi,

a linear character on Zλ. Define the corresponding higher Lie character to be the
induced character

ψλ := ωλ ↑Sn

Zλ
.

The study of higher Lie characters can be traced back to Schur [30]. An old problem
of Thrall [39] is to provide an explicit combinatorial interpretation of the multiplicities
of the irreducible characters in the higher Lie character, see also [33, Exercise 7.89(i)].
Only partial results are known: the case λ = (n) was solved by Kraśkiewicz and Wey-
man [21]; Désarménien and Wachs [9] resolved a coarser version of Thrall’s problem
for the sum of higher Lie characters over all derangements, see also [26]. The best
result so far is Schocker’s expansion [29, Theorem 3.1], which however involves signs
and rational coefficients. For recent discussions see, e.g., [25, 5, 36].

A remarkable theorem of Gessel and Reutenauer [15, Theorem 2.1] applies higher
Lie characters to describe the fiber sizes of the descent set map on conjugacy classes.
Their proof applies an interpretation of higher Lie character ψλ in terms of quasisym-
metric functions (Theorem 2.5 below). It follows that higher Lie characters can be
used to prove the existence of cyclic descent extensions as explained below.

1.2.2. Hook multiplicities and cyclic descent extensions. Recall the standard nota-
tion sλ for the Schur function indexed by a partition λ, as well as Fn,D for the funda-
mental quasisymmetric function indexed by a subset D ⊆ [n− 1]; see Definition 2.1.
A subset A ⊆ Sn is Schur-positive if the associated quasisymmetric function

Q(A) :=
∑
a∈A
Fn,Des(a)
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is symmetric and Schur-positive.
For an integer 0 ⩽ k < n and a Schur-positive subset A ⊆ Sn denote

mk,A := ⟨Q(A), s(n−k,1k)⟩,

where s(n−k,1k) is the Schur function indexed by the hook partition (n− k, 1k).
First we prove the following key lemma, which provides an algebraic criterion for

the existence of a cyclic descent extension.

Lemma 1.7. A Schur-positive set A ⊆ Sn has a cyclic descent extension if and only
if the following two conditions hold:

(divisibility) the polynomial
∑n−1

k=0 mk,Ax
k is divisible by 1 + x;

(non-negativity) the quotient has nonnegative coefficients.

See Lemma 3.2 below.

1.2.3. Divisibility. By the Gessel–Reutenauer theorem, for every conjugacy class Cλ

the quasisymmetric function Q(Cλ) is the Frobenius image of the higher Lie charac-
ter ψλ, thus Cλ is Schur-positive; see Theorem 2.5 below.

For a partition λ ⊢ n denote

(1) mk,λ := mk,Cλ
= ⟨Q(Cλ), s(n−k,1k)⟩ = ⟨ψλ, χ(n−k,1k)⟩.

Proposition 1.8. The hook-multiplicity generating function of the higher Lie char-
acter ψλ

Mλ(x) :=
n−1∑
k=0

mk,λx
k

is divisible by 1 +x if and only if λ is not of the form (rs) for a square-free integer r.

This divisibility condition is proved using an explicit evaluation of the higher Lie
character on n-cycles; see Section 3.3 below.

1.2.4. Non-negativity. In order to prove Theorem 1.5, it remains to show that the
coefficients of the quotient Mλ(x)/(1 + x) are nonnegative, whenever λ is not of the
form (rs) for a square-free r. It turns out that partitions λ which have at least two
different parts, namely not of the form (rs) for any r, are the easiest to handle. In
that case, a factorization of the associated higher Lie character ψλ is applied to prove
the following.

Lemma 1.9. Let λ = µ⊔ν be a disjoint union of nonempty partitions with no common
part. Then

(2) Mλ(x)
1 + x

= Mµ(x)Mν(x),

and its coefficients are thus non-negative.

The core of the proof of Theorem 1.5 is the case of λ = (rs). For a fixed positive
integer r, consider the formal power series

Mr(x, y) :=
∑
i⩾0
s⩾1

mi,(rs)x
iys,

where mi,(rs) is the multiplicity of the hook character χ(rs−i,1i) in the higher Lie
character ψ(rs). The following theorem completes the proof of Theorem 1.5.
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Theorem 1.10. If r is not square-free then the formal power series

Mr(x, y)
1 + x

has non-negative integer coefficients.

Proof of Theorem 1.5. Combine Lemma 1.7, Proposition 1.8, Lemma 1.9 and Theo-
rem 1.10. □

1.3. Outline. The rest of the paper is organized as follows.
Necessary background, including a cyclic analogue of the Gessel–Reutenauer The-

orem, is given in Section 2.
The role of hooks in the study of cyclic descent extensions is explained in Section 3.

In particular, a necessary and sufficient criterion for Schur-positive sets to carry a
cyclic descent extension (Lemma 1.7) is proved in Subsection 3.2. Using this criterion,
the proof of Theorem 1.5 is reduced to Proposition 1.8 (divisibility) and Theorem 1.10
(non-negativity). Proposition 1.8 is proved in Subsection 3.3.

The proof of Theorem 1.10, stating the non-negativity of the coefficients
of Mλ(x)/(1 + x) whenever this quotient is a polynomial, spans Sections 4, 5
and 6: the case of more than one cycle length is considered in Section 4; the case of
a single cycle is considered in Section 5; and the case of cycle type (rs) with s > 1
is considered in Section 6. In the case of more than one cycle length, non-negativity
is proved using a factorization of the associated higher Lie character (Lemma 1.9).
In the case of a single cycle, combining a combinatorial formula for inner products
with a variant of the Witt transform proves unimodality of the sequence of hook-
multiplicities (Proposition 5.2). This, in turn, implies the desired non-negativity of
the quotient.

In Section 6 we lift the single-cycle result to the case of cycle type (rs) with s > 1. In
Subsection 6.1 we provide an explicit expression for the coefficients of (1+x)Mr(x, y),
see Theorem 6.3. This expression is used to obtain a product formula for the bivariate
polynomial 1 + (1 + x)Mr(x, y) in Subsection 6.2, and to deduce Theorem 1.10 in
Subsection 6.3.

Additional results are presented in Section 7. In Subsection 7.1 it is shown that
Lemma 3.5 and Theorem 6.3 imply well-known combinatorial identities. In Subsec-
tion 7.2 it is shown that the natural approach does not provide a cyclic descent exten-
sion for conjugacy classes in Sn. Palindromicity of the hook-multiplicity generating
function M(rs)(x) is studied in Subsection 7.3.

Section 8 concludes the paper with final remarks and open problems.

2. Preliminaries
The role of quasisymmetric functions in the study of the distribution of descent sets
is discussed in Subsection 2.1. The results presented here are used in Section 3 to
establish the reduction of existence of cyclic descent extension on conjugacy classes
to the study of hook-multiplicities in higher Lie characters. In Subsection 2.2 we
present cyclic analogues of a few classical results. These analogues are used for certain
enumerative applications; the reader may skip this subsection.

2.1. Quasisymmetric functions and descents. A symmetric function is called
Schur-positive if all the coefficients in its expansion in the basis of Schur functions
are non-negative. Recall the notation sλ/µ for the Schur function indexed by a skew
shape λ/µ.
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Definition 2.1. For each subset D ⊆ [n− 1] define the fundamental quasisymmetric
function

Fn,D(x) :=
∑

i1⩽i2⩽...⩽in

ij<ij+1 if j∈D

xi1xi2 · · ·xin .

Denote the set of standard Young tableaux of skew shape λ/µ by SYT(λ/µ). There
is an established notion of descent set for SYT(λ/µ)

(3) Des(T ) := {1 ⩽ i ⩽ n− 1 : i+ 1 appears in a lower row of T than i}.

Theorem 2.2. (Gessel, see [33, Theorem 7.19.7]) For every skew shape λ/µ,∑
T ∈SYT(λ/µ)

Fn,Des(T ) = sλ/µ.

Given any subset A ⊆ Sn, define the quasisymmetric function

Q(A) :=
∑
a∈A
Fn,Des(a).

Finding subsets of permutations A ⊆ Sn, for which Q(A) is symmetric (Schur-
positive), is a long-standing problem, see [15].

We write λ ⊢ n to denote that λ is a partition of a positive integer n. For D ⊆ [n−1]
let xD :=

∏
i∈D

xi.

Lemma 2.3. For every subset A ⊆ Sn and a family {cλ}λ⊢n of coefficients, the equality

(4) Q(A) =
∑
λ⊢n

cλsλ

is equivalent to the equality

(5)
∑
a∈A

xDes(a) =
∑
λ⊢n

cλ

∑
T ∈SYT(λ)

xDes(T ).

Proof. By Theorem 2.2, Equation (4) is equivalent to∑
a∈A
Fn,Des(a) =

∑
λ⊢n

cλ

∑
T ∈SYT(λ)

Fn,Des(T ).

Next recall from [33, Ch. 7] that the fundamental quasisymmetric functions in
x1, . . . , xn form a basis of the vector space QSymn of quasisymmetric functions in n
variables. Finally, apply the vector space isomorphism from QSymn to the space of
square-free polynomials in x1, . . . , xn, which maps Fn,D to xD. □

Corollary 2.4. For every finite family S of skew shapes of size n and every subset
A ⊆ Sn Q(A) =

∑
λ/µ∈S

cλ/µsλ/µ if and only if

∑
a∈A

xDes(a) =
∑

λ/µ∈S

cλ/µ

∑
T ∈SYT(λ/µ)

xDes(T ).

Corollary 2.4 will be combined with Theorem 1.2 to provide criteria for the exis-
tence of cyclic descent extensions for Schur-positive sets; see the proof of Lemma 3.2
and Remark 4.2 below.

Let λ ⊢ n be a partition of n and let ψλ be the higher Lie character indexed by λ
(see Definition 1.6). The following result was proved by Gessel and Reutenauer.
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Theorem 2.5 ([15, Proof of Theorem 2.1]). For every partition λ of n ⩾ 1,

Q(Cλ) = ch(ψλ),

where ch is the Frobenius characteristic map. Equivalently,

Q(Cλ) =
∑
µ⊢n

⟨ψλ, χµ⟩sµ.

In particular, Q(Cλ) is Schur-positive.

2.2. Cyclic analogues. Recall the complete homogeneous symmetric functions

hn :=
∑

i1⩽···⩽in

xi1 · · ·xin
(n ⩾ 1).

For a composition α = (α1, . . . , αt), define

hα := hα1hα2 · · ·hαt
.

For any subset J = {j1 < . . . < jt} ⊆ [n− 1], define

α(J, n) := (j1, j2 − j1, j3 − j2, . . . , jt − jt−1, n− jt).

This is a composition of n, with a corresponding connected ribbon having the entries
of α(J, n) as row lengths, from bottom to top. The associated ribbon Schur function
is

sα(J,n) :=
∑
I⊆J

(−1)#(J∖I)hα(I,n).

Theorem 2.6 (Gessel, an immediate consequence of [14, Theorem 3]). Let A be a
finite set, equipped with a descent map Des : A −→ 2[n−1]. If

Q(A) :=
∑
a∈A
Fn,Des(a)

is symmetric then

|{a ∈ A : Des(a) = J}| = ⟨Q(A), sα(J,n)⟩ (∀J ⊆ [n− 1]).

For a subset ∅ ̸= J = {j1 < j2 < . . . < jt} ⊆ [n] define the corresponding cyclic
composition of n as

αcyc (J,n) := (j2 − j1, . . . , jt − jt−1, j1 + n− jt),

with αcyc (J,n) := (n) when J = {j1}; note that αcyc (∅,n) is not defined. The corre-
sponding affine (cyclic) ribbon Schur function was defined in [3] as

s̃αcyc (J,n) :=
∑

∅̸=I⊆J

(−1)#(J∖I)hαcyc (I,n) .

Theorem 2.7 ([2, Cor. 4.13]). Let A be a finite set, equipped with a descent map
Des : A −→ 2[n−1] which has a cyclic extension. If

Q(A) :=
∑
a∈A
Fn,Des(T )

is symmetric then the fiber sizes of (any) cyclic descent map satisfy

|{a ∈ A : cDes(a) = J}| = ⟨Q(A), s̃αcyc (J,n)⟩ (∀∅ ⊊ J ⊊ [n]) .

Proposition 2.8 ([3, Lemma 2.2]). If A ⊆ Sn carries a cyclic descent extension, then
the cyclic descent set generating function is uniquely determined.
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Corollary 2.9. Let A ⊆ Sn be a symmetric set which carries a cyclic descent exten-
sion and S be a finite set of skew shapes of size n which are not connected ribbons.
Then for every cyclic descent extension the following equations are equivalent:

(6) Q(A) =
∑

λ/µ∈S

cλ/µsλ/µ,

and

(7)
∑
a∈A

xcDes(a) =
∑

λ/µ∈S

cλ/µ

∑
T ∈SYT(λ/µ)

xcDes(T ).

Proof. By Theorem 2.7 and Theorem 2.2, if Equation (6) holds then, for every ∅ ⊊
J ⊊ [n],

|{a ∈ A : cDes(a) = J}| = ⟨Q(A), s̃αcyc (J,n)⟩ = ⟨
∑

λ/µ⊢n

cλ/µsλ/µ, s̃αcyc (J,n)⟩

=
∑

λ/µ⊢n

cλ/µ⟨Q(SYT(λ/µ)), s̃αcyc (J,n)⟩

=
∑

λ/µ⊢n

cλ/µ|{T ∈ SYT(λ/µ) : cDes(T ) = J}|.

Thus Equation (7) holds.
For the opposite direction, let xn = 1 in Equation (7) and apply Corollary 2.4 to

deduce Equation (6). □

Theorem 2.5 and Theorem 2.6 imply the following.

Theorem 2.10 ([15, Theorem 2.1]). For every conjugacy class Cλ of cycle type λ ⊢ n
the descent set map Des has fiber sizes given by

|{π ∈ Cλ : Des(π) = J}| = ⟨Q(Cλ), sα(J,n)⟩ (∀J ⊆ [n− 1]).

The following cyclic analogue of Theorem 2.10 results from Theorem 2.5 and The-
orem 2.7.

Theorem 2.11. For every conjugacy class Cλ, which carries a cyclic descent set ex-
tension, all cyclic extensions of the descent set map Des have fiber sizes given by

|{π ∈ Cλ : cDes(π) = J}| = ⟨Q(Cλ), s̃αcyc (J,n)⟩ (∀∅ ⊊ J ⊊ [n]).

3. The role of hooks
3.1. Hooks and near-hooks. It turns out that hooks and near-hooks play a crucial
role in the study of cyclic descent extensions.

A hook is a partition with at most one part larger than 1. Explicitly, it has the form
(n−k, 1k) for some 0 ⩽ k ⩽ n−1. A near-hook of size n is a hook of size n+1 with its
(northwestern) corner cell removed; see [1] for a somewhat more inclusive definition
of this notion. Equivalently, recall the direct sum operation on shapes (partitions),
denoted λ ⊕ µ, yielding a skew shape having the diagram of λ strictly southwest of
the diagram of µ, with no rows or columns in common. A near-hook of size n is the
direct sum of a one-column partition (1k) and a one-row partition (n − k), for some
0 ⩽ k ⩽ n. For example,

(12)⊕ (5) = ⊕ =
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Given an Sn-character ϕ, let

(8) mk,ϕ := ⟨ϕ, χ(n−k,1k)⟩ (0 ⩽ k ⩽ n−1), ek,ϕ := ⟨ϕ, χ(1k)⊕(n−k)⟩ (0 ⩽ k ⩽ n).
When ϕ is understood from the context, we use the abbreviated notations mk := mk,ϕ

and ek := ek,ϕ.
By Pieri’s rule [33, Theorem 7.5.17] combined with the (inverse) Frobenius char-

acteristic map,

χ(1k)⊕(n−k) = χ(1k)χ(n−k) = ch−1(s(1k)s(n−k)) = ch−1(s(n−k+1,1k−1) + s(n−k,1k))

= χ(n−k+1,1k−1) + χ(n−k,1k) (0 < k < n).
Equivalently,

χ(n−k,1k) =
k∑

i=0
(−1)k−iχ(1i)⊕(n−i) (0 ⩽ k ⩽ n− 1).

Thus the sequences {mk}n−1
k=0 and {ek}n

k=0 determine each other via the relations

(9) ek = mk +mk−1 and mk =
k∑

i=0
(−1)k−iei (0 ⩽ k ⩽ n),

where mk := 0 for k = −1 and k = n. Note that, in particular,
n∑

i=0
(−1)n−iei = 0.

3.2. Cyclic descent extension and hook-multiplicities. Let A ⊆ Sn be
Schur-positive with Q(A) = ch(ϕ). Denote

mλ := ⟨ϕ, χλ⟩ = ⟨Q(A), sλ⟩ (∀λ ⊢ n).
For λ = (n− k, 1k) we use the abbreviation

mk := m(n−k,1k) (0 ⩽ k < n).
The hook-multiplicity generating function is defined as

MA(x) :=
n−1∑
k=0

mkx
k.

The function MA(x), where A is a conjugacy class, was studied and applied to the
enumeration of unimodal permutations with a given cycle type by Thibon [38].

Observation 3.1. For every 0 ⩽ k < n

mk = |{a ∈ A : Des(a) = [k]}| .

Proof. For every 0 ⩽ k < n there exists a unique standard Young tableau T of size n
with Des(T ) = [k] (where [0] := ∅). The shape of T is (n − k, 1k). Comparing the
coefficients of x[k] on both sides of Equation (5) completes the proof. □

We now restate and prove Lemma 1.7.

Lemma 3.2. A Schur-positive set A ⊆ Sn carries a cyclic descent extension if and
only if the hook-multiplicity generating function MA(x) is divisible by 1 + x and the
quotient MA(x)/(1+x) has non-negative coefficients; equivalently, if and only if there
exist non-negative integers dk (0 ⩽ k ⩽ n− 2) such that

mk = dk + dk−1 (0 ⩽ k ⩽ n− 1),
where dk := 0 for k = −1 and k = n− 1.
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Proof. If A carries a cyclic descent extension then, by Observation 3.1 and the equiv-
ariance of cDes, for every 0 ⩽ k ⩽ n− 1:

mk = |{a ∈ A : Des(a) = [k]}|
= |{a ∈ A : cDes(a) = [k]}|+ |{a ∈ A : cDes(a) = [k] ⊔ {n}}|
= |{a ∈ A : cDes(a) = [k]}|+ |{a ∈ A : cDes(a) = [k + 1]}| .

The numbers

dk := |{a ∈ A : cDes(a) = [k + 1]}| (−1 ⩽ k ⩽ n− 1)

satisfy the required conditions, which imply the corresponding properties of MA(x).
For the opposite direction, assume that there exist non-negative integers dk (with

d−1 = dn−1 = 0) such that mk = dk−1 + dk for all 0 ⩽ k ⩽ n− 1. By Pieri’s rule [33,
Theorem 7.15.7],

s(1k)⊕(n−k) = s(1k)s(n−k) = s(n−k+1,1k−1) + s(n−k,1k) (1 ⩽ k ⩽ n− 1).

Hence
n−1∑
k=1

dk−1s(1k)⊕(n−k) =
n−1∑
k=1

dk−1(s(n−k+1,1k−1) + s(n−k,1k)) =
n−1∑
k=0

mks(n−k,1k).

Since

Q(A) =
∑
λ⊢n

⟨Q(A), sλ⟩sλ =
∑
λ⊢n

λ non-hook

mλsλ +
n−1∑
k=0

mks(n−k,1k)

we obtain

(10) Q(A) =
∑
λ⊢n

λ non-hook

mλsλ +
n−1∑
k=1

dk−1s(1k)⊕(n−k).

By Corollary 2.4, this is equivalent to

∑
a∈A

xDes(a) =
∑
λ⊢n

λ non-hook

mλ

∑
T ∈SYT(λ)

xDes(T ) +
n−1∑
k=1

dk−1
∑

T ∈SYT((1k)⊕(n−k))

xDes(T ).

By Theorem 1.2, the set SYT(λ) carries a cyclic descent extension if and only if λ ⊢ n
is not a hook; and each of the sets SYT((1k) ⊕ (n − k)) (1 ⩽ k ⩽ n − 1) carries a
cyclic descent extension. Hence A also carries a cyclic descent extension, completing
the proof. □

Corollary 3.3. If a Schur-positive set A carries a cyclic descent extension then

∑
a∈A

xcDes(a) =
∑
λ⊢n

λ non-hook

mλ

∑
T ∈SYT(λ)

xcDes(T ) +
n−1∑
k=1

dk−1
∑

T ∈SYT((1k)⊕(n−k))

xcDes(T ),

where mλ and dk are the non-negative integers defined above.

Proof. By Corollary 2.9 together with Equation (10), the generating function for
the corresponding cyclic descent set is uniquely determined and satisfies the claimed
equality. □
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3.3. Divisibility of the hook-multiplicity generating function. Recall the
notation

mk,ϕ := ⟨ϕ, χ(n−k,1k)⟩ (0 ⩽ k < n)
for an Sn-character ϕ.

Lemma 3.4. For every Sn-character ϕ, the hook-multiplicity generating function

Mϕ(x) :=
n−1∑
k=0

mk,ϕx
k

is divisible by 1 + x if and only if the value of ϕ on an n-cycle is zero, i.e., ϕ(n) = 0.

Proof. By [28, Lemma 4.10.3], for every partition λ ⊢ n

χλ
(n) =

{
(−1)k, if λ = (n− k, 1k) for some 0 ⩽ k < n;
0, otherwise.

Thus

ϕ(n) =
∑
λ⊢n

⟨ϕ, χλ⟩χλ
(n) =

n−1∑
k=0
⟨ϕ, χ(n−k,1k)⟩χ(n−k,1k)

(n) =
n−1∑
k=0

mk,ϕ · (−1)k = Mϕ(−1),

which equals zero if and only if 1 + x divides Mϕ(x), completing the proof. □

Letting ϕ = ψλ, the higher Lie character indexed by a partition λ, reduces Propo-
sition 1.8 to the following character evaluation.

Recall the Möbius function µ(n), the sum of all primitive (complex) n-th roots of 1.
If n has a prime square divisor then µ(n) = 0; otherwise, n is a product of k distinct
primes and µ(n) = (−1)k. The following lemma is equivalent to a combinatorial
identity due to Garsia, as shown in Proposition 7.2 below. We give here an independent
direct algebraic proof.

Lemma 3.5. For λ ⊢ n

ψλ
(n) =

{
µ(r), if λ = (rs);
0, otherwise,

where µ is the Möbius function.

Proof. Let c be an n-cycle in Sn, and let Zλ = ZSn
(g) be the centralizer in Sn of a

specific element g ∈ Cλ. An explicit formula for the induced character [19, (5.1)] is

ψλ(c) = ωλ ↑Sn

Zλ
(c) = 1

|Zλ|
∑

x∈Sn

x−1cx∈Zλ

ωλ(x−1cx).

An n-cycle commutes only with its own powers. Thus, if λ is not of the form (rs) for
some r and s, then there is no n-cycle in Zλ; equivalently, x−1cx ̸∈ Zλ for every x ∈ Sn.
It follows that, for such partitions λ ⊢ n, ψλ

(n) = 0.
Assume now that λ = (rs), and let let g = g1g2 · · · gs ∈ Cλ be a fixed product

of s disjoint r-cycles. The order of the centralizer Zλ = ZSn(g) is s!rs. If u ∈ Zλ is
an n-cycle (n = rs) then g = uk for some integer k with gcd(k, n) = s; equivalently,
us = gj for some 0 < j < r with gcd(j, r) = 1. Conversely, if u ∈ Sn is an n-cycle
satisfying us = gj for some 0 < j < r with gcd(j, r) = 1, then g is a power of u and
therefore u ∈ Zλ. Thus the number of n-cycles in Zλ, namely the number of elements
of Zλ ∩ C(n), is φ(r)(s− 1)!rs−1, where φ is Euler’s totient function.

Viewing Zλ as the group of s× s monomial (“generalized permutation”) matrices
whose nonzero entries are complex r-th roots of unity, an element u ∈ Zλ ∩ C(n)
corresponds to a matrix whose underlying permutation is a full s-cycle and the product

Algebraic Combinatorics, Vol. 6 #6 (2023) 1567



R. M. Adin, P. Hegedüs & Y. Roichman

of its nonzero entries is a primitive r-th root of unity. This product is equal to ωλ(u),
so it is a primitive r-th root of unity. For u, v ∈ Zλ ∩ C(n), write u ∼ v if v = ui for
some integer i (necessarily coprime to n). This clearly defines an equivalence relation
on Zλ ∩ C(n). On each equivalence class, all primitive r-th roots of unity appear with
the same frequency as values of ωλ. This property thus holds for all of Zλ ∩ C(n),
where this frequency is (s− 1)!rs−1. Denoting by ξ any specific primitive r-th root of
unity, the sum of all values of ωλ on Zλ ∩ C(n) is therefore∑

u∈Zλ∩C(n)

ωλ(u) = (s− 1)!rs−1
∑

j:(j,r)=1

ξj = (s− 1)!rs−1µ(r).

Given any c, u ∈ C(n), there are exactly n = rs permutations x ∈ Sn which satisfy
u = x−1cx. Thus

ψλ(c) = ωλ ↑Sn

Zλ
(c) = 1

|Zλ|
∑

x∈Sn

x−1cx∈Zλ

ωλ(x−1cx) = n

|Zλ|
∑

u∈Zλ∩C(n)

ωλ(u)

= n

s!rs
(s− 1)!rs−1µ(r) = µ(r),

as claimed. □

Proof of Proposition 1.8. By Lemma 3.4, 1 + x divides the hook-multiplicity gener-
ating function of the higher Lie character ψλ if and only if ψλ

(n) = 0. Lemma 3.5
completes the proof. □

Corollary 3.6. Let λ ⊢ n.
1. If λ = (rs) for some square-free integer r and positive integer s, then 1+x does

not divide the hook-multiplicity generating function Mλ(x), and the descent set
map on the conjugacy class Cλ does not have a cyclic extension.

2. If λ is not equal to (rs) for any square-free r, then 1 + x divides Mλ(x). In
this case, the descent set map on Cλ has a cyclic extension if and only if the
quotient Mλ(x)/(1 + x) has non-negative coefficients.

Proof. By the Gessel–Reutenauer theorem (Theorem 2.5), for every λ ⊢ n the conju-
gacy class Cλ is Schur-positive, with Q(Cλ) = ch(ψλ). Combining this with Lemma 3.2
and Proposition 1.8 completes the proof of both parts. □

In the following sections we will prove the non-negativity of the coefficients of the
quotient Mλ(x)/(1 + x) for partitions (cycle types) which are not equal to (rs) for
a square-free r: cycle types with more than one cycle length will be considered in
Section 4, single cycles will be considered in Section 5, and cycle types λ = (rs) with
non square-free r and s > 1 will be considered in Section 6 (this is the most difficult
case).

4. Non-negativity: the case of more than one cycle length
Consider, first, the case of a conjugacy class with more than one cycle length. This is
the easiest case to handle.

Proof of Lemma 1.9. The centralizer Zλ of a permutation in Cλ is isomorphic, in this
case, to the direct product Zµ × Zν . By Definition 1.6, ωλ := ωµ ⊗ ων and

(11) ψλ = ωλ ↑Sn

Zλ
=
(
ωµ ↑S|µ|

Zµ
⊗ων ↑S|ν|

Zν

)
↑Sn

S|µ|×S|ν|
.
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By the Littlewood-Richardson rule [33, Theorem A1.3.3], the outer product of two
irreducible characters

(
χα ⊗ χβ

)
↑Sn

Sm×Sn−m
contains irreducible representations in-

dexed by hooks if and only if both α and β are hooks; in the latter case,

⟨
(
χ(m−i,1i) ⊗ χ(n−m−j,1j)

)
↑Sn

Sm×Sn−m
, χ(n−k,1k)⟩ =

{
1, k ∈ {i+ j, i+ j + 1};
0, otherwise.

Therefore
Mλ(x) = (1 + x)Mµ(x)Mν(x),

as claimed. □

Corollary 4.1. If λ is a partition with at least two different parts, namely not of the
form (rs) for any r, then Mλ(x) is divisible by 1+x and the quotient has non-negative
coefficients.

Remark 4.2. In this case, the existence of a cyclic descent extension may be proved
directly as follows. By Equation (11), ψλ is a sum of characters indexed by discon-
nected shapes. Thus, by Corollary 2.4, the distribution of the descent set over Cλ is
equal to a sum of distributions over the sets of SYT of various disconnected shapes.
By Theorem 1.2, each of these sets carries a cyclic descent extension, hence so does Cλ.

5. Non-negativity: the single cycle case
Consider now the case of a conjugacy class with a single cycle. By Corollary 3.6, if r
is not square-free then 1 + x divides M(r)(x). The main result of this section is the
following.

Proposition 5.1. If r is not square-free then the coefficients of M(r)(x)/(1 + x) are
non-negative

It follows from Lemma 5.12 below that, in order to prove Proposition 5.1, it suffices
to show the unimodality (to be defined) of M(r)(x). This is the content of the following
statement.

Proposition 5.2. For any positive integer r, the sequence m0,(r),m1,(r), . . . ,mr−1,(r)
is unimodal. The largest element is one of the middle ones, namely mi,(r) for i =
(r − 1)/2 if r is odd, and either i = (r − 2)/2 or i = r/2, or both, if r is even.

In Subsection 5.1 we use a variant of the Witt transform to produce explicit formu-
las for the coefficients mj,(r) (Lemma 5.11). Then, in Subsection 5.2, we prove their
unimodality.

5.1. A variant of the Witt transform. In this subsection we present a variant
of the Witt transform, which will be used to prove non-negativity in Sections 5.2
and 6.

Denote by (i, j) the greatest common divisor of two integers i, j. Recall the arith-
metical Möbius function µ.

Definition 5.3. For a positive integer r define

fj(r) := 1
r

∑
d|(r,j)

µ(d)(−1)(d+1)j/d

(
r/d

j/d

)
(0 ⩽ j ⩽ r).

Observation 5.4. By definition,

f1(r) = fr−1(r) = 1 (r ⩾ 1).
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Also, the fundamental property∑
d|r

µ(d) =
{

1, if r = 1;
0, if r > 1,

and some case analysis (r odd, or r ≡ 0 (mod 4), or r ≡ 2 (mod 4)) imply that

f0(r) =
{

1, if r = 1;
0, if r > 1

and fr(r) =
{

1, if r = 1, 2;
0, if r > 2.

For the higher Lie character ψ(r), simplify slightly the notations in Equation (8):

mj,(r) := ⟨ψ(r), χ(r−j,1j)⟩ (0 ⩽ j ⩽ r−1), ej,(r) := ⟨ψ(r), χ(1j)⊕(r−j)⟩ (0 ⩽ j ⩽ r).
Proposition 5.5. For every 0 ⩽ j ⩽ r

ej,(r) = fj(r).
In particular, fj(r) is a non-negative integer.
Remark 5.6. Proposition 5.5 will not be proved here, since it is the special case s = 1
of Theorem 6.3 below. It also follows from a well known result of Kraśkiewicz and
Weyman [21] (Lemma 7.5 below). A symmetric functions proof which applies [35,
Lemma 2.7] was presented by Sheila Sundaram [37]. Another proof follows from [12,
Theorem 3.1]. See Subsection 7.1 below for a discussion.
Definition 5.7. For a fixed positive integer r, collect the multiplicities fj(r) into a
polynomial

Fr(x) := f0(r) + f1(r)x+ f2(r)x2 + . . .+ fr(r)xr.

Equation (9) and Proposition 5.5 imply the following.
Corollary 5.8.

Fr(x) = (1 + x)M(r)(x).
Observation 5.9.

Fr(x) = 1
r

∑
d|r

µ(d)(1− (−x)d)r/d.

Proof. Use Definition 5.3, and write j = kd if d|(r, j). Then

Fr(x) =
r∑

j=0
xj
∑

d|(r,j)

µ(d)(−1)(d+1)j/d

r

(
r/d

j/d

)
=
∑
d|r

µ(d)
r

r/d∑
k=0

(−1)(d+1)k

(
r/d

k

)
xkd

=
∑
d|r

µ(d)
r

(1− (−x)d)r/d.

□

Remark 5.10. Recall from [22] that the r-th Witt transform of a polynomial p(x) is
defined by

W(r)
p (x) = 1

r

∑
d|r

µ(d)p(xd)r/d.

In our case, put p(x) = 1 − x to get Fr(x) = W(r)
p (−x). The proof of Theorem 4

and Lemma 1 in [22] could have been used to prove that the coefficients of Fr(x) are
non-negative integers. This non-obvious property of the numbers fj(r) also follows, of
course, from their interpretation in Proposition 5.5 as inner products of two charac-
ters. What we really need, in Proposition 5.1, is the nonnegativity of the coefficients
of Fr(x)/(1 + x)2.
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We now produce an explicit formula for each coefficient mj,(r). For a combinatorial
interpretation of these numbers, see Lemma 7.5 below.

Lemma 5.11. For a positive integer r,

mj,(r) = 1
r

∑
d|r

µ(d)
(
r/d− 1
⌊j/d⌋

)
(−1)j+⌊j/d⌋ (0 ⩽ j ⩽ r − 1).

Proof. By Corollary 5.8,

(1 + x)
r−1∑
j=0

mj,(r)x
j = Fr(x).

Using Definition 5.3 and Observation 5.9, we can write
r−1∑
j=0

mj,(r)x
j = 1

r(1 + x)
∑
d|r

µ(d)(1− (−x)d)r/d.

Using
(1− (−x)d)r/d

1 + x
= (1− (−x)d)r/d−1(1− x+ x2 − . . .+ (−x)d−1)

and comparing coefficients of xj , where j = dk + ℓ with 0 ⩽ ℓ ⩽ d− 1, we get

rmj,(r) =
∑
d|r

µ(d)
(
r/d− 1

k

)
(−1)(d+1)k+ℓ =

∑
d|r

µ(d)
(
r/d− 1
⌊j/d⌋

)
(−1)j+⌊j/d⌋. □

5.2. Unimodality. A sequence (a0, . . . , an) of real numbers is called unimodal if
there exists an index 0 ⩽ i0 ⩽ n such that the sequence is weakly increasing up to
position i0 and weakly decreasing afterwards: a0 ⩽ a1 ⩽ . . . ⩽ ai0 ⩾ . . . an−1 ⩾ an.

Lemma 5.12. Let a(x) = a0 + a1x+ . . .+ anx
n be a polynomial with real, nonnegative

and unimodal coefficients. Assume that 1+x divides a(x), and let b(x) := a(x)/(1+x).
Then the coefficients of b(x) are nonnegative.

Proof. Let b(x) = b0 + . . .+ bn−1x
n−1. Then a0 = b0, an = bn−1, and

(12) ai = bi−1 + bi (1 ⩽ i ⩽ n− 1)
Of course, divisibility of a(x) by 1 + x implies that

n∑
i=0

(−1)iai = a(−1) = 0.

Inverting (12) we get

(13) bi =
i∑

j=0
(−1)i−jaj (0 ⩽ i ⩽ n− 1)

and, similarly,

(14) bi =
n∑

j=i+1
(−1)j−i−1aj (0 ⩽ i ⩽ n− 1).

By assumption, the sequence (a0, . . . , an) is nonnegative and unimodal, namely: there
exists an index 0 ⩽ i0 ⩽ n such that

0 ⩽ a0 ⩽ . . . ⩽ ai0 ⩾ . . . ⩾ an ⩾ 0.
It follows from (13) that, for odd indices 0 ⩽ 2i+ 1 ⩽ i0,

b2i+1 = (a2i+1 − a2i) + . . .+ (a1 − a0) ⩾ 0
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and, for even indices 0 ⩽ 2i ⩽ i0,
b2i = (a2i − a2i−1) + . . .+ (a2 − a1) + a0 ⩾ 0.

By (14), a similar argument holds for indices greater or equal to i0, and the proof is
complete. □

Lemma 5.12 shows that non-negativity of a sequence can be proved by showing
unimodality of a related sequence. In particular, Proposition 5.1 would follow once
we show the unimodality of the polynomial M(n)(x). In order to do that, we need the
following technical lemma.

Lemma 5.13. Assume that r > 7 and 1 < j < r/2; if j = (r − 1)/2 assume also that
r > 11. Let d > 1 be a divisor of r, and denote

Ar,j,d :=

(
r/d− 1
⌊j/d⌋

)
(
r − 1
j

) .

Then
(r − 1)(r − j)

r − 2j Ar,j,d ⩽

{
1, if d > 2;
3/2, if d = 2.

Proof. Write (
r − 1
j

)
= (r − 1)(r − 2) · · · (r − j)

j! =
∏

1⩽i⩽j

r − i
i

.

Let ℓ := ⌊j/d⌋. Then ℓd is the largest multiple of d not exceeding j, hence(
r/d− 1
⌊j/d⌋

)
=
(
r/d− 1

ℓ

)
= (r − d)(r − 2d) · · · (r − ℓd)

d · 2d · · · ℓd =
∏

1⩽i⩽j, d|i

r − i
i

,

The quotient Ar,j,d can therefore be written in the form

Ar,j,d =
∏

1⩽i⩽j, d∤i

i

r − i
.

By assumption j < r/2, thus i/(r − i) < 1 for all 1 ⩽ i ⩽ j. It follows that Ar,j,d is a
decreasing function of j, with Ar,1,d = 1/(r − 1).

For d > 2 and 2 ⩽ j ⩽ (r − 2)/2,

Ar,j,d ⩽ Ar,2,d = 2
(r − 1)(r − 2) ⩽

r − 2j
(r − 1)(r − j) ,

where the last inequality, equivalent to 2(r−j) ⩽ (r−2j)(r−2), follows from 2 ⩽ r−2j
and r − j ⩽ r − 2.

Similarly, for d = 2 and 3 ⩽ j ⩽ (r − 2)/2,

Ar,j,2 ⩽ Ar,3,2 = 3
(r − 1)(r − 3) ⩽

3(r − 2j)
2(r − 1)(r − j) ,

where the last inequality, equivalent to 2(r−j) ⩽ (r−2j)(r−3), follows from 2 ⩽ r−2j
and r − j ⩽ r − 3.

For d = 2 and j = 2,

Ar,2,2 = 1
r − 1 ⩽

3(r − 4)
2(r − 1)(r − 2) ,

where the inequality, equivalent to 2(r − 2) ⩽ 3(r − 4), follows from r ⩾ 8.

Algebraic Combinatorics, Vol. 6 #6 (2023) 1572



Higher Lie Characters and Cyclic Descents on Conjugacy Classes

It remains to consider the case j = (r − 1)/2, namely r = 2j + 1, for d ⩾ 2. Note
that in this case we assumed that r > 11, namely j > 5.

Assume first that d > 2. Then

Ar,j,d ⩽ Ar,6,d ⩽ Ar,4,d =
∏

1⩽i⩽4, d∤i

i

r − i
= ad(

r − 1
4

) ,
where

ad =
{

1, if d > 4;
(r − d)/d, if d = 3, 4.

Clearly
1 < r − 4

4 <
r − 3

3
and therefore

Ar,j,d ⩽ Ar,4,d ⩽ Ar,4,3 = 8
(r − 1)(r − 2)(r − 4) ⩽

r − 2j
(r − 1)(r − j) ,

where the last inequality, equivalent (since r = 2j + 1) to 8(j + 1) ⩽ (2j − 1)(2j − 3)
and to 4j2 − 16j ⩾ 5, holds for j ⩾ 5.

Finally, assume that r = 2j + 1 and d = 2. Then

Ar,j,2 ⩽ Ar,6,2 = Ar,5,2 = 15
(r − 1)(r − 3)(r − 5) ⩽

3(r − 2j)
2(r − 1)(r − j) ,

where the last inequality, equivalent (since r = 2j + 1) to 5(j + 1) ⩽ 2(j − 1)(j − 2)
and to 2j2 − 11j ⩾ 1, holds for j ⩾ 6. This completes the proof. □

Proof of Proposition 5.2. We need to show that m0,(r) ⩽ m1,(r) ⩽ . . . ⩽ m⌊(r−1)/2⌋
and mr−1,(r) ⩽ mr−2,(r) ⩽ . . . ⩽ m⌈(r−1)/2⌉ for any positive integer r.

For 1 ⩽ r ⩽ 7, computing the polynomial Mr(x) := Fr(x)/(1 + x) explicitly, using
Observation 5.9, gives

M1(x) = 1; M2(x) = M3(x) = x; M4(x) = x+ x2;
M5(x) = x+ x2 + x3; M6(x) = x+ 2x2 + x3 + x4;
M7(x) = x+ 2x2 + 3x3 + 2x4 + x5.

The claim clearly holds in these cases. Assume from now on that r > 7.
Informally, the explicit formula for mj,(r) in Lemma 5.11 has a dominant term

corresponding to d = 1, i.e., rmj,(r) is approximately equal to
(

r−1
j

)
. We will show

that this approximation is good enough to make the sequence m0,(r), . . . ,mr−1,(r)
unimodal, like the sequence of binomial coefficients. Note that, unlike the binomial
coefficients, this sequence is not always palindromic; see Proposition 7.13 below.

We first show that mj−1,(r) ⩽ mj,(r) for 1 ⩽ j < r/2. Recall that we assume r > 7.
For j = 1, Lemma 5.11 shows that, for r > 1, m0,(r) = 0 < 1 = m1,(r).

Assume now that 1 < j < r/2. Clearly, for these values of j and any divisor d of r,(
r/d− 1
⌊j/d⌋

)
⩾

(
r/d− 1
⌊(j − 1)/d⌋

)
.

We conclude, by Lemma 5.11, that

rmj,(r) − rmj−1,(r) ⩾

[(
r − 1
j

)
−
(
r − 1
j − 1

)]
− 2

∑
d|r, d>1

(
r/d− 1
⌊j/d⌋

)
.

Since (
r − 1
j

)
−
(
r − 1
j − 1

)
=
(
r − 1
j

)(
1− j

r − j

)
=
(
r − 1
j

)
r − 2j
r − j

,
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using the notation of Lemma 5.13 we get
rmj,(r) − rmj−1,(r)(

r−1
j

)
r−2j
r−j

⩾ 1− 2 r − j
r − 2j

∑
d|r, d>1

Ar,j,d.

Let d(r) denote the number of divisors of r. For odd r > 7 (unless j = (r − 1)/2 and
r ∈ {9, 11}), Lemma 5.13 implies that

rmj,(r) − rmj−1,(r)(
r−1

j

)
r−2j
r−j

⩾ 1−
∑

d|r, d>2

2
r − 1 = 1− 2d(r)− 2

r − 1 .

For even r > 7, Lemma 5.13 implies that
rmj,(r) − rmj−1,(r)(

r−1
j

)
r−2j
r−j

⩾ 1− 3
r − 1 −

∑
d|r, d>2

2
r − 1 = 1− 2d(r)− 1

r − 1 .

We clearly have 2d(r) ⩽ r for r > 7, and therefore mj−1,(r) ⩽ mj,(r) in both cases.
In the remaining cases, namely j = (r − 1)/2 and r ∈ {9, 11}, we can compute

directly using Lemma 5.11. For r = 9 and j = 4 the divisors are d = 1, 3, 9, but
µ(9) = 0. Thus

9m4,(9) − 9m3,(9) =
[(

8
4

)
+
(

2
1

)]
−
[(

8
3

)
−
(

2
1

)]
= 72− 54 > 0.

For r = 11 and j = 5 the divisors are d = 1, 11. Thus

11m5,(11) − 11m4,(11) =
[(

10
5

)
+
(

0
0

)]
−
[(

10
4

)
−
(

0
0

)]
= 253− 209 > 0.

So far we have proven that m0,(r) ⩽ m1,(r) ⩽ . . . ⩽ m⌊(r−1)/2⌋,(r) for r > 7.
The remaining inequalities, mr−1,(r) ⩽ mr−2,(r) ⩽ . . . ⩽ m⌈(r−1)/2⌉,(r), can be

written as mr−1−(j−1),(r) ⩽ mr−1−j,(r) for 1 ⩽ j < r/2. By Lemma 5.11,

mr−1−j,(r) = 1
r

∑
d|r

µ(d)
(

r/d− 1
⌊(r − 1− j)/d⌋

)
(−1)r−1−j+⌊(r−1−j)/d⌋ (0 ⩽ j ⩽ r − 1).

For a divisor d of r, if j = kd+ ℓ with 0 ⩽ ℓ ⩽ d− 1 then r− 1− j = (r/d− k− 1)d+
(d− 1− ℓ) with 0 ⩽ d− 1− ℓ ⩽ d− 1, so that

⌊j/d⌋+ ⌊(r − 1− j)/d⌋ = k + (r/d− k − 1)) = r/d− 1.
It follows that

mr−1−j,(r) = 1
r

∑
d|r

µ(d)
(
r/d− 1
⌊j/d⌋

)
(−1)r−1−j+r/d−1−⌊j/d⌋

= 1
r

∑
d|r

µ(d)
(
r/d− 1
⌊j/d⌋

)
(−1)r+r/d−j−⌊j/d⌋ (0 ⩽ j ⩽ r − 1).

This is exactly the formula formj,(r) except for the signs of the summands, which differ
(for each d|r) by the factor (−1)r+r/d. These signs do not play any role in the proof
above that mj−1,(r) ⩽ mj,(r) for 1 ⩽ j < r/2, which therefore also shows, mutatis
mutandis, that mr−1−(j−1),(r) ⩽ mr−1−j,(r) for 1 ⩽ j < r/2 — except possibly the
explicit confirmation when j = (r− 1)/2 and r ∈ {9, 11}. In these cases r is odd, and
therefore (−1)r+r/d = 1 for any divisor d of r. This implies that indeed

m4,(9) −m5,(9) = m4,(9) −m3,(9) > 0
and

m5,(11) −m6,(11) = m5,(11) −m4,(11) > 0,
completing the proof. □
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Remark 5.14. We conjecture that Proposition 5.2 remains true for an arbitrary parti-
tion µ ⊢ n, in particular for every partition (rs) ⊢ n with any s ⩾ 1; see Conjecture 8.1.

Proof of Proposition 5.1. Combine Proposition 5.2 with Lemma 5.12. □

We conclude

Corollary 5.15. The conjugacy class of n-cycles C(n) carries a cyclic descent exten-
sion if and only if n is not square-free.

Proof. Combine Lemma 3.2 with Corollary 3.6(2) and Proposition 5.1. □

6. Non-negativity: the case of one cycle length
In this section we consider the case λ = (rs). We fix r, while s and hence n = rs vary.
The arguments below also work for the trivial case r = 1.

As in the previous section, instead of the hook multiplicities

mi,(rs) = ⟨ψ(rs), χ(n−i,1i)⟩
we prefer to work with their consecutive sums,

ei,(rs) := mi,(rs) +mi−1,(rs).

Here is the structure of the current section. In Subsection 6.1 we obtain an explicit
description of ei,(rs) (Theorem 6.3). The proof involves a detailed computation of
character values and inner products of characters. In Subsection 6.2 we transform
this description into a product formula (Corollary 6.9) for the formal power series

Er(x, y) :=
∑

i,s⩾0
ei,(rs)x

iys = 1 + (1 + x)Mr(x, y),

where
Mr(x, y) :=

∑
i⩾0
s⩾1

mi,(rs)x
iys.

The product formula is a substantial merit of working with ei,(rs), and it facilitates
the extension of the case s = 1 to s > 1. This is done in Subsection 6.3, where the
result for s = 1 is used to obtain the general case.

6.1. Formulas for inner products. In this subsection we obtain explicit formulas
for the inner products

ek,(rs) := ⟨ψ(rs), χ(1k)⊕(n−k)⟩ (0 ⩽ k ⩽ n).

Recall that, by Equation (9), the sequences {mk}n−1
k=0 and {ek}n

k=0 determine each
other, via the relations

ek = mk +mk−1 and mk =
k∑

i=0
(−1)k−iei (0 ⩽ k ⩽ n),

where mk := 0 for k = −1 and k = n. Nota bene, these multiplicities depend on r
and s but this dependence is suppressed in the notation.

Definition 6.1. For given non-negative integers i, r and s, let

Pr,s(i) :=
{
γ = (γ1, . . . , γs) :

s∑
ℓ=1

γℓ = i, r ⩾ γ1 ⩾ γ2 ⩾ . . . ⩾ γs ⩾ 0
}

denote the set of all partitions of i into at most s parts, each of size at most r. Denote
the multiplicity of j in γ ∈ Pr,s(i) by kj(γ) := |{1 ⩽ ℓ ⩽ s | γℓ = j}|.
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Figure 1. The partition γ = (5, 3, 3, 2, 0) ∈ P6,5(13)

Example 6.2. Let r = 6, s = 5 and i = 13. Then γ = (5, 3, 3, 2, 0) ∈ P6,5(13) is
a partition of 13 with at most 5 parts, each of size at most 6; see Figure 1. The
multiplicities of the parts are k0(γ) = 1, k1(γ) = 0, k2(γ) = 1, k3(γ) = 2, k4(γ) = 0,
k5(γ) = 1, and k6(γ) = 0.

Recall fj(r) from Definition 5.3. The main result of this subsection is the following
formula.

Theorem 6.3. For every s ⩾ 1 and i ⩾ 0 we have

ei,(rs) = ⟨ψ(rs), χ(1i)⊕(rs−i)⟩ =
∑

γ∈Pr,s(i)

∏
j⩾0

(−1)(j+1)kj(γ)
(

(−1)j+1fj(r)
kj(γ)

)

=
∑

k0,...,kr⩾0∑
j

kj=s∑
j

jkj=i

r∏
j=0

(−1)(j+1)kj

(
(−1)j+1fj(r)

kj

)
.

In particular, for s = 1 we have ei,(r) = fi(r).

Remark 6.4. The special case s = 1 was stated (but not proved) in Proposition 5.5.
The result in that case is not new, as noted in Remark 5.6. This case shows that
fi(r) = ei,(r) is an inner product of two characters, and is therefore always a non-
negative integer. The factor

(−1)(j+1)kj

(
(−1)j+1fj

kj

)
=
{(

fj

kj

)
, if j is odd;(

fj+kj−1
kj

)
, if j is even

is therefore also a non-negative integer, and is zero if and only if either j is odd and
kj > fj , or j is even and kj > 0 = fj . If kj = 0, this factor is equal to 1 and may be
ignored.

In order to prove Theorem 6.3 we need a formula for a certain inner product of
characters (Lemma 6.6).

First recall some notations from Definition 1.6: the centralizer Z(rs) ∼= Zr ≀ Ss of
an element of cycle type (rs), the linear character ω(rs) on Z(rs), and the higher Lie
character ψ(rs) := ω(rs) ↑Sn

Z(rs)
.

Embed Z(rs) ∼= Zr ≀ Ss into Kr,s
∼= Sr ≀ Ss ⩽ Sn, where Zr ⩽ Sr is generated by a

full cycle. Denote
ϕr,s := ω(rs) ↑Kr,s

Z(rs)
,

so that ψ(rs) = ϕr,s ↑Sn

Kr,s
.

Observation 6.5. If s = s1 + s2 then Z(rs1 ) × Z(rs2 ) ⩽ Z(rs), Kr,s1 ×Kr,s2 ⩽ Kr,s

and also for the characters

ω(rs) = ω(rs1 ) ⊗ ω(rs2 ) and ϕr,s ↓
Kr,s

Kr,s1 ×Kr,s2
= ϕr,s1 ⊗ ϕr,s2 .
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In the lemma below we express the multiplicity of a certain linear character in
a restriction of ϕr,s. This expression will be used, in the proof of Theorem 6.3, to
compute ei,(rs).

For every 0 ⩽ j ⩽ r, let Rr,j := Sj × Sr−j ⩽ Sr, in the natural embedding. Then

Rr,j ≀ Ss = Kr,s ∩
(
Sjs × S(r−j)s

)
.

Denote by 1Sn
the trivial character and by εSn

the sign character of Sn, so that

χ(1k)⊕(n−k) = (εSk
× 1Sn−k

) ↑Sn

Sk×Sn−k
.

Define
νr,j,s := (εSjs

× 1S(r−j)s
) ↓Sjs×S(r−j)s

Rr,j ≀Ss
.

This is a linear character on Rr,j ≀ Ss.

Lemma 6.6. For every 0 ⩽ j ⩽ r, fj(r) is a non-negative integer and

⟨ϕr,s ↓
Kr,s

Rr,j ≀Ss
, νr,j,s⟩ = (−1)(j+1)s

(
(−1)j+1fj(r)

s

)
=
{(

fj(r)
s

)
, if j is odd;(

fj(r)+s−1
s

)
, if j is even.

Remark 6.7. As a byproduct, Lemma 6.6 provides a new proof of the non-negativity
of fj(r). Indeed, if s = 1 then ⟨ϕr,1 ↓

Kr,1
Rr,j

, νr,j,1⟩ = fj(r) is clearly a non-negative
integer.

The rest of this subsection consists of the proofs of Lemma 6.6 and Theorem 6.3.
In these proofs r, s and j are fixed, unless specified otherwise. For convenience, we
omit the indices and write Z := Z(rs), ω := ω(rs), ψ := ψ(rs), K := Kr,s, ϕ := ϕr,s,
R := Rr,j , and ν := νr,j,s,

Proof of Lemma 6.6. The proof consists of two parts. First we determine the char-
acter values of the induced character ϕ = ω ↑K

Z on the wreath product K = Sr ≀ Ss;
the resulting formula is Equation (16). In the second part we apply this formula to
compute the inner product.

Let ζ : Zr → C be the primitive linear character used to define ω; see Definition 1.6.
Recall the explicit formula for an induced character [19, (5.1)]: For a subgroup H ⩽ G
and a character χ of H, define χ0 : G → C by χ0(g) = χ(g) if g ∈ H and χ0(g) = 0
otherwise. Then

(15) χ ↑G
H (y) = 1

|H|
∑
x∈G

χ0(x−1yx) =
∑
t∈T

χ0(t−1yt),

where T is a full set of right coset representatives of H in G.
An element of K = Sr ≀ Ss can be represented by an s-tuple of elements of Sr and

a wreathing permutation from Ss, so K = {(x1, . . . , xs;σ) | x1, . . . , xs ∈ Sr, σ ∈ Ss}
with the product (x1, . . . , xs;σ)(y1, . . . , ys; τ) = (x1yσ−1(1), . . . , xsyσ−1(s);στ). A full
set of right coset representatives of Zr in Sr is Sr−1 (in the natural embedding).
Hence, a full set of right coset representatives of Z = Zr ≀ Ss in K = Sr ≀ Ss

is T = {(x1, . . . , xs; 1) | (∀i)xi ∈ Sr−1}. For any z1, . . . , zs ∈ Zr, the shifted set
(z1, . . . , zs; 1)T is also a full set of right coset representatives. Instead of taking the
sum over T in (15), we will take it over the union of all the shifted sets, namely
{(x1, . . . , xs; 1)| (∀i)xi ∈ Sr}, and divide by rs. Since

(x1, . . . , xs; 1)−1(y1, . . . , ys;σ)(x1, . . . , xs; 1) = (x−1
1 y1xσ−1(1), . . . , x

−1
s ysxσ−1(s);σ),
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we conclude that, for any y = (y1, . . . , ys;σ) ∈ K,

ϕ(y) = ω ↑K
Z (y1, . . . , ys;σ) = 1

rs

∑
x1,...,xs∈Sr

ω0(x−1
1 y1xσ−1(1), . . . , x

−1
s ysxσ−1(s);σ)

= 1
rs

∑
x1,...,xs∈Sr

(∀i) x−1
i

yixσ−1(i)∈Zr

ω(x−1
1 y1xσ−1(1), . . . , x

−1
s ysxσ−1(s);σ)

= 1
rs

∑
x1,...,xs∈Sr

(∀i) x−1
i

yixσ−1(i)∈Zr

s∏
i=1

ζ(x−1
i yixσ−1(i)).

The factors in the product over i are complex numbers, thus commute. We can
therefore rearrange them in an order fitting the decomposition of σ−1 ∈ Ss into
disjoint cycles: if

σ−1 = C1 · · ·Ct

is a product of t disjoint cycles, choose an element ak in each cycle Ck. Then
Ck = (ak, σ

−1(ak), σ−2(ak), . . .) (1 ⩽ k ⩽ t).
Since ζ is a linear character, cancellation gives∏

i∈Ck

ζ(x−1
i yixσ−1(i)) = ζ(x−1

ak
yak

xσ−1(ak))ζ(x−1
σ−1(ak)yσ−1(ak)xσ−2(ak)) · · ·

= ζ(x−1
ak
ckxak

),
where

ck := yak
yσ−1(ak) · · · ∈ Sr (1 ⩽ k ⩽ t).

The condition x−1
i yixσ−1(i) ∈ Zr (∀i) implies that the products x−1

ak
ckxak

∈ Zr (∀k).
Hence if ϕ(y) ̸= 0 then, necessarily, each cycle-product ck ∈ Sr must be conjugate to
an element of Zr. Since Zr ⩽ Sr is generated by a full cycle, a necessary and sufficient
condition for ck to have a conjugate in Zr is that it is a product of disjoint cycles of
the same length.

For any divisor d of r, if ck ∈ Sr is a product of disjoint d-cycles and xak
∈ Sr is such

that x−1
ak
ckxak

∈ Zr, then the value of ζ(x−1
ak
ckxak

) is a primitive d-th root of unity.
By varying the conjugating element xak

, each element of Zr of order d is obtained
with the same multiplicity |Z(dr/d)| = (r/d)!dr/d. The other xi’s, for i ∈ Ck ∖ {ak},
are arbitrary, as long as x−1

i yixσ−1(i) ∈ Zr (∀i). There are rℓk−1 such choices, where
ℓk is the length of the cycle Ck. We conclude that, for any y ∈ K for which ck ∈ Sr

is a product of disjoint dk-cycles (1 ⩽ k ⩽ t),

ϕ(y) = 1
rs

t∏
k=1

(r/dk)!dr/dk

k rℓk−1
∑

z∈Zr : o(z)=dk

ζ(z).

If g is a generator of Zr, then o(gm) = d if and only if m = jr/d for some integer j
coprime to d. It follows that∑

z∈Zr : o(z)=d

ζ(z) =
∑

0⩽j<d : (j,d)=1

ζ(gjr/d) = µ(d).

Since
∑t

k=1(ℓk − 1) = s− t, we now have an explicit formula for the values of ϕ:

(16) ϕ(y) =


t∏

k=1

µ(dk)dr/dk

k (r/dk)!
r

, if ck is a product of disjoint dk-cycles (∀k);

0, otherwise.
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To determine the inner product ⟨ϕ ↓K
R≀Ss

, ν⟩ we evaluate the linear character ν
on R ≀ Ss. Let y = (v1z1, . . . , vszs;σ) ∈ R ≀ Ss, where vi ∈ Sj , zi ∈ Sr−j (1 ⩽ i ⩽ s)
and σ ∈ Ss. Then, by the definition of ν,

ν(y) = ν(v1z1, . . . , vszs;σ) = sgn(σ)j
s∏

i=1
ε(vi)

where sgn(σ) denotes the sign of σ ∈ Ss. We obtain

⟨ϕ ↓K
R≀Ss

, ν⟩ = 1
|R ≀ Ss|

∑
(v1z1,...,vszs;σ)∈R≀Ss

ϕ(v1z1, . . . , vszs;σ)ν(v1z1, . . . , vszs;σ)

= 1
s!
∑

σ∈Ss

sgn(σ)j

(j!(r − j)!)s

∑
v1,...,vs∈Sj

z1,...,zs∈Sr−j

ϕ(v1z1, . . . , vszs;σ)
s∏

i=1
ε(vi).

By Equation (16), for each nonzero summand and each cycle Ck of σ−1 (1 ⩽ k ⩽ t),
the cycle-product ck ∈ R ⩽ Sr of y has cycle type dr/dk

k , and its restrictions to Sj

and Sr−j have cycle types dj/dk

k and d(r−j)/dk

k , respectively. In particular, dk|(r, j). It
follows that the sign

s∏
i=1

ε(vi) =
t∏

k=1
(−1)(dk+1)j/dk .

For any d|(r, j), let nd denote the number of elements of R which are products of
disjoint d-cycles. If Ck has length ℓk, then the cycle-product ck can be a product of
disjoint dk-cycles in exactly (j!(r − j)!)ℓk−1ndk

ways. The choices of dk for different
cycles Ck are independent; the only restriction is dk|(r, j). Using again the equality∑t

k=1(ℓk − 1) = s− t and Equation (16), we obtain

⟨ϕ ↓K
R≀Ss

, ν⟩ = 1
s!
∑

σ∈Ss

sgn(σ)j

(j!(r − j)!)s

∑
v1,...,vs∈Sj

z1,...,zs∈Sr−j

ϕ(v1z1, . . . , vszs;σ)
s∏

i=1
ε(vi)

= 1
s!
∑

σ∈Ss

sgn(σ)j

(j!(r − j)!)s

∑
d1,...,dt|(r,j)

t∏
k=1

(j!(r − j)!)ℓk−1ndk
µ(dk)dr/dk

k (r/dk)!(−1)(dk+1)j/dk

r

= 1
s!
∑

σ∈Ss

sgn(σ)j

(j!(r − j)!)t

∑
d1,...,dt|(r,j)

t∏
k=1

ndk
µ(dk)dr/dk

k (r/dk)!(−1)(dk+1)j/dk

r

= 1
s!
∑

σ∈Ss

sgn(σ)j

(j!(r − j)!)t

 ∑
d|(r,j)

ndµ(d)dr/d(r/d)!(−1)(d+1)j/d

r

t

.

Of course, the number of elements of R = Sj × Sr−j which are products of disjoint
d-cycles is

nd = j!
dj/d(j/d)!

· (r − j)!
d(r−j)/d((r − j)/d)!

= j!(r − j)!
dr/d(j/d)!((r − j)/d)!

.
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Putting everything together and recalling that t = cyc(σ) is the number of cycles of
σ, we obtain by Definition 5.3

⟨ϕ ↓K
R≀Ss

, ν⟩ = 1
s!
∑

σ∈Ss

sgn(σ)j

 ∑
d|(r,j)

µ(d)(−1)(d+1)j/d

r

(
r/d

j/d

)cyc(σ)

= 1
s!
∑

σ∈Ss

sgn(σ)jfj(r)cyc(σ).

In particular, if s = 1 then f = ⟨ϕ ↓K
R , ν⟩ is a non-negative integer.

Finally, by [32, Proposition 1.3.4], for any s ⩾ 0 and indeterminate x,

1
s!
∑

σ∈Ss

xcyc(σ) =
(
x+ s− 1

s

)
.

Substituting −x for x and noting that sgn(σ) = (−1)s−cyc(σ), we get

1
s!
∑

σ∈Ss

sgn(σ)xcyc(σ) =
(
x

s

)
.

This yields the desired formula, depending on the parity of j, for ⟨ϕ ↓K
R≀Ss

, ν⟩. □

To prove Theorem 6.3 we need a final ingredient, a combinatorial parametrization
of (Sr ≀ Ss, Si × Srs−i) double cosets of Srs by partitions.

Recall Definition 6.1. The idea and definition of Pr,s(i) actually appear already in
the work of Giannelli [16], in a similar context but without explicit reference to double
cosets or Mackey’s formula; see Definitions 2.8–2.10 and Proposition 2.11 there.

An example of a partition of 13 representing a certain (S6 ≀ S5, S13 × S17) double
coset appears in Figure 1.

Lemma 6.8. Let n = rs, K = Kr,s
∼= Sr ≀ Ss ⩽ Sn. There is a bijection between the

(K,Si × Sn−i) double cosets of Sn and Pr,s(i), the set of partitions of i into at most
s parts, all of size at most r.

Proof. To describe the bijection from K\Sn/(Si × Sn−i) to Pr,s(i) explicitly, first fix
the underlying decomposition {1, . . . , n} = {1, . . . , i}∪ {i+ 1, . . . , n} for the action of
Si × Sn−i. The left cosets in Sn/(Si × Sn−i) are clearly in bijection with the subsets
of size i in {1, . . . , n}:

g(Si × Sn−i)←→ g({1, . . . , i}).
Now fix a decomposition for the action of K ∼= Sr ≀ Ss: {1, . . . , n} = B1 ∪ . . . ∪ Bs,
where Bj := {(j − 1)r+ 1, (j − 1)r+ 2, . . . , (j − 1)r+ r} (j = 1, . . . , s). The elements
of Ss permute these blocks, and each of the s copies of Sr acts on one of the blocks.
Given g ∈ Sn, we map the double coset Kg(Si×Sn−i) to the partition γ which is the
non-increasing rearrangement of the sequence

(|B1 ∩ g({1, . . . , i})| , . . . , |Bs ∩ g({1, . . . , i})|).

This sequence consists of s non-negative integers, each at most r, which sum up to i.
Thus γ ∈ Pr,s(i). We will show that this map is a bijection.

For arbitrary x ∈ K and y ∈ Si × Sn−i we have, for each 1 ⩽ j ⩽ s,

|Bj ∩ xgy({1, . . . , i})| = |Bj ∩ xg({1, . . . , i})| =
∣∣x−1(Bj) ∩ g({1, . . . , i})

∣∣ .
The element x−1 ∈ K = Sr ≀ Ss permutes the blocks and permutes the elements of
each block. This shows that the mapping Kg(Si × Sn−i) 7→ γ is well defined.
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The mapping from K\Sn/(Si × Sn−i) to Pr,s(i) is clearly onto, since for each
partition γ = (a1, . . . , as) ∈ Pr,s(i) there exists a permutation g ∈ Sn such that
|Bj ∩ g({1, . . . , i})| = aj (1 ⩽ j ⩽ s).

Finally, if Kg1(Si×Sn−i) and Kg2(Si×Sn−i) are mapped to the same partition γ,
then there exists a permutation π ∈ Ss satisfying

|Bj ∩ g1({1, . . . , i})| =
∣∣Bπ(j) ∩ g2({1, . . . , i})

∣∣ (1 ⩽ j ⩽ s).
Therefore there exist an element x ∈ K = Sr ≀ Ss such that

Bj ∩ g1({1, . . . , i}) = Bj ∩ xg2({1, . . . , i}) (1 ⩽ j ⩽ s).
It follows that

g1({1, . . . , i}) = xg2({1, . . . , i}),
and therefore g1 = xg2y for a suitable permutation y ∈ Si × Sn−i. □

We are now ready to prove Theorem 6.3. The proof applies Lemma 6.8 and the
explicit bijection described in its proof, combined with Lemma 6.6.

Proof of Theorem 6.3. Recall that n = rs, K = Kr,s
∼= Sr ≀ Ss ⩽ Sn and ψ = ϕ ↑Sn

K .
By Frobenius reciprocity (twice) and Mackey’s formula [19, (5.2), Problem (5.6)],

ei = ⟨ψ, χ(1i)⊕(n−i)⟩ = ⟨ϕ ↑Sn

K , (εSi
× 1Sn−i

) ↑Sn

Si×Sn−i
⟩

= ⟨ϕ ↑Sn

K ↓Sn

Si×Sn−i
, εSi
× 1Sn−i

⟩

=
∑

[g]∈K\Sn/(Si×Sn−i)

⟨ϕg ↓Kg

Kg∩(Si×Sn−i)↑
Si×Sn−i

Kg∩(Si×Sn−i), εSi
× 1Sn−i

⟩

=
∑

[g]∈K\Sn/(Si×Sn−i)

⟨ϕg ↓Kg

Kg∩(Si×Sn−i), (εSi
× 1Sn−i

) ↓Si×Sn−i

Kg∩(Si×Sn−i)⟩.

(17)

The above sums are indexed by the (K,Si × Sn−i) double cosets in Sn. For each
representative g of a double coset, Kg := g−1Kg is the corresponding conjugate of K
and ϕg is the character on Kg defined by ϕg(g−1kg) := ϕ(k) for all k ∈ K.

By Lemma 6.8, these double cosets are parametrized by the partitions in Pr,s(i).
Let us determine the summand of (17) corresponding to a partition γ ∈ Pr,s(i) in
which part j occurs with multiplicity kj = kj(γ) (0 ⩽ j ⩽ r). By the bijection
described in the proof of Lemma 6.8,

kj = |{t : |Bt ∩ g({1, . . . , i})| = j}| (0 ⩽ j ⩽ r),
where Bt := {(t− 1)r + 1, . . . , (t− 1)r + r} (1 ⩽ t ⩽ s). Thus

Kg ∩ (Si × Sn−i) ∼= (Rr,0 ≀ Sk0)× (Rr,1 ≀ Sk1)× · · · × (Rr,r ≀ Skr
),

where Rr,j = Sj × Sr−j , as above. In particular,

(εSi
× 1Sn−i

) ↓Si×Sn−i

Kg∩(Si×Sn−i) =
⊗
j

(εSjkj
× 1S(r−j)kj

) ↓
Sjkj

×S(r−j)kj

Rr,j ≀Skj
=
⊗
j

νr,j,kj
.

Note that, by Observation 6.5, ϕr,s factors similarly. Therefore the corresponding
summand in (17) is

(18) ⟨ϕg ↓Kg

Kg∩(Si×Sn−i), (εSi
× 1Sn−i

) ↓Si×Sn−i

Kg∩(Si×Sn−i)⟩ =
r∏

j=0
⟨ϕr,kj

↓
Sr≀Skj

Rr,j ≀Skj
, νr,j,kj

⟩.

We have already computed these inner products in Lemma 6.6. By (17), (18),
Lemma 6.6 and Definition 5.3 we obtain

ei,(rs) = ⟨ϕ ↑Sn

K , (εSi
× 1Sn−i

) ↑Sn

Si×Sn−i
⟩ =

∑
γ∈Pr,s(i)

r∏
j=0

(−1)(j+1)kj(γ)
(

(−1)j+1fj(r)
kj(γ)

)
,
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as claimed. If s = 1 then Pr,1(i) contains (for 0 ⩽ i ⩽ r) a unique partition γ = (i),
for which ki(γ) = 1 is the unique nonzero multiplicity. Thus, in this case,

ei,(r) = (−1)i+1
(

(−1)i+1fi(r)
1

)
= fi(r). □

6.2. A product formula. Now we derive a restatement of Theorem 6.3 as a prod-
uct formula for formal power series.

Corollary 6.9. For a positive integer r, define the formal power series

Er(x, y) :=
∑

i,s⩾0
ei,(rs)x

iys.

Then

Er(x, y) =
r∏

j=0
(1− (−x)jy)(−1)j+1fj(r).

Proof. Recall the following formal power series expansion, valid for any integer f :

(1 + t)f =
∞∑

n=0

(
f

n

)
tn.

By Theorem 6.3, with the obvious extension for s = 0,

Er(x, y) =
∑

i,s⩾0


∑

k0,...,kr⩾0∑
j

kj=s∑
j

jkj=i

r∏
j=0

(−1)(j+1)kj

(
(−1)j+1fj(r)

kj

)

xiys

=
r∏

j=0

∞∑
kj=0

(−1)(j+1)kj

(
(−1)j+1fj(r)

kj

)
xjkjykj

=
r∏

j=0
(1 + (−1)j+1xjy)(−1)j+1fj(r),

as required. □

Remark 6.10. For small r and arbitrary s, Corollary 6.9 enables us to determine
explicitly the hook-multiplicities mi,(rs). This is done by recalling Equation (9) and
the fact that, by definition, ei,(rs) is the coefficient of xiys in Er(x, y). For example,
by Corollary 6.9 and Observation 5.4, E2(x, y) = E3(x, y) = (1 + xy)(1 − x2y)−1.
Thus, for r ∈ {2, 3} and any s ⩾ 1, the value of ei,(rs) is 1 for i ∈ {2s − 1, 2s} and
zero otherwise. Combining this with Equation (9), it follows that, for r ∈ {2, 3} and
s ⩾ 1, the hook multiplicity mi,(rs) is 1 for i = 2s− 1 and zero otherwise.

6.3. Non-negativity. Now we are ready to prove Theorem 1.10.

Proof of Theorem 1.10. Assume that r is not square-free. Recall, from Definition 5.7,
the notation Fr(x) :=

∑r
j=0 fj(r)xj . By Proposition 5.1 and Corollary 5.8 we may

write Fr(x) = (1 + x)2Gr(x), where Gr(x) =
∑r−2

j=0 gj(r)xj is a polynomial with
non-negative integer coefficients. Let gj(r) := 0 for j < 0 or j > r − 2. Then

fj(r) = gj(r) + 2gj−1(r) + gj−2(r) (∀j).
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Therefore, by Corollary 6.9,

Er(x, y) =
∏
j⩾0

(1− (−x)jy)(−1)j+1fj(r)

=
∏
j⩾0

(1− (−x)jy)(−1)j+1(gj(r)+2gj−1(r)+gj−2(r))

=
∏
j⩾0

(
(1− (−x)jy)(1− (−x)j+2y)

(1− (−x)j+1y)2

)(−1)j+1gj(r)

.

We claim that each factor in this product has the form 1 + (1 + x)2pj(x, y), with
pj(x, y) a formal power series with non-negative integer coefficients. This implies that
(Er(x, y)− 1)/(1 + x)2 is itself a formal power series with non-negative integer coef-
ficients, completing the proof of Theorem 1.10.

Indeed, if j is odd then the corresponding factor is(
(1 + xjy)(1 + xj+2y)

(1− xj+1y)2

)gj(r)

=
(

1 + (x+ 1)2xjy

(1− xj+1y)2

)gj(r)

,

where
xjy

(1− xj+1y)2 = xjy ·
∑
i⩾0

(i+ 1)(xj+1y)i

is a formal power series with non-negative integer coefficients.
Finally, if j is even then the corresponding factor is(

(1 + xj+1y)2

(1− xjy)(1− xj+2y)

)gj(r)

=
(

1 + (x+ 1)2xjy

(1− xjy)(1− xj+2y)

)gj(r)

,

where
xjy

(1− xjy)(1− xj+2y) = xjy ·
∑
i⩾0

(xjy)i ·
∑
k⩾0

(xj+2y)k

is a formal power series with non-negative integer coefficients. □

7. Additional results
7.1. Combinatorial identities. In this subsection it will be shown that Lemma 3.5
and Theorem 6.3 imply well-known combinatorial identities.

Recall the major index of a permutation π ∈ Sn,

maj(π) :=
∑

i∈Des(π)

i.

The following identity is due to Garsia [13]. A purely combinatorial proof was given
by Wachs [40].

Proposition 7.1 ([13, Equation 5.8]). For every partition λ ⊢ n,

∑
π∈Cλ

ζmaj(π) =
{
µ(r), if λ = (rs);
0, otherwise ,

where ζ is a primitive n-th root of unity and µ is the Möbius function.

The following lemma follows from the work of Stembridge [34].

Algebraic Combinatorics, Vol. 6 #6 (2023) 1583



R. M. Adin, P. Hegedüs & Y. Roichman

Lemma 7.2. For every Schur-positive set A ⊆ Sn with associated Sn-character ϕ :=
ch−1(Q(A)), the value of ϕ at an n-cycle c ∈ Sn is

ϕ(c) =
∑
π∈A

ζmaj(π),

where ζ is a primitive n-th root of unity.

Proof. First, recall the definition of the descent set of standard Young tableaux (SYT)
from Equation (3). By [34, Lemma 3.4], for every partition ν ⊢ n the value of the
irreducible Sn-character χν at an n-cycle c ∈ Sn is

(19) χν(c) =
∑

T ∈SYT(ν)

ζmaj(T ).

Let A ⊆ Sn be Schur-positive with associated Sn-character ϕ, i.e., Q(A) = ch(ϕ). By
Lemma 2.3 together with Equation (19),∑

π∈A
ζmaj(π) =

∑
ν⊢n

⟨Q(A), sν⟩
∑

T ∈SYT(ν)

ζmaj(T ) =
∑
ν⊢n

⟨ϕ, χν⟩χν(c) = ϕ(c),

completing the proof. □

In light of Lemma 7.2 we deduce the following.

Corollary 7.3. Lemma 3.5 is equivalent to Garsia’s identity (Proposition 7.1).

Proof. By the Gessel–Reutenauer Theorem (Theorem 2.10), for every λ ⊢ n, the
conjugacy class of cycle type λ is Schur-positive with ch−1(Q(Cλ)) = ψλ. Letting
A = Cλ in Lemma 7.2, Proposition 7.1 implies Lemma 3.5 and vice versa. □

There is a combinatorial description, due to Schocker, of the multiplicity of an
arbitrary irreducible character of Sn in the higher Lie character. In its full generality
it is too complicated to be presented here, see [29] for the details. The special case
of a full cycle, λ = (n) (for which ψ(n) = ω(n) ↑Sn

Zn
is the Lie character), is due to

Kraśkiewicz and Weyman [21].

Theorem 7.4 (Kraśkiewicz–Weyman, see [13, Theorem 8.4]). For every partition
ν ⊢ n, the multiplicity mν,(n) := ⟨ψ(n), χν⟩ is equal to the cardinality of the set

{T ∈ SYT(ν) : maj(T ) ≡ 1 (mod n)}.

Corollary 7.5. For every 0 ⩽ k ⩽ n, the multiplicity mk,(n) := ⟨ψ(n), χ(n−k,1k)⟩ is
equal to the cardinality of the set{

1 ⩽ a1 < · · · < ak ⩽ n− 1 :
k∑

i=1
ai ≡ 1 (mod n)

}
.

Proof. The map Des : SYT(n− k, 1k)→
([n−1]

k

)
is a bijection, where

([n−1]
k

)
denotes

the set of all k-subsets of [n − 1]. The major index of a tableau is the sum of the
elements of its descent set. □

Consider the following combinatorial identity.

Proposition 7.6. For every 0 ⩽ k ⩽ n,∣∣∣∣∣
{

1 ⩽ a1 < · · · < ak ⩽ n :
k∑

i=1
ai ≡ 1 (mod n)

}∣∣∣∣∣ =
∑

d|(n,k)

µ(d)(−1)(d+1)k/d

n

(
n/d

k/d

)
.
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Proof. Let H(x, q) :=
∏n

i=1(1 + xqi). Writing

H(x, q) ≡
n∑

k=0

n−1∑
t=0

ck,tx
kqt mod (qn − 1),

the cardinality we are interested in is the coefficient ck,1 of xkq. For any d|n and η a
primitive d-th root of unity (we write o(η) = d),

H(x, η) =
n∏

i=1
(1 + xηi) =

(
d∏

i=1
(1 + xηi)

)n/d

= (1− (−x)d)n/d,

where the last equality holds since both sides are polynomials of the same degree,
with exactly the same roots and the same constant term.

Let ω be a primitive n-th root of unity. Then

H(x, ωj) =
n−1∑
t=0

ht(x)ωjt (0 ⩽ j ⩽ n− 1),

where ht(x) =
∑n

k=0 ck,tx
k. Fourier inversion gives

n∑
k=0

ck,1x
k = h1(x) = 1

n

n−1∑
j=0

H(x, ωj)ω−j

= 1
n

∑
d|n

(1− (−x)d)n/d
∑

j : o(ωj)=d

ω−j

= 1
n

∑
d|n

(1− (−x)d)n/dµ(d)

= 1
n

n∑
k=0

∑
d|(n,k)

(
n/d

k/d

)
(−1)(d+1)k/dxkµ(d),

as required. □

Observation 7.7. Proposition 5.5 is equivalent to Proposition 7.6.

Proof. By considering separately the cases ak < n and ak = n, Corollary 7.5 yields∣∣∣∣∣
{

1 ⩽ a1 < · · · < ak ⩽ n :
k∑

i=1
ai ≡ 1 (mod n)

}∣∣∣∣∣ = mk,(n) +mk−1,(n) = ek,(n).

By Proposition 5.5 and Definition 5.3,

ek,(n) = fk(n) =
∑

d|(n,k)

µ(d)(−1)(d+1)k/d

n

(
n/d

k/d

)
,

proving Proposition 7.6. The opposite direction is similar. □

Remark 7.8. Noting that Proposition 5.5 is the special case s = 1 of Theorem 6.3,
one concludes that Proposition 7.6 is a consequence of the latter.

It remains a challenge to find such a direct link between Schocker’s general descrip-
tion of the multiplicity and our version in Theorem 6.3.
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Remark 7.9. Proposition 5.5 is not new. For example, by the Gessel–Reutenauer
Theorem (Theorem 2.10) together with Observation 3.1, Theorem 6.3 at s = 1 is
equivalent to the equation

|{π ∈ C(n) : Des(π) = [j]}| = 1
n

∑
d|n

µ(d)(−1)j−⌊j/d⌋
(
n− 1
j − 1

)
(0 ⩽ j < n),

which is an immediate consequence of a recent result of Elizalde and Troyka [12,
Theorem 3.1]. An older proof was presented to us by Sheila Sundaram [37], deduc-
ing Proposition 5.5 from [35, Lemma 2.7]. The reader is referred to [12] for further
discussion and relations to the enumeration of Lyndon words.

7.2. Cellini’s cyclic descents. In this subsection it is shown that the apparently
natural approach does not provide a cyclic descent extension for many conjugacy
classes in Sn.

Recall the original notion of cyclic descent set defined by Cellini [8],
CDes(π) := {1 ⩽ i ⩽ n : πi > πi+1} (∀π ∈ Sn),

with the convention πn+1 := π1.
Elizalde and Roichman [6] presented several subsets of Sn on which the image of

Cellini’s cyclic descent map is closed under cyclic rotation, thus leading to a cyclic
extension of Des. However, as we shall see, many conjugacy classes do not have this
property. In fact, we conjecture that only two conjugacy classes have this property.
Here are some partial results.

Proposition 7.10. For n = rs > 1, the image of Cellini’s cyclic descent map on any
conjugacy class of cycle type (rs) is not closed under cyclic rotation.

Proof. Recall the notation Cλ from Section 2. For r = 1 and n = s > 1, C(1n)
consists of the identity permutation only. Cellini’s CDes(id) is the singleton {n} and,
for n > 1, the set {{n}} is not closed under cyclic rotation. For r > 1 (and s ⩾ 1),
let σ = [s + 1, s + 2, . . . , n, 1, 2, . . . , s]. In other words, σ is the permutation in Sn

defined by
σ(i) = i+ s (mod n) (∀i ∈ [n]).

Then σ ∈ C(rs), and Cellini’s CDes(σ) is the singleton {n− s}. If the image of CDes
on C(rs) is invariant under cyclic rotation then there is a permutation π ∈ C(rs)
with CDes(π) = {n}. The only permutation in Sn with this property is the identity
permutation, which is not in C(rs). This is a contradiction. □

Proposition 7.11. For n > 1, the image of Cellini’s cyclic descent map on any
conjugacy class of k-cycles in Sn, except 2-cycles in S3 and 3-cycles in S4, is not
closed under cyclic rotation.

Proof. Letting r = n in Proposition 7.10, statement holds on n-cycles. For k < n
let σ ∈ C(k,1n−k) be the permutation [k, 1, 2, . . . , k − 1, k + 1, k + 2, . . . , n]. Then
CDes(σ) = {1, n}. By the equivariance property, there must be a k-cycle π with
cyclic descent set {1, 2}. Then π(3) is the minimal value thus it is equal to 1, and
π(1) is the maximal value thus it is equal to n. Let π(2) = x, thus

π = [n, x, 1, 2, . . . , x− 1, x+ 1, . . . , n− 1],
namely, for every 3 < i ⩽ x+ 1, π(i) = i− 2 and for every x+ 1 < i ⩽ n, π(i) = i− 1.
Thus π has no fixed points unless x = 2, in this case π has cycle type (n− 1, 1). One
deduces that statement holds for k < n− 1.

For the (n − 1)-cycles an argument similar to the above works. For n > 4 the
permutation σ = (1, n−1, n−2, . . . , 5, 4, 2, 3)(n), i.e., [n−1, 3, 1, 2, 4, 5, . . . , n−2, n] ∈
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C(n−1,1) has cyclic descent set CDes(σ) = {1, 2, n}. By the equivariance property, there
is a permutation π ∈ C(n−1,1) with cyclic descent set {1, n − 1, n}. Then π(2) is the
minimal value thus it is equal to 1, and π(n− 1) is the maximal value thus it is equal
to n. If π(n) = l and π(1) = k then 1 < k < l < n and π = [k, 1, . . . , k − 1, k +
1, ..., l−1, l+ 1, . . . , n, l], so the cycle (1, k, k−1, . . . , 2) of π has length 2 ⩽ k < n−1,
contradicting the equivariance property. □

Conjecture 7.12. For n > 1, the image of Cellini’s cyclic descent map on a conju-
gacy class C is invariant under cyclic rotation if and only if n ∈ {3, 4} and C is the
conjugacy class of (n− 1)-cycles.

7.3. Palindromicity of hook multiplicities. A sequence a0, . . . , an (equiva-
lently, the polynomial a0 +a1x+· · ·+anx

n) is palindromic (or symmetric) if ai = an−i

for all 0 ⩽ i ⩽ n.
For a partition λ ⊢ n recall the notation

mk,λ := ⟨ψλ, χ(n−k,1k)⟩ (0 ⩽ k < n).

In this subsection we prove the following.

Proposition 7.13. Consider the partition λ = (rs) for positive integers r and s.
1. If s = 1 then the hook-multiplicity sequence m0,(r), m1,(r), . . . ,mr−1,(r) is palin-

dromic if and only if either r is odd or r ≡ 0 (mod 4).
2. If s > 1 then the hook-multiplicity sequence m0,(rs), m1,(rs), . . . ,mrs−1,(rs) is

palindromic if and only if r ≡ 0 (mod 4).

Proof. 1. Assume first that s = 1. Recall the notations M(r)(x) :=
∑r−1

j=0 mj,(r)x
j and

Fr(x) :=
∑r

j=0 fj(r)xj . By Corollary 5.8, Fr(x) = (1 + x)M(r)(x). Hence M(r)(x) is
palindromic if and only if Fr(x) is palindromic.

If r is odd then, for every j, every divisor d|(r, j) is odd, hence (d+ 1)j/d is even.
Thus, by Definition 5.3,

fj(r) =
∑

d|(r,j)

µ(d)
r

(
r/d

j/d

)
=

∑
d|(r,r−j)

µ(d)
r

(
r/d

(r − j)/d

)
= fr−j(r) (0 ⩽ j ⩽ r),

and Fr(x) is palindromic.
Next consider the case r ≡ 0 (mod 4). Since µ(d) = 0 for d ≡ 0 (mod 4), Defini-

tion 5.3 implies that

fj(r) =
∑

d|(r,j)

µ(d)(−1)(d+1)j/d

r

(
r/d

j/d

)

=
∑

d|(r,j)
d odd

µ(d)(−1)(d+1)j/d

r

(
r/d

j/d

)
+

∑
d|(r,j)

d≡2 (mod 4)

µ(d)(−1)(d+1)j/d

r

(
r/d

j/d

)
.

Again, if d|(r, j) is odd then (d+ 1)j/d is even. If d ≡ 2 (mod 4) then

(−1)(d+1)j/d(−1)(d+1)(r−j)/d = (−1)(d+1)r/d = 1,

since r/d is even. It follows that

(−1)(d+1)j/d = (−1)(d+1)(r−j)/d
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in this case. We deduce that if r ≡ 0 (mod 4) then, for every 0 ⩽ j ⩽ r,

fj(r) =
∑

d|(r,j)
d odd

µ(d)
r

(
r/d

j/d

)
+

∑
d|(r,j)

d≡2 (mod 4)

µ(d)(−1)(d+1)j/d

r

(
r/d

j/d

)

=
∑

d|(r,r−j)
d odd

µ(d)
r

(
r/d

(r − j)/d

)
+

∑
d|(r,r−j)

d≡2 (mod 4)

µ(d)(−1)(d+1)(r−j)/d

r

(
r/d

(r − j)/d

)

= fr−j(r),

hence Fr(x) is palindromic.
On the other hand, if r ≡ 2 (mod 4) then, letting j = 2,

f2(r) = 1
r

[(
r

2

)
+
(
r/2
1

)]
= r

2 ̸=
r − 2

2 = 1
r

[(
r

r − 2

)
−
(

r/2
(r − 2)/2

)]
= fr−2(r),

thus Fr(x) is not palindromic in this case.
2. Assume now that s > 1. By Equation (9),

rs∑
j=0

ej,(rs)x
j = (1 + x)

rs−1∑
j=0

mj,(rs)x
j .

Thus the sequence m0,(rs), . . .mrs−1,(rs) is palindromic if and only if the sequence
e0,(rs), . . . , ers,(rs) is. We will show that this happens if and only if r ≡ 0 (mod 4).

Assume first that r ≡ 0 (mod 4). Following Definition 6.1, for each partition
γ = (γ1, . . . , γs) ∈ Pr,s(i) consider the complementary partition γ̄ = (γ̄1, . . . , γ̄s) ∈
Pr,s(rs−i), defined by γ̄ℓ := r−γs+1−ℓ (1 ⩽ ℓ ⩽ s), or equivalently by kj(γ̄) = kr−j(γ)
(0 ⩽ j ⩽ r). Since r ≡ 0 (mod 4), fj(r) = fr−j(r) (0 ⩽ j ⩽ r), by Part 1 of the cur-
rent proof. In addition, j+1 and r−j+1 have the same parity when r is even and j is
arbitrary. Using Proposition 6.3, it follows that for r ≡ 0 (mod 4) and any 0 ⩽ i ⩽ rs,

ei,(rs) =
∑

γ∈Pr,s(i)

r∏
j=0

(−1)(j+1)kj(γ)
(

(−1)j+1fj(r)
kj(γ)

)

=
∑

γ∈Pr,s(rs−i)

r∏
j=0

(−1)(r−j+1)kr−j(γ)
(

(−1)r−j+1fr−j(r)
kr−j(γ)

)
= ers−i,(rs),

proving palindromicity in this case. For the converse, consider again the explicit for-
mula for ei,(rs) (from Proposition 6.3) written above. Each summand corresponds to
a partition γ ∈ Pr,s(i). According to Remark 6.4, the summand is zero if and only if
either kj(γ) > fj(r) for some odd j, or kj(γ) > 0 = fj(r) for some even j.

We have f0(r) = 0 for r > 1, fr(r) = 0 for r > 2, and f1(r) = fr−1(r) = 1
for r > 0 thanks to Observation 5.4. It follows that for γ ∈ Pr,s(i) to contribute a
nonzero summand, it is necessary that k0(γ) = 0 (for r > 1), kr(γ) = 0 (for r > 2),
k1(γ) ∈ {0, 1} (for r > 0) and kr−1(γ) ∈ {0, 1} (for r − 1 odd).

Assume first that r > 1 is odd. The restrictions on k0(γ) and k1(γ) imply that
for i = s there is no relevant γ ∈ Pr,s(s) (since s > 1). The restriction on kr(γ)
implies that for i = rs−s there is only one relevant γ ∈ Pr,s(rs−s), with kr−1(γ) = s
(and kj(γ) = 0 for all other values of j). Thus

ers−s,(rs) =
(
s

s

)
= 1 > 0 = es,(rs),

and there is no palindromicity.
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If r = 1 then f0(1) = f1(1) = 1 and the unique partition γ ∈ P1,s(i) has k1(γ) = i
and k0(γ) = s− i (0 ⩽ i ⩽ s). It follows that

ei,(1s) =
(
s− i
s− i

)(
1
i

)
=
{

1, if i ∈ {0, 1};
0, otherwise.

For s > 1 this sequence is not palindromic.
Assume now that 2 < r ≡ 2 (mod 4). The restrictions on k0(γ) and k1(γ) imply

(actually, for any r > 1) that ei,(rs) = 0 for 0 ⩽ i < 2s−1 and e2s−1,(rs) =
(

f2(r)+s−2
s−1

)
.

Similarly, the restrictions on kr(γ) and kr−1(γ) imply (for even r > 2) that ers−i,(rs) =
0 for 0 ⩽ i < 2s−1 and ers−2s+1,(rs) =

(
fr−2(r)+s−2

s−1
)
. Recall, from Part 1 of the current

proof, that for r ≡ 2 (mod 4)

f2(r) = r

2 >
r − 2

2 = fr−2(r).

Therefore

e2s−1,(rs) =
(
f2(r) + s− 2

s− 1

)
>

(
fr−2(r) + s− 2

s− 1

)
= ers−2s+1,(rs)

and the sequence is not palindromic.
Finally, if r = 2 then, by Remark 6.10,

ei,(2s) =
{

1, if i ∈ {2s− 1, 2s};
0, otherwise

and this sequence is not palindromic. This completes the proof. □

8. Final remarks and open problems
Recall the notation mk,λ := ⟨ψλ, χ(n−k,1k)⟩. By Proposition 5.2, the hook-multiplicity
sequence m0,(n), m1,(n), . . . ,mn−1,(n) is unimodal; We conjecture that it is unimodal
for all partitions λ ⊢ n.

Conjecture 8.1. For every partition λ ⊢ n, the sequence

m0,λ,m1,λ, . . . ,mn−1,λ

is unimodal.

The conjecture has been verified for all partitions of size n ⩽ 15 and for all parti-
tions of rectangular shape (rs) with r ⩽ 40 and s ⩽ 5.

Note that, by Lemma 5.12, Conjecture 8.1 would provide an alternative proof of
Theorem 1.10.

A sequence a0, . . . , an of real numbers is log-concave if ai−1ai+1 ⩽ a2
i for all 0 <

i < n. It is not hard to show that a log-concave sequence with no internal zeros is
unimodal, see e.g. [7, 31]. Since log-concavity implies unimodality, it is tempting to
ask whether the hook-multiplicity sequence is log-concave.

Conjecture 8.2. For every partition λ = (rs) with even r ̸= 6, the hook-multiplicity
sequence m0,λ, m1,λ, . . . ,mn−1,λ is log-concave.

Conjecture 8.2 was verified for all r ⩽ 40 and s ⩽ 5.
Finally, recall that our proof of Theorem 1.5 is not constructive. We conclude the

paper with the following challenging problem.

Problem 8.3. Find an explicit combinatorial description of a cyclic descent extension
on the conjugacy class of each cycle type not equal to (rs) for a square-free r.
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A solution of this problem for the conjugacy classes of involutions is presented
in [4]. The analogous problem for standard Young tableaux of fixed non-ribbon shape
was solved by Huang [17].
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