
ALGEBRAIC
 COMBINATORICS

Joseph W. Iverson & Dustin G. Mixon
Doubly transitive lines II: Almost simple symmetries
Volume 7, issue 1 (2024), p. 37-76.
https://doi.org/10.5802/alco.324

© The author(s), 2024.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org
e-ISSN: 2589-5486

https://doi.org/10.5802/alco.324
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/


Algebraic Combinatorics
Volume 7, issue 1 (2024), p. 37–76
https://doi.org/10.5802/alco.324

Doubly transitive lines II:
Almost simple symmetries

Joseph W. Iverson & Dustin G. Mixon

Abstract We study lines through the origin of finite-dimensional complex vector spaces that
enjoy a doubly transitive automorphism group. This paper classifies those lines that exhibit
almost simple symmetries. We introduce a general recipe involving Schur covers to recover
doubly transitive lines from their automorphism group. Combining our results with recent
work on the affine case by Dempwolff and Kantor [13], we deduce a classification of all linearly
dependent doubly transitive lines in real or complex space.

1. Introduction
Given a sequence L = {ℓj}j∈[n] of lines through the origin of Cd, consider the auto-
morphism group Aut L ⩽ Sn consisting of all permutations σ for which there exists
a unitary U ∈ U(d) satisfying Uℓj = ℓσ(j) for every j ∈ [n]. We say L is doubly
transitive if Aut L acts doubly transitively on [n], that is, for every i, j, k, l ∈ [n]
with i ̸= j and k ̸= l, there exists U ∈ U(d) such that Uℓi = ℓk and Uℓj = ℓl. Doubly
transitive lines are highly symmetric and therefore worthy of study in their own right.
Case in point, G. Higman first investigated doubly transitive lines in real spaces (via
their combinatorial two-graph representation) as a means of studying Conway’s spo-
radic simple group Co3 [49]. At the time, one might have studied two-graphs with the
hope of discovering a new simple group, since the unique minimal normal subgroup of
every finite doubly transitive group is either simple or elementary abelian, as detailed
further below.

Today, we have another reason to study doubly transitive lines. By virtue of their
high degree of symmetry, under mild conditions, doubly transitive lines are necessarily
optimizers of a fundamental problem in discrete geometry, specifically, packing lines
{ℓj}j∈[n] through the origin of Cd so as to maximize the minimum chordal distance:

min
1⩽i<j⩽n

√
1 − tr(ΠiΠj),

where Πj denotes orthogonal projection onto ℓj . The optimal line packings that are
most frequently studied in the literature are spanned by equiangular tight frames
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(ETFs), which are sequences of unit vectors {φj}j∈[n] in Cd with the property that
there exist constants A,µ such that∑

j∈[n]

φjφ
∗
j = AI, |⟨φi, φj⟩| = µ for every i, j ∈ [n], i ̸= j.

See [16] for a survey. Indeed, the vectors in an ETF span lines that maximize the
minimum chordal distance by achieving equality in the Welch bound [53] (also known
as the simplex bound [10]). In general, optimal line packings find applications in
compressed sensing [4], multiple description coding [48], digital fingerprinting [39],
and quantum state tomography [43].

The proposition below makes explicit when doubly transitive lines correspond to
optimal line packings. Here and throughout, the span of a sequence of lines is the
smallest subspace containing those lines, and a sequence of lines is linearly depen-
dent if one of the lines is contained in the span of the others. Observe that a sequence
of n lines is linearly dependent if and only if it spans a space of dimension d < n.

Proposition 1.1 (Lemma 1.1 in [28]). Given n > d doubly transitive lines with
span Cd, select unit-norm representatives Φ = {φj}j∈[n]. Then Φ is an equiangular
tight frame.

This paper is the second in a series that studies doubly transitive lines. In the
previous installment [28], we focused on developing the theory of Higman pairs and
roux. The former is a special type of Gelfand pair (G,H) in which, as a consequence
of part (b) of the Higman Pair Theorem [28] (see also Theorem 4.1 below), each
of the irreducible constituents of the permutation representation of G on the cosets
of H determines a sequence of linearly dependent doubly transitive lines. In fact,
every sequence of linearly dependent doubly transitive lines is determined by such
a Gelfand pair (by part (a) of the Higman Pair Theorem, which we prove in this
paper). Meanwhile, roux provide a convenient combinatorial generalization of doubly
transitive lines in complex spaces, much like how G. Higman’s two-graphs generalize
doubly transitive lines in real spaces.

Both Higman pairs and roux play a pivotal role in the present installment, where we
provide a general recipe involving Schur coverings to find all complex line sequences
whose automorphism group contains a given doubly transitive group. We apply this
machine to classify “half” of the doubly transitive lines. Specifically, the following
result gives two possibilities for a doubly transitive permutation group S according to
its socle socS, which for a doubly transitive group is its unique minimal nontrivial
normal subgroup.

Proposition 1.2 (Burnside [5]). If S is a doubly transitive permutation group, then
exactly one of the following holds:

(I) socS is a regular elementary abelian subgroup that may be identified with Fm
p

in such a way that S = Fm
p ⋊G0 ⩽ AGL(m, p), where G0 ⩽ GL(m, p) is the

stabilizer of 0 ∈ Fm
p , or

(II) socS = G is a nonabelian simple group, and G⊴ S ⩽ Aut(G).

Groups of type (I) are said to have affine type, while those of type (II) are
called almost simple. The former are characterized by having a normal elementary
abelian subgroup. (For further details, see Chapter 4 of [14].) The doubly transitive
permutation groups have been classified as a consequence of the classification of finite
simple groups [7]. Since the Schur covers of simple groups were already determined in
order to perform this classification, our general recipe is most readily applied to the
almost simple doubly transitive groups. We handle that case in this installment. The
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affine case was recently handled by Dempwolff and Kantor [13], and by combining
our results with theirs, we are able to deduce the complete classification of linearly
dependent doubly transitive lines.

In the theorem below, two line sequences L = {ℓj}j∈[n] and L ′ = {ℓ′
j}j∈[n] in Cd

are called unitarily equivalent if there is a unitary U ∈ U(d) and a permutation
σ ∈ Sn such that Uℓj = ℓ′

σ(j) for every j ∈ [n]; then we also say σ induces a unitary
equivalence L → L ′. Meanwhile, a line sequence L = {ℓj}j∈[n] in Cd is real if there
is a unitary U ∈ U(d) and a choice of unit-norm representatives {φj}j∈[n] such that
Uφj ∈ Rd ⊂ Cd for every j ∈ [n]. (This is not the definition of real lines given in [28],
but the notions are equivalent. See the comments following Proposition 2.1.)

Theorem 1.3 (Classification of linearly dependent doubly transitive lines). Let L
be a sequence of n ⩾ 2d > 2 lines with span Cd such that S := Aut L is doubly
transitive. Then one of the following holds:

(I) S has a regular normal subgroup G that is elementary abelian of order n =
p2m, where p is prime. Following bijections L ∼= G ∼= F2m

p , then S is iso-
morphic to a subgroup of AGL(2m, p), the stabilizer S0 ⩽ S of the line corre-
sponding to 0 ∈ F2m

p can be identified with a subgroup of GL(2m, p), and one
of the following holds:
(A) The lines are real, and

(i) d = 2m−1(2m − 1), n = 22m, S0 = Sp(2m, 2), m > 1.
(B) The lines are not real, and (d, n, S0) satisfy one of the following:

(ii) d = pm(pm − 1)/2, n = p2m, S0 = Sp(2m, p), p > 2 is prime,
m ⩾ 1.

(iii) d = 2, n = 4, |S0| = 3.
(iv) d = 8, n = 64, S0 = G2(2)′ ∼= PSU(3, 3).

(II) S has a simple normal subgroup G⊴S ⩽ AutG such that one of the following
holds:
(C) The lines are real, and (d, n,G) satisfy one of the following:

(v) d = (q + 1)/2, n = q + 1, G = PSL(2, q), q ≡ 1 mod 4 is a prime
power.

(vi) d = q2 −q+1, n = q3 +1, G = PSU(3, q), q is an odd prime power.
(vii) d = q2 − q + 1, n = q3 + 1, G = 2G2(q), q = 32m+1, m ⩾ 0.
(viii) d = (22m−1 − 3 · 2m−1 + 1)/3, n = 22m−1 − 2m−1, G = Sp(2m, 2),

m ⩾ 3.
(ix) d = (22m−1 + 3 · 2m−1 + 1)/3, n = 22m−1 + 2m−1, G = Sp(2m, 2),

m ⩾ 3.
(x) d = 22, n = 176, G = HS (the Higman–Sims group).
(xi) d = 23, n = 276, G = Co3 (the third Conway group).

(D) The lines are not real, and (d, n,G) satisfy one of the following:
(xii) d = (q + 1)/2, n = q + 1, G = PSL(2, q), q ≡ 3 mod 4 is a prime

power, q > 3.
(xiii) d = q2 − q + 1, n = q3 + 1, G = PSU(3, q), q is a prime power,

q > 2.
Conversely, there exist lines satisfying each of (i)–(xiii). For (i)–(xii), the lines are
unique up to unitary equivalence. For (xiii), the lines are unitarily equivalent to some
of those constructed in Theorem 6.9(b).

Remark 1.4. The lines in case (xiii) of Theorem 1.3 are not unique, but all equiva-
lences are detailed in Theorem 7.5. There is exactly one other equivalence among (i)–
(xiii). Namely, there is just one sequence of n = 28 equiangular real lines in dimen-
sion d = 7 up to unitary equivalence, and it is repeated in (vi), (vii), and (viii).
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There are no other coincidences. All the other lines can be distinguished by their re-
alness and their automorphism groups. As described in Section 2, the real lines of (A)
and (C) are equivalent to two-graphs constructed in [49], and their automorphism
groups appear in [50]. They are distinct. The automorphism groups of (B) are listed
above from [13], and those of (D) appear in Section 7. They are also distinct.

In Theorem 1.3, the global hypothesis n ⩾ 2d is imposed only to simplify exposition.
Lines spanned by the unit-norm columns of a tight frame Φ ∈ Cd×n naturally pair
with those spanned by columns of a Naimark complement Ψ ∈ C(n−d)×n with
Ψ∗Ψ = n

n−d (I− d
n Φ∗Φ). The lines spanned by Naimark complements exhibit identical

automorphism groups, as an easy consequence of Proposition 2.2 below. Hence, each of
the line sequences described in Theorem 1.3 with n > 2d pairs with another sequence
of n doubly transitive lines spanning a space of dimension n− d.

Real equiangular lines are equivalent to two-graphs (see Proposition 2.6), and con-
structions for all the examples of (A) and (C) appear in Section 6 of [49]. We provide
additional descriptions of (v) and (vi) in Example 6.3 and Theorem 6.9(b), respec-
tively. See Example 5.10 of [28] for another description of (i), and also for (ii) and (iii).
A construction of (iv) appears in Example 5.11 of [28]. For (xii), see Example 6.3;
another description involving Higman pairs appears in Example 5.8 of [28]. In addi-
tion to Theorem 6.9(b), the lines in (xiii) can be described using Higman pairs as in
Example 5.9 of [28].

As explained in Section 2, the real cases (A) and (C) follow Taylor’s classification
of doubly transitive two-graphs [50]. The cases in which n = d2 (of which three exist)
were classified by Zhu [58]. The affine case (I) is due to Dempwolff and Kantor [13].
Our contribution to the classification is the almost simple case (II).

Theorem 1.5 (Main result). Let L be a sequence of n ⩾ 2d > 2 lines with span Cd

such that S := Aut L is doubly transitive and almost simple. Then L takes the
form described in Theorem 1.3(II). Conversely, there exist lines satisfying each of
Theorem 1.3(v)–(xiii). For (v)–(xii), the lines are unique up to unitary equivalence.
For (xiii), the lines are unitarily equivalent to some of those constructed in Theo-
rem 6.9(b).

In the next section, we verify that doubly transitive real lines amount to doubly
transitive two-graphs. Section 3 then reviews necessary results from the previous
installment [28]. We prove part (a) of the Higman Pair Theorem in Section 4, and our
proof suggests a program for classifying doubly transitive lines. Section 5 builds up
the machinery needed to accomplish such a classification, and then Section 6 performs
this classification in the almost simple case, ultimately proving Theorems 1.3 and 1.5.
Finally, Section 7 finds the automorphism groups in case (D) and uses them to sort
out unitary equivalences for (xiii).

2. Doubly transitive real lines and two-graphs
Taylor [50] has completely classified doubly transitive two-graphs, which are known to
be equivalent to doubly transitive lines in Rd. In contrast, this series concerns doubly
transitive lines in Cd. Every line ℓ ⊂ Rd embeds into a unique line ℓ′ ⊂ Cd through
the inclusion Rd ⊂ Cd: if ℓ = spanR{φ}, then ℓ′ = spanC{φ}. In this section, we show
that this embedding preserves automorphism groups. Consequently, Taylor’s results
apply for real lines in the complex setting.

Throughout, we abuse notation by letting Φ = {φj}j∈[n] denote both a sequence
in Cd and the d × n matrix whose jth column is φj . Its Gram matrix is Φ∗Φ =
[⟨φj , φi⟩]i,j∈[n] ∈ Cn×n.
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Proposition 2.1. A sequence of lines in Cd is real if and only if it has unit-norm
representatives Φ = {φj}j∈[n] whose Gram matrix Φ∗Φ resides in Rn×n ⊂ Cn×n.

Proof. Let L = {ℓj}j∈[n] be a sequence of lines in Cd. In the forward direction,
suppose L is real, and choose unit-norm representatives Φ = {φj}j∈[n] and a unitary
U ∈ U(d) such that Uφj ∈ Rd ⊂ Cd for every j ∈ [n]. Then [Φ∗Φ]ij = φ∗

iφj =
(Uφi)∗(Uφj) ∈ R for every i, j ∈ [n]. In the reverse direction, suppose Φ = {φj}j∈[n]
is a choice of unit-norm representatives for L such that Φ∗Φ is real-valued. Since Φ∗Φ
is positive semidefinite with rank at most d, there exists Ψ = {ψj}j∈[n] in Rd ⊂ Cd

such that Ψ∗Ψ = Φ∗Φ. It is well known that vectors in Cd are determined up to
unitary equivalence by their Gram matrices, so there exists a unitary U ∈ U(d) such
that Uφj = ψj ∈ Rd for every j ∈ [n]. Hence, L is real. □

The previous installment of this series defined real lines in a third equivalent way
using signature matrices, which play a significant role in the theory of equiangular
lines. Given any sequence L of linearly dependent equiangular lines, choose unit norm
representatives Φ = {φj}j∈[n] satisfying |⟨φi, φj⟩| = µ ̸= 0 for every i ̸= j ∈ [n], and
consider S := µ−1(Φ∗Φ − I). We call S ∈ Cn×n a signature matrix since it satisfies
all of the following:

(i) Sii = 0 for every i ∈ [n],
(ii) |Sij | = 1 whenever i ̸= j ∈ [n], and
(iii) S∗ = S.

Property (ii) says that each off-diagonal element of S is a phase, i.e., a member of the
multiplicative group T := {z ∈ C : |z| = 1}. (Similarly, the phase of a nonzero complex
number z ∈ C× is defined as z/|z| ∈ T.) For any choice of phases {ωj}j∈[n], the matrix
D := diag(ω1, . . . , ωn) determines another signature matrix S ′ := D−1SD. In terms
of L , S ′ corresponds to the different choice of unit-norm representatives {ωjφj}j∈[n].
We say that S and S ′ are switching equivalent, and write S ∼ S ′. The normalized
signature matrix of L is the unique S ′ ∼ S such that S ′

1j = S ′
j1 = 1 for every

j > 1. Conversely, any signature matrix S gives rise to a unique unitary equivalence
class of linearly dependent equiangular lines. Indeed, the least eigenvalue λ of S is
strictly negative since tr S = 0, and so −λ−1S + I ⩾ 0 can be factored as Φ∗Φ
for some unit vectors Φ, which span linearly dependent equiangular lines having S
as a signature matrix. As a consequence of Proposition 2.1, a sequence of linearly
dependent equiangular lines is real if and only if its normalized signature matrix is
real-valued. In [28], the latter notion was used as the definition of real lines.

The following result relates switching equivalence with unitary equivalence. It fol-
lows easily from the fact that Gram matrices determine vector sequences up to unitary
equivalence.

Proposition 2.2. Let S,S ′ ∈ Cn×n be signature matrices for equiangular line se-
quences L and L ′ in Cd, and let σ ∈ Sn be a permutation with matrix representation
P = [δi,σ(j)]i,j∈[n] ∈ Cn×n. Then S ′ is switching equivalent to PSP−1 if and only if
σ induces a unitary equivalence L → L ′. In particular, S is switching equivalent to
PSP−1 if and only if σ ∈ Aut L .

Definition 2.3. Let L = {ℓj}j∈[n] be a sequence of lines in Rd, and let L ′ =
{ℓ′

j}j∈[n] be its embedding in Cd. We define AutC L := Aut L ′ and

AutR L := {σ ∈ Sn : there exists U ∈ O(d) such that Uℓj = ℓσ(j) for every j ∈ [n]},

where O(d) ⩽ Rd×d is the orthogonal group.
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Lemma 2.4. Let L = {ℓj}j∈[n] and K = {𝓀j}j∈[n] be sequences of lines in Rd, and
let L ′ = {ℓ′

j}j∈[n] and K ′ = {𝓀′
j}j∈[n] be their embeddings in Cd. Then the following

are equivalent:
(a) there exists U ∈ O(d) with Uℓj = 𝓀j for every j ∈ [n],
(b) there exists U ∈ U(d) with Uℓ′

j = 𝓀′
j for every j ∈ [n].

In particular, AutR L = AutC L .

Proof. Choose unit-norm representatives φj ∈ ℓj ⊂ Rd and ψj ∈ 𝓀j ⊂ Rd for every
j ∈ [n]. Then (a) holds if and only if there exists U ∈ O(d) and scalars aj ∈ {±1} such
that Uφj = ajψj for every j ∈ [n]. It is well known that vector sequences in Rd are
determined up to orthogonal equivalence by their Gram matrices. Hence, (a) holds if
and only if there exist scalars aj ∈ {±1} such that
(1) ⟨φj , φi⟩ = aiaj⟨ψj , ψi⟩ for every i, j ∈ [n].
Similarly, (b) holds if and only if there are scalars cj ∈ T such that
(2) ⟨φj , φi⟩ = cicj⟨ψj , ψi⟩ for every i, j ∈ [n].

It is now obvious that (a) implies (b). For the converse, assume (b) holds and
choose scalars cj ∈ T to satisfy (2). Define G to be the graph on the vertex set [n]
with an edge joining i ̸= j whenever ⟨φj , φi⟩ ≠ 0. (This is the frame graph of [47, 1].)
Equivalently, vertices i ̸= j are adjacent when ⟨ψj , ψi⟩ ≠ 0.

Choose representatives i1, . . . , ir ∈ [n] for each of the connected components of G ,
and define new scalars {aj}j∈[n] by setting aj = cik

cj whenever there is a path from j
to ik. Then aiaj = cicj whenever i, j ∈ [n] lie in the same connected component
of G . For every i, j ∈ [n], (2) gives ⟨φj , φi⟩ = aiaj⟨ψj , ψi⟩, both sides of the equation
being 0 when there is no path from i to j.

It remains to show that aj ∈ {±1} for all j ∈ [n]. Given adjacent vertices i, j ∈ [n],
we can divide the relation ⟨φj , φi⟩ = aiaj⟨ψj , ψi⟩ to deduce that aiaj ∈ R∩T = {±1}.
If one of ai, aj belongs to {±1}, the other does as well. Since aik

= cik
cik

= 1 for
every k ∈ [r], we quickly see that aj ∈ {±1} for every j ∈ [n]. This proves (a).

Finally, we conclude that AutR L = AutC L by taking any σ ∈ Sn and setting
K = {ℓσ(j)}j∈[n]. Then σ ∈ AutR L if and only if (a) holds, while σ ∈ AutC L if and
only if (b) holds. □

Definition 2.5. A two-graph is a pair (Ω, T ) where Ω is a finite set of vertices
and T is a collection of 3-subsets of Ω, such that every 4-subset of Ω contains an
even number of 3-subsets from T . The automorphism group of (Ω, T ) consists of
all permutations of Ω that preserve T .

Proposition 2.6. Given a sequence L of n real, linearly dependent, equiangular lines
in Cd, choose unit-norm representatives {φj}j∈[n] and put

TL :=
{

{i, j, k} ⊂ [n] : i ̸= j ̸= k ̸= i and µ−3⟨φi, φj⟩⟨φj , φk⟩⟨φk, φi⟩ = −1
}
,

where µ := |⟨φi, φj⟩| for i ̸= j. Then ([n], TL ) is a two-graph whose automorphism
group equals Aut(L ). Moreover, the mapping L 7→ TL induces a bijection between
unitary equivalence classes of real, linearly dependent, equiangular lines and isomor-
phism equivalence classes of two-graphs. In this correspondence, doubly transitive real
lines map to doubly transitive two-graphs, and vice versa.

Proof. For the first part, we may apply a global unitary to assume L is a sequence of
lines in real space. Then it is well known (cf. [45]) that TL is a two-graph, and (cf. [6])
that AutTL = AutR L , which coincides with AutC L by Lemma 2.4. In particular,
L is doubly transitive if and only if TL is, too.
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By Lemma 2.4, the embedding Rd ⊂ Cd induces a bijection between linearly de-
pendent equiangular line sequences in Rd up to global orthogonal transformation,
and linearly dependent equiangular real line sequences in Cd up to global unitary.
It is also well known (cf. [45] again) that the mapping L → TL gives a bijection
between linearly independent equiangular line sequences in real space up to global
orthogonal transformation, and two-graphs on vertex set [n]. The proof is completed
by composing these bijections. □

With each two-graph (T , [n]) we associate a normalized signature matrix S ∈ Cn×n,
defined as follows. Set Sii = 0 for every i ∈ [n], and Si1 = S1i = 1 for every i ̸= 1.
When i ̸= j are both different from 1, put Sij = −1 if {1, i, j} ∈ T and Sij = 1
otherwise. Then S is the normalized signature matrix of a sequence L of linearly
dependent, real, equiangular lines such that T = TL . The two-graph (T , [n]) is called
regular if S has exactly two eigenvalues λ1 > 0 > λ2. In that case, L spans a space
of dimension d = nλ1

λ1−λ2
, while n − d = −nλ2

λ1−λ2
. Every doubly transitive two-graph is

regular, as an easy consequence of Theorem 2.2 in [49].
In light of Proposition 2.6, doubly transitive real lines are either linearly indepen-

dent or else they follow Taylor’s classification of doubly transitive two-graphs [50]. We
summarize the classification of doubly transitive real lines in Proposition 2.7 below.
Information about the automorphism groups is taken from [50, Theorem 1], while ex-
istence and uniqueness are provided by [50, Theorem 2]. For each of the cases (i)–(viii)
below, a corresponding two-graph is described in [49, Section 6]. There one also finds
eigenvalues for a normalized signature matrix. We used those eigenvalues to compute
the dimensions d below. Finally, we remark that [50, Theorem 1] lists additional sym-
metry groups of affine type (I). However, each of those groups is contained in an affine
symplectic group, and [50, Section 3] establishes that the corresponding two-graphs
are instances of case (i) below.

Proposition 2.7. If L is a sequence of n ⩾ 2d > 2 real lines with span Cd for which
S := Aut L is doubly transitive, then one of the following holds:

(I) There is a normal elementary abelian subgroup of S that acts regularly on L .
Furthermore, S has a subgroup G, where
(i) d = 2m−1(2m − 1), n = 22m, G = F2m

2 ⋊ Sp(2m, 2), m ̸= 1.
(II) There is a nonabelian simple group G such that G ⊴ S ⩽ Aut(G), where

(d, n,G) is one of the following:
(ii) d = (q+1)/2, n = q+1, G = PSL(2, q), q is a prime power, q ≡ 1 mod 4.
(iii) d = q2 − q + 1, n = q3 + 1, G = PSU(3, q), q is an odd prime power.
(iv) d = q2 − q + 1, n = q3 + 1, G = 2G2(q), q = 32e+1.
(v) d = (22m−1 −3 ·2m−1 +1)/3, n = 22m−1 −2m−1, G = Sp(2m, 2), m ⩾ 3.
(vi) d = (22m−1 +3 ·2m−1 +1)/3, n = 22m−1 +2m−1, G = Sp(2m, 2), m ⩾ 3.
(vii) d = 22, n = 176, G = HS (the Higman–Sims group).
(viii) d = 23, n = 276, G = Co3 (the third Conway group).

Conversely, for each (n,G) of (i)–(viii) there exists a unique dimension d′ and a
unique unitary equivalence class of n ⩾ 2d′ > 2 real lines spanning Cd′ whose auto-
morphism group contains G. In particular, d′ = d is the dimension listed above.

3. Review of Higman pairs and roux
In Rd, every sequence of real doubly transitive lines can be viewed as a two-graph.
Similarly in the complex case, we will show that doubly transitive lines derive from a
combinatorial object known as a roux. The authors introduced roux and the related
notion of Higman pairs in the first paper of this series [28]. In this section, we recall
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some necessary results from [28] and provide a brief summary of association schemes,
roux, and Higman pairs.

3.1. Association schemes. Recall that a ∗-algebra is a complex algebra A
equipped with an involution A 7→ A∗ such that (cA + B)∗ = cA∗ + B∗ and
(AB)∗ = B∗A∗ for every A,B ∈ A and c ∈ C. An association scheme is a
sequence {Ai}i∈[k] in Cn×n with entries in {0, 1} such that

(A1) A1 = I,
(A2)

∑
i∈[k] Ai = J (the matrix of all ones), and

(A3) A := span{Ai}i∈[k] is a ∗-algebra under matrix multiplication.
We refer to A as the adjacency algebra (or Bose–Mesner algebra) of {Ai}i∈[k].
Any matrix M ∈ A has a unique expansion M =

∑
i∈[k] ciAi, and M is said to

carry the scheme when the coefficients ci are distinct. (Then the “level sets” of M
carve out the adjacency matrices {Ai}i∈[k].) An association scheme is said to be
commutative when its adjacency algebra is commutative. In that case, the spectral
theorem provides A with an alternative basis of orthogonal projections {Ej}j∈[k].
These are called the primitive idempotents of A , since every other projection
in A can be expressed as a sum of primitive idempotents. Whether or not the scheme
is commutative, every orthogonal projection G ∈ A can be factored as G = Φ∗Φ
where Φ = {φj}j∈[n] is a sequence of equal-norm vectors φj ∈ Cd, d = rank G. By
collecting the lines spanned by these vectors and eliminating duplicates as necessary,
we obtain a sequence L = {ℓj}j∈[m] of lines spanning Cd having representatives Φ
with Gram matrix G. (Notice that each line may be represented several times in Φ
and in G.) The resulting lines have been studied in [12, 26, 24, 25].

A large class of examples of association schemes arise from permutation groups, as
follows. Let G be a finite group acting transitively on a set X (from the left). Then G
also acts on X × X through the diagonal action g · (x, y) := (g · x, g · y). Collect
the orbits {Ri}i∈[k] of G on X ×X, and let {Ai}i∈[k] be the corresponding indicator
matrices in CX×X , i.e. [Ai]x,y = 1 if (x, y) ∈ Ri and 0 otherwise. By reindexing if
necessary, we may assume that A1 = I. Then {Ai}i∈[k] is an association scheme,
called a Schurian scheme. The corresponding adjacency algebra A consists of all
G-stable matrices, that is, matrices M ∈ CX×X satisfying Mg·x,g·y = Mx,y for every
g ∈ G and x, y ∈ X. Any vector sequence Φ = {φx}x∈X with Φ∗Φ ∈ A is called a
homogeneous frame, since it inherits symmetries corresponding to the action of G
on X (see [25]). For an alternative description of the scheme, we may assume without
loss of generality that X = G/H, where H ⩽ G is the stabilizer of a point in X.
Then the double cosets {HaiH}i∈[k] of H in G can be indexed in such a way that
[Ai]xH,yH = 1 if y−1x ∈ HaiH and 0 otherwise. We refer to (G,H) as a Gelfand
pair when its Schurian scheme is commutative.

3.2. Roux and roux lines. Given a finite abelian group Γ of order r and a positive
integer n, we denote C[Γ] for its group algebra over C, and ⌈·⌋ : C[Γ]n×n → Crn×rn

for the injective ∗-algebra homomorphism that replaces each element of Γ with its
r × r Cayley representation, extended linearly to C[Γ].

Definition 3.1. Given an abelian group Γ and a positive integer n, an n × n roux
for Γ is a matrix B with entries in C[Γ] such that the following hold:

(R1) Bii = 0 for every i ∈ [n].
(R2) Bij ∈ Γ for every i, j ∈ [n], i ̸= j.
(R3) Bji = (Bij)−1 for every i, j ∈ [n], i ̸= j.
(R4) The vector space A (B) := span({gI : g ∈ Γ} ∪ {gB : g ∈ Γ}) ⩽ C[Γ]n×n is

an algebra, i.e., it is closed under matrix multiplication.

Algebraic Combinatorics, Vol. 7 #1 (2024) 44



Doubly transitive lines II

Every roux B ∈ C[Γ]n×n determines an association scheme (called the roux
scheme) with adjacency matrices {⌈gI⌋}g∈Γ and {⌈gB⌋}g∈Γ.

Proposition 3.2 (Lemma 2.3 in [28]). Suppose B ∈ C[Γ]n×n satisfies (R1)–(R3).
Then B is a roux for Γ if and only if

B2 = (n− 1)I +
∑
g∈Γ

cggB

for some complex numbers {cg}g∈Γ, called the roux parameters for B. In this case,
we necessarily have that {cg}g∈Γ are nonnegative integers that sum to n − 2, with
cg−1 = cg for every g ∈ Γ.

Proposition 3.3 (Theorem 2.8 in [28]). Given an n × n roux B for Γ with parame-
ters {cg}g∈Γ, the primitive idempotents for the corresponding roux scheme are scalar
multiples of

Gϵ
α :=

∑
g∈Γ

α(g)⌈gI⌋ + µϵ
α

∑
g∈Γ

α(g)⌈gB⌋, (α ∈ Γ̂, ϵ ∈ {+,−}),

where µϵ
α is defined in terms of the Fourier transform ĉα :=

∑
h∈Γ chα(h) as follows:

µϵ
α :=

ĉα + ϵ
√

(ĉα)2 + 4(n− 1)
2(n− 1) .

The rank of Gϵ
α is

dϵ
α := n

1 + (n− 1)(µϵ
α)2 .

Furthermore, if α ∈ Γ̂, µ > 0, and

G :=
∑
g∈Γ

α(g)⌈gI⌋ + µ
∑
g∈Γ

α(g)⌈gB⌋

satisfies G2 = cG for some c > 0, then µ = µϵ
α for some ϵ ∈ {+,−}, and a scalar

multiple of G = Gϵ
α is a primitive idempotent for the roux scheme of B.

Given a finite abelian group Γ, we write Γ̂ for the Pontryagin dual group of char-
acters α : Γ → T. Every α ∈ Γ̂ extends by linearity to a ∗-algebra homomorphism
α : C[Γ] → C, which in turn extends to a ∗-algebra homomorphism α̂ : C[Γ]n×n →
Cn×n through entrywise application of α.

Proposition 3.4 (Theorem 3.1 in [28]). Suppose B ∈ C[Γ]n×n satisfies (R1)–(R3).
Then B is a roux if and only if for every α ∈ Γ̂, α̂(B) is the signature matrix of an
equiangular tight frame.

Any sequence of lines arising from an application of Proposition 3.4 are called roux
lines. We will see that every sequence of doubly transitive lines is roux. While it will
not play a role in the sequel, we also remark that every regular abelian distance-regular
antipodal cover of the complete graph (drackn) can be viewed as an instance of a
roux, as explained in [28], and the resulting roux lines coincide with the construction
of ETFs from regular abelian drackns in [19, 11].

We now have two constructions of lines from roux: one set from from the primitive
idempotents in Proposition 3.3, and another from Proposition 3.4. However, the re-
sulting lines are identical. Indeed, for any choice of α ∈ Γ̂ and ϵ ∈ {1,−1}, it holds that
[Gϵ

α−1 ](i,1),(j,1) = µϵ
αα(Bij) = ϵα(Bij)|µϵ

α| whenever i ̸= j. This yields the following
version of Lemma 3.2 in [28].
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Proposition 3.5. For each α ∈ Γ̂ and ϵ ∈ {1,−1}, the signature matrix ϵα̂(B) from
Proposition 3.4 and the Gram matrix Gϵ

α−1 from Proposition 3.3 describe the same
lines (each line implicated by the former is represented |Γ| times in the latter).

One can easily determine whether or not roux lines are real with the following
result.
Proposition 3.6 (Real roux lines detector, Corollary 3.8 in [28]). Let B be a roux
for Γ and pick α ∈ Γ̂. Then α̂(B) is a signature matrix of real lines if and only if
α(g) is real for every g ∈ Γ such that cg ̸= 0.

Finally, there are several trivial ways to deform roux, one of which is described
below.
Proposition 3.7 (Lemma 2.5(a) in [28]). Let B ∈ C[Γ]n×n be a roux with parameters
{cg}g∈Γ. Given any diagonal matrix D ∈ C[Γ]n×n with Dii ∈ Γ for every i ∈ [n], then
DBD−1 is a roux with parameters {cg}g∈Γ.

The roux B and DBD−1 in Proposition 3.7 are called switching equivalent.
Given any such B and D and any α ∈ Γ̂, it is easy to see that the signature matrices
α̂(B) and α̂(DBD−1) are switching equivalent. Consequently, switching equivalent
roux create the same roux lines.

3.3. Schurian roux schemes and Higman pairs.
Definition 3.8. Given a finite group G and a proper subgroup H ⩽ G, let K :=
NG(H) be the normalizer of H in G. We say (G,H) is a Higman pair if there exists
a key b ∈ G∖K such that

(H1) G acts doubly transitively on G/K,
(H2) K/H is abelian,
(H3) HbH = Hb−1H,
(H4) aba−1 ∈ HbH for every a ∈ K, and
(H5) a ∈ K satisfies ab ∈ HbH only if a ∈ H.
The relationship between roux and Higman pairs is given below and depicted in

Figure 1.
Proposition 3.9 (Theorem 2.1 in [28]). Let G be a finite group, and pick H ⩽ G.
The Schurian scheme of (G,H) is isomorphic to a roux scheme if and only if (G,H)
is a Higman pair.
Proposition 3.10 (Lemma 2.6 in [28]). Given a Higman pair (G,H), denote K :=
NG(H), n := [G : K] and r := [K : H], and select any key b ∈ G ∖ K. Then the
following hold:

(a) H has 2r double cosets in G: r of the form aH, and r of the form HabH for
some a ∈ K;

(b) for every a ∈ K, we have HabH = HbaH; and
(c) for every a ∈ K, we have |HabH| = (n− 1)|H|.

Proposition 3.11 (Roux from Higman pairs, Lemma 2.7 in [28]). Given a Higman
pair (G,H), denote K := NG(H) and n := [G : K], and select any key b ∈ G ∖K.
Choose left coset representatives {xj}j∈[n] for K in G, and choose coset representatives
{ag}g∈K/H for H in K. Define B ∈ C[K/H]n×n entrywise as follows: Given i ̸= j,
let Bij be the unique g ∈ K/H for which x−1

i xj ∈ HagbH, and set Bii = 0. Then B
is a roux for K/H with roux parameters {cg}g∈K/H given by

(3) cg = n− 1
|H|

· |bHb−1 ∩HagbH|.
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Figure 1. (left) The relationship between roux and Higman pairs, as

described by Proposition 3.9. (right) The dual relationships for lines, as

given by Theorem 4.1.

let Bij be the unique g 2 K/H for which x�1
i xj 2 HagbH, and set Bii = 0. Then B

is a roux for K/H with roux parameters {cg}g2K/H given by

(3) cg =
n � 1

|H| · |bHb�1 \ HagbH|.

Furthermore, the roux scheme generated by B is isomorphic to the Schurian scheme
of (G, H).

We emphasize that a Higman pair (G, H) does not, in general, carry a unique key,
and distinct keys may create distinct roux through Proposition 3.11. However, for
any choice of key the resulting roux scheme is isomorphic to the Schurian scheme of
(G, H). Since roux lines correspond with primitive idempotents in the roux scheme,
their ranks do not depend on the choice of key. In particular, the ranks of the prim-
itive idempotents for the Schurian scheme of (G, H) can be computed using (3) and
Proposition 3.3.

4. Radicalization and the Higman Pair Theorem

As mentioned in the introduction, every sequence of linearly dependent doubly tran-
sitive lines is determined by a Higman pair. This fact will enable us to classify doubly
transitive lines that exhibit almost simple symmetries. The following result makes
this pivotal correspondence explicit.

Theorem 4.1 (Higman Pair Theorem, Theorem 1.3 in [28]).

(a) Assume n > 3. Given n > d doubly transitive lines that span Cd, there exists
r such that one may select r equal-norm representatives from each of the n
lines that together carry the association scheme of a Higman pair (G, H) with
r = [NG(H) : H] and n = [G : NG(H)]. Moreover, their Gram matrix is a
primitive idempotent for this scheme.

(b) Every Higman pair (G, H) is a Gelfand pair. Every primitive idempotent of
its association scheme is the Gram matrix of r := [NG(H) : H] equal-norm
representatives from each of n := [G : NG(H)] doubly transitive lines that
span Cd with d < n, and the phase of each entry is an rth root of unity.
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Figure 1. (left) The relationship between roux and Higman pairs, as
described by Proposition 3.9. (right) The dual relationships for lines, as
given by Theorem 4.1.

Furthermore, the roux scheme generated by B is isomorphic to the Schurian scheme
of (G,H).

We emphasize that a Higman pair (G,H) does not, in general, carry a unique
key, and distinct keys may create distinct roux through Proposition 3.11. However,
for any choice of key the resulting roux scheme is isomorphic to the Schurian scheme
of (G,H). Since roux lines correspond with primitive idempotents in the roux scheme,
their ranks do not depend on the choice of key. In particular, the ranks of the prim-
itive idempotents for the Schurian scheme of (G,H) can be computed using (3) and
Proposition 3.3.

4. Radicalization and the Higman Pair Theorem
As mentioned in the introduction, every sequence of linearly dependent doubly tran-
sitive lines is determined by a Higman pair. This fact will enable us to classify doubly
transitive lines that exhibit almost simple symmetries. The following result makes
this pivotal correspondence explicit.

Theorem 4.1 (Higman Pair Theorem, Theorem 1.3 in [28]).
(a) Assume n ⩾ 3. Given n > d doubly transitive lines that span Cd, there exists

r such that one may select r equal-norm representatives from each of the n
lines that together carry the association scheme of a Higman pair (G,H) with
r = [NG(H) : H] and n = [G : NG(H)]. Moreover, their Gram matrix is a
primitive idempotent for this scheme.

(b) Every Higman pair (G,H) is a Gelfand pair. Every primitive idempotent of
its association scheme is the Gram matrix of r := [NG(H) : H] equal-norm
representatives from each of n := [G : NG(H)] doubly transitive lines that
span Cd with d < n, and the phase of each entry is an rth root of unity.
Moreover, the automorphism group of the lines contains the doubly transitive
action of G on G/NG(H).

The proof of Theorem 4.1(b) appeared in [28], but the proof of Theorem 4.1(a)
was saved for the current installment. Our proof technique relies on the following
notions. A projective unitary representation of a finite group G is a mapping
ρ : G → U(d) such that ρ(1) = I and such that there exists f : G×G → T satisfying
ρ(x)ρ(y) = f(x, y)ρ(xy) for every x, y ∈ G. If ρ : G → U(d) is a homomorphism (i.e.,
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Group Stabilizer Character Kernel

Radicalization eG⇤ = G⇤ ⇥ Cr
eG⇤

1 = G⇤
1 ⇥ Cr e↵ : eG⇤

1 ⇣ Cr H = ker e↵

,! ,! 99
K extends

Schur cover G⇤ G⇤
1 = ⇡�1(G1) ↵ : G⇤

1 ⇣ Cr0

⇡ ⌘ ⌘

Permutation group G G1

Figure 2. Overview of notation in Example 4.5, the proof of Theo-
rem 4.7, and Section 5. Here, ⇡ : G⇤ ! G is a Schur covering, r = 2r0,
and ( eG⇤, H) is the radicalization of (G⇤, G⇤

1,↵) from Definition 4.6.

It is easy to check that � is an equiangular tight frame, and it is well known that
Aut L = A4 =: G. Indeed, the permutation �1 := (1 2)(3 4) is performed by the
unitary ⇢(�1) :=

⇥
1 0
0 �1

⇤
, and the permutation �2 := (2 3 4) is performed by the

unitary ⇢(�2) := 1p
2

⇥
1 1
�i i

⇤
. Consequently, Aut L > h�1,�2i = A4. Equality holds

since there do not exist n = 4 lines in d = 2 dimensions that have triply transitive
automorphism group S4; see Lemma 6.2. By Lemma 4.4, we may extend ⇢ to a
projective unitary representation ⇢ : G ! U(2) with the property that ⇢(�)`i = `�(i)

for each � 2 G and i 2 [4]; in fact, the extension is unique up to a choice of unimodular
constants. We desire an honest unitary representation, and so we consider the Schur
cover G⇤ := SL(2, 3). Denoting x1 :=

⇥
0 1
�1 0

⇤
and x2 := [ 2 2

0 2 ], we have that G⇤ =
hx1, x2i, and a Schur covering ⇡ : G⇤ ! G is given by ⇡(x1) = �1 and ⇡(x2) = �2. As in
Proposition 4.3, the data ⇢⇤(x1) := i⇢(�1) and ⇢⇤(x2) := �e⇡i/12⇢(�2) then determine
a unitary representation ⇢⇤ : G⇤ ! U(2) with the property that ⇢⇤(x)`i = `⇡(x)(i) for
each x 2 G and i 2 [4].

Next, we consider how a subgroup of G⇤ holds a line invariant via ⇢⇤. The stabilizer
G1 6 A4 of 1 2 [4] is generated by �2, and G⇤

1 := hx2i is the preimage of G1 in G⇤.
As such, G⇤

1 = {x 2 G⇤ :⇢⇤(x)`1 = `1} is the stabilizer of `1. Since `1 is spanned by
' := 1

b [ !a ], the action of G⇤
1 on `1 determines a homomorphism ↵ : G⇤

1 ! T such that
⇢⇤(x)' = ↵(x)' for every x 2 G⇤

1. Explicitly, ↵(x2) = �1, since ' is an eigenvector of
⇢⇤(x2) with eigenvalue �1. It follows that the G⇤-orbit of ' consists of the columns
of z� for each z 2 {±1} = Cr0 , where r0 := 2. Meanwhile, the o↵-diagonal entries of
the signature matrix of � are all members of Cr with r := 2r0 = 4.

It will be convenient to extend G⇤ and ⇢⇤ so that the resulting orbit of ' consists
of the columns of z� for every z 2 Cr, as suggested by the signature matrix. To
accomplish this, we put G̃⇤ := G⇤ ⇥ Cr and define ⇢̃⇤ : G̃⇤ ! U(2) by ⇢̃⇤(x, z) :=

z⇢⇤(x). Then the stabilizer of `1 in G̃⇤ is G̃⇤
1 := G⇤

1⇥Cr, and the resulting character is

↵̃ : G̃⇤
1 ! Cr given by ↵̃(x, z) := z↵(x). Taking H := {x̃ 2 G̃⇤ : ⇢̃⇤(x̃)' = '} = ker ↵̃,

then it turns out that (G̃⇤, H) is a Higman pair. Furthermore:

We can recover the doubly transitive lines from the Higman pair.

Indeed, the G̃⇤-orbit of ' consists of rn = 16 vectors, and their Gram matrix is a
scalar multiple of an (easy-to-find) primitive idempotent in the adjacency algebra of

(G̃⇤, H).

Following the previous example, we note that when r = 2r0, each element of Cr0

can be obtained by squaring an appropriate element of Cr. In this sense, Cr consists
of radicals of Cr0 . This fact motivates the following terminology, which will play a
crucial role in our proofs of the Higman Pair Theorem and the main result.
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Figure 2. Overview of notation in Example 4.5, the proof of Theo-
rem 4.7, and Section 5. Here, π : G∗ → G is a Schur covering, r = 2r′,
and (G̃∗, H) is the radicalization of (G∗, G∗

1, α) from Definition 4.6.

if f ≡ 1), then we call ρ an (honest) unitary representation. The function f may
be formalized as follows.

Definition 4.2. Let G be a finite group. A 2-cocycle is a function f : G×G → C×

such that f(x, y)f(xy, z) = f(y, z)f(x, yz) for all x, y, z ∈ G. A 2-coboundary
is a function f : G × G → C× for which there exists t : G → C× such that
f(x, y) = t(x)t(y)t(xy)−1 for all x, y ∈ G. The Schur multiplier of G is the abelian
group M(G) of 2-cocycles under pointwise multiplication, modulo the subgroup of
2-coboundaries. A Schur cover of G is a group G∗ with a subgroup A such that:

(i) the center of G∗ and the commutator subgroup of G∗ both contain A,
(ii) A ∼= M(G), and
(iii) there is an epimorphism π : G∗ → G (a Schur covering) with kernel A.

The Schur multiplier of a finite group is finite, and every finite group has a (nec-
essarily finite) Schur cover. We refer to [30, 31] for background. The following result
explains how Schur covers help convert projective unitary representations into honest
unitary representations.

Proposition 4.3. Let G be a finite group with a projective unitary representation
ρ : G → U(d). Given any Schur covering π : G∗ → G, there exists a unitary repre-
sentation ρ∗ : G∗ → U(d) and phases {ωx∗}x∗∈G∗ such that ρ∗(x∗) = ωx∗ρ(π(x∗)) for
every x∗ ∈ G∗.

Proof. A theorem of Schur [30, Lemma 3.1] provides the existence of a representa-
tion ρ∗ : G∗ → GL(d,C) and an ensemble of complex scalars {ωx∗}x∗∈G∗ satisfying
ρ∗(x∗) = ωx∗ρ(π(x∗)) for every x∗ ∈ G∗. In order to verify that ρ∗ takes its image
in U(d) ⩽ GL(d,C), we need only check that each scalar ωx∗ is unimodular. This
can be seen by considering the eigenvalues of the diagonalizable operators ρ(π(x∗))
and ρ∗(x∗). The first has unimodular eigenvalues because it is unitary; the second has
unimodular eigenvalues since its order is finite. As ρ∗(x∗) = ωx∗ρ(π(x∗)), we conclude
that ωx∗ is a phase. □

Lemma 4.4. Let G be a doubly transitive group of automorphisms of a sequence L =
{ℓi}i∈[n] of n > d lines spanning Cd. For each σ ∈ G, choose a unitary ρ(σ) ∈ U(d)
such that ρ(1) = I and ρ(σ)ℓi = ℓσ(i) for every i ∈ [n]. Then ρ : G → U(d) is a
projective unitary representation.

Proof. Choose unit-norm representatives Φ = {φi}i∈[n] for L . Then Φ is an equian-
gular tight frame, by Proposition 1.1. Since n > d, the common value of |⟨φi, φj⟩| for
i ̸= j is not zero. The desired result now follows immediately from [9, Lemma 6.5]. □

The following example demonstrates the fundamental connection between doubly
transitive lines and Higman pairs.
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Example 4.5. We produce a Higman pair (G̃∗, H) from four doubly transitive lines
in C2. Put ω := eπi/4, a :=

√
2 −

√
3, b :=

√
1 + a2 =

√
3 −

√
3, and consider the

lines L = {ℓ1, ℓ2, ℓ3, ℓ4} spanned by columns of

Φ := 1
b

[
ω ω a a
a −a ω −ω

]
.

It is easy to check that Φ is an equiangular tight frame, and it is well known that
Aut L = A4 =: G. Indeed, the permutation σ1 := (1 2)(3 4) is performed by the
unitary ρ(σ1) :=

[ 1 0
0 −1

]
, and the permutation σ2 := (2 3 4) is performed by the

unitary ρ(σ2) := 1√
2

[ 1 1
−i i

]
. Consequently, Aut L ⩾ ⟨σ1, σ2⟩ = A4. Equality holds

since there do not exist n = 4 lines in d = 2 dimensions that have triply transitive
automorphism group S4; see Lemma 6.2. By Lemma 4.4, we may extend ρ to a
projective unitary representation ρ : G → U(2) with the property that ρ(σ)ℓi = ℓσ(i)
for each σ ∈ G and i ∈ [4]; in fact, the extension is unique up to a choice of unimodular
constants. We desire an honest unitary representation, and so we consider the Schur
cover G∗ := SL(2, 3). Denoting x1 :=

[ 0 1
−1 0

]
and x2 := [ 2 2

0 2 ], we have that G∗ =
⟨x1, x2⟩, and a Schur covering π : G∗ → G is given by π(x1) = σ1 and π(x2) = σ2. As in
Proposition 4.3, the data ρ∗(x1) := iρ(σ1) and ρ∗(x2) := −eπi/12ρ(σ2) then determine
a unitary representation ρ∗ : G∗ → U(2) with the property that ρ∗(x)ℓi = ℓπ(x)(i) for
each x ∈ G and i ∈ [4].

Next, we consider how a subgroup of G∗ holds a line invariant via ρ∗. The stabilizer
G1 ⩽ A4 of 1 ∈ [4] is generated by σ2, and G∗

1 := ⟨x2⟩ is the preimage of G1 in G∗.
As such, G∗

1 = {x ∈ G∗ :ρ∗(x)ℓ1 = ℓ1} is the stabilizer of ℓ1. Since ℓ1 is spanned
by φ := 1

b [ ω
a ], the action of G∗

1 on ℓ1 determines a homomorphism α : G∗
1 → T

such that ρ∗(x)φ = α(x)φ for every x ∈ G∗
1. Explicitly, α(x2) = −1, since φ is an

eigenvector of ρ∗(x2) with eigenvalue −1. It follows that the G∗-orbit of φ consists of
the columns of zΦ for each z ∈ {±1} = Cr′ , where r′ := 2. Meanwhile, the off-diagonal
entries of the signature matrix of Φ are all members of Cr with r := 2r′ = 4.

It will be convenient to extend G∗ and ρ∗ so that the resulting orbit of φ consists
of the columns of zΦ for every z ∈ Cr, as suggested by the signature matrix. To
accomplish this, we put G̃∗ := G∗ × Cr and define ρ̃∗ : G̃∗ → U(2) by ρ̃∗(x, z) :=
zρ∗(x). Then the stabilizer of ℓ1 in G̃∗ is G̃∗

1 := G∗
1 ×Cr, and the resulting character is

α̃ : G̃∗
1 → Cr given by α̃(x, z) := zα(x). Taking H := {x̃ ∈ G̃∗ : ρ̃∗(x̃)φ = φ} = ker α̃,

then it turns out that (G̃∗, H) is a Higman pair. Furthermore:
We can recover the doubly transitive lines from the Higman pair.

Indeed, the G̃∗-orbit of φ consists of rn = 16 vectors, and their Gram matrix is a
scalar multiple of an (easy-to-find) primitive idempotent in the adjacency algebra
of (G̃∗, H).

Following the previous example, we note that when r = 2r′, each element of Cr′

can be obtained by squaring an appropriate element of Cr. In this sense, Cr consists
of radicals of Cr′ . This fact motivates the following terminology, which will play a
crucial role in our proofs of the Higman Pair Theorem and the main result.

Definition 4.6. Given a group G∗, a subgroup G∗
1 ⩽ G∗, and a linear character

α : G∗
1 → T, put r′ = | imα|, r = 2r′, and define α̃ : G∗

1 ×Cr → Cr by α̃(x, z) = α(x)z.
(Here, Cr ⩽ C× is the group of rth roots of unity under multiplication.) We say
(G∗ × Cr, ker α̃) is the radicalization of (G∗, G∗

1, α).

Theorem 4.7 (Lines from permutations). Let G ⩽ Sn be a doubly transitive permu-
tation group with n ⩾ 3, and let G1 ⩽ G be the stabilizer of 1 ∈ [n]. Choose any Schur
covering π : G∗ → G, and put G∗

1 := π−1(G1). If G is a group of automorphisms of a
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sequence L of n > d lines spanning Cd, then there is a linear character α : G∗
1 → T

such that:
(a) the radicalization (G̃∗, H) of (G∗, G∗

1, α) is a Higman pair, and
(b) the Schurian scheme of (G̃∗, H) has a primitive idempotent that is the Gram

matrix of r := [N
G̃∗(H) : H] equal-norm representatives from each of the

n := [G̃∗ : N
G̃∗(H)] lines in L , and furthermore, this Gram matrix carries

the scheme.

Our proof of Theorem 4.7 uses the following well-known characterizations of doubly
transitive actions. For background on permutation groups, we refer the reader to [14].

Proposition 4.8. Let G be a finite group acting transitively on a set X, and let
G1 ⩽ G be the stabilizer of some point x1 ∈ X. Then the following are equivalent:

(a) G acts doubly transitively on X.
(b) G1 acts transitively on X ∖ {x1}.
(c) For any σ ∈ G∖G1, G = G1 ∪G1σG1.
(d) For any epimorphism π : G∗ → G, G∗ acts doubly transitively on G∗/G∗

1,
where G∗

1 := π−1(G1).
When these conditions hold, G1 ⩽ G is a maximal subgroup.

Proof of Theorem 4.7. Denote L =: {ℓj}j∈[n]. Since G consists of automorphisms
of L , we can choose unitaries {ρ(σ)}σ∈G such that ρ(1) = I and ρ(σ)ℓi = ℓσ(i) for
every i ∈ [n]. Then ρ : G → U(d) is a projective unitary representation, by Lemma 4.4.
Applying Proposition 4.3, we lift ρ to an honest unitary representation ρ∗ : G∗ → U(d)
of the Schur cover, where ρ∗(x)ℓi = ℓπ(x)(i) for every x ∈ G∗ and i ∈ [n].

Fix a unit vector φ ∈ ℓ1. Since G∗
1 holds ℓ1 invariant, every ξ ∈ G∗

1 produces a
unimodular constant α(ξ) such that ρ∗(ξ)φ = α(ξ)φ. Moreover, α : G∗

1 → T is a linear
character since ρ∗ is a homomorphism. Put r′ := | imα| and r := 2r′, so that α maps
G∗

1 onto Cr′ ⩽ Cr ⩽ T. We would like to extend ρ∗ in such a way that its image
includes all of {zI : z ∈ Cr}. To that end, we define extension groups G̃∗ := G∗ × Cr

and G̃∗
1 := G∗

1 × Cr, and let ρ̃∗ : G̃∗ → U(d) be the unitary representation given by
ρ̃∗(x, z) = z ρ∗(x). Then G̃∗ permutes L according to the rule ρ̃∗(x, z)ℓi = ℓπ(x)(i),
and in particular
(4) G̃∗

1 =
{
x̃ ∈ G̃∗ : ρ̃∗(x̃)ℓ1 = ℓ1

}
.

As before, this implies that ρ∗(x, z)φ = α̃(ξ, z)φ for every (ξ, z) ∈ G̃∗
1, where α̃ : G̃∗

1 →
Cr is the character α̃(ξ, z) = zα(ξ). Let H ⩽ G̃∗

1 be the group that stabilizes not
only ℓ1, but also φ:

H =
{
x̃ ∈ G̃∗ : ρ̃∗(x̃)φ = φ

}
= ker α̃ =

{(
ξ, α(ξ)−1)

∈ G̃∗
1 : ξ ∈ G∗

1
}
.

Then (G̃∗, H) is the radicalization of (G∗, G∗
1, α). The notation established thus far is

partially summarized in Figure 2.
To prove (G̃∗, H) is a Higman pair, first observe that H = ker α̃ ⊴ G̃∗

1, and so
N

G̃∗(H) ⩾ G̃∗
1. By Proposition 4.8 and (4), G̃∗ acts doubly transitively on G̃∗/G̃∗

1,
and G̃∗

1 ⩽ G̃∗ is a maximal subgroup. We claim that H is not normal in G̃∗, and
therefore G̃∗

1 = N
G̃∗(H). Notice that G∗

1 is not normal in G∗ since it has n ⩾ 3 left
cosets but only two double cosets. Choose ξ ∈ G∗

1 and x ∈ G∗ such that xξx−1 /∈ G∗
1.

Then (ξ, α(ξ)−1) ∈ H, but (x, 1)(ξ, α(ξ)−1)(x, 1)−1 = (xξx−1, α(ξ)−1) /∈ H. This
proves the claim, and (H1) follows. We have (H2) since G̃∗

1/ ker α̃ ∼= Cr.
We now obtain a candidate key for (G̃∗, H). For each i ∈ [n], choose xi ∈ G∗ such

that π(xi)(1) = i. Then {xi}i∈[n] is a transversal for G∗/G∗
1, and Φ := {ρ∗(xi)φ}i∈[n]

Algebraic Combinatorics, Vol. 7 #1 (2024) 50



Doubly transitive lines II

is an ETF by Proposition 1.1. Every x ∈ G∗ can be written uniquely in the form
x = xiξ for some i ∈ [n] and ξ ∈ G∗

1, and so

(5) |⟨ρ∗(x)φ,φ⟩| =
{

1 if x ∈ G∗
1,

µ if x /∈ G∗
1,

where µ =
√

n−d
d(n−1) /∈ {0, 1} by the Welch bound [53]. We claim that µ−1⟨ρ∗(x)φ,φ⟩ ∈

Cr whenever x /∈ G∗
1. Choose such an x. Then π(x) ̸= 1. Since G acts doubly tran-

sitively, there exists y ∈ G∗ such that π(y)[π(x)(1)] = 1 and π(y)(1) = π(x)(1). We
have yx, x−1y ∈ G∗

1, and so
⟨ρ∗(x)φ,φ⟩ =

〈
ρ∗(yx)φ, ρ∗(

xx−1y
)
φ

〉
(6)

=
〈
α(yx)φ, ρ∗(x)α

(
x−1y

)
φ

〉
= α

(
yxy−1x

)
⟨φ, ρ∗(x)φ⟩.

Write ⟨ρ∗(x)φ,φ⟩ =: zµ. Then (6) says that zµ = α
(
yxy−1x

)
z−1µ, so that z2 =

α
(
yxy−1x

)
∈ Cr′ . Therefore, z ∈ Cr, as desired. In particular, there exists b =(

x, z−1)
∈ G̃∗ ∖ G̃∗

1 such that ⟨ρ̃∗(b)φ,φ⟩ = µ. Fix such b for the remainder of the
proof.

Next, we demonstrate the crucial identity

(7) for any x̃, ỹ ∈ G̃∗, Hx̃H = HỹH ⇐⇒ ⟨ρ̃∗(x̃)φ,φ⟩ = ⟨ρ̃∗(ỹ)φ,φ⟩.
If x̃ = aỹa′ for a, a′ ∈ H, then

⟨ρ̃∗(x̃)φ,φ⟩ =
〈
ρ̃∗(ỹ)ρ̃∗(

a′)φ, ρ̃∗(
a−1)

φ
〉

= ⟨ρ̃∗(ỹ)φ,φ⟩.
Conversely, suppose x̃ = (x, z) and ỹ = (y, w) satisfy ⟨ρ̃∗(x̃)φ,φ⟩ = ⟨ρ̃∗(ỹ)φ,φ⟩, that
is,

z⟨ρ∗(x)φ,φ⟩ = w⟨ρ∗(y)φ,φ⟩.
By (5), either x, y ∈ G∗

1 or x, y /∈ G∗
1. In the former case, we have zα(x) = wα(y), so

that α̃
(
y−1x,w−1z

)
= 1 and (x, z) = (y, w)

(
y−1x,w−1z

)
∈ H(y, w)H. On the other

hand, if x, y /∈ G∗
1 then there exist ξ, η ∈ G∗

1 such that x = ξyη, by Proposition 4.8.
In that case,
w⟨ρ∗(y)φ,φ⟩ = z⟨ρ∗(x)φ,φ⟩ = z

〈
ρ∗(y)α

(
η
)
φ, α(ξ)−1φ

〉
= zα(η)α(ξ)⟨ρ∗(y)φ,φ⟩

and z = α(ξ)−1wα(η)−1, so that (x, z) =
(
ξ, α(ξ)−1)

(y, w)
(
η, α(η)−1)

∈ H(y, w)H.
This proves (7).

The remaining Higman pair axioms follow quickly from (7). Since ⟨ρ̃∗(b)φ,φ⟩ =
µ ∈ R, we have

〈
ρ̃∗(

b−1)
φ,φ

〉
= ⟨φ, ρ̃∗(b)φ⟩ = µ, and so b−1 ∈ HbH. This is (H3).

For every a ∈ G̃∗
1, 〈

ρ̃∗(
aba−1)

φ,φ
〉

=
〈
ρ̃∗(b)ρ̃∗(

a−1)
φ, ρ̃∗(

a−1)
φ

〉
=

〈
ρ̃∗(b)α̃

(
a−1)

φ, α̃
(
a−1)

φ
〉

= ⟨ρ̃∗(b)φ,φ⟩,

so aba−1 ∈ HbH. This is (H4). Finally,
⟨ρ̃∗(ab)φ,φ⟩ =

〈
ρ̃∗(b)φ, ρ̃∗(

a−1)
φ

〉
= α̃(a)⟨ρ̃∗(b)φ,φ⟩,

so ab ∈ HbH only if a ∈ ker α̃ = H. This is (H5), and the proof of (a) is complete.
To prove (b), put Φ̃ = {ρ̃∗(xi, z)φ}i∈[n], z∈Cr

= {z · ρ∗(xi)φ}i∈[n], z∈Cr
. As

span{ρ∗(xi)φ} = ρ∗(xi)ℓ1 = ℓi, Φ̃ consists of r representatives from each line in L .
Since Φ = {ρ∗(xi)φ}i∈[n] is an ETF, Proposition 3.20 in [25] implies that Φ̃ is a
tight frame. In particular, its Gram matrix G := Φ̃∗Φ̃ is a scalar multiple of an
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orthogonal projection. Notice that {(xi, z)}i∈[n], z∈Cr
is a transversal for G̃∗/H, since

|G̃∗/H| = |G̃∗/G̃∗
1| · |G̃∗

1/H| = nr and
(x−1

i xj , z
−1w) ∈ H ⇐⇒ x−1

i xj ∈ G∗
1 and α(x−1

i xj) = w−1z ⇐⇒ i = j and z = w.

It follows from Theorem 3.2 in [25] that G lies in the adjacency algebra of (G̃∗, H).
Moreover, (7) implies that two entries
G(i,z), (j,w) = ⟨ρ̃∗(x−1

i xj , z
−1w)φ,φ⟩ and G(i′,z′), (j′,w′) = ⟨ρ̃∗(x−1

i′ xj′ , (z′)−1w′)φ,φ⟩

of G are equal if and only if (xi′ , z′)−1(xj′ , w′) ∈ H(xi, z)−1(xj , w)H. Therefore, G
carries the Schurian scheme of (G̃∗, H).

It remains only to prove that a scalar multiple of G is a primitive idempotent for
(G̃∗, H). To that end, let B ∈ C[Cr]n×n be the roux given by Proposition 3.11 for the
Higman pair (G̃∗, H). Specifically, choose {x̃i}i∈[n] := {(xi, 1)}i∈[n] as a transversal
for G̃∗/G̃∗

1, and {ãz}z∈Cr
:= {(1, z)}z∈Cr

as a transversal for G̃∗
1/H. For i ̸= j, (7)

implies that x̃−1
i x̃j ∈ HãzbH if and only if ⟨ρ∗(x−1

i xj)φ,φ⟩ = zµ. By Proposition 3.11,

Bij =
{
µ−1⟨ρ∗(x−1

i xj)φ,φ⟩ if i ̸= j,

0 otherwise.

If β ∈ Ĉr is given by β(z) = z−1, then comparison of the entries shows that

G =
∑

z∈Cr

β(z)⌈zI⌋ + µ
∑

z∈Cr

β(z)⌈zB⌋.

Then Proposition 3.3 implies that a scalar multiple of G is a primitive idempotent
for (G̃∗, H). □

Proof of Theorem 4.1(a). Immediate from Theorem 4.7. □

The language of the following corollary intentionally mirrors that of Theorem 3.3
in [28], which gave a parallel characterization of roux lines.

Corollary 4.9. Let L be a sequence of linearly dependent complex lines. Then L
is doubly transitive if and only if all of the following occur simultaneously:

(a) L is equiangular,
(b) there exist unit-norm representatives {φj}j∈[n] of L whose signature matrix

is comprised of rth roots of unity for some r, and
(c) the Gram matrix G of {zφj}j∈[n], z∈Cr

carries a Schurian association scheme.
In this case, G carries the Schurian association scheme of a Higman pair, and a scalar
multiple of G is a primitive idempotent for that scheme.

Proof. If L is doubly transitively, then (a)–(c) were verified in the proof of The-
orem 4.7. Conversely, if (a)–(c) are satisfied, then Theorem 3.3 in [28] gives that
there is a roux having L as roux lines and the Schurian association scheme carried
by G as its roux scheme, with a scalar multiple of G as a primitive idempotent. By
Proposition 3.9, G carries the Schurian association scheme of a Higman pair. Then
Theorem 4.1 implies that G is the Gram matrix of r unit-norm representatives from
a sequence of doubly transitive lines, namely L . □

5. Roux from radicalization
The previous section leveraged Theorem 4.7 to prove part (a) of the Higman Pair The-
orem, and in the next section, we will again apply Theorem 4.7 to classify sequences
of doubly transitive lines that exhibit almost simple symmetries. In particular, for
every almost simple doubly transitive permutation group, we will determine whether
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that group is a subgroup of the automorphism group of some sequence of lines. By
Theorem 4.7, it suffices to find a linear character for which a certain radicalization is
a Higman pair. In the event that such a character exists, we will need to dig further to
describe the lines, find the dimension of their span, and determine whether the lines
are real. The purpose of this section is to build up the machinery needed to answer
such questions.

Remark 5.1. Throughout this section, the results we present will assume the following
setting without mention. Let G be a doubly transitive permutation group on n ⩾ 3
points, and let G1 ⩽ G be the stabilizer of some point. Given a Schur covering
π : G∗ → G, put G∗

1 = π−1(G1). Fix a linear character α : G∗
1 ↠ Cr′ and denote

r := 2r′ = 2| imα|, G̃∗ := G∗ × Cr, and G̃∗
1 := G∗

1 × Cr. Let α̃ : G̃∗
1 → Cr be the

epimorphism given by α̃(x, z) = z α(x), and put

(8) H := ker α̃ =
{(
ξ, α(ξ)−1)

: ξ ∈ G∗
1
}
,

so that (G̃∗, H) is the radicalization of (G∗, G∗
1, α). This notation is summarized in

Figure 2.

The following lemma is proved as in the proof of Theorem 4.7.

Lemma 5.2. G̃∗ acts doubly transitively on G̃∗/G̃∗
1. Furthermore, N

G̃∗(H) = G̃∗
1.

Lemma 5.3 (Key finder). Assume that (G̃∗, H) is a Higman pair. Given x ∈ G∗ ∖G∗
1,

there exist ξ, η ∈ G∗
1 such that x−1 = ξxη. Pick either of the z ∈ Cr such that

z2 = α(ξη). Then (x, z) is a key for (G̃∗, H).

Proof. First observe that x /∈ G∗
1, so (x, z) /∈ G̃∗

1 = N
G̃∗(H). To prove (H3) for b,

notice that z−1 = z α(ξη)−1, so that

(9) (x, z)−1 =
(
ξxη, z α(ξη)−1)

=
(
ξ, α(ξ)−1)

(x, z)
(
η, α(η)−1)

∈ H(x, z)H.

For (H4), take any (ζ, w) ∈ G̃∗
1 and compute

(10) (ζ, w)(x, z)(ζ, w)−1 =
(
ζxζ−1, z

)
=

(
ζ, α(ζ)−1)

(x, z)
(
ζ−1, α(ζ)

)
∈ H(x, z)H.

It remains to prove (H5) for b. To that end, assume (ζ, w) ∈ G̃∗
1 satisfies

(ζ, w)(x, z) ∈ H(x, z)H. Then there exist ξ′, η′ ∈ G∗
1 such that

(ζ, w)(x, z) =
(
ξ′, α(ξ′)−1)

(x, z)
(
η′, α(η′)−1)

.

In other words, ζx = ξ′xη′ and w = α(ξ′η′)−1. Since (G̃∗, H) is a Higman pair by as-
sumption, we may select a key (x0, z0). As x, x0 /∈ G∗

1, Lemma 5.2 and Proposition 4.8
provide ξ′′, η′′ ∈ G∗

1 such that x = ξ′′x0η
′′. Substituting this relation into ζx = ξ′xη′,

we obtain ζξ′′x0η
′′ = ξ′ξ′′x0η

′′η′. Recalling that w = α(ξ′η′)−1, we have(
ζξ′′, wα(ξ′′)−1)

(x0, z0) =
(
ξ′ξ′′x0η

′′η′(η′′)−1, α(ξ′η′)−1α(ξ′′)−1z0
)

=
(
ξ′ξ′′, α(ξ′ξ′′)−1)

(x0, z0)
(
η′′η′(η′′)−1, α(η′)−1)

∈ H(x0, z0)H.
Since (x0, z0) is a key, (H5) implies that

(
ζξ′′, wα(ξ′′)−1)

∈ H. In other words,
α(ζξ′′)−1 = wα(ξ′′)−1, so that (ζ, w) =

(
ζ, α(ζ)−1)

∈ H. Therefore (H5) holds
for b. □

Theorem 5.4 (Higman pair detector). The following are equivalent for any choice of
x ∈ G∗ ∖G∗

1:
(a) The radicalization of (G∗, G∗

1, α) is a Higman pair.
(b) Every ξ ∈ G∗

1 for which xξx−1 ∈ G∗
1 satisfies α(xξx−1) = α(ξ).
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We emphasize that the equivalence of (a) and (b) holds for any choice of x ∈
G∗ ∖ G∗

1, despite the fact that x appears in (b) but not in (a). As we will see, that
flexibility makes this tool powerful.

Theorem 5.4 implies that the radicalization of (G∗, G∗
1, α) is a Higman pair only

if kerα is strongly closed in G∗
1 with respect to G∗. That is, for any x ∈ G∗,

x(kerα)x−1 ∩G∗
1 ⩽ kerα. Related conditions for doubly transitive two-graphs appear

in Theorem 6.1 of [49], Theorem 6.1 of [6], and Remark 7.6 of [44].

Proof of Theorem 5.4. Assume (a) holds. By Lemma 5.3, there exists z ∈ Cr such
that b := (x, z) is a key for the Higman pair (G̃∗, H). Choose ξ ∈ G∗

1 such that
xξx−1 = η ∈ G∗

1, as in (b). Then(
ξη−1, 1

)
(x, z) =

(
ξxξ−1x, z

)
=

(
ξ, α(ξ)−1)

(x, z)
(
ξ−1, α(ξ)

)
∈ H(x, z)H.

By (H5),
(
ξη−1, 1

)
∈ H. Consequently, α

(
ξη−1)

= 1 and α
(
xξx−1)

= α(η) = α(ξ).
Conversely, suppose (b) holds. By Lemma 5.2 and Proposition 4.8, there exist

η, ζ ∈ G∗
1 such that x−1 = ηxζ. Let z ∈ Cr be such that z2 = α(ηζ). We claim that

(G̃∗, H) is a Higman pair with key b := (x, z). Lemma 5.2 supplies (H1), while (H2)
holds by the first isomorphism theorem G̃∗

1/H
∼= Cr. Calculations similar to those

in (9) and (10) verify (H3) and (H4).
To prove (H5), suppose (ζ ′, w) ∈ G̃∗

1 satisfies (ζ ′, w)(x, z) ∈ H(x, z)H. Then there
exist ξ′, η′ ∈ G∗

1 such that

(ζ ′x,wz) =
(
ξ′, α(ξ′)−1)

(x, z)
(
η′, α(η′)−1)

.

That is, ζ ′x = ξ′xη′ and w = α(ξ′η′)−1. We can rewrite the former relation as
xη′x−1 = (ξ′)−1ζ ′ ∈ G∗

1. Then (b) gives α(η′) = α
(
(ξ′)−1ζ ′). Therefore α(ζ ′)−1 =

α(ξ′η′)−1 = w, and (ζ ′, w) ∈ H. □

Lemma 5.5 (Roux from radicalization). Suppose the radicalization (G̃∗, H) of
(G∗, G∗

1, α) is a Higman pair with key (x, z). Then the roux B ∈ C[Cr]n×n con-
structed in Proposition 3.11 can be found as follows: Choose left coset representatives
{xj}j∈[n] for G∗

1 in G∗. Given i ̸= j, there exist ξ, η ∈ G∗
1 for which x−1

i xj = ξxη.
For any such choice of ξ and η, define Bij = α(ξη)z−1, and set Bii = 0. Then B is
a roux for Cr, and the roux scheme generated by B is isomorphic to the Schurian
scheme of (G̃∗, H). In particular, if α is real valued and z ∈ {±1}, then all lines
arising from B (in the sense of Proposition 3.4) are real.

Proof. We apply Proposition 3.11 with b := (x, z). Lemma 5.2 gives that K :=
NG̃∗(H) = G∗

1 × Cr. We may therefore select {x̃j}j∈[n] := {(xj , 1)}j∈[n] as left coset
representatives of K in G̃∗ = G∗ × Cr. Furthermore, we may select {aw}w∈Cr :=
{(1, w)}w∈Cr

as coset representatives of H in K; indeed, α̃ maps K onto Cr with
kernel H, and α̃(1, w) = w for each w ∈ Cr. Following Proposition 3.11, we seek
w ∈ Cr for which x̃−1

i x̃j ∈ HawbH. Recalling the definition of H in (8), then for any
choice of w ∈ Cr and ξ, η ∈ G∗

1, we have

(ξ, α(ξ)−1)awb(η, α(η)−1) = (ξxη, α(ξη)−1wz).

This equals x̃−1
i x̃j if and only if x−1

i xj = ξxη and w = α(ξη)z−1. There exist ξ, η ∈ G∗
1

for which this occurs by Proposition 3.10, and the desired result follows immediately
from Proposition 3.11. For the “in particular” part of the result, assume α is real
valued and z ∈ {±1}. Then every off-diagonal entry of B has order 2, and evaluating
at any character results in a real signature matrix, which in turn determines real lines,
by Proposition 2.1. □
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Lemma 5.6 (Roux parameters for radicalization). Assume (G̃∗, H) is a Higman pair,
and let (x, z) be any key. Then the roux for Cr

∼= G̃∗
1/H constructed in Proposi-

tion 3.11 has parameters {cw}w∈Cr given by

cw = n− 1
|G∗

1|
·
∣∣∣{ζ ∈ G∗

1 : ∃ξ, η ∈ G∗
1 s.t. xζx−1 = ξxη and α

(
ξηζ−1)

z−1 = w
}∣∣∣.

Proof. It follows from (3). Specifically, we choose {aw}w∈Cr
:= {(1, w)}w∈Cr

as a
transversal for Cr in G̃∗

1. Then

HawbH =
{(
ξ, α(ξ)−1)

(1, w)(x, z)
(
η, α(η)−1)

: ξ, η ∈ G∗
1
}

=
{(
ξxη, α(ξη)−1wz

)
: ξ, η ∈ G∗

1
}
,

while
bHb−1 =

{(
xζx−1, α(ζ)−1)

: ζ ∈ G∗
1
}
.

Consequently,

|bHb−1 ∩HawbH| =
∣∣{ζ ∈ G∗

1 : ∃ξ, η ∈ G∗
1 s.t.

xζx−1 = ξxη and α(ξη)−1wz = α(ζ)−1}∣∣.
The formula for cw now follows from (3) since |H| = |G∗

1|. □

Lemma 5.7. If α = 1, then all roux lines coming from the Higman pair (G̃∗, H) span
a space of dimension 1 or n− 1.

Proof. We have r′ = 1 and r = 2. Notice that (G̃∗, H) is a Higman pair by Theo-
rem 5.4. Given any x ∈ G∗ ∖ G∗

1, Lemma 5.3 implies that b = (x, 1) is a key. There
are just two roux parameters {c1, c−1}, and c−1 = 0 by Lemma 5.6. The sum of the
roux parameters is therefore c1 = n− 2, by Proposition 3.2. In particular, the Fourier
transform of {cw}w∈C2 is given by ĉβ ≡ n − 2, β ∈ Ĉ2. In the notation of Proposi-
tion 3.3, we have µϵ

β ≡ n−2+ϵn
2n−2 . That is, µ+

β ≡ 1 and µ−
β ≡ −1/(n − 1). Therefore,

d+
β ≡ 1 and d−

β ≡ n−1. By Proposition 3.3, any sequence of n roux lines coming from
the Higman pair (G̃∗, H) spans a space of dimension 1 or n− 1. □

Lemma 5.8. Assume α is real valued and (G̃∗, H) is a Higman pair. If b = (x, z) is
any key for (G̃∗, H) and z ∈ {±1}, then all roux lines coming from (G̃∗, H) are real.

Proof. We apply Proposition 3.6, where Γ = Cr. Since α is real valued, we either
have r′ = 1 or r′ = 2. If r′ = 1, then r = 2, and the desired result is immediate
from Proposition 3.6. Now assume r′ = 2, so that r = 4. Since z ∈ {±1}, the roux
parameters {cw}w∈C4 satisfy ci = c−i = 0 by Lemma 5.6. For any β ∈ Ĉ4, β(1) = 1
and β(−1) ∈ {±1}. In particular, both are real. By Proposition 3.6, the roux lines
corresponding to any β ∈ Ĉ4 are real. □

Combining Lemmas 5.3 and 5.8, we immediately obtain the following.

Lemma 5.9. Assume α is real-valued and (G̃∗, H) is a Higman pair. If there exists
x ∈ G∗ ∖G∗

1 with x = x−1, then all roux lines coming from (G̃∗, H) are real.

6. Partial classification of doubly transitive lines
Having developed the necessary machinery, we now put our tools to use in order
to partially classify doubly transitive lines, as summarized in Theorem 1.5. In this
section, we determine all sequences of linearly dependent doubly transitive lines whose
automorphism groups are almost simple.
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6.1. Overview of classification strategy. Doubly transitive permutation
groups have been classified as a consequence of the classification of finite simple
groups. The following list is taken from [29]. Most of the groups below are not
literally permutation groups, but each has a well-known permutation representation
whose image is a doubly transitive subgroup of Sn. Some of the groups have two
different doubly transitive permutation representations, but when that happens they
are exchanged by an outer automorphism of the source of the representation, and
in particular, they produce the same range in Sn. In that sense, each item below
corresponds to a unique permutation group up to permutation equivalence.
Proposition 6.1 ([29]). If S is a doubly transitive permutation group of a set of
size n, then one of the following cases occurs:

(I) S is of affine type.
(II) S has a normal subgroup G⊴ S ⩽ Aut(G), where G and n are

(1) Alternating.
(i) An, n ⩾ 5.

(2) Lie type.
(ii) PSL(m, q), m ⩾ 2, n = (qm − 1)/(q − 1), (m, q) ̸= (2, 2), (2, 3).
(iii) PSU(3, q), n = q3 + 1, q > 2.
(iv) Sz(q), n = q2 + 1, q = 22m+1 > 2.
(v) 2G2(q), n = q3 + 1, q = 32m+1.

(3) Other.
(vi) Sp(2m, 2), m ⩾ 3, n = 22m−1 ± 2m−1.
(vii) PSL(2, 11), n = 11.
(viii) A7, n = 15.
(ix) Mn, n ∈ {11, 12, 22, 23, 24}.
(x) M11, n = 12.
(xi) HS (the Higman–Sims group), n = 176.
(xii) Co3 (the third Conway group), n = 276.

To prove our main result, we will consider each permutation group G above in
turn, and find all instances of doubly transitive lines whose automorphism group
contains G.

We can quickly cross some groups off our list with the help of the following lemma,
which extends Theorem II.6 in [33]. Recall that a permutation group G ⩽ Sn is triply
transitive if for any ordered triple of distinct indices (i, j, k) in [n] and any other such
ordered triple (i′, j′, k′) there exists σ ∈ G such that σ(l) = l′ for every l ∈ {i, j, k}.
Lemma 6.2. Let L be a sequence of n > d lines with span Cd. If Aut L is triply
transitive, then d ∈ {1, n− 1}, L is real, and Aut L = Sn.
Proof. If n = 2, then d = 1 and the result is trivial. Hence we can assume n ⩾ 3.
Then Aut L is doubly transitive, and L is equiangular by Proposition 1.1. Choose
unit-norm representatives {φj}j∈[n] for L = {ℓj}j∈[n], and put µ := |⟨φi, φj⟩| for
i ̸= j. By choosing new representatives for ℓ2, . . . , ℓn if necessary, we may assume that
⟨φ1, φj⟩ = µ whenever 2 ⩽ j ⩽ n. Given any pair of 3-subsets {i, j, k}, {i′, j′, k′} ⊂ [n]
there exists a unitary U ∈ U(d) and constants ωl ∈ T such that Uφl = ωlφl′ for
l ∈ {i, j, k}. Consequently,
(11) ⟨φi, φj⟩⟨φj , φk⟩⟨φk, φi⟩ = ⟨φi′ , φj′⟩⟨φj′ , φk′⟩⟨φk′ , φi′⟩ =: C.
Taking k = 1 shows that ⟨φi, φj⟩ = C/µ2 whenever 2 ⩽ i ̸= j ⩽ n, and C = C since
we can switch i and j. Consequently, L is real. In the notation of Proposition 2.6, (11)
implies that we either have TL = ∅ or TL = {all 3-subsets of [n]}. In either case, the
two-graph ([n], TL ) has automorphism group Sn. By Proposition 2.6, Aut L = Sn,
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and some choice of unit-norm representatives for L has signature matrix J − I or
I − J . In the former case d = 1, and in the latter case d = n− 1. □

For the remaining groups on our list, we apply the following broad strategy. Let
G ⩽ Sn be a doubly transitive group from Proposition 6.1. Our first step is to obtain a
Schur covering π : G∗ → G. (This is the most difficult part in practice. Thankfully, the
multipliers of all the finite simple groups were computed as part of their classification,
and a covering group can be found.) Let G1 ⩽ G be the stabilizer of a point, and put
G∗

1 := π−1(G1). If there exists a sequence L of n > d lines spanning Cd with G ⩽
Aut L , then Theorem 4.7 explains how to recover L from the radicalization (G̃∗, H)
of (G∗, G∗

1, α), for some choice of linear character α : G∗
1 → T. In particular, (G̃∗, H)

must be a Higman pair. Our plan is to iterate through all linear characters α : G∗
1 → T,

find those for which (G̃∗, H) is a Higman pair, and describe the resulting lines.
In particular, for any choice of linear character α : G∗

1 → T, Theorem 5.4 provides
a simple test to determine whether or not the radicalization (G̃∗, H) of (G∗, G∗

1, α) is
a Higman pair. When this test is affirmative, a sequence L of doubly transitive lines
satisfying G ⩽ Aut L exists by Theorem 4.1. For every such L , it then remains to
describe L , determine whether or not L is real, and find the dimension of its span.

In many cases, Lemma 5.9 provides a fast judgment that all lines coming from
(G̃∗, H) are real. In that case, our job is simple. All real doubly transitive lines derive
from Taylor’s classification of doubly transitive two-graphs, hence they appear in
Proposition 2.7.

For the remaining cases, we dig deeper. First, we apply Lemma 5.3 to find a key
for (G̃∗, H). Then, we find the resulting roux with Lemma 5.5. Next, we obtain roux
parameters using Lemma 5.6, and compute ranks of the primitive idempotents in
the roux scheme with Proposition 3.3. Finally, with the roux parameters in hand,
Propositions 3.5 and 3.6 team up to give a final determination of which primitive
idempotents correspond to real lines, and which do not.

6.2. Linear groups. We first consider PSL(m, q) and its doubly transitive action
on the 1-dimensional subspaces of Fm

q .

Example 6.3. Let q be an odd prime power, take X := Fq ∪ {∞}, and consider the
vectors {ti}i∈X in F2

q defined by ta := [a, 1]⊤ for a ∈ Fq and t∞ := [1, 0]⊤. We will
construct doubly transitive lines in C(q+1)/2 that are indexed by X and have PSL(2, q)
in their automorphism group. The signature matrix can be described by composing a
multiplicative character with a symplectic form. Let Q ⩽ F×

q denote the multiplicative
subgroup of index 2, let χ : Fq → R denote the quadratic character defined by

χ(a) :=


1 if a ∈ Q,

0 if a = 0,
−1 if a ̸∈ Q ∪ {0},

and consider the symplectic form [·, ·] : F2
q × F2

q → Fq defined by[
[a, b]⊤, [c, d]⊤

]
:= ad− bc = det

([
a c
b d

])
.

Finally, we define A ∈ RX×X by Aij = χ([ti, tj ]), and put S := zA ∈ CX×X , where

z :=
{

1 if q ≡ 1 mod 4,
i if q ≡ 3 mod 4.
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Then S is the signature matrix of an ETF of q+ 1 vectors in C(q+1)/2; see [42] or [57,
p. 67], for example.

To see that PSL(2, q) is in the automorphism group of these lines, first observe that
each member of PSL(2, q) permutes the lines in F2

q spanned by {ti}i∈X , which in turn
determines a permutation of X. Select any such permutation σ, and let C denote a
corresponding member of SL(2, q). Then there exist scalars {ωi}i∈X in F×

q such that
tσ(i) = ωiCti. Since [·, ·] is invariant under the action of SL(2, q), it follows that

Aσ(i),σ(j) = χ([tσ(i), tσ(j)]) = χ([ωiCti, ωjCtj ]) = χ(ωiωj [Cti, Ctj ]) = χ(ωi)Aijχ(ωj).

Letting P ∈ RX×X denote the matrix representation of σ and D ∈ RX×X denote the
diagonal matrix whose ith diagonal entry equals χ(ωi), this implies PAP−1 = DAD.
Multiplying both sides by z then gives that S is switching equivalent to PSP−1. Now
Proposition 2.2 shows that σ ∈ Aut L . (See Theorem 7.1 for the full automorphism
group of L .)

Theorem 6.4. Let L be a sequence of n ⩾ 2d > 2 lines with span Cd and doubly
transitive automorphism group containing PSL(m, q) as in Proposition 6.1(ii). Then
m = 2, d = (q + 1)/2, n = q + 1, and L is unitarily equivalent to the lines of
Example 6.3, where either

(a) L is real and q ≡ 1 mod 4, or
(b) L is not real and 3 < q ≡ 3 mod 4.

In general, the Schur cover of PSL(m, q) is SL(m, q), with a few exceptions, which
we address with the following lemmas.

Lemma 6.5 (Computer-assisted result). Let L be a sequence of n = 10 ⩾ 2d > 2 lines
with span Cd and Aut L ⩾ PSL(2, 9) as in Proposition 6.1(ii). Then L is real and
unitarily equivalent to the lines of Example 6.3 with q = 9 and d = 5.

Computer-assisted proof. We used GAP [17] to find a Schur covering π : G∗ → G of
G = PSL(2, 9). Denote G1 ⩽ G for the stabilizer of a point, and G∗

1 = π−1(G1).
For each nontrivial linear character α : G∗

1 → T we applied Theorem 5.4 to determine
if the radicalization of (G∗, G∗

1, α) was a Higman pair (the trivial character being
handled by Lemma 5.7). Exactly one choice of α led to a Higman pair in this way.
For that choice of α, we found a key using Lemma 5.3 and then computed the roux
parameters using Proposition 3.11. An application of Proposition 3.6 showed that the
resulting lines were real. Proposition 2.7 then implied that these lines were unique
up to equivalence, from which it followed that they were constructed in Example 6.3.
(Our code is available online [27].) By Theorem 4.7, this procedure captures every
sequence L of n = 10 > d lines spanning Cd for which Aut L contains PSL(2, 9) in
its doubly transitive action on 1-dimensional subspaces of F2

9. □

Lemma 6.6 (Computer-assisted result). For each of

(m, q) ∈ {(2, 4), (3, 2), (4, 2), (3, 3), (3, 4)},

there does not exist a sequence L of n = qm−1
q−1 ⩾ 2d > 2 doubly transitive lines with

span Cd and Aut L ⩾ PSL(m, q) as in Proposition 6.1(ii).

Computer-assisted proof. The action of PSL(2, 4) ∼= A5 on n = 5 points is triply
transitive, so this case was eliminated by Lemma 6.2. For every other choice of (m, q)
above, we proceeded as in the proof of Lemma 6.5. In every such case, there were
no nontrivial characters α : G∗

1 → T for which the radicalization of (G∗, G∗
1, α) was a

Higman pair. (Our code is available online [27].) □
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While the following result may be known, we were not able to locate a reference.
Hence, we supply our own proof.

Proposition 6.7. Consider the action of SL(m, q) on the one-dimensional subspaces
of Fm

q , where matrices act on column vectors from the left. Then the stabilizer of the
line spanned by [1, 0, . . . , 0]⊤ ∈ Fm

q is

G∗
1 =

{[
(detM)−1 u⊤

0 M

]
: u ∈ Fm−1

q ,M ∈ GL(m− 1, q)
}
.

Furthermore, if (m, q) /∈ {(2, 2), (2, 3), (3, 2)} then the linear characters α : G∗
1 → T

are in one-to-one correspondence with the characters α′ ∈ F̂×
q through the relation

α

([
a u⊤

0 M

])
= α′(a).

Proof. It is easy to see that G∗
1 is the stabilizer of the line spanned by [1, 0, . . . , 0]⊤ ∈

Fm
q . For the other statement, consider the epimorphism φ : G∗

1 → F×
q given by

φ

([
a u⊤

0 M

])
= a = (detM)−1, with

kerφ =
{[

1 u⊤

0 M

]
: u ∈ Fm−1

q ,M ∈ SL(m− 1, q)
}
.

Every α′ ∈ F̂×
q produces a character α := α′ ◦ φ of G∗

1, and the mapping α′ 7→ α
is injective since φ is surjective. To complete the proof, it suffices to show that the
commutator subgroup [G∗

1, G
∗
1] contains (hence equals) kerφ; in that case the kernel

of every character α : G∗
1 → T contains [G∗

1, G
∗
1] ⩾ kerφ, and so α factors through φ.

We may assume that m ⩾ 2. To begin, take any M,N ∈ SL(m− 1, q) and observe

that ξ =
[
1 0⊤

0 M

]
and η =

[
1 0⊤

0 N

]
have commutator ξηξ−1η−1 =

[
1 0⊤

0 MNMN−1

]
.

Since (m, q) ̸= (3, 2), the group SL(m − 1, q) is perfect (cf. Ch. XIII of [35]). Conse-

quently, [G∗
1, G

∗
1] contains every matrix

[
1 0⊤

0 M

]
with M ∈ SL(m− 1, q).

Since
[
1 0⊤

0 M

] [
1 u⊤

0 I

]
=

[
1 u⊤

0 M

]
, it remains only to show that [G∗

1, G
∗
1] contains every

matrix
[
1 u⊤

0 I

]
with u ∈ Fm−1

q . To that end, we claim there exists M ∈ GL(m− 1, q)

such that detM = a−1 is not an eigenvalue of M−1. Assume this is true for the
moment. Then M−1 −a−1I is invertible. Given u ∈ Fm−1

q , we can find v ∈ Fm−1
q such

that
u⊤ = av⊤(M−1 − a−1I) = av⊤M−1 − v⊤.

Then ξ =
[
a 0⊤

0 M

]
and η =

[
1 v⊤

0 I

]
have commutator

ξηξ−1η−1 =
[
1 −v⊤ + av⊤M−1

0 I

]
=

[
1 u⊤

0 I

]
,

as desired.
To prove the claim, we find an invertible matrix N = M−1 not having (detN)−1 =

detM as an eigenvalue. If m−1 = 1, then q > 3 by assumption, and so we can choose

N = b ∈ F×
q ∖ {±1}. If m − 1 = 2, we take N =

[
0 1
1 −1

]
. Finally, if m − 1 ⩾ 3,

we take N to have entries Nij = 1 if j ⩾ i or (i, j) = (m − 1, 1), and Nij = 0
otherwise. In other words, N has all 1’s on and above the diagonal, and all 0’s below
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the diagonal, except for a 1 in the bottom-left corner. For example, N =

1 1 1
0 1 1
1 0 1

 when

m− 1 = 3. A cofactor expansion along the bottom row shows that detN = 1 (when
the first column and bottom row are deleted, the remaining matrix has a repeated
column). Meanwhile, the columns of N − I are linearly independent, and so 1 is not
an eigenvalue of N . □

Lemma 6.8. For each m > 2 and prime power q, there does not exist a sequence L
of n = qm−1

q−1 ⩾ 2d > 2 doubly transitive lines with span Cd and Aut L ⩾ PSL(m, q)
as in Proposition 6.1(ii).

Proof. We may assume that (m, q) is not among the cases handled by Lemma 6.6.
Then the quotient map π : SL(m, q) → PSL(m, q) is a Schur covering, by Theo-
rem 7.1.1 of [31]. As in Proposition 6.7, the pre-image of a point stabilizer G1 ⩽
PSL(m, q) is

G∗
1 := π−1(G1) =

{[
(detM)−1 u⊤

0 M

]
: u ∈ Fm−1

q ,M ∈ GL(m− 1, q)
}
.

Choose any nontrivial linear character α : G∗
1 → T. We will apply Theorem 5.4 to

show that the radicalization of (SL(m, q), G∗
1, α) is not a Higman pair.

By Proposition 6.7 there is a nontrivial character α′ ∈ F̂×
q such that α

([
a u⊤

0 M

])
=

α′(a) for every
[
a u⊤

0 M

]
∈ G∗

1. Choose any a ∈ F×
q for which α′(a) ̸= 1, and any

N ∈ GL(m− 2, q) such that detN = a−1. Put

M :=
[
a 0⊤

0 N

]
∈ SL(m− 1, q), ξ :=

[
1 (1 − a)δ⊤

1
0 M

]
∈ G∗

1,

x :=
[

1 0⊤

δ1 I

]
∈ SL(m, q) ∖G∗

1,

where δ1 := [1, 0, . . . , 0]⊤ ∈ Fm−1
q . Then a straightforward calculation shows that

xξx−1 =
[

1 0⊤

δ1 I

] [
1 (1 − a)δ⊤

1
0 M

] [
1 0⊤

−δ1 I

]
=

[
a (1 − a)δ⊤

1
0 (1 − a)δ⊤

1 δ1 +M

]
∈ G∗

1,

and yet α(xξx−1) = α′(a) ̸= 1 = α(ξ). By Theorem 5.4, the radicalization of
(SL(m, q), G∗

1, α) is not a Higman pair. The desired result now follows from The-
orem 4.7 and Lemma 5.7. □

Proof of Theorem 6.4. We may assume that m = 2 and q /∈ {4, 9}, since all other
cases were handled above. Then the quotient map π : SL(2, q) → PSL(2, q) is a Schur
covering, by Theorem 7.1.1 of [31]. According to Proposition 6.7, the pre-image of a
point stabilizer G1 ⩽ PSL(2, q) is

G∗
1 := π−1(G1) =

{[
a b
0 a−1

]
: a ∈ F×

q , b ∈ Fq

}
,

and the linear characters α : G∗
1 → T are in one-to-one correspondence with the

characters α′ ∈ F̂×
q through the relation α

([
a b
0 a−1

])
= α′(a).

Choose any α′ ∈ F̂×
q , and let α : G∗

1 → T be the corresponding character of G∗
1.

To begin, we apply the Higman pair detector (Theorem 5.4) to show that the radi-
calization of (SL(2, q), G∗

1, α) is a Higman pair if and only if α′ is real valued. Take
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x :=
[

0 1
−1 0

]
∈ SL(2, q) ∖G∗

1. To identify which choices of ξ :=
[
a b
0 a−1

]
∈ G∗

1 satisfy

the condition xξx−1 ∈ G∗
1, we compute xξx−1 =

[
a−1 0
−b a

]
. Thus, xξx−1 ∈ G∗

1 if and

only if b = 0, and for such ξ we have α(xξx−1) = α′(a−1) = α′(a) = α(ξ). Comparing
α(xξx−1) and α(ξ), we find that condition (b) of Theorem 5.4 holds if and only if α
(or equivalently, α′) is real valued. The claim now follows from Theorem 5.4.

If q is even, the only real-valued character of F×
q is trivial. By Lemma 5.7 and

Theorem 4.7, we conclude that no sequence of n = q + 1 ⩾ 2d > 2 lines spanning Cd

has automorphism group containing PSL(2, q) when q is even.
For the remainder of the proof, we assume that q is odd. Let α′ ∈ F̂×

q be the
unique nontrivial real-valued character. Explicitly, α′(a) = 1 if a is a quadratic residue
and −1 otherwise. Let α : G∗

1 → T be the linear character corresponding to α′. We
begin by finding a key for the radicalization of (SL(2, q), G∗

1, α) via Lemma 5.3.

Let x :=
[

0 1
−1 0

]
, as above. Then ξ := I and η := −I satisfy ξxη = −x = x−1 and

α(ξη) = α′(−1) =
{

1 if q ≡ 1 mod 4,
−1 if q ≡ 3 mod 4.

Put z := 1 when q ≡ 1 mod 4, and z := i when q ≡ 3 mod 4. Then (x, z) is a key for
the radicalization of (SL(2, q), G∗

1, α), by Lemma 5.3.
When q ≡ 1 mod 4, the resulting lines are real by Lemma 5.5. By Proposition 2.7,

these lines are unique, and so they are constructed in Example 6.3. For the case
q ≡ 3 mod 4, the resulting lines are not real by Proposition 2.7. We proceed by
constructing the roux B ∈ C[C4]n×n using Lemma 5.5. Following the notation in
Example 6.3, let [·, ·] : F2

q ×F2
q → Fq be the symplectic form given by

[
[a, b]⊤, [c, d]⊤

]
=

ad − bc, and take ta := [a, 1]⊤ for each a ∈ Fq and t∞ := [1, 0]⊤. We denote X :=
Fq ∪ {∞}, so that {ti}i∈X is a full set of representatives for lines through the origin
of F2

q. Here, G∗
1 ⩽ G∗ is the stabilizer of span{t∞}. For each i ∈ X, we select a

representative xi of the coset of G∗
1 that sends span{t∞} to span{ti}. To this end,

it suffices to take xa :=
[
a −1
1 0

]
for each a ∈ Fq, and x∞ := I. Then {xi}i∈X is a

full set of left coset representatives for G∗
1 in G∗. Choose any i, j ∈ X with i ̸= j.

We apply Lemma 5.5 in cases to show Bij = zα′([ti, tj ]). In the case where i = ∞,

then ξ :=
[

−1 −j
0 −1

]
and η := I satisfy ξxη = xj = x−1

i xj . Then α(ξη) = −1, and

so Lemma 5.5 gives B∞j = α(ξη)z−1 = z = zα′([t∞, tj ]). Next, if j = ∞, then
Bi∞ = B−1

∞i = z−1 = zα′([ti, t∞]). Otherwise, we have i, j ∈ Fq, in which case

ξ :=
[

(j − i)−1 −1
0 j − i

]
and η :=

[
1 (i− j)−1

0 1

]
satisfy ξxη =

[
1 0

i− j 1

]
= x−1

i xj .

Then α(ξη) = −α′(i − j), and so Lemma 5.5 gives Bij = α(ξη)z−1 = zα′(i − j) =
zα′([ti, tj ]). This proves the claim.

A signature matrix of our lines is given by β̂(B) for some character β : C4 → T.
Furthermore, β is not real valued since the lines are not real. When β is the identity
character, β̂(B) is exactly the signature matrix S given in Example 6.3. Otherwise,
β is defined by β(w) = w, in which case β̂(B) = S. In what follows, we show that S
is equivalent to S up to switching and permutation; then Proposition 2.2 implies the
underlying line sets are equivalent, too. Let σ : X → X be the permutation given by
σ(∞) = ∞ and σ(a) = −a for a ∈ Fq, define ω∞ := −1 and ωa := 1 for a ∈ Fq, and
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take F :=
[

−1 0
0 1

]
. Then for any i, j ∈ X with i ̸= j, we have

ωiωjSσ(i)σ(j) = ωiωjzα
′([tσ(i), tσ(j)]) = zα′([Fti, F tj ])

= z det(F )α′([ti, tj ]) = zα′([ti, tj ]) = Sij .

This completes the proof. □

6.3. Unitary groups. In this subsection, we fix a prime power q > 2, which may
be even or odd. Throughout, matrices act on column vectors from the left. Take
GU(3, q) ⩽ GL(3, q2) to stabilize the Hermitian form (u, v) = u1v

q
3 + u2v

q
2 + u3v

q
1

on F3
q2 , let SU(3, q) ⩽ GU(3, q) be the subgroup of matrices with determinant 1, and

let PSU(3, q) be the quotient of SU(3, q) by its scalar subgroup. We next consider the
doubly transitive action of PSU(3, q) on isotropic lines in F3

q2 , that is, on the lines
spanned by u ∈ F3

q2 ∖ {0} with (u, u) = 0. There are n = q3 + 1 such lines. Explicitly,
take X := T ∪ {∞}, where

T := {[a, b]⊤ ∈ F2
q2 : aq+1 + b+ bq = 0},

and define the vectors t∞ := [1, 0, 0]⊤ and ta,b := [b, a, 1]⊤ for [a, b]⊤ ∈ T . Then
{ti}i∈X gives a full set of representatives for the q3 + 1 isotropic lines in F3

q2 . The
theorem below constructs doubly transitive lines in Cq2−q+1 that are indexed by X
and have PSU(3, q) in their automorphism group. These lines can be described in
terms of a roux over the unique subgroup Tq ⩽ F×

q2 of order q + 1.

Theorem 6.9. With notation as above, define B ∈ C[Tq]X×X by

Bij =
{

−(ti, tj)q−1 if i ̸= j,

0 if i = j.

Then the following hold:
(a) B is a roux with parameters c1 = q − 1 and ca = q2 − 1 for a ∈ Tq ∖ {1}.
(b) For each nontrivial character β : Tq → T, it holds that −β̂(B) ∈ CX×X is

the signature matrix of a d × n ETF, where d = q2 − q + 1 and n = q3 + 1.
Furthermore, the lines Lβ spanned by these ETF vectors have Aut Lβ ⩾
PSU(3, q), and exactly one of the following holds:
(i) The lines are real and β is real valued.
(ii) The lines are not real and β takes non-real values.

(c) For any dimension d′, any sequence L of n ⩾ 2d′ > 2 lines in Cd′ for which
Aut L ⩾ PSU(3, q) arises as in (b). In particular, d′ = d.

We prove Theorem 6.9 at the end of this subsection. Different choices of the char-
acter β in Theorem 6.9(b) may or may not give equivalent lines, as detailed in Theo-
rem 7.5 below.

Remark 6.10. As explained in [28], every roux B yields a roux graph with adja-
cency matrix ⌈B⌋. In Theorem 6.9, the roux graph of B is a (cyclic) distance regular
antipodal (q + 1)-fold cover of Kq3+1 with the property that vertices at distance two
have exactly q2 − 1 neighbors in common. This follows from Theorem 4.2 in [28]; in
the terminology of that paper, the graph is a (q3 + 1, q+ 1, q2 − 1)-drackn. Further-
more, one can show that this graph admits an arc-transitive group of automorphisms
isomorphic to SU(3, q). By a recent theorem of Tsiovkina [51, Theorem 5.11], there
is only one such graph up to isomorphism. It was constructed by Godsil [18] and
rediscovered by Fickus, et. al, in the context of equiangular lines [15]. When q is odd,
the construction of this graph in terms of Theorem 6.9 is new, as far as the authors
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know. When q is even, Cameron gave an equivalent construction in Proposition 5.1
of [8]. For any choice of m ∈ [q], the roux graph of B◦m is also distance regular,
and when q or m is even, our construction also amounts to that of Cameron [8].
(Here, ◦ indicates a Hadamard power.) When q and m are both odd, the difference
between our construction and Cameron’s amounts to the leading minus sign in the
expression −(ti, tj)q−1.

The following is surely known. We include a proof for the sake of completeness.

Proposition 6.11. The quotient mapping π : SU(3, q) → PSU(3, q) is a Schur cover-
ing.

Proof. The Schur multiplier of PSU(3, q) = SU(3, q)/Z(SU(3, q)) is isomorphic
to Z(SU(3, q)), by Theorem 3 in [20]. Since q > 2, SU(3, q) is perfect (cf. [22,
Theorem 11.22]), and in particular Z(SU(3, q)) ⩽ [SU(3, q),SU(3, q)]. □

Our proof of Theorem 6.9 requires detailed knowledge about G∗
1 := π−1(G1), where

G1 ⩽ PSU(3, q) is the stabilizer of span{t∞}. In particular, we must understand all
of its linear characters, as well as their interactions with the double coset structure
of G∗

1 in G∗ := SU(3, q). This information is provided below.

Proposition 6.12. Consider the action of SU(3, q) on isotropic lines in F3
q2 . The

stabilizer of the line spanned by t∞ ∈ F3
q2 is G∗

1 = K ⋉N , where

K := {ηe : e ∈ F×
q2}, N := {ξa,b : a, b ∈ Fq2 , aq+1 + b+ bq = 0},

with ηe and ξa,b given by

ηe :=

e 0 0
0 eq−1 0
0 0 e−q

 , ξa,b :=

1 a b
0 1 −aq

0 0 1

 (e ∈ F×
q2 , a

q+1 + b+ bq = 0).

Furthermore, the linear characters α : G∗
1 → T are in one-to-one correspondence with

the characters α′ ∈ F̂×
q2 through the relation α(ηeξa,b) = α′(e).

We were not able to locate a reference for Proposition 6.12, so we supply our own
proof.

Proof. Notice that Z(SU(3, q)) = {ηe : e ∈ Fq2 , eq+1 = e3 = 1}. O’Nan [40] es-
tablishes that G∗

1 ⩽ SU(3, q) is the stabilizer of the line spanned by t∞, and that
G∗

1 = K ⋉N . The latter are subgroups, and the group operations for K, N , and G∗
1

follow the basic identities
ηeηh = ηeh, ξa,bξf,g = ξa+f,b+g−afq ,(12)
ξ−1

a,b = ξ−a,bq , ηeξa,bη
−1
e = ξe2−qa,eq+1b.

Identifying G∗
1/N

∼= K with F×
q2 , we obtain the epimorphism φ : G∗

1 → F×
q2 ,

φ(ηeξa,b) = e. Consequently, every α′ ∈ F̂×
q2 defines a character α := α′ ◦ φ of G∗

1,
and the mapping α′ 7→ α is injective. It remains to show that every linear character
of G∗

1 factors through φ, or equivalently, that [G∗
1, G

∗
1] contains kerφ = N .

To begin, we consider the Fq-linear subspace V ⩽ Fq2 of all b for which b+ bq = 0.
The Fq-linear transformation φ : Fq2 → Fq2 given by φ(a) = a−aq maps into V , with
one-dimensional kernel Fq ⩽ Fq2 . Consequently, φ maps Fq2 onto V . Similarly, the
mapping a 7→ a+ aq is a surjection of Fq2 onto Fq.

Given b ∈ V , choose a ∈ Fq2 such that a − aq = b. Then find f ∈ Fq2 such that
f+fq = −aq+1, and g ∈ Fq2 satisfying g+gq = −1. A simple computation shows that
[ξa,f , ξ−1,g] = ξ0,a−aq = ξ0,b. Therefore, [G∗

1, G
∗
1] contains the group {ξ0,b : b ∈ V }.
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Finally, let ξa,b ∈ N be arbitrary. Notice that λ2−q−1 ̸= 0 since q2−1 > 2q−1 by the
assumption q > 2. Put f := a(λ2−q −1)−1, and find g ∈ Fq2 such that g+gq = −fq+1.
Then one computes [ηλ, ξf,g] = ξf(λ2−q−1),h = ξa,h for some appropriate choice of
h ∈ Fq2 , which necessarily satisfies

aq+1 + h+ hq = 0 = aq+1 + b+ bq.

Hence b− h ∈ V , and [G∗
1, G

∗
1] contains ξa,hξ0,b−h = ξa,b. □

Lemma 6.13. Adopt the notation of Proposition 6.12, and put x :=

0 0 1
0 −1 0
1 0 0

. Let

ζ ∈ G∗
1 be arbitrary. If ζ ∈ K, then xζx−1 ∈ K ⩽ G∗

1. If ζ /∈ K, then xζx−1 ∈ G∗
1xG

∗
1.

Furthermore, suppose α′ ∈ F̂×
q2 satisfies imα′ ⩽ Cq+1, and let α be the correspond-

ing linear character of G∗
1. If ζ = ηeξa,b /∈ K, then every decomposition xζx−1 = ξxη

with ξ, η ∈ G∗
1 satisfies α(ξηζ−1) = α′(b).

Proof. First, we compute

(13) xηex
−1 = ηe−q , xξa,bx

−1 =

 1 0 0
aq 1 0
b −a 1

 (e ̸= 0, aq+1 + b+ bq = 0).

Therefore xKx−1 = K, and x(ηeξa,b)x−1 = (xηex
−1)(xξa,bx

−1) ∈ G∗
1 if and only if

a = b = 0. Since G∗ := SU(3, q) acts doubly transitively on G∗/G∗
1, there are just two

double cosets of G∗
1 in G∗. When ζ /∈ K we have xζx−1 /∈ G∗

1, and so xζx−1 ∈ G∗
1xG

∗
1.

Now let α′ ∈ F×
q2 be such that imα′ ⩽ Cq+1. Suppose ζ = ηeξa,b /∈ K, and

xζx−1 = (ηhξf,g)x(ηkξl,m) for some ηhξf,g, ηkξl,m ∈ G∗
1. Using (12) and (13), we

rewrite
ηh−qk−1ζ = x−1ξk2q−1f,kq+1gxξl,mx.

The left side of this equation is

ηhqk−1ζ = ηhqk−1eξa,b =

hqk−1e hqk−1a hqk−1eb
0 h1−qk1−qeq−1 −h1−qk1−qeq−1aq

0 0 h−1kqe−q

 ,
while the right side takes the form0 0 1

0 −1 0
1 0 0

 1 ∗ ∗
0 1 ∗
0 0 ∗

 0 0 1
0 −1 0
1 0 0

 1 ∗ ∗
0 1 ∗
0 0 ∗

 0 0 1
0 −1 0
1 0 0

 =

∗ ∗ 1
∗ ∗ ∗
∗ ∗ ∗

 ,
where ∗ marks (possibly different) entries we have not computed. Comparing the top-
right entries, we see that b = h−qke−1. We have α′(h−q) = α′(h) since imα′ ⩽ Cq+1,
and therefore

α(ηhξf,gηkξl,mζ
−1) = α′(hke−1) = α′(h−qke−1) = α′(b). □

Proof of Theorem 6.9. To begin, we find all characters α : G∗
1 → T for which the

radicalization of (G∗, G∗
1, α) is a Higman pair. Fix a linear character α′ ∈ F̂×

q2 , and

let α be the corresponding character of G∗
1. Put x :=

0 0 1
0 −1 0
1 0 0

. Given ξ ∈ G∗
1, we

have xξx−1 ∈ G∗
1 if and only if ξ = ηe for e ̸= 0, in which case xηex

−1 = ηe−q . By
Theorem 5.4, the radicalization (G̃∗, H) of (G∗, G∗

1, α) is a Higman pair if and only if
α′(e) = α′(e)−q for every e ̸= 0, if and only if imα′ ⩽ Cq+1.
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Now fix a choice of α for which imα′ ⩽ Cq+1, and put r′ := | imα′|, r := 2r′. Then
the radicalization of (G∗, G∗

1, α) is a Higman pair. To find a key for this Higman pair,
first observe that F×

q ⩽ kerα′. Consequently, there is a unique character α′′ : Tq → Cr′

for which α′(a) = α′′(aq−1) for each a ∈ F×
q2 . Put z := α′′(−1) ∈ {±1}. Then since

x = x−1, Lemma 5.3 implies that (x, z) is a key for the radicalization of (G∗, G∗
1, α).

With this key, Proposition 3.11 produces a roux B̃ ∈ C[Cr]X×X .
We now construct the entries of B̃ using Lemma 5.5. To begin, we fix a choice of

left coset representatives for G∗
1 in G∗. Since G∗ acts doubly transitively on isotropic

lines in F3
q2 , where G∗

1 stabilizes span{t∞}, it suffices to find xi ∈ G∗ for which

xit∞ = ti for each i ∈ X. We take x∞ :=

 1 0 0
0 1 0
0 0 1

, and for [a, b]⊤ ∈ T we define

xa,b :=

 b −aq 1
a 1 0
1 0 0

, where x−1
a,b =

 0 0 1
0 1 −a
1 aq bq

. Then {xi}i∈X is a full set of left coset

representatives for G∗
1 in G∗. For any choice of i, j ∈ X with i ̸= j, a straightforward

calculation gives that the (3, 1) entry of the matrix x−1
i xj equals (tj , ti) = (ti, tj)q.

For any ξ, η ∈ G∗
1 such that ξxη = x−1

i xj , one may examine the (3,1) entry to
conclude that α(ξη) = α((ti, tj)q) = α((ti, tj)). By Lemma 5.5, it follows that B̃ij =
zα((ti, tj)) = α′′

(
−(ti, tj)q−1

)
. At this point, we observe that the entries of B̃ reside

in the subring C[Cr′ ] ⩽ C[Cr], and so we may view B̃ as a roux for either Cr′ or Cr.
Furthermore, the lines given by B̃ do not change when we view it as a roux over Cr′

instead of Cr, in light of Proposition 3.5 and the fact that every character of Cr′

extends to a character of Cr.
To prove (a) and (b), we focus on a special choice of α. Namely, we fix a character

α0 : F×
q2 → Cq+1 for which α′′

0 : Tq → Cq+1 is an isomorphism. Take α = α0 above,
and let B̃ ∈ C[C2(q+1)]X×X be the resulting roux with entries B̃ii = 0 and B̃ij =
α′′

0(−(ti, tj)) for i ̸= j in X. For the moment, we view B̃ as a roux over C2(q+1), and
we compute its roux parameters {cw}w∈C2(q+1) . For any w ∈ C2(q+1), Lemmas 5.6
and 6.13 combine to show that

cw = q3

|G∗
1|

· |{ηeξa,b ∈ G∗
1 : b ̸= 0 and α′

0(b) = zw}|(14)

= q3(q2 − 1)
|K||N |

·
∑

b∈F×
q2 ,

α′(b)=zw

Nb =
∑

b∈F×
q2 ,

α′(b)=zw

Nb,

where
Nb = |{a ∈ Fq2 : aq+1 + b+ bq = 0}| (b ∈ F×

q2).

Since a 7→ aq+1 is a surjective homomorphism of F×
q2 onto F×

q , and since −(b+bq) ∈ Fq

for every b ∈ Fq2 , we deduce that

Nb =
{

1 if b+ bq = 0
q + 1 else

}
=

{
1 if bq−1 = −1

q + 1 else

}
(b ∈ F×

q2).

Therefore,

cw =
∣∣∣{b ∈ F×

q2 : bq−1 = −1 and α′
0(b) = zw

}∣∣∣
+ (q + 1) ·

∣∣∣{b ∈ F×
q2 : bq−1 ̸= −1 and α′

0(b) = zw
}∣∣∣.

Algebraic Combinatorics, Vol. 7 #1 (2024) 65



J. W. Iverson & D. G. Mixon

Our choice of z = α′′
0(−1) ensures that α′

0(b) = α′′
0(bq−1) = z whenever bq−1 = −1.

There are exactly q − 1 choices of b for which bq−1 = −1, and so

cw = (q − 1)δw,1 + (q + 1) ·
∣∣∣{b ∈ F×

q2 : bq−1 ̸= −1 and α′
0(b) = zw

}∣∣∣.
For w ̸∈ Cq+1 = imα′

0, we have w ̸= 1, and there does not exist b ∈ F×
q2 for which

w = zα′
0(b) since z ∈ imα′

0. Hence, cw = 0 whenever w ̸∈ Cq+1. Given w ∈ Cq+1, we
have zw ∈ imα′

0, and there are exactly | kerα′
0| = q − 1 choices of b ∈ F×

q2 for which
α′

0(b) = zw. For w = 1, any such b satisfies bq−1 = −1 by our choice of z, and so
c1 = q − 1. For w ∈ Cq+1 ∖ {1}, any such b satisfies bq−1 ̸= −1, and so cw = q2 − 1.

To prove (a), view B̃ as a roux over Cq+1, and observe that its roux parame-
ters {cw}w∈Cq+1 are as given above. Indeed, cw = 0 when w ∈ C2(q+1) ∖ Cq+1,
and so B̃2 = (n − 1)I +

∑
w∈C2(q+1)

cwwB̃ = (n − 1)I +
∑

w∈Cq+1
cwwB̃. Next, de-

fine γ : Cq+1 → Tq to be the inverse mapping of α′′
0 , so that γ

(
α′′

0(a)
)

= a for ev-
ery a ∈ Tq. Then γ extends to an isomorphism γ̃ : C[Cq+1]X×X → C[Tq]X×X , and
B := γ̃(B̃) ∈ C[Tq]X×X is a roux with entries Bii = 0 and Bij = γ(B̃ij) = −(ti, tj)q−1

for every i ̸= j. Considering the parameters for B̃ we found above, then B has roux
parameters {ca}a∈Tq with c1 = q−1 and ca = q2 −1 for a ∈ Tq ∖{1}. This proves (a).

For (b), we apply Proposition 3.3 to compute the ranks {dϵ
β}β∈T̂q,ϵ∈{1,−1} of the

primitive idempotents in the roux scheme given by B. Given a character β : Tq → T,
we compute

ĉβ =
∑

a∈Tq

caβ(a) = c1β(1) +
∑

a∈Tq∖{1}

caβ(a) = (q − 1) + (q2 − 1) ·
∑

a∈Tq∖{1}

β(a).

When β = 1 is the trivial character, this yields ĉ1 = (q−1)+(q2 −1)q = q3 −1 = n−2.
In Proposition 3.3, we obtain µ+

1 = 1 and µ−
1 = (1 − n)−1, so that d+

1 = 1 and
d−

1 = n − 1. Now assume β is nontrivial. Then ĉβ = (q − 1) − (q2 − 1) = q − q2. In
Proposition 3.3, we obtain µ+

β = q−2 and µ−
β = −q−1, so that d+

β = q(q2 − q+ 1) and
d−

β = q2 − q + 1. In particular, Proposition 3.5 implies that −β̂(B) is the signature
matrix of a d×n ETF with d = d−

β−1 = q2 −q+1 and n = |X| = q3 +1. Furthermore,
the lines Lβ spanned by the vectors in this ETF are real if and only if β takes real
values, by Proposition 3.6. To see that Aut Lβ ⩾ PSU(3, q), let σ : X → X be a
permutation of isotropic line indices that is implemented by a unitary U ∈ SU(3, q).
Then for each i ∈ X there exists ai ∈ F×

q2 such that Uaiti = tσ(i). Given i, j ∈ X with
i ̸= j, it holds that

β̂(B)σ(i),σ(j) = β
(
−(tσ(i), tσ(j))q−1)

= β
(
−(Uaiti, Uajtj)q−1)

= β
(
−aq−1

i a
q(q−1)
j (ti, tj)q−1)

= β
(
aq−1

i

)
β

(
aq−1

j

)
β̂(B)ij .

Overall, the result of permuting the entries of β̂(B) with σ is the same as that of
applying a switching equivalence to β̂(B). Then σ ∈ Aut Lβ , by Proposition 2.2. This
proves (b).

It remains to prove (c). Let L be a sequence of n ⩾ 2d > 2 lines for Cd for which
Aut L ⩾ PSU(3, q). Then we can take X as an indexing set for L , and n = |X| =
q3 + 1. By Theorem 4.7, there is a character α : G∗

1 → T for which the radicalization
of (G∗, G∗

1, α) is a Higman pair whose Schurian scheme has a primitive idempotent
that represents L . By the above, α(ηeξa,b) = α′′(eq−1) for some character α′′ : Tq →
Cq+1, and L can be obtained from a primitive idempotent in the roux scheme of
B̃ ∈ C[Cr′ ]X×X with entries B̃ii = 0 and B̃ij = α′′

(
−(ti, tj)q−1

)
for i ̸= j, where
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r′ := | imα′′|. Considering Proposition 3.5, there exists a character β′ : Cr′ → T
and ϵ ∈ {1,−1} such that ϵβ̂′(B̃) is the signature matrix of an ETF whose vectors
span L . To see this has the form of (b), take β : Tq → T to be the character given
by β(a) = β′(α′′(a)

)
for every a ∈ Tq. Then ϵβ̂′(B̃) = ϵβ̂(B). By Proposition 3.5,

d = dϵ
β−1 is as computed above. Then the condition n ⩾ 2d > 2 ensures that β is

nontrivial and ϵ = −1. This completes the proof. □
6.4. Suzuki groups. We now consider the doubly transitive action of a Suzuki group
Sz(q), where q = 22m+1 > 2 as in Proposition 6.1(iv). Our primary reference is §XI.3
in [23]. Fix the following notation for the duration of this subsection. Set t = 2m+1.
Given a, b ∈ Fq and e ∈ F×

q , put

ξa,b :=


1 0 0 0
a 1 0 0
b at 1 0

a2+t + ab+ bt at+1 + b a 1

 , ηe :=


e1+2m 0 0 0

0 e2m 0 0
0 0 e−2m 0
0 0 0 e−1−2m

 .
Also define x ∈ GL(4, q) to be the anti-diagonal matrix with entries xij = δi,5−j . By
definition,

Sz(q) := ⟨ξa,b, ηe, x : a, b ∈ Fq, e ∈ F×
q ⟩ ⩽ GL(4, q).

It has a doubly transitive permutation representation with point stabilizer
G1 := ⟨ξa,b, ηe : a, b ∈ Fq, e ∈ F×

q ⟩.

Theorem 6.14. There does not exist a sequence L of n = q2 + 1 ⩾ 2d > 2 doubly
transitive lines with span Cd and Aut L ⩾ Sz(q) as in Proposition 6.1(iv).

By [2], the Schur multiplier of Sz(q) is trivial with a single exception, addressed
below.
Lemma 6.15 (Computer-assisted result). There does not exist a sequence L of n ⩾
2d > 2 doubly transitive lines with span Cd and Aut L ⩾ Sz(8) as in Proposi-
tion 6.1(iv).
Computer-assisted proof. The Schur multiplier of G := Sz(8) is Z2 × Z2, by The-
orem 2 in [2]. We used the AtlasRep [56] package in GAP [17] to obtain a Schur
covering π : G∗ → G. Then we proceeded as in the proof of Lemma 6.5. No nontrivial
character α : G∗

1 → T produced a Higman pair through radicalization. Consequently,
any sequence of lines whose automorphism group contains Sz(8) spans a space of
dimension d ∈ {1, n− 1}. (Our code is available online [27].) □

We supply our own proof for the following proposition, which we could not locate
elsewhere.
Proposition 6.16. The point stabilizer G1 ⩽ Sz(q) is a semidirect product G1 =
N ⋊K, where

N := {ξa,b : a, b ∈ Fq}, K := {ηe : e ∈ F×
q }.

Furthermore, the linear characters α : G∗
1 → T are in one-to-one correspondence with

the characters α′ ∈ F̂×
q through the relation α(ξa,bηe) = α′(e).

Proof. In [23, Lemma XI.3.1] it is shown that G1 = N ⋊ K. Moreover, the group
operation for G1 satisfies the basic identities

ξa,bξf,g = ξa+f,b+g+atf

ηeηh = ηeh (a, b, f, g ∈ Fq, e, h ∈ F×
q ).

η−1
e ξa,bηe = ξea,et+1b

Algebraic Combinatorics, Vol. 7 #1 (2024) 67



J. W. Iverson & D. G. Mixon

Consequently, there is a well-defined epimorphism φ : G1 → F×
q given by φ(ξa,bηe) = e.

Each α′ ∈ F̂×
q determines a linear character α := α′ ◦ φ : G1 → T, and the mapping

α′ 7→ α is injective. It remains to prove that [G1, G1] contains kerφ = N , so that
every linear character α : G1 → T factors through φ.

Since m > 0 we have 2m+1 + 1 < 22m+1 − 1 = q − 1, and so there exists e ∈ F×
q

such that et+1 ̸= 1. Fix such an e. Given any a, b ∈ Fq, define

f := (e− 1)−1a, g := (et+1 − 1)−1[b− (1 − et)f t+1].

Then

η−1
e ξf,gηeξ

−1
a,b = ξef,et+1gξ−f,−g+ft+1 = ξ(e−1)−1f,(et+1−1)g+(1−et)ft+1 = ξa,b,

so that ξa,b ∈ [G1, G1]. □

Proof of Theorem 6.14. We can assume q > 8. Then the Schur multiplier is trivial
by [2, Theorem 1], and so G∗ = G is its own Schur cover. Let α : G1 → T be any
nontrivial linear character of G1, and let α′ ∈ F̂×

q be the corresponding character in
Proposition 6.16. Choose any e ∈ F×

q such that α′(e) ̸= 1. Since F×
q

∼= Cq−1 and q is
even, there exists h ∈ F×

q with h2 = e. Then xηhx
−1 = ηh−1 ∈ G1, and yet α′(h) ̸=

α′(h−1). By Theorem 5.4, the radicalization of (G,G1, α) is not a Higman pair. From
Theorem 4.7 and Lemma 5.7 we conclude that any sequence of lines admitting Sz(q)
as a group of automorphisms spans a space of dimension d ∈ {1, n− 1}. □

6.5. Ree groups. Next, we find all line sequences whose automorphism group con-
tains the Ree group 2G2(q), where q = 32m+1. Our primary reference is [3, Section 3],
which compiles information about Ree groups taken from [23, 32, 36, 52, 55]. We
use the following notation in this subsection. Set t = 3m. Given a, b, c ∈ Fq, put
ξa,b,c := ξa,0,0ξ0,b,0ξ0,0,c, where

ξa,0,0 :=



1 at 0 0 −a3t+1 −a3t+2 a4t+2

0 1 a at+1 −a2t+1 0 −a3t+2

0 0 1 at −a2t 0 a3t+1

0 0 0 1 at 0 0
0 0 0 0 1 −a at+1

0 0 0 0 0 1 −at

0 0 0 0 0 0 1


,

ξ0,b,0 :=



1 0 −bt 0 −b 0 −bt+1

0 1 0 bt 0 −b2t 0
0 0 1 0 0 0 b
0 0 0 1 0 bt 0
0 0 0 0 1 0 bt

0 0 0 0 0 1 0
0 0 0 0 0 0 1


, ξ0,0,c :=



1 0 0 −ct 0 −c −c2t

0 1 0 0 −ct 0 c
0 0 1 0 0 ct 0
0 0 0 1 0 0 −ct

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

For e ∈ F×
q , put

ηe := diag(et, e1−t, e2t−1, 1, e1−2t, et−1, e−t).
Finally, define x ∈ GL(7, q) to be the anti-diagonal matrix with entries xij = −δi,8−j .
By definition,

2G2(q) := ⟨ξa,b,c, ηe, x : a, b, c ∈ Fq, e ∈ F×
q ⟩ ⩽ GL(7, q).

It acts doubly transitively on n := q3 + 1 points with point stabilizer

G1 := ⟨ξa,b,c, ηe : a, b, c ∈ Fq, e ∈ F×
q ⟩ = N ⋊K,
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where
N := {ξa,b,c : a, b, c ∈ Fq} , K :=

{
ηe : e ∈ F×

q

}
.

Multiplication in G1 follows the basic identities
ξa,b,cξf,g,h = ξa+f,b+g−af3t,c+h−fb+af3t+1−a2f3t , ξ−1

a,b,c = ξ−a,−b−a3t+1,−c−ab+a3t+2 ,

η−1
e ξa,b,cηe = ξe3t−2a,e1−3tb,e−1c, ηeηk = ηek.

Theorem 6.17. Let L be a sequence of n > d doubly transitive lines with span Cd

and Aut L ⩾ 2G2(q) as in Proposition 6.1(v). Then L is real, hence described by
Proposition 2.7(iv).

Our technique for proving Theorem 6.17 requires q > 3. We dispose of the case
q = 3 by computer, as below.

Lemma 6.18 (Computer-assisted result). Assume q = 3. Let L be a sequence of n > d
doubly transitive lines with span Cd and Aut L ⩾ 2G2(3) as in Proposition 6.1(v).
Then L is real.

Computer-assisted proof. We proceeded as in the proof of Lemma 6.5, using GAP to
compute a Schur cover G∗. For every linear character α : G∗

1 → T, we checked to see
if the radicalization of (G∗, G∗

1, α) was a Higman pair. If it was, we computed roux
parameters. Then we applied the real roux lines detector of Propositions 3.5 and 3.6.
In every case, we found that the resulting lines were real. (Our code is available
online [27].) □

Proposition 6.19. Assume q > 3. Then the linear characters α : G1 → Fq of the
point stabilizer G1 ⩽ 2G2(q) are in one-to-one correspondence with the characters
α′ ∈ F×

q through the relation α(ξa,b,cηe) = α′(e).

We provide a proof since we could not locate a reference.

Proof. The quotient map of G onto G/N ∼= K ∼= F×
q gives an epimorphism φ : G1 →

F×
q , φ(ξa,b,cηe) = e. Therefore every α′ ∈ F̂×

q produces a linear character α := α′ ◦
φ : G1 → T, and the mapping α′ 7→ α is injective. It suffices to prove that [G1, G1]
contains kerφ = N , so that every linear character α : G1 → T factors through φ.

Since q = 32m+1 > 3, a simple counting argument shows there exists e ∈ F×
q such

that 1 /∈ {e, e3t−2, e3t−1}. Fix such an e. Given a, b, c ∈ Fq, put
f := (e3t−2 − 1)−1a, g := (e1−3t − 1)−1[b− (e3t−2 − 1)f3t+1],
h := (e−1 − 1)−1[c− (e1−3t − 1)fg − (1 − e3t−2 + e6t−4)f3t+2].

Then a direct calculation shows that

η−1
e ξf,g,hηeξ

−1
f,g,h

= ξ(e3t−2−1)f,(e1−3t−1)g+(e3t−2−1)f3t+1,(e−1−1)h+(e1−3t−1)fg+(1−e3t−2+e6t−4)f3t+2 ,

which equals ξa,b,c by construction. □

Proof of Theorem 6.17. We may assume that q > 3. The Schur multiplier of G =
2G2(q) is trivial, by [2, Theorem 1]. Hence G∗ = G is its own Schur cover. Choose
any linear character α : G1 → T, and let α′ ∈ F̂q be the corresponding character from
Proposition 6.19. Given any e ∈ F×

q , we have xηex
−1 = ηe−1 ∈ G1. By Theorem 5.4,

the radicalization (G̃∗, H) of (G,G1, α) is a Higman pair only if α′(e) = α′(e)−1 for
every e ∈ Fq, only if α is real valued. In that case, Lemma 5.9 shows that the resulting
doubly transitive lines are real. We conclude from Theorem 4.7 that every sequence
of linearly dependent lines L satisfying 2G2(q) ⩽ Aut L is real. □
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6.6. Symplectic groups. Next we consider the doubly transitive actions of sym-
plectic groups Sp(2m, 2), summarized below. For details, see [14, Section 7.7], [22,
Chapters 12–14], [34, Chapter 2]. Fix m ⩾ 3. We consider F2m

2 to consist of column

vectors u =
[
u(1)
u(2)

]
with u(i) ∈ Fm

2 , i ∈ {1, 2}. Then Sp(2m, 2) ⩽ GL(2m, 2) is the

group of all invertible operators that stabilize the symplectic form [·, ·] : F2m
2 ×F2m

2 →
F2 given by

[u, v] = u⊤
(1)v(2) + u⊤

(2)v(1).

Put δ1 = [1, 0, . . . , 0]⊤ ∈ Fm
2 . For each ϵ ∈ {±}, we define a quadratic form Qϵ : F2m

2 →
F2 given by

Q+(u) = u⊤
(1)u(2), Q−(u) = u⊤

(1)u(2) + (u(1) + u(2))⊤δ1.

Thus Qϵ(u+ v) +Qϵ(u) +Qϵ(v) = [u, v] for every u, v ∈ F2m
2 . We take the orthogonal

group Oϵ(2m, 2) ⩽ Sp(2m, 2) to be the group of all linear operators stabilizing Qϵ.
Then Sp(2m, 2) acts doubly transitively on n = 2m−1(2m + ϵ) points, and Oϵ(2m, 2)
is the stabilizer of a point.

Theorem 6.20. Let L be a sequence of n > d doubly transitive lines with span Cd

and Aut L ⩾ Sp(2m, 2) as in Proposition 6.1(vi). Then L is real, hence described by
Proposition 2.7(v,vi).

The Schur multiplier of Sp(2m, 2) is trivial for m ⩾ 4. We dispose of the case m = 3
by computer.

Lemma 6.21 (Computer-assisted result). Assume m = 3. Let L be a sequence of n > d
doubly transitive lines with span Cd and Aut L ⩾ Sp(6, 2) as in Proposition 6.1(vi).
Then L is real.

Computer-assisted proof. We used GAP [17] to verify that the Schur multiplier of
G = Sp(6, 2) is Z2. (Note that in some places it is falsely reported as being trivial.)
Using the AtlasRep package [56], we obtained a double cover π : G∗ → G, which
we checked was a Schur covering. Then we proceeded as in the proof of Lemma 6.5,
computing the cases ϵ = + and ϵ = − separately. For each linear character α : G∗

1 → T,
we checked to see if the radicalization (G̃∗, H) of (G∗, G∗

1, α) was a Higman pair. When
it was, we computed roux parameters. In every such case, the real roux lines detector
of Propositions 3.5 and 3.6 verified that all lines coming from (G̃∗, H) were real. (Our
code is available online [27].) □
Proof of Theorem 6.20. We may assume that q ⩾ 4. Then the Schur multiplier of
G = Sp(2m, 2) is trivial [46], so that G∗ = G is its own Schur cover. Fix ϵ ∈ {±},
and let G1 = Oϵ(2m, 2). By [22, Proposition 14.23], [G1, G1] ⩽ G1 is a subgroup of
index 2. Hence G1 has only real-valued linear characters.

Put w :=
[
δ1
0

]
when ϵ = +, and w :=

[
δ1
δ1

]
when ϵ = −. Define the transvection

τ : F2
2m → F2

2m by τ(u) = u + [u,w]w. Then τ ∈ Sp(2m, 2) satisfies τ2 = 1, but one
easily checks that τ /∈ G1. If α : G1 → {±1} is any linear character for which the
radicalization (G̃,H) of (G,G1, α) is a Higman pair, then Lemma 5.9 implies that
all lines coming from (G̃,H) are real. By Theorem 4.7, every sequence of linearly
dependent lines L such that Sp(2m, 2) ⩽ Aut L is real. □
6.7. Proof of the main result. So far, we have applied our technology to all but
four of the almost simple groups in Proposition 6.1. The remaining groups can be
ticked off one by one. We found it convenient to use a computer for this task in the
following lemma, but all the relevant computations could also be done by hand.

Algebraic Combinatorics, Vol. 7 #1 (2024) 70



Doubly transitive lines II

Lemma 6.22 (Computer-assisted result). Suppose L is a sequence of n > d lines span-
ning Cd, and assume that Aut L contains one of the groups from cases (vii), (viii),
(xi), (xii) of Proposition 6.1. Then L is real, hence described by Proposition 2.7.

Computer-assisted proof. For each group G with point stabilizer G1 ⩽ G, we found
a Schur covering π : G∗ → G and put G∗

1 := π−1(G1). Then we used the Higman
pair detector (Theorem 5.4) to find every linear character α : G∗

1 → T for which the
radicalization of (G∗, G∗

1, α) was a Higman pair. In every case, we were able to apply
Lemma 5.7 or Lemma 5.9 to deduce that the corresponding lines were real. It follows
by Theorem 4.7 that L is real whenever G ⩽ Aut L .

Specifically, for case (vii) the quotient mapping π : SL(2, 11) → PSL(2, 11) is a
Schur covering by [31, Theorem 7.1.1]. Here G∗

1
∼= SL(2, 5) has no nontrivial linear

characters at all.
For (viii), GAP [17] provided a Schur covering of A7. No nontrivial linear character

produced a Higman pair through radicalization.
In case (xi), the Schur multiplier of the Higman–Sims group G is Z2 [38]. We

obtained a double cover G∗ of G through the AtlasRep package [56] of GAP, and
verified that it was a Schur cover of G. Only real-valued characters of G∗

1 produced
Higman pairs through radicalization, and there exists an involution x ∈ G∗ ∖G∗

1. By
Lemma 5.9, these Higman pairs produce only real lines.

Finally, for (xii) the Schur multiplier of G = Co3 is trivial [21], and so G∗ = G is its
own Schur cover. Here, G1 has only real-valued characters to begin with, and there is
an involution x ∈ G∖G1 because G is generated by involutions [37]. By Lemma 5.9,
any Higman pair that arises from radicalization can only create real lines.

For all cases, our code is available online [27]. □

Proof of Theorem 1.5. Let L be a sequence of n ⩾ 2d > 2 lines that span Cd, and
assume that S = Aut L is doubly transitive and almost simple. Then S contains a
subgroup G such that G ⊴ S ⩽ Aut(G) and G satisfies one of the cases (i)–(xii) of
Proposition 6.1. In Subsections 6.2–6.6 and Lemma 6.22, we settled what happens in
each instance except (i), (ix), and (x). In each of those cases, G is triply transitive:
for (i), see [54, Theorem 9.7]; for (ix), see Theorems XII.1.3 and XII.1.4 in [23]; and
for (x) consult [23, Theorem XII.1.9]. By Lemma 6.2, each remaining case violates
the hypothesis n ⩾ 2d > 2. □

Proof of Theorem 1.3. By Proposition 1.2, S is either affine (as in case (I)) or almost
simple (as in case (II)). The affine case was settled by Theorem 1.1 and Remark 1.2 of
Dempwolff and Kantor [13], and the almost simple case is settled by Theorem 1.5. □

7. Equivalence and automorphisms
In this section, we compute the automorphism groups of complex doubly transitive
lines with almost simple symmetry groups, as in Theorem 1.3(D). As an application,
we sort out equivalences in the unitary case (xiii). The remaining automorphism
groups of doubly transitive lines are known. Type (B) appears in [13], while the two-
graphs behind types (A) and (C) are treated in [50].

7.1. Linear symmetry. We begin with the lines of Example 6.3, as in Theo-
rem 1.3(xii). Let q ≡ 3 mod 4 be a prime power with prime divisor p. We write
ΓL(2, q) for the group of all permutations f : F2

q → F2
q of the form f(u) = (Mu)◦pk

for M ∈ GL(2, q) and k ⩾ 0, while ΣL(2, q) ⩽ ΓL(2, q) is the subgroup of all
those f with M ∈ SL(2, q). (Here, ◦ indicates a Hadamard power which implements
a field automorphism to the entries of Mu.) Both ΓL(2, q) and ΣL(2, q) permute
the one-dimensional subspaces of F2

q, and in each case the kernel of the action
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coincides with the center consisting of scalar functions. This produces embeddings
of PΓL(2, q) := ΓL(2, q)/Z(ΓL(2, q)) and PΣL(2, q) := ΣL(2, q)/Z(ΣL(2, q)) in SX ,
where X = {∞} ∪Fq indexes the one-dimensional subspaces of F2

q as in Example 6.3.

Theorem 7.1. Let q ≡ 3 mod 4 be a prime power, and let L be the sequence of lines
constructed in Example 6.3. Then Aut L = PΣL(2, q).

Our proof uses the following detail.

Proposition 7.2. Let S ⩽ Sn be primitive and almost simple with socle G. If H ⩽ S
and H ∼= G, then H = G.

Proof. Suppose instead that H ̸= G. Then H ▷ (G ∩ H) = {1} since H is simple
and normalizes G. Hence, S ⩾ ⟨G,H⟩ ∼= G ⋊ H, and in particular, |G|2 ⩽ |S|.
Meanwhile, CS(G) = {1} by Theorem 4.2A of [14], and so conjugation provides an
embedding S ⩽ AutG. This is impossible since every finite simple group satisfies
| AutG| ⩽ 1

30 |G|2, as detailed in Lemma 2.2 of [41]. □

Proof of Theorem 7.1. We follow the notation of Example 6.3, and we also denote
S := Aut L ⩾ PSL(2, q). The doubly transitive group S must appear in Proposi-
tion 6.1. It also acts as automorphisms of n = q + 1 complex lines in dimension
d = n/2. If S is affine, then Theorem 1.1 of [13] reports that (d, n) are listed some-
where in Theorem 1.3(I). The only parameters with d = n/2 are in case (ii) with d = 2,
n = 4, and q = 3. These lines are unique, and they indeed have S = A4 = PΣL(2, 3).
Now assume S has simple socle G. If G = PSU(3, q0) for some prime power q0 > 2,
then q+ 1 = n = q3

0 + 1, and Theorem 6.9(c) shows d = q2
0 − q0 + 1. This is impossible

since d = n/2. We ruled out all other possibilities from Proposition 6.1(II), and so
G ∼= PSL(2, q) and q > 3. By Proposition 7.2, G = PSL(2, q) ⩽ SX (in its usual
embedding). In particular,

S ⩽ NSX

(
PSL(2, q)

)
= Aut

(
PSL(2, q)

)
= PΓL(2, q),

where the equalities follow from [14, Theorem 4.2A] and [55, §3.3.4].
Now it suffices to prove PΓL(2, q) ∩ S = PΣL(2, q). Select M ∈ GL(2, q) and

k ⩾ 0, and let σ ∈ PΓL(2, q) ⩽ SX be the corresponding permutation given by
span{tσ(i)} = span{(Mti)◦pk } for i ∈ X. We use Proposition 2.2 to show σ ∈ S if and
only if σ ∈ PΣL(2, q). For each i ∈ X, select ωi ∈ F×

q with tσ(i) = ωi(Mti)◦pk . Then
for i, j ∈ X,

χ
(
[tσ(i), tσ(j)]

)
= χ(ωi)χ(ωj)χ

(
(detM)pk

[ti, tj ]p
k
)

= χ(ωi)χ(ωj)χ(detM)χ
(
[ti, tj ]

)
,

since the Frobenius automorphism preserves the set Q of quadratic residues. Thus,
(15) Sσ(i),σ(j) = χ(ωi)χ(ωj)χ(detM) Si,j for every i, j ∈ X.

When M = cM ′ for some c ∈ F×
q and M ′ ∈ SL(2, q), we have detM = c2 and

χ(detM) = 1, and then Proposition 2.2 implies σ ∈ S. That is, PΣL(2, q) ⩽
PΓL(2, q) ∩ S.

To prove the reverse inclusion, assume for the sake of contradiction that σ ∈ S
and yet M ̸= cM ′ for any c ∈ F×

q and M ′ ∈ SL(2, q). Then it is easy to show
χ(detM) = −1. By Proposition 2.2 and (15), there are unimodular constants {ci}i∈X

such that cicjSi,j = Sσ(i),σ(j) = −χ(ωi)χ(ωj) Si,j for every i, j ∈ X. Equivalently,

(16) cicjχ
(
[ti, tj ]

)
= −χ(ωi)χ(ωj)χ

(
[ti, tj ]

)
for every i ̸= j in X.

Taking i = ∞ and j = a ∈ Fq ⊂ X in (16), we find c∞ca = −χ(ω∞)χ(ωa), so that
(17) ca χ(ωa) = −c∞ χ(ω∞)
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is constant for all a ∈ Fq. Taking i = 0 and j = −1 in (16), we find c0c−1 =
−χ(ω0)χ(ω−1), so that c0 χ(ω0) = −c−1 χ(ω−1). This contradicts (17). □

7.2. Unitary symmetry. Now we handle the lines of Theorem 6.9, as in Theo-
rem 1.3(xiii). Let q > 2 be a prime power with prime divisor p, and let notation be
as in the first paragraph of Subsection 6.3. We write ΓU(3, q) for the group of all
functions f : F3

q2 → F3
q2 with f(v) = (Uv)◦pk for U ∈ GU(3, q) and k ⩾ 0. Then

ΓU(3, q) permutes the isotropic lines in F3
q2 , and the kernel of this action consists of

scalar functions, which form the center of ΓU(3, q). This provides an embedding of
PΓU(3, q) := ΓU(3, q)/Z

(
ΓU(3, q)

)
in SX .

Lemma 7.3. Let σ ∈ PΓU(3, q) ⩽ SX , where there is a unitary U ∈ GU(3, q) and k ⩾ 0
such that span{tσ(i)} = span{(Uti)◦pk } for all i ∈ X. For any choice of nontrivial
characters α, β : Tq → T, it holds that α = βpk if and only if σ induces a unitary
equivalence Lβ → Lα between the corresponding lines of Theorem 6.9(b).

Proof. We follow the notation of Theorem 6.9, and we also write

Sβ =
[
−β

(
−(ti, tj)q−1)]

i,j∈X

for the signature matrix that produces Lβ . Select constants {ωi}i∈X in F×
q2 such that

ωitσ(i) = (Uti)◦pk for each i ∈ X, and put ci := βpk (ωq−1
i ). For i ̸= j in X, we have

(tσ(i), tσ(j)) = ωpk

i ωqpk

j (ti, tj)pk , so that

[Sβ ]σ(i),σ(j) = −β
(
−(tσ(i), tσ(j))

)
(18)

= −βpk (
ωq−1

i

)
βpk (

ω
q(q−1)
j

)
βpk (

−(ti, tj)q−1)
= cicj [S

βpk ]i,j .

By Proposition 2.2, σ induces a unitary equivalence Lβ → L
βpk .

Conversely, suppose σ induces a unitary equivalence Lβ → Lα. By Proposi-
tion 2.2 and (18), there are unimodular constants {c′

i}i∈X such that c′
ic

′
j [Sα]i,j =

[Sβ ]σ(i),σ(j) = cicj [S
βpk ]i,j for every i, j ∈ X. In other words,

(19) c′
ic

′
j α

(
−(ti, tj)q−1)

= cicj β
pk (

−(ti, tj)q−1)
for every i ̸= j in X.

Take i ∈ T and j = ∞ in (19) to obtain c′
ic

′
∞ α(−1) = cic∞ β(−1), so that

(20) c′
ici = c′

∞c∞ α(−1)β(−1) =: C ∈ T
is constant for i ∈ T . Select any e ∈ Tq, and find b ∈ F×

q2 with bq−1 = −e. Then
find a ∈ Fq2 with aq+1 = −b − bq, so that i := [a, b]⊤ ∈ T . For j := [0, 0]⊤ ∈ T ,
we have (ti, tj)q−1 = bq−1 = −e. Then (19) produces c′

ic
′
j α(e) = cicjβ

pk (e), and
βpk (e) = c′

icic′
jcjα(e) = CCα(e) = α(e) by (20). □

Theorem 7.4. Let β : Tq → T be a nontrivial character that takes non-real values,
and let Lβ be the lines of Theorem 6.9(b). Then PSU(3, q) ⊴ Aut Lβ ⩽ PΓU(3, q).
Specifically, Aut Lβ consists of all σ ∈ SX for which there exist U ∈ GU(3, q) and
k ⩾ 0 such that span{tσ(i)} = span{(Uti)◦pk } for all i ∈ X and βpk = β.

The case where β is real is treated in [50]: Aut Lβ = PΓU(3, q) unless q = 3, in
which case Aut Lβ = Sp(6, 2).

Proof of Theorem 7.4. The condition that β takes non-real values ensures Lβ are not
real lines. Put S := Aut Lβ . We first show S is almost simple with socle PSU(3, q). As
in the proof of Theorem 7.1, S is doubly transitive and must appear in Proposition 6.1.
If S is affine, then (d, n) appear somewhere in Theorem 1.3(B). We have d = q2 −q+1
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and n = q3 + 1, which excludes (iii) and (iv). The only other possibility is (ii), with
n
d = 2

√
n√

n−1 and n a square prime power. Meanwhile, the true parameters satisfy

n

d
= q3 + 1
q2 − q + 1 >

q3

q2 − q + q
= q = 3

√
n− 1.

For n > 18, we have n
d > 3

√
n− 1 > 2

√
n√

n−1 , and after checking all possibilities for
n ⩽ 18 we find that case (ii) does not occur. Overall, S is not affine, and so it
is almost simple. Theorem 6.4 shows its socle cannot be PSL(2, q′) for any prime
power q′, since n

d > q > 2. We have ruled out all other possibilities, and so the socle
S is isomorphic to PSU(3, q). By Proposition 7.2, the socle equals PSU(3, q) ⩽ SX

(in its usual embedding). In particular,
(21) S ⩽ NSX

(
PSU(3, q)

)
= Aut

(
PSU(3, q)

)
= PΓU(3, q),

where the equalities follow from [14, Theorem 4.2A] and [55, §3.6.3]. The desired
result now follows immediately from Lemma 7.3. □

Theorem 7.5. Let α, β : Tq → T be nontrivial characters, both of which take non-
real values. Then the lines Lα and Lβ constructed in Theorem 6.9(b) are unitarily
equivalent if and only if α = βpk for some k ⩾ 0.

Proof. Given k ⩾ 0, let U be the identity operator on F3
q2 , and let σ ∈ PΓU(3, q) ⩽

SX be given by span{tσ(i)} = span{(Uti)◦pk } for every i ∈ X. Then Lemma 7.3
establishes that σ induces a unitary equivalence Lβ → Lβpk . Conversely, suppose
σ ∈ SX induces a unitary equivalence Lβ → Lα. Then σ(Aut Lβ)σ−1 = Aut Lα, and
in particular, σ conjugates the socle of Aut Lβ to that of Aut Lα. Both automorphism
groups have socle PSU(3, q) by Theorem 7.4, so σ ∈ NSX

(
PSU(3, q)

)
= PΓU(3, q) as

in (21). Now Lemma 7.3 shows that α = βpk for some k ⩾ 0. □
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