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Simplicial resolutions of powers of
square-free monomial ideals

Susan M. Cooper, Sabine El Khoury, Sara Faridi, Sarah
Mayes-Tang, Susan Morey, Liana M. Şega & Sandra Spiroff

Abstract The Taylor resolution is almost never minimal for powers of monomial ideals, even
in the square-free case. In this paper we introduce a smaller resolution for each power of any
square-free monomial ideal, which depends only on the number of generators of the ideal. More
precisely, for every pair of fixed integers r and q, we construct a simplicial complex that supports
a free resolution of the rth power of any square-free monomial ideal with q generators. The
resulting resolution is significantly smaller than the Taylor resolution, and is minimal for special
cases. Considering the relations on the generators of a fixed ideal allows us to further shrink
these resolutions. We also introduce a class of ideals called “extremal ideals”, and show that
the Betti numbers of powers of all square-free monomial ideals are bounded by Betti numbers
of powers of extremal ideals. Our results lead to upper bounds on Betti numbers of powers of
any square-free monomial ideal that greatly improve the binomial bounds offered by the Taylor
resolution.

1. Introduction
Important insight about the underlying structure of an ideal in a polynomial ring
is gained from a careful analysis of its minimal free resolution. As such, significant
effort has gone into the development of methods to compute resolutions. The ap-
proach of leveraging connections between commutative algebra and other fields, such
as combinatorics and topology, has proven to be quite fruitful. Diana Taylor’s the-
sis [19] initiated the exploration of these connections, followed by simplicial resolutions
(Bayer, Peeva, and Sturmfels [1]), polytopal complexes (Nagel and Reiner [15]), and
cellular complexes (Bayer and Sturmfels [2]), to name just a few. See [14, 17] for an
overview of these developments.

The Taylor resolution is powerful: given any ideal I minimally generated by q
monomials, Taylor constructed a simplicial complex Taylor(I) by labeling the ver-
tices of a (q − 1)-simplex with the monomial generators of I. She showed that this
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complex supports a free resolution of I, in the sense that its simplicial chain com-
plex can be transformed, via a process called homogenization, to a free resolution of I,
called the Taylor resolution of I. Unfortunately, even though every monomial ideal
has a Taylor resolution, the Taylor resolution is often far from minimal. In particu-
lar, for powers of ideals it is almost never minimal due to certain syzygies that are
automatically created when taking powers.

The central theme of this paper is to find an analogue for the Taylor complex
for powers of square-free monomial ideals. We seek a construction that takes the
automatically generated non-minimal syzygies into account and removes them from
the Taylor resolution to produce a much smaller free resolution of Ir that works for
any monomial ideal I. Our ultimate goal is to find a uniform combinatorial structure
that depends only on the number of generators and the power of the ideal. More
precisely, the question at the heart of this paper is the following:

Question 1.1. Given positive integers r and q, is it possible to find a simplicial com-
plex (considerably) smaller than the simplex Taylor(Ir) that supports a free resolution
of Ir, where I is any ideal generated by q monomials in a polynomial ring?

When r = 1, Taylor(I) is in fact the optimal answer to the question above, as there
are ideals I for which Taylor(I) supports a minimal resolution. But when r = 2, the
resolution supported on Taylor(I2) is never minimal for any non-principal square-free
monomial ideal I ([3]). As expected, the resolution supported on Taylor(Ir) becomes
further from minimal as r grows.

Although Taylor’s complex for the rth power of a monomial ideal with q generators
can be quite large - a simplex of dimension

(
q+r−1

r

)
- we can improve the situation

considerably by studying the general relations among the generators of Ir that must
always exist for all monomial ideals regardless of the generating set for I. Similar
to the idea used in Lyubeznik’s resolutions [12], in the case of square-free monomial
ideals, this investigation involves detecting and trimming redundant faces of the Taylor
complex Taylor(Ir), bringing us closer to a minimal resolution.

To illustrate our underlying process, let r = 2, q = 3 and consider any
ideal I = (m1,m2,m3) in the polynomial ring k[x1, . . . , xn] where m1,m2 and
m3 are minimal, square-free monomial generators and k is a field. Now I2 =
(m1

2,m2
2,m3

2,m1m2,m1m3,m2m3) and Taylor(I2) is a 5-dimensional simplex
with 6 vertices, where each vertex is labeled by a generator of I2 and each face
is labeled with the least common multiple of its vertices. A non-minimal syzygy
occurs when a face and a subface have the same label (see Theorem 3.1). When
considering I2, no matter what the monomial generators of I are, when i, j, k are
distinct we always have the following:

lcm(mi
2,mj

2) = lcm(mi
2,mimj ,mj

2)
lcm(mi

2,mjmk) = lcm(mi
2,mjmk,mimk).

These equalities lead to non-minimal syzygies in the Taylor resolution of I2, and as a
result the edges

{m1
2,m2

2}, {m1
2,m3

2}, {m2
2,m3

2}, {m1
2,m2m3}, {m2

2,m1m3}, {m3
2,m1m2},

and all faces containing these edges, can be removed from Taylor(I2). The resulting
2-dimensional subcomplex L2

3 of Taylor(I2) supports a resolution of I2 ([3]). This
simple observation has a considerable impact on bounding the Betti numbers of I2.
For example, in this small case we can conclude that for every ideal I with three
square-free monomial generators, the projective dimension of I2 is at most 2 (the
dimension of L2

3), versus the bound 5 (the dimension of Taylor(I2)).
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In this paper we show that a similar argument can be made more generally. If I is
minimally generated by square-free monomials m1, . . . ,mq, then we can identify faces
of the simplex Taylor(Ir) which lead to non-minimal syzygies for Ir. Eliminating
these faces results in a much smaller subcomplex of Taylor(Ir), which we call Lr

q

(Definition 4.2).
Our main result, Theorem 5.9, shows that Lr

q supports a resolution of Ir. This
echoes the power of Taylor’s complex in that we have a topological structure depending
solely on r and q that supports a resolution of Ir for any square-free monomial ideal I
with q minimal generators. By further deleting redundancies specific to the generators
of I, we obtain a subcomplex Lr(I) of Lr

q, so that we have

Lr(I) ⊆ Lr
q ⊆ Taylor(Ir).

Theorem 5.9 also shows that Lr(I) supports a free resolution of Ir. Our approach
to proving this involves showing that Lr(I) and Lr

q are both quasi-trees (see Defini-
tion 2.2), meaning (roughly) that are built from a special ordering on their facets.
In Theorem 3.6, we show that for a quasi-tree to support a free resolution one only
needs to check that certain induced subcomplexes are connected. This extends the
main result of [9].

Our complex Lr(I) gives natural and useful bounds on homological information
of Ir. Indeed, the Betti numbers of Ir are bounded in terms of the number and size
of faces of Lr(I), yielding bounds that are significantly smaller than those given by
the Taylor resolution. In the later sections of this paper we examine just how much
smaller these bounds on the Betti numbers are and when the resolutions obtained
are minimal. We define a class of square-free monomial ideals, which we call extremal
ideals, whose Betti numbers of powers bound the Betti numbers of powers of any
square-free monomial ideal with the same number of generators. As a result, we
reduce the question of minimality of Lr

q to the study of when Lr
q supports a minimal

free resolution of the rth power of an extremal ideal.
To put this work in context of the broader literature, studying powers of ideals and

bounding their invariants has received much attention in recent years. Powers play
an important role in Rees algebras and associated graded rings among other uses,
making understanding their behavior desirable but difficult. In another direction,
there has been considerable interest in describing minimal topological resolutions
for all monomial ideals using a variety of methods, such as using chain maps from
multiple simplicial complexes (see [16, 20]). There are situations where the structure
of a minimal topological resolution leads to minimal topological resolutions for powers
(see, for example [4, 5, 10]), but in general, this is a challenging task. In this paper we
combine the two interests and seek, for powers of monomial ideals, resolutions that
are supported on a single topological structure which is practical to determine based
on the generators of the original ideal I.

The paper is organized as follows. Section 2 contains basics of simplicial resolutions.
In Section 3 we use simplicial collapsing and the Bayer–Peeva–Sturmfels criterion to
prove the above-mentioned criterion for quasi-trees (Theorem 3.6). In Section 4 we
introduce the definition of the simplicial complex Lr

q, and we prove in Proposition 4.6
that Lr

q is a quasi-tree. In Section 5 we define Lr(I), discuss some examples, and
then prove the main result, Theorem 5.9. Section 6 investigates the bounds on the
Betti numbers of Ir that follow from the main result. Finally, Section 7 introduces
extremal ideals, which have maximal Betti numbers among powers of square-free
monomial ideals. In particular, Proposition 7.11 provides a full characterization of
the conditions on r and q that guarantee Lr

q supports a minimal free resolution of Ir

for some ideal I.

Algebraic Combinatorics, Vol. 7 #1 (2024) 79



S. M. Cooper, S. El Khoury, S. Faridi, S. Mayes-Tang, S. Morey, L. M. Şega & S. Spiroff

This paper is an extension of the work in [3] where the focus is on the second
power of the ideal I. The collaboration was initiated at the 2019 workshop “Women
in Commutative Algebra” hosted by the Banff International Research Station.

2. Simplicial Resolutions
Fix S = k[x1, . . . , xn] to be a polynomial ring over a field k. We begin by reviewing
necessary background for simplicial complexes and simplicial resolutions and then
demonstrate the potential relationship to resolutions of ideals.

A simplicial complex ∆ on a vertex set V is a set of subsets of V such that
if F ∈ ∆ and G ⊆ F then G ∈ ∆. We use the following terminology for simplicial
complexes:

Definition 2.1. Let ∆ be a simplicial complex.
• An element of ∆ is called a face.
• The facets of ∆ are the maximal faces under inclusion.
• The dimension of a face F ∈ ∆ is dim(F ) = |F | − 1.
• The dimension of ∆ is the maximum of the dimensions of its faces.
• ∆ is called a simplex if it has one facet.
• The f-vector f(∆) = (f0, . . . , fd) of a d-dimensional simplicial complex ∆

has fi = the number of i-dimensional faces of ∆.

Note that a simplicial complex can be uniquely determined by its facets. One writes
∆ = ⟨F1, . . . , Fq⟩

to denote a simplicial complex ∆ with facets F1, . . . , Fq.
In subsequent sections, we will use the tool of trimming simplicial complexes via

certain rules. Essentially, we will delete vertices in a specified fashion. Vertex deletions
naturally lead to the consideration of subcomplexes of simplicial complexes, which
are defined below, together with additional structures and notions that will be used
throughout the paper.

Definition 2.2. Let ∆ be a simplicial complex on a vertex set V .
• If v is a vertex of ∆, then the deletion of v from ∆ is the simplicial complex

∆ ∖ {v} = {σ ∈ ∆ | v ̸∈ σ}.

• A subcomplex of ∆ is a subset of ∆ which is also a simplicial complex.
• Given W ⊆ V , the induced subcomplex of ∆ on W is the subcomplex

∆W = {σ ∈ ∆ | σ ⊆ W}.

• A leaf [8] is a facet F of ∆ such that F is the only facet of ∆, or there is a
facet G of ∆ with F ̸= G such that

F ∩H ⊆ G

for all facets H ̸= F . The facet G is called a joint of F . (Note that the joint
of a leaf need not be unique (see [8]).

• ∆ is called a quasi-forest [22] if the facets of ∆ can be ordered as F1, . . . , Fq

such that for i = 1, . . . , q, the facet Fi is a leaf of the simplicial complex
⟨F1, . . . , Fi⟩.

• ∆ is a quasi-tree if it is a connected quasi-forest.

Example 2.3. The simplicial complex below is a quasi-tree. The leaf order is
F1, . . . , F5, meaning that each Fi is a leaf of ⟨F1, . . . , Fi⟩. In this example the joint of
Fi is Fi−1 for all i ⩾ 1.

Algebraic Combinatorics, Vol. 7 #1 (2024) 80



Simplicial resolutions of powers

F1 F2
F3 F4 F5

Example 2.4. The star-shaped complex drawn below on the left is a quasi-tree, with
leaf order F0, F1, F2, F3. In particular, the center facet F0 is the joint of Fi for every
i ⩾ 1. This complex is a standard example of a quasi-tree which is not a simplicial tree
in the sense of [8]. This particular quasi-tree is shown in [3] to support a free resolution
of the second power of any ideal with three square-free monomial generators.

If one removes F0 from the center, the remaining complex is shown in the picture
on the right. This simplicial complex is not a quasi-tree, since no facet is a leaf.

F1 F2

F3

F0

F1 F2

F3

quasi-tree not a quasi-tree

A free resolution of I is an exact sequence of the form

0 → Sβt → Sβt−1 → · · · → Sβ1 → Sβ0 → I → 0,

where Sβj is a free S-module of rank βj and t ∈ N. When βj is the smallest possible
rank of a free module in the jth spot of any free resolution of I for each j, the resolution
is minimal. In this case, the numbers βj are invariants of I and are called the Betti
numbers of I.

In the 1960s, Diana Taylor demonstrated a striking connection between a (q − 1)-
simplex and a resolution of a monomial ideal I in S. If I is a monomial ideal in S
minimally generated by monomials m1, . . . ,mq, then Taylor(I) denotes the simplex
with q vertices indexed by the set [q] = {1, . . . , q}, where each vertex i is labeled with
one of the monomials mi, and each face σ is labeled with the monomial

Mσ = lcm(mi : i ∈ σ).

In her Ph.D thesis [19], Taylor proved that the simplicial chain complex of Taylor(I)
gives rise to a multigraded free resolution of I. In particular, the ith Betti number of I
is bounded above by the number of i-dimensional faces of Taylor(I), which is

(
q

i+1
)
.

This method has been generalized so that if ∆ is a simplicial or cellular complex
whose vertices are labeled with the monomial generators m1, . . . ,mq of an ideal I
and whose faces are labeled with the least common multiple of the vertex labels as
above, then we say that ∆ supports a free resolution of I if the homogenization of
the simplicial (or cellular) chain complex of ∆ is a multi-graded free resolution of I,
denoted by F∆, see [1, 2]. The multi-graded complex F∆ is described as follows. For
each t ⩾ 0, the free module (F∆)t has basis elements denoted by eσ, where σ ranges
over all faces of ∆ with |σ| = t + 1, and eσ is considered to have multi-degree Mσ.
The differential is described by

(1) ∂(eσ) =
t∑

j=0
(−1)j Mσ

Mσ∖{vij
}
eσ∖{vij

} ,

where σ = {vi0 , . . . , vit
} with i0 < i1 < · · · < it.
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Example 2.5. Let I = (xy, yz, zu) in R = k[x, y, z, u]. The labeled simplicial chain
complex

•xy •
yz

• zu
xyz yzu

supports a free resolution of I. The chain complex of ∆ is

0 −→ k2

[
1 0

−1 1
0 −1

]
−−−−−−→ k3 → k

and homogenization results in the free resolution

0 −→ R(xyz) ⊕R(yzu)

[
z 0

−x u
0 −y

]
−−−−−−→ R(xy) ⊕R(yz) ⊕R(zu) −→ I −→ 0 ,

where the notation R(xaybzcud) refers to the R-free module with one generator in
multi-degree (a, b, c, d).

Remark 2.6. Simplicial complexes that support a free resolution of a monomial ideal
are usually constructed such that the vertices correspond to and are labeled by a
minimal set of generators of the ideal. However, one can also work with non-minimal
generators, at the expense of producing a larger complex. In particular, one can mimic
the construction of Taylor(I), but use instead any set of monomial generators of I.
The same considerations show that this complex supports a free resolution of I.

There are various combinatorial ways to build subcomplexes ∆ of Taylor(I) that
support a free resolution of I. One such well known complex is the Lyubeznik complex,
which supports the Lyubeznik resolution of I ([12]). The Lyubeznik resolution is the
main inspiration for the complexes Lr

q and Lr(I) which appear later in this paper. We
will not define this resolution since it is not used in this paper, but refer the reader
to [12, 13] for additional information.

3. Resolutions supported on quasi-trees
Taylor’s resolution is usually far from minimal. However, for a given monomial ideal I,
a criterion of Bayer, Peeva and Sturmfels (see Theorem 3.1) allows one to check if
a subcomplex of Taylor(I) supports a free resolution of I. In this section, using the
above criterion and by observing that quasi-trees are collapsible, we show that a
quasi-tree ∆ supports a free resolution of a given monomial ideal if and only if certain
subcomplexes of ∆ are connected.

For a subcomplex ∆ of Taylor(I) and a monomial M in S, let ∆M be the subcom-
plex of ∆ induced on the vertices of ∆ whose labels divide M .

The following is the criterion of Bayer, Peeva and Sturmfels [1, Lemma 2.2]; see
also [6, Theorem 2.2] for the statement on minimality.

Theorem 3.1 (Criterion for a simplicial complex to support a free reso-
lution). Let ∆ be a simplicial complex whose vertices are labeled with a monomial
generating set of a monomial ideal I in a polynomial ring S over a field. Then ∆ sup-
ports a free resolution of I over S if and only if for every monomial M , the induced
subcomplex ∆M of ∆ on the vertices whose labels divide M is empty or acyclic.

Furthermore, a free resolution supported on ∆ is minimal if and only if Mσ ̸= Mσ′

for every proper subface σ′ of a face σ of ∆.

Remark 3.2. The results of Theorem 3.1 are usually stated with the assumption that
one uses the minimal monomial generating set of I for the labels. However, the proof
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of [1, Lemma 2.2] does not make use of this assumption, hence we formulated the
result above to reflect this observation.

In particular, Theorem 3.1 implies that the f -vector of a complex ∆ supporting a
resolution of a monomial ideal I is an upper bound for the vector of Betti numbers
of I. In other words, for each i ⩽ d = dim(∆),

βi(I) ⩽ fi where f(∆) = (f0, . . . , fd).
In particular, if ∆ supports a minimal free resolution of I, then equality holds above.

Using Theorem 3.1 it is straightforward to see that to determine whether ∆ sup-
ports a free resolution of I, it suffices to check that ∆M is empty or acyclic only for
monomials M in the lcm lattice of I; that is, for monomials M that are least common
multiples of sets of vertex labels.

If the complex ∆ under consideration in Theorem 3.1 is a simplicial tree, then it
suffices to show that ∆M is connected, instead of acyclic, see [9]. More precisely, it
is established in [9] that every induced subcomplex of a simplicial tree is a simplicial
forest, and then it is shown that simplicial trees are acyclic, and hence an induced
subcomplex of ∆ is acyclic if and only if it is empty or connected (see [9, Theorems 2.5,
2.9, 3.2]).

We now generalize the work in [9] by showing that the criterion in Theorem 3.1 can
be extended to the class of quasi-trees. To do so we need to argue that quasi-trees,
and their connected induced subcomplexes, are acyclic. We do so using the following
series of results.

Proposition 3.3 (Induced subcomplexes of quasi-forests are quasi-forests).
If a simplicial complex ∆ is a quasi-forest, then every induced subcomplex of ∆ is a
quasi-forest.

Proof. By [10, Proposition 6], a simplicial complex ∆ with vertex set V is a quasi-
forest if and only if for every subset W ⊆ V , the induced subcomplex ∆W has a leaf.
If W ⊆ V , consider the induced subcomplex ∆W of ∆. If U ⊆ W , then ∆U = (∆W )U

has a leaf, and hence, ∆W is a quasi-forest. □

A face σ of a simplicial complex ∆ is called a free face if it is properly contained in
a unique facet F of ∆. A collapse of ∆ along the free face σ is the simplicial complex
obtained by removing the faces τ such that σ ⊆ τ ⊆ F from ∆. If additionally
dim(σ) = dim(F ) − 1, then the collapse is called an elementary collapse. The
simplicial complex ∆ is called collapsible if it can be reduced to a point via a series
of (elementary) collapses.

Example 3.4. Consider the quasi-tree in Example 2.4. To illustrate that this complex
is collapsible to a point, we label in Figure 1 the vertices and then demonstrate one
collapsing sequence. At each step, the two faces that play the roles of σ and F in the
exposition above are indicated. Note that the first two steps are elementary collapses
for demonstration purposes. Alternate collapsing sequences exist.

In general, by starting with a leaf and the face that contains it, any quasi-tree can
be collapsed to a point.

Proposition 3.5. Every quasi-tree is collapsible.

Proof. Proceed by induction on q, the number of facets of ∆. When q = 1, ∆ is a
simplex, and known to be collapsible (e.g. [9, Proposition 2.7]). Suppose the statement
holds for all quasi-trees with fewer than q facets.

Let ∆ be a quasi-tree with facet ordering F1, . . . , Fq so that, for i = 1, . . . , q, each
Fi is a leaf of ⟨F1, . . . , Fi⟩. Since Fq is a leaf of ∆, it intersects ∆′ = ⟨F1, . . . , Fq−1⟩ in
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v1

v2 v3

v4 v5

v6

σ1 = {v1, v4}
F1 = {v1, v2, v4}

−−−−−−−−−−−−−−−→

v1

v2 v3

v4 v5

v6

σ2 = {v4}
F2 = {v2, v4}

−−−−−−−−−−−−→

v1

v2 v3

v5

v6

σ3 = {v5}
F3 = {v1, v3, v5}

−−−−−−−−−−−−−−−→

v1

v2 v3

v6

σ4 = {v6}
F4 = {v2, v3, v6}

−−−−−−−−−−−−−−−→

v1

v2 v3
σ5 = {v1}

F5 = {v1, v2, v3}
−−−−−−−−−−−−−−−→

v2 v3
σ6 = {v2}

F6 = {v2, v3}
−−−−−−−−−−−−→

v3

Figure 1. An example of collapsing

a face F ′ of ∆′. By [9, Proposition 2.7], Fq collapses down to the face F ′ by removing
faces outside ∆′. As a result, this series of collapses brings ∆ to the quasi-tree ∆′,
which, by the induction hypothesis, is collapsible. □

We now use Proposition 3.5 and Proposition 3.3 to show that the Bayer-Peeva-
Sturmfels criterion in Theorem 3.1 can be extended to the class of quasi-trees.

Theorem 3.6 (Criterion for a quasi-tree to support a free resolution). Let ∆
be a quasi-tree whose vertices are labeled with a monomial generating set of a mono-
mial ideal I in a polynomial ring S over a field. Then ∆ supports a free resolution
of I over S if and only if for every monomial M , the induced subcomplex ∆M of ∆
on the vertices whose labels divide M is empty or connected.

Proof. By Theorem 3.1, ∆ supports a resolution of I if and only if ∆M is empty or
acyclic for every monomial M ∈ S. If M ∈ S is a monomial, then by Proposition 3.3
above, ∆M is a quasi-forest. Moreover, by Proposition 3.5, every connected component
of ∆M is contractible, i.e. homotopy equivalent to a point, and hence acyclic. The
only possible homology that ∆M could have would be that which comes from it being
disconnected. As a result, ∆ supports a resolution of I if and only if ∆M is empty or
connected for every monomial M ∈ S. □

4. The quasi-tree Lr
q

Recall that our goal is to find a simplicial complex smaller than Taylor’s complex that
supports a free resolution of Ir when I has q square-free monomial generators. In this
section we construct a subcomplex Lr

q of the Taylor simplex, which depends only on
the integers r and q, and contains a subcomplex supporting a free resolution of Ir.

The base case for our construction is the case r = 1. In this case L1
q is the well-

known Taylor complex [19]: a simplex with q vertices that supports a free resolution of
any monomial ideal with q generators. The case r = 2 was investigated in the earlier
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work of the authors [3]. For example, it was shown in [3] that L2
3 is the quasi-tree in

Example 2.4.
We now collect and formalize the notation needed for the extension to the case

r ⩾ 3.

Notation 4.1. Let r and q be two positive integers.
• Let e1, . . . , eq denote the standard basis vectors for Rq; i.e. for each i ∈ [q],

ei is the q-tuple with 1 in the ith coordinate and 0 elsewhere.

• Define N r
q to be the set of points in Zq

⩾0 whose coordinates add up to r:

N r
q ={(a1, . . . , aq) ∈ Zq

⩾0 : a1 + · · · + aq = r}
={a1e1 + · · · + aqeq : ai ∈ Z⩾0 and a1 + · · · + aq = r}.

• Set s =
⌈

r
2
⌉
; that is, when r is odd, r = 2s− 1, and when r is even, r = 2s.

Definition 4.2 (The simplicial complex Lr
q - see also Proposition 4.3).

Let r, q ⩾ 1 be two integers. Following Notation 4.1 we define Lr
q to be the simplicial

complex with vertex set N r
q whose faces are all subsets of the (not necessarily distinct)

sets F r
1 , . . . , F

r
q , G

r
1, . . . , G

r
q defined as

F r
i = {(a1, . . . , aq) ∈ N r

q : ai ⩽ max{r − 1, s} and aj ⩽ s for j ̸= i}

Gr
i = {(a1, . . . , aq) ∈ N r

q : ai ⩾ r − 1} = {(r − 1)ei + ej : j ∈ [q]}

for each i ∈ [q]. We refer to the set {F r
1 , . . . , F

r
q } as the first layer of Lr

q and the set
{Gr

1, . . . , G
r
q} as the second layer of Lr

q. We define the base of Lr
q to be the face

Br =
{

(a1, . . . , aq) ∈ N r
q : ai ⩽ s for all i ∈ [q]

}
,

so that
F r

i = Br ∪ {(a1, . . . , aq) ∈ N r
q : s+ 1 ⩽ ai ⩽ r − 1}.

In general, F r
1 , . . . F

r
q , G

r
1, . . . , G

r
q are the facets of Lr

q (Proposition 4.3); however,
for small values of r and q, these sets need not be distinct. We summarize these facts
in Proposition 4.3 to give a more precise description of the facets of Lr

q.

Proposition 4.3 (Equivalent definition of Lr
q). The simplicial complex Lr

q in Def-
inition 4.2 can be described in terms of its distinct facets:

Lr
q =


⟨F r

1 , F
r
2 , . . . , F

r
q , G

r
1, . . . , G

r
q⟩ if r > 3 and q ⩾ 2

⟨Br, Gr
1, . . . , G

r
q⟩ if r = 3 and q ⩾ 2 or r = 2 and q > 2

⟨G2
1, G

2
2⟩ if r = 2 and q = 2

⟨N r
q ⟩ if r = 1 or q = 1.

Proof. When r = 1, then s = 1 and N 1
q = {e1, . . . , eq}. It follows that

B1 = F 1
i = G1

i = N 1
q for all i ∈ [q].

In this case L1
q is a simplex with q vertices (the Taylor simplex).

If q = 1 and r > 1, then

Br = F r
1 = ∅ and Gr

1 = N r
1 = {(r)}.

If q = r = 2, then

G2
1 = {(2, 0), (1, 1)} and G2

2 = {(0, 2), (1, 1)}
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and since s = 1 = r − 1,
F 2

1 = F 2
2 = B2 = {(1, 1)} ⊆ G2

1 ∩G2
2.

When q ⩾ 2 and r = 3, or q > 2 and r = 2, then the Gr
i are distinct as each Gr

i is
the unique facet containing the vertex rei. Furthermore, since s+ 1 = r,

F r
1 = · · · = F r

q = Br

contains all the vertices (r− 1)ei + ej where i ̸= j, and so Br is not embedded in any
of the Gr

i .
Finally, when q ⩾ 2 and r > 3, then s < r− 1. Therefore, the Gr

i are distinct, since
each Gr

i is the unique facet containing the vertex rei.
For i, j ∈ [q], i ̸= j, F r

j is not contained in F r
i since

(s+ 1)ej + (r − s− 1)ei ∈ F r
j ∖ F r

i .

Moreover, rej /∈ F r
i , showing that

Gr
j ⊈ F r

i .

Lastly, no F r
i can be contained in Gr

j since Br ⊆ F r
i , but Br ∩ Gr

j = ∅ when
s < r − 1. □

Example 4.4. The geometric realization of the simplicial complex L3
2 is a path of

length 3, as can be seen in the figure below.

•
3e1

•
2e1 + e2

•
e1 + 2e2

•
3e2

G3
1 B3 G3

2Since
N 3

2 = {(3, 0), (2, 1), (1, 2), (0, 3)} = {3e1, 2e1 + e2, e1 + 2e2, 3e2},
according to Proposition 4.3, the facets of L3

2 are
B3 = {(2, 1), (1, 2)} = {2e1 + e2, e1 + 2e2}
G3

1 = {(3, 0), (2, 1)} = {3e1, 2e1 + e2}
G3

2 = {(0, 3), (1, 2)} = {3e2, e1 + 2e2}.
By contrast, if q = 2 and r ⩾ 4 is even, then Br is a single vertex

Br = {(r/2)e1 + (r/2)e2} ⊊ F r
i for all i ∈ [q].

For instance, if r = 6, then L6
2 is pictured below, and B6 is the single point at the

middle of the ‘bow-tie’ and only the F r
i s and Gr

js are facets.

6e1

5e1 + e2

4e1 + 2e2

2e1 + 4e2

e1 + 5e2

6e2

G6
1

F 6
1 F 6

2
G6

2

3e1 + 3e2

Note that the points in N r
q can be viewed as lattice points in Rq. Indeed, they are

precisely the integer lattice points in a hyperplane section of the first octant, cut out
by the hyperplane whose equation is

x1 + · · · + xq = r.

While for small values of q this gives a natural way to depict the points, it does
not illustrate the simplicial structure well. For instance, in Example 4.4, the 6 points
would be co-linear, while our depiction emphasizes the existence of the two triangles.
Using the combinatorial approach rather than the embedding in Rq also allows for a
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•

• •
B1

•

• •

• •

•

G2
1 G2

2

G2
3

B2

•
e1 + e2 + e3

B3G3
2

3e2
• • •

2e2 + ei
i ̸= 2

G3
3

3e3
•

• •
2e3 + ei

i ̸= 3

G3
13e1

•

• •
2e1 + ei

i ̸= 1

L1
3 L2

3 L3
3

Figure 2. A picture of L1
3, L2

3 and L3
3

• • •
4e3 + ei + ej

i, j ̸= 3

F 6
3

• • •
4e2 + ei + ej

i, j ̸= 2

F 6
2

• • •
4e1 + ei + ej

i, j ̸= 1

F 6
1

B6B6

B6 = F 6
1 ∩ F 6

2 = F 6
1 ∩ F 6

3 = F 6
2 ∩ F 6

3

•
6e1

G6
1

• •
5e1 + ei

i ̸= 1

•
6e3

G6
3

• •

•
6e2

G6
2

• •

5e2 + ei
i ̸= 2

5e3 + ei
i ̸= 3

Figure 3. A picture of L6
3

generalized depiction, seen in the following example, that can easily be extended to
higher q and r.

Example 4.5. We examine the case q = 3 in the same manner as above. The simplicial
complexes L1

3, L2
3 and L3

3 appear in Figure 2, and L6
3 appears in Figure 3.

The following statement generalizes [3, Proposition 3.3], which deals with the spe-
cial case r = 2.

Proposition 4.6 (Lr
q is a quasi-tree). The simplicial complex Lr

q is a quasi-tree.

Proof. Following Proposition 4.3 for a description of the facets of Lr
q, we consider each

case separately.
When r = 1 or q = 1, L1

1 is a simplex, and hence by definition a quasi-tree.
When r = q = 2, L2

2 has only two facets, and it is trivially a quasi-tree.
When r = 2 and q > 2, then order the facets of L2

q by

B2, G2
1, . . . , G

2
q.
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In this case, if i ̸= j with i, j ∈ [q], then

G2
i ∩B2 ⊆ B2 and G2

i ∩G2
j = {ei + ej} ⊆ B2.

Thus each G2
i is a leaf of ⟨B2, G2

1, . . . , G
2
i ⟩ with joint B2.

When r = 3 and q ⩾ 2, then as in the previous case,

B3, G3
1, . . . , G

3
q

is a leaf order. Since G3
i ∩G3

j = ∅ when i ̸= j, for each i ∈ [q] the facet G3
i is a leaf of

⟨B3, G3
1, . . . , G

3
i ⟩

with joint B3.
When r > 3 and q ⩾ 2, we claim

(2) F r
1 , F

r
2 , . . . , F

r
q , G

r
1, . . . , G

r
q

is a leaf order for Lr
q, making it a quasi-tree. To see this note that if i ̸= j, i, j ∈ [q],

then

F r
i ∩Gr

j = ∅, F r
i ∩ F r

j = Br, Gr
i ∩Gr

j = ∅,
F r

i ∩Gr
i = {(r − 1)ei + eh : h ̸= i}.

These observations show that for each j ∈ [q], Gr
j is a leaf of

⟨F r
1 , . . . , F

r
q , G

r
1, . . . , G

r
j⟩

with joint F r
j , and for each j ∈ {2, . . . , q} F r

j is a leaf of

⟨F r
1 , . . . , F

r
j ⟩

with joint, say, F r
1 . Hence (2) is a leaf order and Lr

q is a quasi-tree. □

5. The quasi-tree Lr(I) supporting a free resolution of Ir

Given an ideal I with q square-free monomial generators, we now define an induced
subcomplex of Lr

q, denoted Lr(I), which is obtained by deleting vertices representing
redundant generators of Ir. We show in Theorem 5.9 that both Lr

q and Lr(I) support
a free resolution of Ir.

Definition 5.1 (The simplicial complex Lr(I)). Let I be an ideal minimally gen-
erated by monomials m1, . . . ,mq in the polynomial ring S. For a = (a1, . . . , aq) ∈ N r

q

we set
ma = m1

a1 · · ·mq
aq .

Define a partition of N r
q into equivalence classes V1, . . . , Vt by

a ∼ b ⇐⇒ ma = mb.

We use these equivalence classes to build an induced subcomplex Lr(I), of Lr
q using

the following steps:
Step 1. From each equivalence class Vi pick a unique representative ci in the following

way: if Vi ∩Br ̸= ∅, then ci ∈ Br. Otherwise, choose any ci ∈ Vi.
Step 2. From the set {c1, . . . , ct}, eliminate all ci for which mcj | mci for some j ̸= i.

We call the remaining set, without loss of generality, {c1, . . . , cu}.
Step 3. Set V = {c1, . . . , cu}.

Define Lr(I) to be the induced subcomplex of Lr
q on the vertex set V .
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The complex Lr(I) is a subcomplex of Taylor(Ir). While Lr(I) is dependent on
the choices made when building its vertex set V , we will abuse the notation and
ignore these choices, as they do not have an impact on our results. Also note that
the set of monomials {mc1 , . . . ,mcu} forms a minimal monomial generating set for
the ideal Ir. There are known classes of ideals, e.g., square-free monomial ideals of
projective dimension 1 [4, Proposition 4.1], where the generating set {ma | a ∈ N r

q }
does not contain redundancies, in which case Lr

q = Lr(I). However, in general, Lr(I)
will be a proper subcomplex of Lr

q. Information about known redundancies in the
set {ma | a ∈ N r

q } can be used to produce Lr(I). As an example, consider edge
ideals of graphs. For such ideals, the redundancies in {ma | a ∈ N r

q } are encoded in
the ideal of equations of the fiber cone of the ideal, whose generators correspond to
primitive even closed walks in the graph (see [21] for relevant definitions and details).

Example 5.2. Let S = k[x, y, z, w] and I = (xy, yz, zw, xw) = (m1,m2,m3,m4).
By Proposition 4.3, the facets of L2

4 are a 5-simplex B2 and four tetrahedra G2
i for

1 ⩽ i ⩽ 4, depicted on the left in the figure below.
By Definition 5.1, since m1m3 = m2m4 is the only equation determining an equiv-

alence class with more than one element, we select the vertex e1 +e3 to represent this
equivalence class and form L2(I). Then L2(I) consists of a 4-simplex on the vertices

e1 + e2, e1 + e3, e1 + e4, e2 + e3, e3 + e4

together with two triangles and two tetrahedra depicted on the right in the figure
below. Note that vertex e2 + e4 has been removed. The edges depicted by dotted
lines in the figure of L2

4 do not appear in L2(I) and higher dimensional faces of L2
4

containing e2 + e4 have also been deleted.

e1+e3
e1+e4

e2+e3

e2+e4
e3+e4

e1+e2

2e1 2e3

2e2

2e4

e1+e3
e1+e4

e2+e3

e3+e4

e1+e2

2e1 2e3

2e2

2e4

L2
4 L2(I)

Next, consider I3. The equation m1m3 = m2m4 produces four non-trivial equiva-
lence classes from Definition 5.1, namely the sets

{2e1+e3, e1+e2+e4}, {e1+e2+e3, 2e2+e4}, {e1+2e3, e2+e3+e4}, {e1+e3+e4, e2+2e4}.

One can check that the above relations are the only ones. Since r = 3, we have
s = 2 and so all the above duplicated vertices are in B3. In particular, L3(I) will be
the induced subcomplex of L3

4 on a vertex set V with 16 vertices. The sets below are
two different possible sets of vertices V for L3(I):

V = {3e1, 2e1 + e2, 2e1 + e4, 3e2, 2e2 + e1, 2e2 + e3, 3e3, 2e3 + e2, 2e3 + e4, 3e4,

2e4 + e1, 2e4 + e3, e1 + e2 + e3, e1 + e2 + e4, e1 + e3 + e4, e2 + e3 + e4}
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or

V = {3e1, 2e1 + e2, 2e1 + e3, 2e1 + e4, 3e2, 2e2 + e1, 2e2 + e3, 2e2 + e4, 3e3,

2e3 + e1, 2e3 + e2, 2e3 + e4, 3e4, 2e4 + e1, 2e4 + e2, 2e4 + e3}

Example 5.3. Let S = k[a, b, c, d, e, f, x, y, z] and

I = (xyz, abc, def, xza, xzb, xyc, xyd, yze, yzf) = (m1,m2, . . . ,m9).

We have the following relation:

m1
4m2m3 = m4m5m6m7m8m9 .

For r = 6 we have s = 3, and so

4e1 + e2 + e3 ∈ F 6
1 ∖B6 but e4 + e5 + e6 + e7 + e8 + e9 ∈ B6.

Therefore, the induced subcomplex L6(I) would not contain the vertex 4e1 + e2 + e3
corresponding to m1

4m2m3.

While the examples above show that, in general, Lr(I) is smaller than Lr
q, there

are also cases when the two complexes are the same. In Section 7 we identify an ideal
Eq with Lr(Eq) = Lr

q for each q. The two complexes are also equal for all I with q ⩽ 3,
as shown below.

Proposition 5.4. Let I be an ideal minimally generated by square-free monomials
m1, . . . ,mq in the polynomial ring S. If q ⩽ 3 then Lr(I) = Lr

q for all r ⩾ 1.

Proof. If q = 1, then Ir = (m1
r) for all r, and both Lr(I) and Lr

q consist of a single
point, so the equality holds.

Assume 1 < q ⩽ 3. By Definition 5.1 it suffices to show that Lr(I) and Lr
q have

the same vertex set, or in other words

ma | mb =⇒ a = b for all a,b ∈ N r
q .

Suppose q = 2 and ma | mb with

a = (a1, a2), b = (b1, b2), and a1 + a2 = b1 + b2 = r.

If a ̸= b, then we may assume a1 > b1 and a2 < b2. Since the monomials mi are
square-free, we have

m1
a1m2

a2 | m1
b1m2

b2 =⇒ m1
a1−b1 | m2

b2−a2 =⇒ m1 | m2 ,

which contradicts the minimality of the generators of I.
Suppose q = 3 and ma | mb with

a = (a1, a2, a3), b = (b1, b2, b3) and a1 + a2 + a3 = b1 + b2 + b3 = r.

Assume a ̸= b. If ai = bi for some i then we can reduce to the case q = 2, so we
may assume ai ̸= bi for all i. Without loss of generality, assume a1 > b1.

We have three cases:
(i) Suppose a2 > b2. In this case, we must also have a3 < b3. Then

m1
a1 m2

a2 m3
a3 | m1

b1 m2
b2 m3

b3 =⇒ m1
a1−b1 m2

a2−b2 | m3
b3−a3 =⇒ m1

a1−b1 | m3
b3−a3 .

Since m1 and m3 are square-free, this implies that m1 | m3 which gives a
contradiction.

(ii) Suppose a2 < b2 and a3 < b3. We have

m1
a1m2

a2m3
a3 | m1

b1m2
b2m3

b3 =⇒ m1
a1−b1 | m2

b2−a2m3
b3−a3 .
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Let x be a variable such that x | m1. It follows that x | m2 or x | m3. Assume
x ∤ m3. We then have xa1−b1 | m2

b2−a2 . Since m2 is square-free, it follows
that b2 − a2 ⩾ a1 − b1. This is a contradiction, since

a1 − b1 = b2 − a2 + b3 − a3 > b2 − a2.

A similar contradiction is obtained when x ∤ m2. We conclude that for
every x | m1, we must have x | m2 and x | m3. This implies m1 | m2 and
m1 | m3, which is a contradiction.

(iii) Suppose a2 < b2 and a3 > b3. After relabeling, this case reduces to Case (i).
□

Remark 5.5. Note that the square-free assumption is necessary in Proposition 5.4,
for if I = (x2y, yz2, xyz), then m1m2 | m3

2 in I2, but (1, 1, 0) ̸= (0, 0, 2) in N 2
3 .

The next proposition shows that the vertices labeled by rei belong to the induced
subcomplex Lr(I) for all i ∈ [q], regardless of the choices made in Definition 5.1.
Moreover, if q ⩾ 2, then for each i ∈ [q] there exists some j ∈ [q] ∖ {i} such that the
vertex labeled by (r − 1)ei + ej belongs to Lr(I).

In what follows we use the standard notation LCM(Ir) to denote the lcm lattice
of Ir, which is the set of all least common multiples of subsets of the minimal monomial
generating set of Ir, partially ordered by division.

Proposition 5.6. Let r ⩾ 1, I an ideal in S minimally generated by square-free
monomials m1, . . . ,mq, and i ∈ [q].

(i) If ma | mi
r, then a = rei, for any a ∈ N r

q .
(ii) If q ⩾ 2 and mi

r−1 | M for some monomial M ̸= mi
r with M ∈ LCM(Ir),

then there exists j ∈ [q] ∖ {i} such that mj | M and, for every a ∈ N r
q ,

ma | mi
r−1mj ⇐⇒ ma = mi

r−1mj ⇐⇒ a = (r − 1)ei + ej .

In particular, for all i, and all j as in (ii),
rei and (r − 1)ei + ej

are vertices of Lr(I), and
mi

r and mi
r−1mj

are minimal monomial generators of Ir.

Proof. We first observe that, for g, h > 0 and u, v ∈ [q], we have:

(3) mu
h | mv

g =⇒ u = v

Indeed, since mv is square-free, if mh
u divides mg

v, then mu | mv, and we conclude
u = v because mu,mv are minimal generators.

Let a = (a1, . . . , aq) ∈ N r
q , and suppose ma | mi

r. If, for some j ∈ [q], aj ̸= 0 then
mj

aj | mi
r, which by (3) implies that j = i, which results in a = rei. Thus (i) holds.

We now prove (ii). If r = 1 the statement is trivial, so assume r, q ⩾ 2 and
M ∈ LCM(Ir) satisfies mi

r−1 | M but M ̸= mi
r. Then there exists k ∈ [q] with k ̸= i

and mk | M . Let
A = {k ∈ [q] : mk | M}.

Choose j ∈ A∖ {i} such that mj has the fewest number of variables not dividing mi.
Now suppose for some a = (a1, . . . , aq) ∈ N r

q ,

(4) ma = m1
a1 · · ·mq

aq | mi
r−1mj

If aj ⩾ 2, by canceling a copy of mj in (4) we will have maj−1
j | mi

r−1 which by
(3) implies that i = j, a contradiction. Similarly if ai = r then by canceling a copy of
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mi
r−1 in (4) we obtain mi | mj , again a contradiction since mi and mj are minimal

generators. So we must have aj ⩽ 1 and ai ⩽ r − 1.
Now we claim that we must have aj = 1 or ai = r − 1. Otherwise, if aj = 0 and

ai ⩽ r − 2, since a1 + · · · + aq = r, there must exist c, d ∈ [q] ∖ {i, j} with ac, ad > 0
(c and d could be equal). In particular by (4)

(5) mcmd | mi
r−1mj .

Let

(6) mc = gcd(mc,mi)·m′
c, md = gcd(md,mi)·m′

d and mj = gcd(mj ,mi)·m′
j .

From (6) one can see that m′
c and m′

d do not share any variables with mi, and so
by (5)

(7) m′
cm

′
d | m′

j

and also

(8) m′
c | m′

j | mj | M and m′
d | m′

j | mj | M.

On the other hand mi | M , so (6) and (8), together with the fact that mc and md are
square-free, imply that

mc | M and md | M,

which in turn implies that c, d ∈ A. Assume without loss of generality that degm′
c ⩽

degm′
d. The fact that j ∈ A was picked so that mj has the fewest number of variables

outside mi and (7) together imply

degm′
c + degm′

d ⩽ degm′
j ⩽ degm′

c ⩽ degm′
d;

a contradiction since m′
c, m′

d and m′
j all have positive degrees.

So the only possibilities are aj = 1 or ai = r − 1. If aj = 1 then by (i) we have
ma = mi

r−1mj , and we are done. If ai = r − 1 we have ma = mi
r−1mk | mi

r−1mj

for some k ∈ [q], hence by cancellation k = j and ma = mi
r−1mj .

The remaining statements now follow immediately from (i), (ii) and Definition 5.1.
□

One additional lemma is necessary before the statement of our main result.

Lemma 5.7. Using Notation 4.1, let i, j ∈ [q] with i ̸= j, and let a = (a1, . . . , aq) and
b = (b1, . . . , bq) be in N r

q . If α is a non-negative integer such that

ai ⩾ α and bj > r − α

Then
(i) mb ∤ ma;
(ii) mi

αmj
ai−α ma

mi
ai

| lcm(ma,mb);
(iii) deg(mi

αmj
ai−α ma

mi
ai

) ⩽ deg(ma) ⇐⇒ deg(mi) ⩾ deg(mj) or ai = α.

Proof. To prove (i), assume mb | ma. Set

a′ = a − aiei ∈ N r−ai
q

so that
ma = ma′

mi
ai .

Let x be a variable such that x | mj . Then xbj | mb and hence xbj | ma. Suppose
that x does not divide mi. Then xbj | ma′ . Since ma′ is a product of r−ai square-free
monomials, we have then

bj ⩽ r − ai .
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The hypothesis on ai and bj gives
r − ai ⩽ r − α < bj .

The contradiction that arises shows x | mi. We conclude mj | mi, hence i = j, a
contradiction.

Now we prove (ii). Set

a′ = a − aiei ∈ N r−ai
q and b′ = b − bjej ∈ N r−bj

q

so that
ma = ma′

mi
ai and mb = mb′

mj
bj .

It will be shown that
degx(mi

αmj
ai−αma′

) ⩽ max{degx(ma), degx(mb)}
for all variables x, where for a monomial M , degx(M) = max{t : xt | M}.

Let u = degx(ma′) and v = degx(mb′). Since ma′ is a product of r−ai square-free
monomials, and mb′ is a product of r − bj square-free monomials, we have
(9) 0 ⩽ u ⩽ r − ai and 0 ⩽ v ⩽ r − bj .

Also note that
degx(mi

αmj
ai−αma′

) = α · degx(mi) + (ai − α) · degx(mj) + u.

• If x | mi, then

degx(mi
αmj

ai−αma′
) =α+ (ai − α) degx(mj) + u

⩽α+ (ai − α) + u = ai + u

= degx(ma)
⩽ max{degx(ma),degx(mb)}.

• If x ∤ mi, but x | mj , then

degx(mi
αmj

ai−αma′
) = (ai − α) + u

⩽ (ai − α) + (r − ai) by (9)
= r − α < bj ⩽ bj + v

= degx(mb)
⩽ max{degx(ma),degx(mb)}.

• If x ∤ mi and x ∤ mj , then

degx(mi
αmj

ai−αma′
) = degx(ma′

) = degx(ma) ⩽ max{degx(ma),degx(mb)}.
This finishes the proof of (ii).
Finally, (iii) follows directly from the fact that

deg(mi
αmj

ai−αma′
) = α · degmi + (ai − α) · degmj + deg(ma′

)
= α · degmi + (ai − α) · degmj + deg(ma) − ai · degmi

= deg(ma) − (ai − α)(deg(mi) − deg(mj)).
□

Remark 5.8. Recall that s =
⌈

r
2
⌉
. When α = s, the condition on bj in Lemma 5.7

can be translated as follows:

bj > r − s ⇐⇒

{
bj ⩾ s when r is odd
bj > s when r is even.
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Recall that, by Theorem 3.6, if ∆ is a quasi-tree with vertices labeled with the
monomial generating set of a monomial ideal I ⊆ k[x1, . . . , xn], then ∆ supports a
resolution of I if and only if ∆M is connected for every monomial M . It is easy to
check that the connectivity need only be verified for M in LCM(I). We now use this
criterion to prove the main result of the paper.

Theorem 5.9 (Main Result). Let q ⩾ 1 and let I be a monomial ideal minimally
generated by square-free monomials m1, . . . ,mq. By labeling each vertex a of the sim-
plicial complexes below with the monomial ma, the following hold for any r ⩾ 1:

(i) Lr
q supports a free resolution of Ir;

(ii) Lr(I) supports a free resolution of Ir.

Proof. In this proof, we let L denote either Lr
q or Lr(I). Fix L as one of these two

choices. Let V denote the set of vertices of L and let {m1, . . . ,mq} be the minimal
monomial generating set of I. Following Notation 4.1, for a = (a1, . . . , aq) ∈ N r

q we
let ma = m1

a1 · · ·mq
aq and e1, . . . , eq denote the standard basis vectors for Rq.

We will show that for every M in LCM(Ir), LM is empty or connected, where LM

is the induced subcomplex of the complex L on the set
VM = {a ∈ V : ma | M} .

By Proposition 4.6, Lr
q is a quasi-tree and by Proposition 3.3, Lr(I) is a quasi-forest,

which is connected and thus a quasi-tree. In view of Theorem 3.6, we can then conclude
that L supports a free resolution of Ir.

Suppose M ∈ LCM(Ir) and LM ̸= ∅. If M = mi
r for some i ∈ [q], then LM is a

point by Proposition 5.6 (i), and hence is connected.
Assume M ̸= mi

r for all i ∈ [q]. Note that this implies q > 1.
The facets of LM are the maximal sets, under inclusion, among the sets

(10) F r
1 ∩ VM , . . . , F r

q ∩ VM , Gr
1 ∩ VM , . . . , Gr

q ∩ VM .

Note that not all these sets are facets of LM , but all facets of LM are among those
listed in (10). We refer to the facets of LM of form F r

i ∩ VM as the first layer, and
those of the form Gr

i ∩VM as the second layer. We refer to Br ∩VM as the base of LM .
The base Br ∩ VM could become empty, depending on the choice of M .

We use the faces in (10) to argue the connectedness of LM as follows: Claim 1
below shows that any facet of LM in the second layer is connected to a facet in the
first layer. Claim 2 implies that any two facets of LM that are in the first layer connect
through the nonempty base. The combination of these two facts implies that LM is
connected, which will end our proof.

Claim 1: (The second layer facets of LM intersect the first layer facets).
For any i ∈ [q] we have:

Gr
i ∩ VM ̸= ∅ =⇒ Gr

i ∩ F r
i ∩ VM ̸= ∅.

Proof of Claim 1. Assume Gr
i ∩ VM ̸= ∅ for some i ∈ [q]. By Definition 4.2, there

exists a ∈ [q] such that
d = (r − 1)ei + ea ∈ Gr

i ∩ VM .

If i ̸= a, then d ∈ F r
i as well, and hence Gr

i ∩ F r
i ∩ VM ̸= ∅ as desired.

Assume a = i. Then d ∈ VM implies mi
r | M . Since M ̸= mi

r, Proposition 5.6
guarantees that there exists j ∈ [q] with j ̸= i and mj | M so that (r− 1)ei + ej ∈ V .

Since mi
r | M and mj | M , we see that mi

r−1mj | M . Indeed, we set M = mi
rM ′

and, since mj is square-free, we have mj | miM
′, hence mi

r−1mj | mi
rM ′ = M . Thus

we have
(r − 1)ei + ej ∈ Gr

i ∩ F r
i ∩ VM .
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Claim 2: (The first layer facets connect through the base of LM ). For any
i, j ∈ [q] with i ̸= j we have:

if (F r
i ∪Gr

i ) ∩ VM ̸= ∅ and (F r
j ∪Gr

j) ∩ VM ̸= ∅ then Br ∩ VM ̸= ∅.

Proof of Claim 2. Assume for some i, j ∈ [q] with i ̸= j that

(F r
i ∪Gr

i ) ∩ VM ̸= ∅ and (F r
j ∪Gr

j) ∩ VM ̸= ∅.

Without loss of generality, assume deg(mi) ⩾ deg(mj). We choose

a = (a1, . . . , aq) ∈ (F r
i ∪Gr

i ) ∩ VM and b = (b1, . . . , bq) ∈ (F r
j ∪Gr

j) ∩ VM

such that

(11) deg(ma) = min{deg(md) | d ∈ (F r
i ∪Gr

i ) ∩ VM } .

Assume, by way of contradiction, that Br ∩ VM = ∅. Since a,b ∈ VM , we have then
a,b /∈ Br. Therefore,

s < ai, bj ⩽ r and ma,mb | M.

Set

a′ = a − aiei ∈ N r−ai
q and c := (c1, . . . , cq) = sei + (ai − s)ej +

∑
1⩽k⩽q,k ̸=i

akek ∈ N r
q .

Since bj > s ⩾ r − s, by Lemma 5.7 (ii) and Remark 5.8,

(12) mc = mi
smj

ai−sma′
| lcm(ma,mb) | M.

Moreover c ∈ Br, because

ci = s

cj = ai − s+ aj ⩽ ai − s+ (r − ai) = r − s ⩽ s since ai + aj ⩽ r

ck = ak ⩽ r − ai < r − s ⩽ s for all k ̸= i, j.

If L = Lr
q, then V = N r

q . Since (12) shows c ∈ VM , we conclude c ∈ Br ∩ VM , a
contradiction. This finishes the proof of part (i).

Assume now L = Lr(I). Since we assumed Br ∩ VM = ∅, we must have c /∈ V .
Definition 5.1 implies then

mc′
| mc for some c′ := (c′

1, . . . , c
′
q) ∈ V.

Note that mc′ | M by (12) and hence c′ ∈ VM . Since Br ∩ VM = ∅, we must have
c′ /∈ Br. Using the notation in Definition 5.1, let Va be the equivalence class of which
c′ is a representative. If mc′ = mc, then c ∈ Va as well, and hence Va ∩Br ̸= ∅. Then
Step 1 in Definition 5.1 implies c′ ∈ Br, a contradiction. Hence mc′ ̸= mc.

Since c′ /∈ Br, there exists k ∈ [q] such that c′
k > s ⩾ r − s. Since ci = s and

mc′ | mc, Lemma 5.7 (i) implies k = i. In particular, c′
i > s, and thus

c′ ∈ (F r
i ∪Gr

i ) ∩ VM .

Since mc′ strictly divides mc = mi
smj

ai−sma′ , using Lemma 5.7 (iii), we have

deg(mc′
) < deg(mc) ⩽ deg(ma),

contradicting the assumption made in (11). This finishes the proof of part (ii). □
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Remark 5.10. One may feel that part (i) of the statement above is weaker than (ii),
since Lr(I) ⊆ Lr

q. However, the remarkable aspect of (i) is that, before labeling,
Lr

q does not depend on the ideal I. Thus the same topological structure, depending
only on r and q, supports a free resolution of the rth power of any ideal generated
by q square-free monomials. The idea is that Lr

q provides an alternative notion to the
Taylor complex for powers of I: when r = 1, Lr

q is the Taylor simplex, and when r > 1,
Lr

q is significantly smaller than the Taylor simplex but still supports a resolution of Ir.

6. Bounds on Betti numbers
One of the key applications of Theorem 5.9 is that we are able to improve the bounds
on Betti numbers for powers of ideals from that given by the standard Taylor resolu-
tion of Ir since

Lr(I) ⊆ Lr
q ⊆ Taylor(Ir).

This section contains computations that illustrate the extent to which our results
improve the Taylor bounds.

When r = 2, we were able to provide a concrete formula for the number of faces
of Lr(I) in [3], and as a result we provided bounds for Betti numbers of I2, which
are shown in Proposition 7.11 to be sharp. When r > 2, however, such formulas are
not as easy to write and the numbers are very large even for small examples. In this
case we shift our attention to Lr

q. While the bound on the Betti numbers stemming
from Lr(I) is dependent on the relations among the generators of I, one can use the
structure of Lr

q to get a general, albeit weaker, bound on βt(Ir).

Theorem 6.1 (Bounds on Betti numbers of Ir). If I is a square-free monomial
ideal with q minimal generators, then the Betti numbers of Ir for r ⩾ 2 are bounded
above by

βt(Ir) ⩽ q

((
q − 1
t

)
+
(

f

t+ 1

)
−
(

b

t+ 1

))
+
(

b

t+ 1

)
where t ⩾ 0, b is the coefficient of xr in the expansion of

(1 + x+ x2 + · · · + x⌈ r
2 ⌉)q,

and

f =
(

q+r−1
r

)
− b− q

q
+ b.

In particular, pd(Ir) ⩽ max{q − 1, f − 1}.

Proof. Let s =
⌈

r
2
⌉
. Note that βt(Ir) is bounded above by the number of faces of

dimension t of Lr
q. To count the faces of dimension t, we use the sets Br, F r

i , and Gr
i

from Definition 4.2.
Observe that the coefficient b of xr in the expansion of

(1 + x+ x2 + · · · + xs)q

is exactly the number of q-tuples (a1, . . . , aq) with ai ⩽ s and a1 + · · · + aq = r, in
other words b = |Br|.

Note that the vertices of Lr
q are formed by selecting r of the original q generators,

so using the standard formula for counting with repetition, we have

|V (Lr
q)| =

(
q + r − 1

r

)
.

Now |F r
i | = |F r

j | for all i, j, so let f = |F r
i |. Since |Gr

i ∖F r
i | = 1, there are |V (Lr

q)| − q

vertices in ∪q
i=1F

r
i . Also F r

i ∩ F r
j = Br for all i, j such that i ̸= j, so we have
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(13) f = |F r
i | = 1

q

(
(|V (Lr

q)| − q) − |Br|
)

+ |Br| =
(

q+r−1
r

)
− q − b

q
+ b.

To count the number of faces of dimension t, that is, faces with t + 1 vertices, in
Lr

q, we separate the faces into three distinct types.
(i) Faces containing mi

r for some i: by the definition of Lr
q, faces of this type

must be contained in Gr
i . Since the vertex corresponding to mi

r has been
fixed, t additional vertices of Gr

i are needed. There are q − 1 such vertices
since all vertices of Gr

i have the form (r − 1)ei + ej where 1 ⩽ j ⩽ q. Since
there are q choices for i, there are

q

(
q − 1
t

)
such faces.

(ii) Faces contained in Br: setting b = |Br| as above, there are(
b

t+ 1

)
such faces.

(iii) Faces contained in F r
i but not in Br: recalling that f = |F r

i | and Br ⊆ F r
i ,

there are
q

((
f

t+ 1

)
−
(

b

t+ 1

))
such faces.

Combining the three cases, we see that there are

q

((
q − 1
t

)
+
(

f

t+ 1

)
−
(

b

t+ 1

))
+
(

b

t+ 1

)
faces of Lr

q of dimension t. Thus for Ir,

βt(Ir) ⩽ q

((
q − 1
t

)
+
(

f

t+ 1

)
−
(

b

t+ 1

))
+
(

b

t+ 1

)
.

In particular, if t > q − 1 and t+ 1 > f , we must have βt(Ir) = 0. Thus
(14) pd(Ir) ⩽ max{q − 1, f − 1}.

□

Corollary 6.2. If an ideal I is minimally generated by q square-free monomials,
then the Betti numbers of Ir are bounded by

βt(Ir) ⩽ q

(
q − 1
t

)
+
(

b

t+ 1

)
for r = 2, 3, where b is as defined in Theorem 6.1. In the case where r = 2, b =

(
q
2
)

and the bound reduces to the bound given in [3].

Proof. When r = 2 or r = 3, then F r
i = Br for all i, so b = f and the result follows

immediately from simplifying the formula in Theorem 6.1. Moreover, when r = 2, the
coefficient of x2 in the binomial expansion of (1 + x)q is

(
q
2
)

as stated. The reduction
is then evident. □

Notice that when r = 2, the bound is known to be sharp; it agrees with the result
in [3]. In Proposition 7.11 we characterize the values of r and q for which these bounds
are sharp, i.e. can be realized by some ideal.
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Example 6.3. As a first example, we examine cases where r or q is small. We first
consider b and f for small values of q.

• For q = 2, computing (1 + x+ x2 + · · · + xs)2 shows that b = 1 when r = 2s
is even and b = 2 when r = 2s− 1 is odd. If r is even, we then have

(15) f =
(2+r−1

r

)
− 2 − 1

2 + 1 = r + 1 − 2 − 1
2 + 1 = r

2 = s.

A similar computation shows that when r is odd, f = s as well.
• If q = 3 and r = 3 or r = 4 (so that s = 2), then computing (1 + x + x2)3

yields b = 7 and f = 7 when r = 3 and b = 6 and f = 8 when r = 4.
Applying the equations from Theorem 6.1 yields:

• For r = 2, any q, and any t,

βt(Ir) ⩽ q

(
q − 1
t

)
+
( 1

2q(q − 1)
t+ 1

)
.

• For any r, q = 2, and any t ⩾ 2, if s = ⌈r/2⌉,

βt(Ir) ⩽ 2
(

s

t+ 1

)
.

• For r = q = 3 and any t,

βt(Ir) ⩽ 3
(

2
t

)
+
(

7
t+ 1

)
.

• For r = 4, q = 3 and any t ⩾ 3,

βt(Ir) ⩽ 3
(

8
t+ 1

)
− 2
(

6
t+ 1

)
.

Remark 6.4. In (14) it is useful to understand which of the integers q − 1, f − 1
achieves the maximum. For small values of q and r, it is possible to have q ⩾ f .
However, the opposite holds in most cases. More precisely, we show below that if r, q
satisfy any of the following assumptions:

(i) q = 2 and r ⩾ 5;
(ii) q = 3 and r ⩾ 3;
(iii) q ⩾ 4 and r ⩾ 2,

then f > q, and hence
pd(Ir) ⩽ f − 1 = dimLr

q .

In the case q = 2, (15) shows f = s = ⌈ r
2 ⌉. If r ⩾ 5, we must have s > 2, thus

f = s > 2 = q. This settles (i).
Now suppose q > 2. If r = 2, then Corollary 6.2 shows that f = b =

(
q
2
)
. When

q ⩾ 4, we have f =
(

q
2
)
> q. Thus, to show (ii) and (iii) it remains to consider the

case when q ⩾ 3 and r ⩾ 3. Observe that when r ⩾ 3, s ⩾ 2. In this scenario, since b
is the coefficient of xr in (1 + x+ · · · + xs)q and q > 2, then b ⩾ 2 and bq − b > q.

To see that f > q holds, we will show f − q > 0, which by (13) amounts to(
q+r−1

r

)
− q − b

q
+ b− q =

(
q+r−1

r

)
− q − b+ bq − q2

q
> 0 .
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It is sufficient to show the numerator is positive, so we observe the following, where
the first inequality results from bq − b > q and the second follows since r ⩾ 3:(

r + q − 1
q − 1

)
− q − b+ bq − q2 >

(
r + q − 1
q − 1

)
− q2

⩾

(
q + 2
q − 1

)
− q2

= (q + 2)(q + 1)q
6 − q2 = q(q − 1)(q − 2)

6 > 0 .

This ends our argument.

Example 6.5. In general, the bounds from Theorem 6.1 will be considerably smaller
than those provided by the Taylor complex, which is a simplex, and the bound on the
projective dimension will also decrease significantly. We display this phenomenon in
the table below.

Bound Comparisons
q = 2, r = 3 q = 3, r = 3 q = 3, r = 4

Thm. 6.1 3-simplex Thm. 6.1 9-simplex Thm. 6.1 14-simplex
β0(Ir) ⩽ 4 4 10 10 15 15
β1(Ir) ⩽ 3 6 27 45 60 105
β2(Ir) ⩽ 0 4 38 120 131 455
pd(Ir) ⩽ 1 3 6 9 7 14

The bounds on Betti numbers and projective dimension given by the complex Lr
q

in Theorem 6.1 are most effective when the generating set {ma | a ∈ N r
q } does not

contain redundancies. When there are redundancies, using Lr(I) will yield improved
bounds. We illustrate how to use this improvement by continuing Example 5.2.

Example 6.6. Let I = (xy, yz, zw, xw) = (m1,m2,m3,m4) as in Example 5.2. Count-
ing faces of size i in the complex L2(I) provides a bound on the ith Betti number
of I2. Note that in general, these improvements in the Betti numbers follow from
knowledge of the redundancies in {ma | a ∈ N r

q } and can often be computed from
that information using the equivalence classes without explicitly constructing Lr(I).
For instance, a comparison of the bounds is summarized in the table below for I2 and
for I3 using the first of the two vertex sets for L3(I) given in Example 5.2.

Bound Comparisons
r = 2 r = 3

L2(I) 8-
simplex

L2
4

Thm. 6.1
9-
simplex

L3(I) 15-
simplex

L3
4

Thm. 6.1
19-
simplex

β0(Ir) ⩽ 9 9 10 10 16 16 20 20
β1(Ir) ⩽ 20 36 27 45 74 120 132 190
β2(Ir) ⩽ 18 84 32 120 224 560 572 1,140
pd(Ir) ⩽ 4 8 5 9 11 15 15 19

7. Extremal Ideals: When does Lr
q support a minimal resolution?

Based upon the above work, a natural question that arises is the following: for given
r and q, can one find ideals I for which Ir has a minimal free resolution supported
on Lr

q itself? When r = 1, Lr
q is the Taylor complex, which one can easily see always

supports a minimal free resolution of the ideal generated by q variables (x1, x2, . . . , xq).
In the case where r > 1, Proposition 7.11 describes exactly when the bounds for Betti
numbers in Theorem 6.1 and Corollary 6.2 are sharp, in the sense that there exist
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ideals for which equality is attained. We call the ideals which realize these bounds q-
extremal ideals and denote them by Eq. In fact we can show a much stronger statement
in Theorem 7.9: the powers Eq

r have maximal Betti numbers among the ideals Ir

where I is generated by q square-free monomials.

Definition 7.1 (Extremal ideals). Let q be a positive integer. For every set A with
∅ ̸= A ⊊ [q], introduce a variable xA, and consider the polynomial ring

SE = k
[
xA : ∅ ̸= A ⊆ [q]

]
over a field k. For each i ∈ [q] define a square-free monomial ϵi in SE as

ϵi =
∏

A⊆[q]
i∈A

xA.

The square-free monomial ideal Eq = (ϵ1, . . . , ϵq) is called a qqq-extremal ideal.

When it is unlikely to lead to confusion, we will simplify the notation by writing x1
for x{1}, x12 for x{1,2}, etc., and refer to a q-extremal ideal simply as an extremal ideal.
The ring SE has 2q − 1 variables, corresponding to the power set of [q] (excluding ∅),
and each ϵi is the product of 2q−1 variables; that is, those corresponding to the subsets
of [q] that contain i. The following example illustrates how this works for E4.

Example 7.2. When q = 4, the ideal E4 is generated by the monomials

ϵ1 = x1x12x13x14x123x124x134x1234;
ϵ2 = x2x12x23x24x123x124x234x1234;
ϵ3 = x3x13x23x34x123x134x234x1234;
ϵ4 = x4x14x24x34x124x134x234x1234

in k[x1, x2, x3, x4, x12, x13, x14, x23, x24, x34, x123, x124, x134, x234, x1234].

Using the terminology of [18], it naturally follows that Eq is precisely the nearly
Scarf ideal of a (q − 1)-simplex: we see this by matching the variable x[q]∖B with the
face B of the simplex.

Following Notation 4.1, let r and q be positive integers and I an ideal generated
by square-free monomials m1, . . . ,mq. If a = (a1, . . . , aq) ∈ Nq, set

ma = m1
a1 · · ·mq

aq and ϵϵϵa = ϵ1
a1 · · · ϵqaq .

Observe

(16) ϵϵϵa =
∏

j∈[q]

∏
A⊆[q]
j∈A

xA
aj =

∏
∅̸=A⊆[q]

(xA)
∑

j∈A
aj .

The rth powers Ir and Eq
r are generated by monomials of the form ma and ϵϵϵa,

respectively, with a ∈ N r
q . Proposition 7.3 demonstrates that for Eq

r, the elements ϵϵϵa
with a ∈ N r

q form a minimal generating set. In fact, all faces of Lr
q are necessary in

Lr(Eq); i.e. none may be removed when constructing Lr(Eq).

Proposition 7.3. Let r and q be positive integers, and a = (a1, . . . , aq),b =
(b1, . . . , bq) ∈ Nq. Then

(i) ϵϵϵb | ϵϵϵa ⇐⇒ bi ⩽ ai for every i ∈ [q].
(ii) If a,b ∈ N r

q , then ϵϵϵb | ϵϵϵa ⇐⇒ b = a.
In particular, if a,b ∈ N r

q , then then Lr
q = Lr(Eq).
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Proof. To prove (i), use (16) to justify the first equivalence below.

ϵϵϵb | ϵϵϵa ⇐⇒
∑
j∈A

bj ⩽
∑
j∈A

aj for each ∅ ̸= A ⊆ [q] ⇐⇒ bj ⩽ aj for each j ∈ [q].

Now (ii) follows from (i) and the added assumption
b1 + · · · + bq = a1 + · · · + aq = r.

The final claim follows directly from Definition 5.1. □

In general, given the discussions above (see also [13]), for every r and q we have
(17) Lr(Eq) = Lr

q ⊆ Taylor(Eq
r),

where we assume that every vertex a of Lr
q is labeled with a generator ϵϵϵa of Eq

r, and
each face σ is labeled with the lcm of the labels of its vertices, denoted Mσ. The
following observation will be useful when working with the monomial label Mσ of
σ ∈ Taylor(Eq

r).

Remark 7.4. Let σ = {ϵϵϵa1 , . . . , ϵϵϵat} ∈ Taylor(Eq
r) and set ai = (ai1, ai2, . . . , aiq) for

i ∈ [t]. Using (16), we then have

(18) Mσ = lcm
( ∏

∅̸=A⊆[q]

(xA)
∑

j∈A
aij : i ∈ [t]

)
=

∏
∅ ̸=A⊆[q]

(xA)
max

1⩽i⩽t

∑
j∈A

aij

.

Furthermore, if c = (c1, . . . , cq) ∈ N r
q , (16) and (18) give

(19) ϵϵϵc | Mσ ⇐⇒
∑
j∈A

cj ⩽ max
1⩽i⩽t

∑
j∈A

aij for all ∅ ̸= A ⊆ [q].

We show in Theorem 7.9 that powers of extremal ideals attain maximal Betti
numbers among powers of all square-free monomial ideals with the same number of
generators. To prove this, we first define a ring homomorphism SE → S and discuss
its properties.

Definition 7.5 (The ring homomorphism ψI). Let I be an ideal of the polynomial
ring S = k[x1, . . . , xn] minimally generated by square-free monomials m1, . . . ,mq. For
each k ∈ [n], set

Ak = {j ∈ [q] : xk | mj} .
We have thus

j ∈ Ak ⇐⇒ xk | mj .

Define ψI to be the ring homomorphism

ψI : SE → S where ψI(xA) =


∏

k∈[n]
A=Ak

xk if A = Ak for some k ∈ [n],

1 otherwise.

Before proceeding directly with our work on extremal ideals, we illustrate how the
map ψI works in a sample case where there are four generators and seven variables.

Example 7.6. Let I be the ideal of k[x1, . . . , x7] generated by the square-free mono-
mials

m1 = x1x2x5x7, m2 = x2x3x7, m3 = x3x4x6, m4 = x1x4.

Since n = 7 and q = 4, it follows that
A1 = {1, 4}, A2 = {1, 2}, A3 = {2, 3}, A4 = {3, 4}, A5 = {1}, A6 = {3}, A7 = {1, 2}.

The function
ψI : k

[
xA : ∅ ̸= A ⊆ [q]

]
→ k[x1, . . . , x7]
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maps

ψI(x{1,4}) = x1, ψI(x{1,2}) = x2x7, ψI(x{2,3}) = x3, ψI(x{3,4}) = x4,

ψI(x{1}) = x5, ψI(x{3}) = x6, and ψI(xA) = 1 otherwise.

Observe that

ψI(ϵ1) = ψI

( ∏
A⊆[q]
1∈A

xA

)
=
∏

A⊆[q]
1∈A

ψI(xA)

= ψI(x{1,4})ψI(x{1,2})ψI(x{1}) = x1(x2x7)x5 = m1 .

Generalizing the properties of ψI from the example, we arrive at the following
lemma.

Lemma 7.7. Let I be an ideal of the polynomial ring S = k[x1, . . . , xn], minimally
generated by square-free monomials m1, . . . ,mq. Then

(i) ψI(ϵϵϵa) = ma for each a ∈ N r
q ;

(ii) ψI(Eq
r)S = Ir for every r > 0;

(iii) ψI preserves least common multiples, that is:

ψI(lcm(ϵϵϵa1 , . . . , ϵϵϵat)) = lcm(ma1 , . . . ,mat) for all a1, . . . ,at ∈ N r
q , t ⩾ 1.

Proof. By definitions 7.1 and 7.5, for every j ∈ [q]

ψI(ϵj) = ψI

( ∏
A⊆[q]
j∈A

xA

)
=
∏

A⊆[q]
j∈A

ψI(xA) =
∏

A⊆[q]
j∈A

∏
k∈[n]
A=Ak

xk =
∏

k∈[n]
j∈Ak

xk =
∏

k∈[n]
xk|mj

xk = mj .

It follows that ψI(ϵϵϵa) = ma for all a ∈ N r
q , which establishes (i) and also (ii). It

remains to show (iii).
Set ai = (ai1, ai2, . . . , aiq), for i ∈ [t]. Using (18) in the first equality below, we

have:

ψI(lcm(ϵϵϵa1 , . . . , ϵϵϵat)) = ψI

( ∏
∅̸=A⊆[q]

(xA)
max

1⩽i⩽t

∑
j∈A

aij
)

=
∏

∅̸=A⊆[q]

( ∏
k∈[n]
A=Ak

xk

) max
1⩽i⩽t

∑
j∈A

aij

=
∏

k∈[n],Ak ̸=∅

(xk)
max

1⩽i⩽t

∑
j∈Ak

aij

= lcm
( ∏

k∈[n],Ak ̸=∅

(xk)
∑

j∈Ak
a1j
, . . . ,

∏
k∈[n],Ak ̸=∅

(xk)
∑

j∈Ak
atj
)

= lcm
( ∏

j∈[q]

∏
k∈[n]
j∈Ak

(xk)a1j , . . . ,
∏

j∈[q]

∏
k∈[n]
j∈Ak

(xk)atj

)

= lcm
( ∏

j∈[q]

m
a1j

j , . . . ,
∏

j∈[q]

m
atj

j

)
= lcm(ma1 , . . . ,mat).

□
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Theorem 7.9 below demonstrates why the ideals from Definition 7.5 are called
extremal: they have the greatest Betti numbers among all ideals minimally generated
by q square-free monomials. The following lemma provides the technical preliminaries
necessary for the proof of Theorem 7.9.

Lemma 7.8. Let I be an ideal minimally generated by q square-free monomials in a
polynomial ring k[x1, . . . , xn]. With notation as in Definition 7.5, if S is viewed as an
SE -module via the ring homomorphism ψI : SE → S, then

SE/Eq
r ⊗SE S

∼= S/Ir and TorSE
i (SE/Eq

r, S) = 0 for all i > 0.

Proof. First, note that

SE

Eq
r ⊗SE S

∼=
S

(Eq
r)S = S

ψI(Eq
r)S = S

Ir
.

To compute TorSE
i (SE/Eq

r, S), use the Taylor complex Taylor(Eq
r), which supports

a free resolution F of SE/Eq
r; see (1) for a description of the differentials of F. Since

the homomorphism ψI changes the labels ϵϵϵa to the labels ma and preserves least
common multiples, the chain complex F ⊗SE S is isomorphic to a homogenization of
the chain complex associated to the simplex with vertices corresponding to a ∈ N r

q

and labeled with the monomials ma. This is a version of the Taylor resolution of S/Ir

defined starting with a possibly non-minimal generating set of Ir. Such a non-minimal
version is a free resolution of S/Ir as well, hence TorSE

i (SE/Eq
r, S) = 0 when i > 0.

(See Remark 2.6.) □

Theorem 7.9 (Powers of extremal ideals have maximal Betti numbers).
Given positive integers r and q,

βS
i (Ir) ⩽ βSE

i (Eq
r)

for any i ⩾ 0 and any ideal I minimally generated by q square-free monomials in a
polynomial ring S.

Proof. Let F be a minimal free resolution of SE/Eq
r over SE . Then Lemma 7.8 shows

that F ⊗SE S is a free resolution of S/Ir over S. Consequently,

βSE
i (Eq

r) = rankSE (Fi+1) = rankS(Fi+1 ⊗SE S) ⩾ βS
i (Ir).

□

In view of Theorem 7.9, the homogenized chain complex of any (cell) complex that
supports a minimal free resolution of Eq

r can be thought of as an upper bound for
the minimal free resolution of the rth power of any ideal minimally generated by q
square-free monomials. Proposition 7.10 establishes when our simplicial complex Lr

q

supports a minimal free resolution of Eq
r.

Proposition 7.10 (When Lr
q supports a minimal free resolution of Eq

r). Let
r and q be positive integers. The following statements are equivalent:

(i) The simplicial complex Lr
q supports a minimal free resolution of the ideal Eq

r.
(ii) pdSE

(Eq
r) = dimLr

q.
(iii) One of the following conditions holds:

• q = 1 and r ⩾ 1;
• q = 2 and 1 ⩽ r ⩽ 4;
• q ⩾ 3 and 1 ⩽ r ⩽ 2.
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Proof. (i) =⇒ (ii): This implication is clear.
(ii) =⇒ (iii): Assume that pdSE

(Eq
r) = dimLr

q and the values of r and q do not
satisfy the conditions in (iii). In particular, we must have q ⩾ 2 and r ⩾ 5, or q ⩾ 3
and r = 3, 4. By Remark 6.4 and (13), for all i, j ∈ [q],
(20) |F r

i | = f > q = |Gr
j |

and so F r
1 , . . . , F

r
q are the facets of Lr

q of highest dimension, with the caveat that
F r

1 = · · · = F r
q when r = 3 = q, and thus dimLr

q = f − 1. Since we assumed
pdSE

(Eq
r) = dimLr

q, we have pdSE
(Eq

r) = f − 1 as well. Let F denote the free
resolution supported on Lr

q, and let ∂ denote its differential, which is described in (1).
Since pdSE

(Eq
r) = f − 1 and a minimal free resolution of Eq

r is isomorphic to a direct
summand of F, there must exist a basis element e ∈ Ff−1 ∖ (SE)⩾1Ff−1 such that
(21) ∂(e) ∈ (SE)⩾1Ff−2 .

As in (1), let eσ denote the basis element in F corresponding to σ ∈ Lr
q. We write

e =
∑

F ∈Lr
q ,|F |=f

αF eF

with αF ∈ SE . The assumption e /∈ (SE)⩾1Ff−1 implies that αF is a unit for some
F ∈ Lr

q with |F | = f . By (20), we see that F = F r
i for some i ∈ [q]. Without loss of

generality, assume i = 1.
Recall that Mσ denotes the lcm of the monomial labels of the vertices in σ ∈ Lr

q.

Claim. There exists c ∈ F r
1 ∖Gr

1 such that MF r
1

= MF r
1 ∖{c}.

Proof of Claim. Assume first r > 4, and q ⩾ 2, so that s =
⌈

r
2
⌉
⩾ 3. Let a,b, c ∈ N r

q

be such that
ϵϵϵa = ϵ1

r−sϵ2
s, ϵϵϵb = ϵ1

r−s+2ϵ2
s−2 and ϵϵϵc = ϵ1

r−s+1ϵ2
s−1,

so that a,b, c are distinct vertices of Lr
q. Note that ϵϵϵc | lcm(ϵϵϵa, ϵϵϵb). Indeed, after

removing the common factors, this divisibility is equivalent to
ϵ1ϵ2 | lcm(ϵ21, ϵ22) ,

and can be verified using (19).
Now let r = 3 or r = 4, and q ⩾ 3. Then s = 2, and if one sets

ϵϵϵa = ϵ1
r−2ϵ2

2, ϵϵϵb = ϵ1
r−1ϵ3 and ϵϵϵc = ϵ1

r−2ϵ2ϵ3,

then we see that ϵϵϵc | lcm(ϵϵϵa, ϵϵϵb). Indeed, after removing the common factors, this
divisibility is equivalent to

ϵ2ϵ3 | lcm(ϵ22, ϵ1ϵ3) ,
and can be verified using (19).

In both cases, we have a,b, c ∈ F r
1 and c /∈ Gr

1. The divisibility ϵϵϵc | lcm(ϵϵϵa, ϵϵϵb)
establishes the conclusion of the Claim.

We finish the proof of (ii) =⇒ (iii) as follows. We have

(22) ∂(e) =
∑

F ∈Lr
q ,|F |=f

αF∂(eF ) =
∑

F ∈Lr
q ,|F |=f

αF

(∑
c′∈F

± MF

MF∖{c′}
eF∖{c′}

)
.

Let c be as in the Claim and let F ∈ Lr
q with |F | = f . By (20), we have F = F r

j for
some j. If c′ ∈ F , observe
(23) F r

1 ∖ {c} = F ∖ {c′} ⇐⇒ F r
1 = F and c = c′.

To prove this statement, we refer to Section 4 for basic properties of the sets F r
i , Gr

i

and Br. Indeed, (23) is clear when r = 3, since F r
1 = Br = F r

j for all j ∈ [q] in this
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case. Assume now r > 3, and recall that q ⩾ 2. Assuming F r
1 ∖ {c} = F r

j ∖ {c′} and
j ̸= 1, we use F r

1 ∩ F r
j = Br, and conclude F r

1 = Br ∪ {c}. Since Br ∩ Gr
1 = ∅ and

c /∈ Gr
1, this contradicts the fact that F r

1 ∩Gr
1 ̸= ∅ when r > 3 and q ⩾ 2. Thus, (23)

must hold.
In view of the Claim, (23) and (22), we see that the coefficient of eF r

1 ∖{c} in ∂(e)
is equal to ±αF r

1
hence it is a unit. This contradicts (21).

(iii) =⇒ (i): Theorem 5.9 shows that Lr
q supports a free resolution of Eq

r for all
r, q ⩾ 1. To show minimality, according to Theorem 3.1, it suffices to show that
Mσ ̸= Mσ′ for any faces σ, σ′ ∈ Lr

q with σ ̸= σ′, or, in other words, that each
monomial label appears only once.

If q = 1, then Ir = (m1
r) for all r, and all complexes in (17) are one point, so each

supports a minimal resolution by default.
If q = 2, then E2 = (x1x12, x2x12), and L2(E2), L3(E2), and L4(E2) are shown below.

Observe that each monomial label appears once in each complex, hence L2(E2), L3(E2),
and L4(E2) support a minimal free resolution of E2

2, E2
3 and E2

4, respectively.

x1
2x12

2

x1x2x12
2

x2
2x12

2

x1
2x2x12

2

x1x2
2x12

2

x1
3x12

3

x1
2x2x12

3 x1x2
2x12

3

x2
3x12

3

x1x2
3x12

3x1
3x2x12

3

x1
2x2

2x12
3

L2(E2) L3(E2)

x1
4x12

4

x1
3x2x12

4 x1x2
3x12

4

x2
4x12

4

x1x2
4x12

4x1
4x2x12

4

x1
2x2

2x12
4

x1
3x2

2x12
4 x1

2x2
3x12

4

L4(E2)

Now assume q ⩾ 3 and 1 ⩽ r ⩽ 2. We will show that, for every c ∈ N r
q and σ ∈ Lr

q,

(24) ϵϵϵc | Mσ ⇐⇒ c ∈ σ.

When r = 1 observe that for every i ∈ [q],

(25) ϵi ∤ lcm(ϵk1 , . . . , ϵkp
) for all i ∈ [q], k1, . . . , kp ∈ [q] ∖ {i}.

This can be seen by noting that the right-hand side of (19) becomes 1 ⩽ 0 for A = {i},
ϵϵϵc = ϵi and σ = {ϵk1 , . . . , ϵkp}. Therefore L1

q = L1(Eq) = Taylor(Eq), and (24) follows
immediately.

Now let r = 2, q ⩾ 3, σ ∈ L2
q and c ∈ N 2

q , with ϵϵϵc | Mσ. Since r = 2, ϵϵϵc = ϵiϵj for
some i, j ∈ [q]. Pick A = {i, j} in the right-hand side of (19).

• If i = j, then ϵϵϵc = ϵi
2 and A = {i}. By (19) we must have c ∈ σ.

• If i ̸= j, then by (19) there exists b ∈ σ with

ϵϵϵb = ϵiϵj , ϵi
2 or ϵj2.

If ϵϵϵb = ϵiϵj then c = b ∈ σ, as desired. Suppose ϵϵϵc /∈ σ, so without loss of
generality ϵϵϵb = ϵi

2. As σ ∈ L2
q, we must have σ ⊆ G2

i . So there exist k1, . . . , kp

in [q] ∖ {i, j} such that

Mσ = lcm(ϵi2, ϵiϵk1 , . . . , ϵiϵkp
) = ϵilcm(ϵi, ϵk1 , . . . , ϵkp

) .
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Since ϵiϵj | Mσ, it follows that ϵj | lcm(ϵi, ϵk1 , . . . , ϵkp
), which contradicts

(25). Thus c ∈ σ.
We have now proved the statement in (24), and by Theorem 3.1 we conclude that

L2
q supports a minimal free resolution of Eq

2 for every q ⩾ 3. □

A direct consequence of our work in Proposition 7.10 is the following statement.

Proposition 7.11 (When Lr
q supports a minimal resolution of some Ir). If

r and q are positive integers, then Lr
q supports a minimal free resolution of Ir for

some ideal I minimally generated by q square-free monomials if and only if one of the
following holds

• q = 1 and r ⩾ 1;
• q = 2 and 1 ⩽ r ⩽ 4;
• q ⩾ 3 and 1 ⩽ r ⩽ 2.

Proof. For any square-free monomial ideal I with q minimal generators the Betti
numbers of Ir are bounded above by the Betti numbers of Eq

r by Theorem 7.9. So
the question is reduced to when Lr

q = Lr(Eq) supports a minimal free resolution of Eq
r.

The rest follows from Proposition 7.10. □

When r = 2, the fact that these bounds are sharp had been previously announced
in [3]. The search for sharp(er) bounds when r > 2 is continued in [7].
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