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Top-degree components of Grothendieck
and Lascoux polynomials

Jianping Pan & Tianyi Yu

Abstract The Castelnuovo–Mumford polynomial pGw with w P Sn is the highest homogeneous
component of the Grothendieck polynomial Gw. Pechenik, Speyer and Weigandt define a statis-
tic rajcodep¨q on Sn that gives the leading monomial of pGw. We introduce a statistic rajcodep¨q

on any diagram D through a combinatorial construction “snow diagram” that augments and
decorates D. When D is the Rothe diagram of a permutation w, rajcodepDq agrees with the
aforementioned rajcodepwq. When D is the key diagram of a weak composition α, rajcodepDq

yields the leading monomial of pLα, the highest homogeneous component of the Lascoux poly-
nomials Lα. We use pLα to construct a basis of pVn, the span of pGw with w P Sn. Then we show
pVn gives a natural algebraic interpretation of a classical q-analogue of Bell numbers.

1. Introduction
Introduced by Lascoux and Schützenberger [13], the Grothendieck polynomial Gw is
a polynomial representative of the K-class of structure sheaves of Schubert varieties
of flag varieties. It is the inhomogeneous analogue of the Schubert polynomial Sw:
The lowest-degree component of Gw forms Sw. Pechenik, Speyer and Weigandt [18]
introduce the Castelnuovo–Mumford polynomial pGw

(1), the top-degree component
of Gw. They describe the leading monomial of pGw with respect to the tail lexicographic
order by defining a new statistic rajcodep¨q on Sn. We summarize some of their results
on pGw.

Theorem 1.1 ([18]). Let w, u be permutations in Sn.
(A) The polynomial pGw has leading monomial xrajcodepwq.
(B) We have pGw is a scalar multiple of pGu if and only if rajcodepwq “ rajcodepuq.
(C) If w is inverse fireworks (see §5), then xrajcodepwq has coefficient 1 in pGw.

Moreover, there exists exactly one u1 P Sn that is inverse fireworks such that
rajcodepuq “ rajcodepu1q.

Dreyer, Mészáros and St. Dizier [6] provide an alternative proof of (A) via the
climbing chain model for Grothendieck polynomials introduced by Lenart, Robinson,
and Sottile [15]. Hafner [9] provides an alternative proof of (A) for vexillary permu-
tations via bumpless pipedreams.
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Keywords. Grothendieck polynomials, Lascoux polynomials, Hilbert series, Castelnuovo–Mumford
polynomials.

(1)Pechenik, Speyer and Weigandt [18] denote it as CMw.
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Schubert polynomials are related to key polynomials κα which are indexed by weak
compositions. The key polynomials are the characters of Demazure modules [5]. Both
Schubert and key polynomials can be defined recursively via the divided difference
operators (see §2). In addition, Schubert polynomials expand positively into key poly-
nomials [19]. The key polynomials also have inhomogeneous analogues called Lascoux
polynomials Lα [12]. Grothendieck polynomials and Lascoux polynomials are related:
An expansion of Grothendieck polynomials into Lascoux polynomials was conjectured
by Reiner and Yong [20] and proven by Shimozono and Yu [24].

Due to the connection between Gw and Lα, one would expect the top Lascoux
polynomial pLα, the top-degree component of Lα, to parallel pGw. We define a statistic
rajcodep¨q on weak compositions and show in §4 that pLα enjoy properties analogous
to the properties of pGw listed in Theorem 1.1:

Theorem 1.2. Let α and γ be two weak compositions.
(a) The polynomial pLα has leading monomial xrajcodepαq.
(b) We have pLα is a scalar multiple of pLγ if and only if rajcodepαq “ rajcodepγq.
(c) We say α is snowy if its positive entries are distinct. If α is snowy, then

xrajcodepαq has coefficient 1 in pLα. Moreover, there exists exactly one snowy
weak composition γ1 such that rajcodepγq “ rajcodepγ1q.

Our definition of rajcodep¨q on weak compositions is diagrammatic. Given a dia-
gram D, we define a combinatorial construction called the snow diagram that aug-
ments and decorates D. Let rajcodepDq be the weight of the snow diagram. Every
weak composition α is naturally associated with a diagram called the key diagram
Dpαq (see Subsection 2.2). Then we define rajcodepαq :“ rajcodepDpαqq.

Snow diagrams unify the computation of leading monomials in pGw and pLα. Each
permutation w is also associated with a diagram called the Rothe diagram RDpwq.
In §5, we show rajcodepwq “ rajcodepRDpwqq. In other words, we give a diagrammatic
way to compute rajcodepwq.

Finally, let pVn :“ Q-spantpGw : w P Snu and pV :“
⋃

ně1
pVn. In Proposition 2.7, we

show pV is a filtered algebra. Theorem 1.1 can be used to construct a basis of pVn and pV

consisting of pGw. In particular, the dimension of pVn is Bn, the nth Bell number. In §6,
we use Theorem 1.2 to construct another basis consisting of pLα. This basis allows us
to compute the Hilbert series of pVn and pV involving a q-analogue of Bn.

The rest of the paper is organized as follows. In §2, we provide necessary background
information and notation. In §3, we construct a snow diagram from any diagram and
define statistics rajcodep¨q and rajp¨q on all diagrams. In §4, we prove Theorem 1.2.
In §5, we show the statistics rajcodep¨q and rajp¨q on a Rothe diagram are equivalent
to that defined in [18]. We also relate the snow diagram to two classical constructions:
Schensted insertion and the shadow diagram. In §6, we derive the Hilbert series of pVn

and pV . In §7, we present several open problems and future directions.

2. Background
2.1. Polynomials. We provide necessary background for Grothendieck polynomials
and Lascoux polynomials. Then we introduce pGw and pLα which span the spaces pVn

and pV .
The Grothendieck polynomials Gw P Zě0rx1, x2, . . . srβs were recursively defined by

Lascoux and Schützenberger [13]. Let Bip¨q be the divided difference operators acting
on the polynomial ring. For each i, define Bipfq :“ f ´ sif

xi ´ xi`1
, where si is the operator
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that swaps xi and xi`1. Then for w P Sn,

Gw :“
#

xn´1
1 xn´2

2 ¨ ¨ ¨ xn´1 if w is rn, n ´ 1, . . . , 1s in one-line notation,
Bipp1 ` βxi`1qGwsi

q if wpiq ă wpi ` 1q.

Let S` be the set of permutations of t1, 2, . . . u such that only finitely many numbers
are permuted. Take w P S` and assume w only permutes numbers in rns. Let w1 P Sn

be the restriction of w to rns and define Gw as Gw1 . It is shown in [13] that Gw is
well-defined.

A weak composition is an infinite sequence of non-negative integers with finitely
many positive entries. Let C` be the set of weak compositions. For α P C`, we use
αi to denote its ith entry, and write α “ pα1, α2, . . . , αnq where αn is the last positive
entry. We use xα to denote the monomial xα1

1 xα2
2 ¨ ¨ ¨ xαn

n and |α| “
řn

iě1 αi. The
Lascoux polynomials Lα, indexed by weak compositions, are in Zě0rx1, x2, . . . srβs.
By [12], they are defined recursively

Lα “

#

xα if α is weakly decreasing,
πipp1 ` βxi`1qLsiαq if αi ă αi`1,

where πi is the operator πipfq :“ Bipxifq.
We say a pair pi, jq is an inversion of w P Sn if i ă j and wpiq ą wpjq. Let Invpwq

be the set of all inversions in w and let invpwq “ |Invpwq|. Then we may view Gw as
a polynomial in β, where

rβdsGw :“ coefficient of βd in Gw

is a homogeneous polynomial in the x-variables with degree invpwq ` d in
Zě0rx1, x2, . . . s. The Schubert polynomial Sw :“ rβ0sGw. Similarly, viewing Lα

as a polynomial of β, rβdsLα is a homogeneous polynomial with degree |α| ` d in
Zě0rx1, x2, . . . s. The key polynomial κα :“ rβ0sLα. The representation theoretic, geo-
metric and combinatorial perspectives of Schubert polynomials and key polynomials
are well-studied [5, 25, 1].

Define Vn :“ Q-spantSw : w P Snu and V :“ Q-spantSw : w P S`u “
⋃

ně1 Vn.
In fact, V “ Qrx1, x2, . . . s. By the increasing sequence V1 Ă V2 Ă ¨ ¨ ¨ Ă V , V has the
structure of a filtered algebra.

In this paper, we are interested in the top-degree components of Gw and Lα. For
a polynomial f P Qrx1, x2, . . . srβs, let pf “ rβdspfq where d is the largest such that
rβdspfq ‰ 0. The Castelnuovo–Mumford polynomial of w P S` is defined as pGw.
The top Lascoux polynomial of α P C` is defined as pLα. In appendix §8, we list
some Grothendieck polynomials and Lascoux polynomials. Pechenik, Speyer and
Weigandt [18] first study pGw. To the best of the authors knowledge, pLα has not been
studied previously.

Now consider the tail lexicographic order on monomials in the x-variables. We say
a monomial xα is larger than xγ if there exists k such that αk ą γk and αj “ γj for
all j ą k. The leading monomial of f P Qrx1, x2, . . . s is the largest monomial in f .
Among the four homogeneous polynomials above, three of them have combinatorial
rules for their leading terms:

(1) [1] The leading monomial of Sw with w P Sn is xinvcodepwq, where
invcodepwqi “ |tj : pi, jq P Invpwqu|.

(2) [14] The leading monomial of κα is xα.
(3) [18] The leading monomial of pGw is xrajcodepwq defined as follows.

Definition 2.1. [18] Let LISw
pqq be the length of the longest increasing subsequence

of w P Sn that starts with q. The rajcodepwq for w P Sn is a weak composition
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where rajcodepwqr :“ n ` 1 ´ r ´ LISw
pwprqq for r P rns and 0 if r ą n. Then

rajpwq :“ |rajcodepwq|.

Example 2.2. Consider w “ 3721564 P S7. We have LISw
p2q “ 3, so rajcodepwq3 “

7 ` 1 ´ 3 ´ 3 “ 2. All together, we get rajcodepwq “ p4, 5, 2, 1, 1, 1q and rajpwq “ 14.

We will define rajcodep¨q on C` and show the leading monomial of Lα is xrajcodepαq

in §4.
A connection between Gw and Lα is established by Shimozono and Yu [24]. To

describe this connection, we need the following notion.

Definition 2.3. Let f, f1, f2, . . . be polynomials in Zě0rx1, x2, . . . s. We say f expands
positively into tf1, f2, . . . u if there exist c1, c2, ¨ ¨ ¨ P Zě0 such that f “

ř

i cifi.
Now assume f, f1, f2, . . . are polynomials in Zě0rβsrx1, x2, . . . s. We say f expands

positively into tf1, f2, . . . u if there exist g1, g2, ¨ ¨ ¨ P Zě0rβs such that f “
ř

i gifi.

Theorem 2.4 ([24]). For w P S`, Gw expands positively into tLα : α P C`u.

This result implies pGw also expands positively into pLα by the following lemma
whose proof is sufficiently elementary.

Lemma 2.5. Let f, f1, f2, . . . in Zě0rβsrx1, x2, . . . s. If f expands positively into
tf1, f2, . . . u, then pf expands positively into pf1, pf2, . . . .

Corollary 2.6. For w P S`, pGw expands positively into tpLα : α P C`u.

Define pVn :“ Q-spantpGw : w P Snu and pV :“ Q-spantpGw : w P S`u “
⋃

ně1
pVn. By

work of Lascoux, Schützenberger [13] and Brion [2], the product GuGv with u P Sm

and v P Sn expands positively into Gw with w P Sm`n. By Lemma 2.5, pGu
pGv with

u P Sm and v P Sn expands positively into pGw with w P Sm`n. Finally, we conclude
the following.

Proposition 2.7. The space pV is a filtered algebra with respect to the filtration pV1 Ă
pV2 Ă ¨ ¨ ¨ Ă pV .

2.2. Diagrams. A diagram is a finite subset of Zą0ˆZą0. We represent a diagram by
putting a cell at row r and column c for each pr, cq in the diagram. The leftmost column
(resp. topmost row) is called column 1 (resp. row 1). The weight of a diagram D,
denoted as wtpDq, is a weak composition whose ith entry is the number of boxes in
its row i. We recall two classical families of diagrams.

Each weak composition α is associated with a diagram called the key diagram,
denoted as Dpαq. It is the unique left-justified diagram with weight α. One important
key diagram we will use later is Stairn :“ Dppn ´ 1, n ´ 2, ¨ ¨ ¨ , 1qq.

Example 2.8. The following are two examples of key diagrams. For clarity, we put
an “i” on the left of row i and put a small dot in each cell.

Dp0, 2, 1q “

1
2 ¨ ¨

3 ¨

, Stair4 “

1 ¨ ¨ ¨

2 ¨ ¨

3 ¨

Each permutation w is associated with the Rothe diagram RDpwq :“ tpr, wpr1q :
pr, r1q P Invpwqu.

Example 2.9. Let w “ 41532 P S5. Then
Invpwq “ tp1, 2q, p1, 4q, p1, 5q, p3, 4q, p3, 5q, p4, 5qu .
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The Rothe diagram is depicted as follows.

RDpwq “

1 ¨ ¨ ¨

2
3 ¨ ¨

4 ¨

5

2.3. K-Kohnert diagrams. We recall a combinatorial formula for Lascoux polyno-
mials. To simplify our description, we introduce the following definition.
Definition 2.10. A labeled diagram is a diagram where each cell can be labeled by
a symbol. The underlying diagram of a labeled diagram is the diagram obtained by
ignoring all labels. The weight of a labeled diagram D, denoted as wtpDq, is just the
weight of its underlying diagram.

Then a ghost diagram is a labeled diagram where cells can be labeled by X. We call
cells labeled by X as “ghosts”. For a ghost diagram D, its excess, denoted as expDq,
is the number of ghosts in D. Next, we define a move on ghost diagrams.
Definition 2.11 ([21]). A K-Kohnert move is defined on a ghost diagram D.

We pick a cell pr, cq and move it up, subject to the following requirements.
‚ The cell pr, cq must be the rightmost cell in row r.
‚ The cell pr, cq is not a ghost.
‚ The cell pr, cq is moved to the lowest empty spot above it.
‚ The cell pr, cq may jump over other cells but cannot jump over any ghosts.

After the move, we may or may not leave a ghost at pr, cq. When we leave a ghost,
we refer this move as a ghost move.

For a weak composition α, a ghost diagram is called a K-Kohnert diagram of α
if it can be obtained from Dpαq by K-Kohnert moves. Let KKDpαq be the set of all
K-Kohnert diagrams of α. As proved in [17], K-Kohnert diagrams give a formula for
Lascoux polynomials. This rule was first conjectured by Ross and Yong [21]. Notice
that our convention is different from [17]: row 1 is the top most row in this paper
while it is the bottom most row in [17].
Theorem 2.12 ([17]). Let α be a weak composition. Then we have

Lα “
ÿ

DPKKDpαq

xwtpDqβexpDq.

Example 2.13. Let α “ p0, 2, 1q, then KKDpαq consists of the following:

1
2 ¨ ¨

3 ¨
,

1 ¨

2 ¨

3 ¨
,

1 ¨ ¨

2
3 ¨

,

1 ¨

2 ¨ ¨

3
,

1 ¨ ¨

2 ¨

3
,

1 ¨

2 ¨ ¨

3 X
,

1 ¨

2 ¨ X
3 ¨

,

1 ¨ ¨

2 X
3 ¨

,

1 ¨ ¨

2 ¨

3 X
,

1 ¨ ¨

2 ¨ X
3

,

1 ¨ ¨

2 ¨ X
3 X

.

By the rule above, we have
Lα “ x2

2x3 ` x1x2x3 ` x2
1x3 ` x1x2

2 ` x2
1x2

` βpx1x2
2x3 ` x1x2

2x3 ` x2
1x2x3 ` x2

1x2x3 ` x2
1x2

2q ` β2x2
1x2

2x3.
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3. Snow diagrams
We associate each diagram with a labeled diagram called the snow diagram which
allows us to define two statistics on diagrams. For each diagram D, we describe the
following algorithm that outputs snowpDq. Cells in snowpDq can be labeled by ‚ or ˚.

- Iterate through rows of D from bottom to top.
- In each row r of D, find the rightmost cell pr, cq with no ‚ in column c. If

such an pr, cq exists, label it by ‚ and put a cell labeled by ˚ in pr1, cq for
r1 P rr ´ 1s and pr1, cq R D.

We call cells labeled by ‚ dark clouds and cells labeled by ˚ snowflakes.

Example 3.1. The following is a diagram together with its snow diagram.

D “

1 ¨

2 ¨ ¨

3 ¨

4
5 ¨ ¨

, snowpDq “

1 ˚ ˚ ¨

2 ‚ ¨ ˚

3 ˚ ‚

4 ˚

5 ¨ ‚

.

The positions of dark clouds will be important, so we make the following definition.

Definition 3.2. The dark cloud diagram of a diagram D, darkpDq, is the set of cells
pr, cq that are dark clouds in snowpDq.

Example 3.3. In Example 3.1, darkpDq “ tp2, 1q, p3, 3q, p5, 2qu.

A diagram is a non-attacking rook diagram if it has at most one cell in each row
or column. Let Rook` be the family of all non-attacking rook diagrams.

Remark 3.4. We make the following observations about darkpDq.
‚ By construction, darkpDq P Rook`.
‚ Take pr, cq P D. If there are no r1 ą r with pr1, cq P darkpDq and there are no

c1 ą c with pr, c1q P darkpDq, then pr, cq P darkpDq.

Finally, we associate two statistics to each diagram via its snow diagram.

Definition 3.5. Let D be a diagram. The rajcode of D, rajcodepDq, is the weak
composition wtpsnowpDqq. Let rajpDq denote |rajcodepDq|, the total number of cells in
snowpDq.

Example 3.6. Continuing with Example 3.1, we have rajcodepDq “ p3, 3, 2, 1, 2q and
rajpDq “ 11.

Remark 3.7. Recall that Pechenik, Speyer and Weigandt [18] define the statistics
rajcodep¨q and rajp¨q on permutations using increasing subsequences. We show that
our rajcode and raj on Rothe diagrams agree with their definitions in Theorem 5.6.
Therefore, our construction on Rothe diagrams is a diagrammatic way to compute
the leading monomial and degree of pGw. In addition, we notice that positions of
dark clouds in snowpRDpwqq are connected to the Schensted insertion and Viennot’s
geometric construction. These connections are explored in §5.

4. Proof of Theorem 1.2
To prove Theorem 1.2, we study top Lascoux polynomials via snow diagrams of key
diagrams. With a slight abuse of notation, we define rajcodepαq :“ rajcodepDpαqq,
rajpαq :“ rajpDpαqq and darkpαq “ darkpDpαqq for α P C`. We start by introducing
some definitions.
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Definition 4.1. A weak composition α is called snowy if its positive entries are all
distinct.

Our main goal in this section is to establish Theorem 1.2:

Theorem 1.2. Let α and γ be two weak compositions.
(a) The polynomial pLα has leading monomial xrajcodepαq.
(b) We have pLα is a scalar multiple of pLγ if and only if rajcodepαq “ rajcodepγq.
(c) We say α is snowy if its positive entries are distinct. If α is snowy, then

xrajcodepαq has coefficient 1 in pLα. Moreover, there exists exactly one snowy
weak composition γ1 such that rajcodepγq “ rajcodepγ1q.

This task is broken into four major lemmas established in the following four sub-
sections. In Subsection 4.1, we use K-Kohnert diagrams to establish the first major
lemma:

Lemma 4.2. The polynomial Lα has the term xrajcodepαqβrajpαq´|α|.

Lemma 4.2 proves pLα has degree at least rajpαq. To show pLα indeed has degree
rajpαq, we need the following equivalence relation on weak compositions.

Definition 4.3. Let α and γ be two weak compositions. We say α is rajcode equivalent
to γ, denoted as α „ γ, if rajcodepαq “ rajcodepγq.

Example 4.4. Let α “ p2, 0, 4, 3, 1q and γ “ p3, 1, 4, 3, 1q. Then we have:

Dpαq “

1 ¨ ¨

2
3 ¨ ¨ ¨ ¨

4 ¨ ¨ ¨

5 ¨

, snowpDpαqq “

1 ¨ ‚ ˚ ˚

2 ˚ ˚ ˚

3 ¨ ¨ ¨ ‚

4 ¨ ¨ ‚

5 ‚

,

Dpγq “

1 ¨ ¨ ¨

2 ¨

3 ¨ ¨ ¨ ¨

4 ¨ ¨ ¨

5 ¨

, snowpDpγqq “

1 ¨ ‚ ¨ ˚

2 ¨ ˚ ˚

3 ¨ ¨ ¨ ‚

4 ¨ ¨ ‚

5 ‚

.

Be aware that the cell p2, 2q is not in snowpDpαqq or snowpDpγqq. Observe that
rajcodepαq “ p4, 3, 4, 3, 1q “ rajcodepγq, so α „ γ.

In Subsection 4.2, we study this equivalence relation. We show that snowy weak
compositions form a complete set of representatives:

Lemma 4.5. For each equivalence class of „, there is a unique α such that α is snowy.
Moreover, if γ „ α and α is snowy, then γr ě αr for all r. In other words, a snowy
weak composition is the unique entry-wise minimum in each equivalence class.

In Subsection 4.3, we focus on pLα for snowy α and give a recursive description
of pLα, which leads to the third major lemma.

Lemma 4.6. If α is snowy, then xrajcodepαq is the leading monomial of pLα with coeffi-
cient 1.
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Finally, we devote the Subsection 4.4 to proving the last major lemma:

Lemma 4.7. If α „ γ, then pLα “ cpLγ for some c ‰ 0.

Once we have these four major lemmas, we can easily check Theorem 1.2.

Proof. First, statement (c) follows from Lemma 4.5 and Lemma 4.6.
Given a weak composition α. Let β be the unique snowy weak composition such

that α „ β. Statement (a) follows from Lemma 4.6 and Lemma 4.7.
For statement (b), the backward direction is just Lemma 4.7. For the forward

direction, if pLα is a scalar multiple of pLγ , then they have the same leading monomial.
By statement (a), we have rajcodepαq “ rajcodepγq. □

4.1. Proof of Lemma 4.2. We show the monomial xrajcodepαqβrajpαq´|α| exists in Lα.
We give an algorithm whose output is a K-Kohnert diagram for α, which has the same
underlying diagram as snowpDpαqq. First, observe that snowpDpαqq contains no dark
clouds if and only if α contains only zero entries. In this case, pLα “ 1 and rajcodepαq

only has zero entries. Our claim is immediate. In the rest of this subsection, we assume
α is a weak composition with at least one positive entry, and thus snowpDpαqq has
at least one dark cloud. To describe the algorithm, we introduce two useful moves on
ghost diagrams.

Definition 4.8. Let D be a ghost diagram. Let pr, cq be a non-ghost cell in D and let
pr1, cq be the highest empty space in column c. If r1 ă r, let UPpr,cqpDq be the diagram
we get after moving pr, cq to pr1, cq. Let UP G

pr,cq
pDq be the diagram we get after moving

pr, cq to pr1, cq and putting a ghost on pr, cq and all empty spaces between pr, cq and
pr1, cq. If r1 ą r, define UP G

pr,cq
pDq “ UPpr,cqpDq “ D.

Remark 4.9. Assume UPpr,cq or UP G
pr,cq

moves a cell to pr1, cq. Then this move can be
achieved by a sequence of K-Kohnert moves if both of the following conditions hold
for each r1 ă j ď r:

‚ If pj, cq R D, then D has no cell to the right of column c in row j.
‚ If pj, cq P D, then it is not a ghost cell.

Now we can describe the algorithm. Let D0 “ Dpαq. Recall by Remark 3.4, there
is at most one dark cloud in each column of snowpDpαqq. We can label all the dark
clouds as pr1, c1q, . . . , prm, cmq where c1 ă c2 ¨ ¨ ¨ ă cm for some m ě 1. We iterate i
from 1 to m. At iteration i, compute

Di “ UP G
pri,ciq ˝ UPpri,ci`1q ¨ ¨ ¨ ˝ UPpri,αri

qpDi´1q .(1)

Example 4.10. Consider α “ p1, 3, 4, 0, 4, 3q, we compute its snow diagram and we
have the dark clouds at p2, 1q, p3, 2q, p6, 3q, p5, 4q. We compute D4 according to the
above algorithm.

snowpDpαqq “

1 ¨ ˚ ˚ ˚

2 ‚ ¨ ¨ ˚

3 ¨ ‚ ¨ ¨

4 ˚ ˚

5 ¨ ¨ ¨ ‚

6 ¨ ¨ ‚

D0 “

1 ¨

2 ¨ ¨ ¨

3 ¨ ¨ ¨ ¨

4
5 ¨ ¨ ¨ ¨

6 ¨ ¨ ¨

ÝÝÝÑ
p2,1q

1 ¨ ¨ ¨

2 ¨

3 ¨ ¨ ¨ ¨

4
5 ¨ ¨ ¨ ¨

6 ¨ ¨ ¨
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ÝÝÝÑ
p3,2q

1 ¨ ¨ ¨ ¨

2 ¨ ¨ ¨

3 ¨ X
4
5 ¨ ¨ ¨ ¨

6 ¨ ¨ ¨

ÝÝÝÑ
p6,3q

1 ¨ ¨ ¨ ¨

2 ¨ ¨ ¨

3 ¨ X ¨

4 X
5 ¨ ¨ ¨ ¨

6 ¨ ¨ X

ÝÝÝÑ
p5,4q

1 ¨ ¨ ¨ ¨

2 ¨ ¨ ¨ ¨

3 ¨ X ¨ X
4 X X
5 ¨ ¨ ¨ X
6 ¨ ¨ X

“ D4.

We observe that in the previous example, D4 has the same underlying diagram as
snowpDpαqq. This is true in general.

Lemma 4.11. The labeled diagram Dm defined by (1) has the same underlying diagram
as snowpDpαqq.

Proof. For a number c, we compare the column c of snowpDpαqq and Dm. If column
c of snowpDpαqq has no dark cloud, then it is the same as column c of Dpαq. In this
case, the algorithm will not move any cells in column c. Thus, Dm and Dpαq also
agree in column c.

Now suppose snowpDpαqq has a dark cloud in column c, say at row r. In the
underlying diagram of snowpDpαqq, column c is obtained from column c of Dpαq by
filling all empty spaces above row r. On the other hand, consider what the algorithm
does on column c. It first might move cells above row r and then it fills all empty spaces
weakly above row r. Thus, column c in Dm is the same as column c of snowpDpαqq

after ignoring the labels. □

Next, we want to show Dm produced by the algorithm is in KKDpαq. We just need
to check each UPpr,jq and UP G

pr,cq
in each iteration is a sequence of K-Kohnert moves.

To that end, we first make the following observation about the diagram Di.

Lemma 4.12. Let c0 “ 0. In Di, if a cell is strictly to the right of column ci, then
there is a cell immediately on its left. In other words, the diagram Di is left-justified
if we ignore the first ci columns.

Proof. Prove by induction on i. The lemma holds for D0, which is left-justified.
Assume Di´1 is left-justified if we ignore the first ci´1 columns, for some i ě 1.

Consider an arbitrary cell pr, cq in Di with c ą ci. We show pr, c ´ 1q is in Di by
considering two possibilities.

- The cell pr, cq is not in Di´1. Then during iteration i, a cell is moved to pr, cq,
which is the highest blank in column c of Di´1. By our inductive hypothesis
and c ´ 1 ą ci´1, the highest blank in column c ´ 1 of Di´1 is weakly lower
than row r. Thus, pr, c ´ 1q is in Di.

- Otherwise, pr, cq is in Di´1. By our inductive hypothesis, pr, c ´ 1q is in Di´1.
If r ‰ ri, then we know that no cell from row r is moved during iteration i.
Thus, pr, c ´ 1q is still in Di. If r “ ri, then there are no empty spaces above
pr, cq in Di´1. By our inductive hypothesis, there is no empty spaces above
pr, c ´ 1q, so pr, c ´ 1q is still in Di. □

The above lemma shows that the diagram Di is left-justified if we ignore the first
ci columns. We will use this property to show that Dm is in KKDpαq.

Proposition 4.13. The above algorithm can be achieved by K-Kohnert moves, so
Dm P KKDpαq.

Proof. We focus on one iteration of the algorithm, say iteration i. We check the
operators in (1) can be achieved by K-Kohnert moves. We ignore all cells to the left
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of the column ci in Di´1. By the previous Lemma, this part of the diagram is left-
justified. The highest empty spaces in columns ci, ¨ ¨ ¨ , αri

are going weakly up from
left to right. Moreover, the condition in Remark 4.9 holds for all pri, ciq, ¨ ¨ ¨ , pri, αri

q.
Now UPpri,αri

q can be achieved by K-Kohnert moves. After that, the conditions
in Remark 4.9 hold at each step for pri, αri

´ 1q, . . . , pri, ciq. Following this logic, this
iteration can be achieved by K-Kohnert moves. □

Using Theorem 2.12:

Lemma 4.2. The polynomial Lα has the term xrajcodepαqβrajpαq´|α|.

4.2. Proof of Lemma 4.5. First, notice that we can recover the underlying diagram
of snowpDpαqq from darkpαq.

Lemma 4.14. Let α be a weak composition. The underlying diagram of snowpDpαqq is:⋃
pr,cqPdarkpαq

prrs ˆ tcuq Y ptru ˆ rcsq.(2)

Proof. First, we show that the elements of the set (2) are cells in snowpDpαqq. Take
pr, cq P darkpαq. We know pr, cq P Dpαq. Since Dpαq is left-justified, tru ˆ rcs Ď Dpαq.
Thus, these cells are in snowpDpαqq. By the construction of snowpDpαqq, the cells
in rrs ˆ tcu are also in snowpDpαqq.

Now suppose there is a cell pr, cq in snowpDpαqq that is not in the set (2). Then
there is no r1 ą r with pr1, cq P darkpDq, which implies pr, cq is not a snowflake in
snowpDpαqq. Thus, pr, cq P Dpαq. Also, there is no c1 ą c with pr, c1q P darkpDq. By
Remark 3.4, pr, cq P darkpDq. Thus, pr, cq is in the set (2), which is a contradiction. □

Furthermore, we can recover darkpαq from rajcodepαq.

Lemma 4.15. Let α, γ be weak compositions. If rajcodepαq “ rajcodepγq, then
darkpαq “ darkpγq.

Proof. We prove the two diagrams darkpαq and darkpγq agree on each row r, by a
reverse induction on r. The base case is immediate. Suppose r is large enough such
that αi “ γi “ 0 if i ą r. Then darkpαq and darkpγq clearly agree on row r and
underneath.

Next, we show that the value rajcodepαqr and cells in darkpαq under row r deter-
mines whether darkpαq has a cell on row r. Moreover, if such a cell exists, its column
index is also determined.

Let r ě 1. Define
Br :“ tc : There are no dark clouds under pr, cq in snowpDpαqu.

The complement of Br is Br :“ Zą0 ´ Br “ tc : pr1, cq P darkpαq for some r1 ą ru.
For c P Br, pr, cq of snowpDpαqq is a snowflake or an unlabeled cell. If there is no
dark cloud on row r of snowpDpαqq, rajcodepαqr “ |Br|. Otherwise, we assume the
dark cloud is at pr, cq for some c P Br. Then row r of snowpDpαqq has cells on
pr, c1q for c1 P Br or c1 ď c. Suppose c is the ith smallest number in Br. We have
rajcodepαqr “ i ` |Br|.

Consequently, rajcodepαqr and darkpαq under row r uniquely determines row r of
darkpαq. If we assume darkpαq and darkpγq agree underneath row r as our inductive hy-
pothesis, then they also agree on row r since rajcodepαqr “ rajcodepγqr. The induction
is finished. □

Now we have two equivalent ways of describing rajcode equivalence.

Proposition 4.16. Let α and γ be two weak compositions. The following are equiva-
lent:
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(1) α „ γ;
(2) darkpαq “ darkpγq.
(3) The underlying diagrams of snowpDpαqq and snowpDpγqq are the same;

Proof. By Lemma 4.15, (1) implies (2). By Lemma 4.14, (2) implies (3). Clearly, (3)
implies (1). □

Our next goal is to find representatives of rajcode equivalence classes. At the end
of this subsection, we will see snowy weak compositions form a complete set of rep-
resentatives. To understand snowy weak compositions, we start with the following
observation.

Remark 4.17. For a weak composition α, the following are equivalent:
‚ α is snowy.
‚ The rightmost cell in each row of Dpαq are in different columns.
‚ The rightmost cell in each row of Dpαq is a dark cloud in snowpDpαqq.

One advantage of working with snowy weak compositions is that we can tell their
rajcodep¨q and rajp¨q easily:

Lemma 4.18. Let α be a snowy weak composition. Then the following statements hold.
(1) darkpαq “ tpr, αrq : αr ą 0u,
(2) rajcodepαqr “ αr ` |tr1 ą r : αr ă α1

ru|, and
(3) rajpαq “

ř

rpαr ` |tpr, r1q : αr ă α1
r, r ă r1u|q “ |α| ` |tpr, r1q : r ă r1, αr ă

αr1 u|.

Proof. (1) follows from Remark 4.17. (2) follows from (1) and Lemma 4.14, and (3)
immediately follows from (2). □

As a consequence, we have the following rule which tells us how rajcodepsiαq differs
from rajcodepαq when α is snowy.

Corollary 4.19. Let α be a snowy weak composition and consider i with αi ą αi`1.
Then rajcodepsiαq “ sirajcodepαq ` ei, where ei is the weak composition with 1 on its
ith entry and 0 elsewhere.

The second advantage of working with snowy weak compositions is that they are
in bijection with Rook`.

Lemma 4.20. The map darkp¨q is a bijection from tα P C` : α is snowyu to Rook`.
Its inverse dark´1

p¨q is given by dark´1
pRq “ α where

αr “

#

0 if row r of R is empty;
c if pr, cq P R.

Proof. Follows from Remark 4.17. □

We are ready to show that they are representatives of all equivalence classes.

Lemma 4.5. For each equivalence class of „, there is a unique α such that α is snowy.
Moreover, if γ „ α and α is snowy, then γr ě αr for all r. In other words, a snowy
weak composition is the unique entry-wise minimum in each equivalence class.

Proof. Let γ be an arbitrary weak composition. First, we construct a snowy α such
that α „ γ. We know darkpγq P Rook`. We send it to a snowy α using the map in
Lemma 4.20. Then darkpαq “ darkpγq. By Proposition 4.16, α „ γ.

Next, take a positive integer r. If αr “ 0, then γr ě αr trivially. Otherwise, we
know pr, αrq P darkpαq “ darkpγq. Thus, γr ě αr.
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Finally, we establish the uniqueness of this snowy α. Assume α1 is a snowy weak
composition such that α1 „ γ. Then α1

r ě αr and αr ě α1
r for all r P Zą0, so

α “ α1. □

A snowy weak composition has more snowflakes in its snow diagram than any
others in its equivalence class; hence the name. Say α „ γ and α is snowy while
γ is not. By Lemma 4.5, |α| ă |γ|. On the other hand, the number of snowflakes in
snowpDpαqq (resp. snowpDpγqq) is rajpαq´|α| (resp. rajpγq´|γ|). Since rajpαq “ rajpγq,
snowpDpαqq has more snowflakes than snowpDpγqq.

4.3. Proof of Lemma 4.6. By Lemma 4.2, pLα has degree at least rajpαq. Next, we
can show the degree of pLα equals to rajpαq when α is snowy.

Lemma 4.21. Let α be a snowy weak composition. The β-degree of Lα is rajpαq ´ |α|,
so the degree of pLα is rajpαq.

Proof. We prove the result by induction on

ℓpαq :“ |tpi, jq | αi ă αj and i ă ju|.

For the base case, if ℓpαq “ 0, then α is weakly decreasing. The polynomial Lα is an
monomial with β-degree 0. Correspondingly, rajpαq “ |α|.

Now if ℓpαq ą 0, we can find i with αi ă αi`1. By Corollary 4.19, rajpsiαq “

rajpαq ´ 1. Notice that ℓpsiαq “ ℓpαq ´ 1. By our inductive hypothesis, the β-degree
of Lsiα is rajpsiαq ´ |α| “ rajpαq ´ 1 ´ |α|. By the recursive definition of Lascoux
polynomials,

Lα “ πipLsiαq ` βπipxi`1Lsiαq.

The β-degree in Lα is at most rajpαq ´ |α|. Lemma 4.2 implies the β-degree of Lα is
at least rajpαq ´ |α|, so the inductive step is finished. □

Combine with Lemma 4.18, we have:

Corollary 4.22. Let α be a snowy weak composition. The degree of pLα is |α| `

|tpr, r1q : r ă r1, αr ă αr1 u|.

Now we can describe pLα for snowy α recursively.

Lemma 4.23. Let α be a snowy weak composition. Then

pLα “

#

xα if α1 ě α2 ě ¨ ¨ ¨

πipxi`1pLsiαq if αi ă αi`1.
(3)

Proof. When α is weakly decreasing, our rule is immediate. Now assume αi ă αi`1
for some i P Zą0. By Corollary 4.19, rajpsiαq “ rajpαq ´ 1. We write Lsiα as g `

βrajpαq´1´|α|
pLsiα for some g P Zrx1, x2, ¨ ¨ ¨ srβs with β-degree less than rajpαq´1´|α|.

Now we write Lα as

Lα “ πipLsiαq ` βπipxi`1Lsiαq

“ πipLsiαq ` βπipxi`1gq ` βrajpαq´|α|πipxi`1pLsiαq

When we extract the coefficient of βrajpαq´|α|, the left-hand side is pLα. On the right-
hand side, the first two terms are ignored and we get πipxi`1pLsiαq. □

Combining Lemma 4.2 and Lemma 4.21, we know xrajcodepαq appears in pLα when α

is snowy. Next, we show this monomial is the leading monomial of pLα. We start with
the following observation about the operator f ÞÑ πipxi`1fq.
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Remark 4.24. Let γ be a monomial. We may describe the leading monomial of
πipxi`1xγq and its coefficient as follows.

‚ If γi ą γi`1, then xix
siγ is the leading monomial with coefficient 1.

‚ If γi “ γi`1, then πipxi`1xγq “ 0.
‚ If γi ă γi`1, then xix

γ is the leading monomial with coefficient ´1.

We can understand how the operator f ÞÑ πipxi`1fq changes the leading monomial
of polynomial f satisfying certain conditions.

Lemma 4.25. Take f P Zrx1, x2, ¨ ¨ ¨ s with f ‰ 0. Assume xα is the leading monomial
in f with coefficient c ‰ 0. Pick an i P Zą0 such that αi ą αi`1. Furthermore,
assume for any monomial in f , its power of xi is at most αi. Then xix

siα is the
leading monomial in πipxi`1fq with coefficient c.

Proof. In this proof, we use “ě” to denote the monomial order. Let Γ be the set of
weak compositions γ such that xγ appears in f . Let cγ be the coefficient of xγ in f .
We may write f “

ř

γPΓ cγxγ . Then πipxi`1fq “
ř

γPΓ cγπipxi`1xγq. By the remark
above, xix

siα appears in cαπipxi`1xαq as the leading monomial with coefficient cα “ c.
It is enough to show the following claim.
Claim: Take γ P Γ such that πipxi`1xγq ‰ 0 (i.e. γi ‰ γi`1). Let xγ1 be the leading
monomial in πipxi`1xγq. If xγ1

ě xix
siα, then γ “ α.

Proof: Assume α ‰ γ. Let k be the largest index such that the power of xk differs
in xγ1 and xix

siα. By xγ1

ě xix
siα, the power of xk in xγ1 is greater than the power

of xk in xix
siα. We must have k ď i ` 1. Otherwise, xγ ą xα, which contradicts xα

being the leading monomial in f .
Now we know γ1, α and γ all agree after the pi ` 1qth entry. Then γ1

i`1 is at least
the power of xi`1 in xix

siα, which is αi. On the other hand, by xγ ď xα, γi`1 ď αi`1.
Thus,
(4) γi`1 ď αi`1 ă αi ď γ1

i`1.

If γi ă γi`1, Remark 4.24 implies γ1
i`1 “ γi`1, which is impossible. Thus, we must

have γi ą γi`1. By Remark 4.24 again, γ1
i`1 “ γi. By the assumptions in the statement

of the lemma, γi ď αi, so γ1
i`1 “ γi “ αi.

Next, γ1
i is at least the power of xi in xix

siα, which is αi`1 `1. Remark 4.24 implies
γ1

i “ γi`1 ` 1. Thus, γi`1 ě αi`1. By (4), γi`1 “ αi`1.
Now we know k ă i and γj “ αj for j “ i or i ` 1. Thus, γj “ αj for all j ą k,

so xγ ą xα, which is a contradiction. □

Now we can establish our third major lemma.

Lemma 4.6. If α is snowy, then xrajcodepαq is the leading monomial of pLα with coeffi-
cient 1.

Proof. We prove the result by induction on
ℓpαq :“ |tpi, jq | αi ă αj and i ă ju|.

If ℓpαq “ 0, then α is weakly decreasing, then Lα “ xα “ xrajcodepαq. Our claim is
immediate.

Now if ℓpαq ą 0, we can find r with αr ă αr`1. Pick the largest such r. For
our inductive hypothesis, assume xrajcodepsrαq is the leading monomial of pLsrα with
coefficient 1.

By the maximality of r, αr`1 ě αr`2 ě αr`3 ě ¨ ¨ ¨ . Thus, in any K-Kohnert
diagram of srα, there cannot be more than αr`1 cells in row r. In other words,
for any monomial of pLsrα, the power of xr is at most αr`1. Lemma 4.25 implies
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that xrxsrrajcodepsrαq is the leading monomial of pLα with coefficient 1. Finally, by
Corollary 4.19, xrxsrrajcodepsrαq “ xrajcodepαq. □

4.4. Proof of Lemma 4.7. We first derive two consequences of α „ γ. We start
with the following definition.

Definition 4.26. Let D be a diagram. Let D :“
⋃

pr,cqPDrrs ˆ tcu.

In plain words, D is the diagram obtained by filling the empty spaces above each
cell of D. Then Dpαq is completely determined by darkpαq:

Lemma 4.27. Let α be a weak composition. Then Dpαq “
⋃

pr,cqPdarkpαqrrs ˆ rcs.

Proof. We show each side is a subset of the other. Take pr1, c1q P Dpαq. By Remark 3.4,
there is pr2, c2q P darkpαq such that r2 ě r1 and c2 ě c1. Thus, rr1sˆtc1u Ď rr2sˆrc2s.

Take pr1, c1q P darkpαq. Thus, for any c P rc1s, pr1, cq P Dpαq. Then rr1s ˆ tcu Ď

Dpαq, so rr1s ˆ rc1s Ď Dpαq. □

We have the following consequence of α „ γ.

Corollary 4.28. If α „ γ, then Dpαq “ Dpγq.

Notice that the converse is not true. If α “ p1, 2q and γ “ p0, 2q, then Dpαq “

r2s ˆ r2s “ Dpγq. However, α and γ are not similar, since darkpαq “ tp1, 1q, p2, 2qu and
darkpγq “ tp2, 2qu.

Another nice consequence of α „ γ one might expect is srα „ srγ. Unfortunately,
this is not always true. It is easy to check p0, 1q „ p1, 1q but s1p0, 1q “ p1, 0q and
s1p1, 1q “ p1, 1q are not similar. However, it is true when α and r satisfy the following
condition.

Lemma 4.29. Let α be a weak composition and r P Zą0. Assume there exists c such
that pr, cq R snowpDpαqq but pr ` 1, cq P snowpDpαqq. Then

(i) αr`1 ą αr;
(ii) The diagram darkpsrαq is obtained from darkpαq by switching row r and row

r ` 1;
(iii) For any γ with γ „ α, we must have γr`1 ą γr and srα „ srγ.

Proof. Since pr, cq is not in snowpDpαqq, we can deduce two facts:
(1) There are no dark clouds under row r in column c, and
(2) αr ă c.

By (1), the cell pr ` 1, cq in snowpDpαqq is not a dark cloud or a snowflake. Thus,
it is unlabeled and pr ` 1, cq P Dpαq. By Remark 3.4, there must be a c1 ą c such
that pr ` 1, c1q is a dark cloud in snowpDpαqq. This implies αr`1 ą c. By (2), we have
αr`1 ą αr, proving (i). Also by (2), the dark cloud in row r of snowpDpαqq, if exists,
is in the first c ´ 1 columns. Thus, darkpsrαq is obtained from darkpαq by switching
row r and row r ` 1, proving (ii).

Now consider any γ „ α. By Proposition 4.16, snowpDpγqq and snowpDpαqq have
the same underlying diagram. By (ii), darkpsrγq is obtained from darkpγq by switching
row r and row r ` 1. Since darkpαq “ darkpγq, we have darkpsrαq “ darkpsrγq, so
srα „ srγ. □

These two consequences of α „ γ allow us to prove the last main Lemma.

Lemma 4.7. If α „ γ, then pLα “ cpLγ for some c ‰ 0.
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Proof. By Lemma 4.5 it is enough to assume γ is snowy, and we proceed by induction
on rajpαq. The base case is rajpαq “ 0, which implies α only has 0s. Our claim is
immediate.

Now assume rajpαq ą 0. Consider the diagram Dpαq. Clearly, the underlying dia-
gram of any K-Kohnert diagram of α will be a subset of Dpαq. In other words, any
monomial in pLα must divide xwtpDpαqq.

If the underlying diagram of snowpDpαqq is Dpαq, then xwtpDpαqq is the only mono-
mial in pLα. On the other hand, Corollary 4.28 gives Dpαq “ Dpγq. By the same
argument, xwtpDpαqq is the only monomial in pLγ . Our claim holds.

Otherwise, we can find pr, cq P Dpαq but not in snowpDpαqq. Choose the pr, cq with
the largest r. First, we know pr, cq R Dpαq, which implies pr ` 1, cq P Dpαq. By the
maximality of r, pr ` 1, cq is in snowpDpαqq. We invoke Lemma 4.29 and conclude
αr`1 ą αr, γr`1 ą γr and siα „ siγ. Since γ is snowy, by Corollary 4.19, we know
rajpsrγq “ rajpγq´1, which implies rajpsrαq “ rajpαq´1. By our inductive hypothesis,
pLsrα “ cpLsrγ for some c ‰ 0.

We may write Lsrα as βrajpsrαq´|α|
pLsrα`g, where g has β-degree less than rajpsrαq´

|α|. Then
Lα “ πipLsrαq ` βπipxi`1Lsrαq

“ πipLsrαq ` βπipxi`1gq ` βrajpαq´|α|πipxi`1pLsrαq

The first two terms on the right-hand side have β degree less than rajpαq ´ |α|.
Thus, the β-degree in Lα is at most rajpαq ´ |α|. By Lemma 4.2, the β-degree in Lα

is rajpαq ´ |α|. Extract the coefficient of βrajpαq´|α| and get
pLα “ πipxi`1pLsrαq “ cπipxi`1pLsrγq “ cpLγ ,

by Lemma 4.23. □

5. Snow diagrams for Rothe diagrams
Fix an n P Zą0 throughout this section. We move on to study the snow diagrams of
RDpwq for w P Sn. In subsection 5.1, we recall a version of Schensted insertion on Sn.
In subection 5.2, we show the positions of dark clouds in snowpRDpwqq is related to
the Schensted insertion. We then use this connection to prove that rajcodepRDpwqq is
consistent to the rajcodepwq defined in [18]. In Section 5.3, we show the dark clouds
in snowpRDpwqq corresponds to the turning points in the shadow diagram for w. In
Section 5.4, we study the snow diagrams for inverse fireworks permutations.

5.1. The Schensted Insertion. If a diagram is top-justified and left-justified, we
say it is a Young diagram. A filling of a Young diagram with positive integers is called
a tableau. A tableau is called partial if it contains distinct numbers and each row (resp.
column) is decreasing from left to right (resp. top to bottom). Notice that usually in
literature, columns and rows are increasing. We reverse the convention to make our
results easier to state.

The Schensted insertion [23] is an algorithm defined on a partial tableau T and a
positive number x that is not in T . It finds the largest x1 in the first row of T such
that x ą x1.

‚ If such x1 does not exist, it appends x at the end of row one and terminates.
‚ Otherwise, it replaces x1 by x and insert x1 to the next row in the same way.

When the algorithm terminates, the resulting partial tableau is the output.
For w P Sn, we insert wpnq, wpn ´ 1q, . . . , wp1q to the empty tableau via the Schen-

sted insertion and denote the result by P pwq.
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Example 5.1. Take w P S7 with one-line notation 3721564. The Schensted insertion
on w yields:

4
Ñ

6
4

Ñ
6 5
4

Ñ
6 5 1
4

Ñ
6 5 2
4 1

Ñ
7 5 2
6 1
4

Ñ
7 5 3
6 2
4 1

.

One classical application of the Schensted insertion is to study increasing sub-
sequences in a permutation. Recall LISw

pqq is the length of the longest increasing
subsequence of w P Sn that starts with q. It is related to the Schensted insertion as
follows.

Lemma 5.2. [22, Lemma 3.3.3] Take w P Sn and perform the Schensted insertion on
w. For any r P rns, when wprq is inserted, it goes to column LISw

pwprqq in row one.

Example 5.3. Consider the w P S7 in Example 5.1. Notice that LISw
pwp4qq “ 3.

When wp4q “ 1 is inserted to row one, it indeed goes to column 3.

5.2. Rajcode of Rothe diagrams. We show that rajcodepwq defined by Pechenik,
Speyer and Weigandt (see Definition 2.1) agrees with the rajcodepRDpwqq (see Def-
inition 3.5). To do so, we need a better understanding of snowpRDpwqq. We start
by describing how the positions of dark clouds in snowpRDpwqq are related to the
Schensted insertion described in Subsection 5.1.

Proposition 5.4. Take w P Sn. Consider the Schensted insertion on w. The dark
cloud in row r of snowpRDpwqq can be described based on the insertion of wprq.

(1) If wprq is appended to the end of row one, then there is no dark cloud in the
rth row of snowpRDpwqq;

(2) If wprq bumps c in row one, then pr, cq is a dark cloud in snowpRDpwqq.

Example 5.5. Let w P S7 with one-line notation 3721564. Consider the corresponding
Rothe diagram RDp3721564q and its snow diagram:

1 ¨ ¨

2 ¨ ¨ ¨ ¨ ¨

3 ¨

4
5 ¨

6 ¨

7

1 ¨ ‚ ˚ ˚

2 ¨ ¨ ¨ ¨ ‚

3 ‚ ˚

4 ˚

5 ¨

6 ‚

7

The Schensted insertion of w is presented in Example 5.1. We check Proposition 5.4
in the table below.

r wprq insertion of wprq in row one position of ‚ in snowpRDpwqqr

7 4 appended at the end of row one row 7 has no ‚

6 6 bumps 4 in row one row 6 has ‚ at p6, 4q

5 5 appended at the end of row one row 5 has no dark cloud
4 1 appended at the end of row one row 4 has no dark cloud
3 2 bumps 1 in row one row 3 has ‚ at p3, 1q

2 7 bumps 6 in row one row 2 has ‚ at p2, 6q

1 3 bumps 2 in row one row 1 has ‚ at p1, 2q
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Proof. We prove the statement by induction on r starting from r “ n. The number
wpnq is inserted into the empty tableau. In this case, it is appended to the end of
the first row. It is also clear that there can not be any dark cloud on row n of
snowpRDpwqq.

Now suppose the statement holds for r`1, r`2, . . . , n for some r ď n´1. Let P be
the tableau right before the insertion of wprq. By the inductive hypothesis, for each
r1 ą r, wpr1q appears in row 1 of P if and only if there is no dark cloud in column
wpr1q under row r of snowpRDpwqq. Now consider the insertion of wprq.

(1) Case 1: wprq is appended to the end of row 1.
Assume toward contradiction that pr, wpr1qq is a dark cloud of snowpRDpwqq

for some r1 ą r. Then wprq ą wpr1q. Moreover, there is no dark cloud in the
column of wpr1q under row r, so wpr1q is in row 1 of P . Thus, wprq cannot be
appended in row 1, a contradiction.

(2) Case 2: wprq bumps wpr1q in row 1 for some r1 ą r.
Then wprq ą wpr1q. The cell pr, wpr1qq is in RDpwq. We need to show that

it is a dark cloud in snowpRDpwqq. By Remark 3.4, we just need to make sure
there is no dark cloud under it or on its right.

Suppose that there is a dark cloud in column wpr1q under row r. By the
inductive hypothesis, wpr1q cannot appear in row 1 of P , which is a contra-
diction.

Finally, suppose there is a dark cloud on the right of pr, wpr1qq. We may
write this dark cloud as pr, wpr2qq with wpr2q ą wpr1q. Since it is a cell in
RDpwq, we also have r2 ą r and wprq ą wpr2q. Since it is a dark cloud, there
is no dark cloud under it. By the inductive hypothesis, wpr2q is in row 1 of
P . This is a contradiction: wprq should bump wpr2q instead of wpr1q since
wprq ą wpr2q ą wpr1q. □

Theorem 5.6. For w P Sn, rajcodepwq “ rajcodepRDpwqq.

Proof. Take r P rns. Consider row r of snowpRDpwqq. It contains invcodepwqr cells
that are not snowflakes. Let dr be the number of dark clouds in snowpRDpwqq that
are southeast of pr, wprqq. Clearly, dr is also the number of snowflakes in row r of
snowpRDpwqq. We have rajcodepRDpwqqr “ invcodepwqr ` dr.

Consider the Schensted insertion of w. Let P be the tableau right before the inser-
tion of wprq. Define A as the number of elements in P that are larger than wprq. We
compute A in two ways.

‚ The tableau P consists of numbers wpr ` 1q, . . . , wpnq. There are invcodepwqr

of them less than wprq, so A “ n ´ r ´ invcodepwqr.
‚ Assume when inserting wprq to P , it goes to column c of row 1. Thus, c ´ 1 is

the number of entries in row 1 of P that are larger than wprq. By Propo-
sition 5.4, dr is the number of entries under row 1 of P that are larger
than wprq. We have A “ c ´ 1 ` dr. By Lemma 5.2, c “ LISw

pwprqq, so
A “ LISw

pwprqq ´ 1 ` dr.
Combining the two expressions of A yields

n ´ r ´ invcodepwqr “ LISw
pwprqq ´ 1 ` dr, so

rajcodepRDpwqqr “ invcodepwqr ` dr “ n ´ r ` 1 ´ LISw
pwprqq “ rajcodepwqr.

□

5.3. Dark Clouds of the Rothe Diagram via Viennot’s geometric con-
struction. In 1977, Xavier Gérard Viennot gave a diagrammatic construction of
the RSK correspondence in terms of shadow lines ([26]). It is also known as the
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matrix-ball construction. We will show that the dark clouds in the snow diagram
of a permutation can be obtained via Viennot’s geometric construction. We denote
Row1pP pwqq to be the first row of the tableau obtained by Schensted insertion on w.

For two cells pi, jq, pm, nq P N ˆ N, pm, nq lies in the shadow of pi, jq if and only
if m ď i and n ď j. This can be visualized by imagining shedding light from
the Southeast.(2) To obtain the shadow diagram of w P Sn, consider the points
p1, wp1qq, . . . , pn, wpnqq. Let

´

i
p1q

1 , wpi
p1q

1 q

¯

, . . . ,
´

i
p1q

ℓ1
, wpi

p1q

ℓ1
q

¯

be the points that are

not in the shadow of any other point for some ℓ1 ě 1 and i
p1q

1 ą i
p1q

2 ą ¨ ¨ ¨ ą i
p1q

ℓ1
.

Then the first shadow line L1pwq is the boundary of the combined shadows of the
points

´

i
p1q

1 , wpi
p1q

1 q

¯

, . . . ,
´

i
p1q

ℓ1
, wpi

p1q

ℓ1
q

¯

. The rest of the Ljpwq can be constructed
recursively. Supposed L1, . . . , Lj´1 have been constructed, remove all points in the
set

!´

i
ppq

k , wpi
ppq

k q

¯

: 1 ď p ď j ´ 1, 1 ď k ď ℓp

)

,

then Lj is the boundary of the shadow of the remaining points of the points left,
which we label as

´

i
pjq

1 , wpi
pjq

1 q

¯

, . . .
´

i
pjq

ℓj
, wpi

pjq

ℓj
q

¯

,

for some ℓj ě 1 and i
pjq

1 ą i
pjq

2 ą ¨ ¨ ¨ ą i
pjq

ℓj
. Once there is no point left, the shadow

lines we obtained form the shadow diagram for w.

Theorem 5.7 ([26]). Given w P Sn and suppose L1, . . . , Ls are the shadow lines
obtained from w until there is no point left. Then s equals the size of Row1pP pwqq.

For each shadow line Lj , it also consists ℓj ´ 1 “turning points”, which are points
px, yq of Lj such that px ´ 1, yq, px, y ´ 1q R Lj , i.e.,

´

i
pjq

2 , wpi
pjq

1 q

¯

,
´

i
pjq

3 , wpi
pjq

2 q

¯

, . . . ,
´

i
pjq

ℓj
, wpi

pjq

ℓj ´1q

¯

.

In total, there are n´|Row1pP pwqq| turning points for each w P Sn. There is a classical
result connecting these turning points to the Schensted insertion.

Theorem 5.8 ([26, 10]). Let a shadow line Lj of a permutation w consists of points
´

i
pjq

1 , wpi
pjq

1 q

¯

, . . .
´

i
pjq

ℓj
, wpi

pjq

ℓj
q

¯

for some ℓj ě 1 and i
pjq

1 ą i
pjq

2 ą ¨ ¨ ¨ ą i
pjq

ℓj
. Then during Schensted insertion on w,

when we insert wpi
pjq

k`1q, it bumps wpi
pjq

k q from the first row.

Combining Proposition 5.4 and Theorem 5.8, we have the following.

Corollary 5.9. Each of the turning points in the shadow diagram of w contains
a dark cloud in snowpwq. Any dark cloud in snowpwq is also a turning point in the
shadow diagram of w.

Example 5.10. Consider w “ 3721564 P S7. We present its Rothe diagram, its shadow
diagram, and the snow diagram of RDpwq. From Example 5.1, the Schensted insertion
on w yields a tableau whose row 1 has three cells. Correspondingly, there are three
shadow lines. The turning points of the shadow lines are p3, 1q, p1, 2q, p6, 4q, p2, 6q,
which are positions for dark clouds in snowpRDpwqq.

(2)The usual convention can be thought of shedding light from the Northwest, which corresponds
to the usual Schensted insertion. We reverse the direction to match our decreasing Schensted insertion
convention.
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1 ¨ ¨

2 ¨ ¨ ¨ ¨ ¨

3 ¨

4
5 ¨

6 ¨

7

X
X

X
X

X
X

X

1 ¨ ‚ ˚ ˚

2 ¨ ¨ ¨ ¨ ‚

3 ‚ ˚

4 ˚

5 ¨

6 ‚

7

Figure 1. Left: RD(w); Middle: shadow diagram of w; Right: snowpRDpwqq

Remark 5.11. A geometric interpretation for the rajcode is given in [18, Section 4] in
terms of the “blob diagrams.” Specifically, the set of points in the same shadow line
in the shadow line diagram is labeled as Bn, Bn´1, . . . from southeast to northwest.
With the labeling on the blob diagrams, we can obtain the rajcode directly. That is,
if pi, wpiqq P Bk, then rajcodepwqi “ k ´ i.

5.4. Inverse fireworks permutations. Now we have seen that our snow diagrams
are connected to the work of Pechenik, Speyer and Weigandt [18]. We recall another
interesting notion in their work.

Definition 5.12 ([18, Definition 3.5]). A permutation w P Sn is a fireworks permuta-
tion if its initial element in each decreasing run is increasing. A permutation w P Sn

is an inverse fireworks permutation if w´1 is a fireworks permutation.

Inverse fireworks permutations are the representatives of equivalence classes, given
by permutations with the same rajcode [18]. The snowy weak compositions play the
same role in our study of pL. We investigate the similarities between inverse fireworks
permutations and snowy weak compositions. For w inverse fireworks, RDpwq enjoy
analogous properties as the Dpαq of snowy α. We start with the following observation
about RDpwq.

Lemma 5.13. Let w P Sn be an inverse fireworks permutation. Consider each r P rns

such that row r of RDpwq is not empty. The rightmost cell in row r of RDpwq is
pr, wprq ´ 1q.

Proof. Recall that pr, wpr1qq P RDpwq if and only if pr, r1q P Invpwq if and only
if pwpr1q, wprqq P Invpw´1q. Let c “ wprq. Clearly, cells in row r of RDpwq are within
the first c ´ 1 columns. It remains to check pr, c ´ 1q P RDpwq, which is equivalent
to pc ´ 1, cq P Invpw´1q.

Since row r of RDpwq is nonempty, it must contain a cell pr, iq such that pi, cq P

Invpw´1q for some i P rc ´ 1s. Since w´1piq ą w´1pcq and w´1 is fireworks, w´1pcq

can not be the initial element in its decreasing run. Therefore w´1pc ´ 1q ą w´1pcq

and we have pc ´ 1, cq P Invpw´1q. □

We can characterize the inverse fireworks permutations using Rothe diagrams or
the snow diagram of the permutation. This is similar to Remark 4.17, where we
describe snowy weak compositions using key diagrams and dark clouds.

Proposition 5.14. Take w P Sn. The following are equivalent:
(1) w is an inverse fireworks permutation.
(2) In RDpwq, the rightmost cells in each row are in different columns.
(3) In snowpRDpwqq, the rightmost cell in each row is a dark cloud.
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Proof. The last two statements are clearly equivalent. Now we establish the equiva-
lence of the first two statements.

Assume w is inverse fireworks. Take r, r1 P rns with r ‰ r1 such that row r and row
r1 of RDpwq are not empty. By Lemma 5.13, the rightmost cell in row r (resp. r1) is
at pr, wprq ´ 1q (resp. pr1, wpr1q ´ 1q). Clearly, wprq ´ 1 ‰ wpr1q ´ 1, so we have our
second statement.

Now we assume w is not inverse fireworks. We can find a number r in w´1 such that
r is the initial element in its decreasing run, but r is less than r1, the initial element
of the previous decreasing run. Let c1 “ wpr1q and c “ wprq. Since pc1, cq P Invpw´1q,
pr, c1q P RDpwq. Thus, row r of RDpwq is not empty. Let pr, iq be the rightmost cell in
row r. In other words, i is the largest such that pi, cq P Invpw´1q. We have c1 ď i ă c´1.
Consider the decreasing run before w´1pcq: w´1pc1q ą w´1pc1 `1q ą ¨ ¨ ¨ ą w´1pc´1q.
We see pi, i ` 1q is also in Invpw´1q. In row w´1pi ` 1q, the cell pw´1pi ` 1q, iq is the
rightmost cell of its row. Thus, the second statement does not hold, and the proof is
finished. □

With the above proposition, we can compute rajcodepwq easily if w is inverse fire-
works. The following rule is similar to Lemma 4.18(2).

Proposition 5.15. Assume w P Sn is inverse fireworks. For each r P rns,

rajcodepwqr “ |tr1 ą r :pr, r1q P Invpwq or
wpr1q ą wprq and pr1, r2q P Invpwq for some r2u|.

Proof. First, we know rajcodepwqr “ rajcodepRDpwqqr is the number of cells in the
rth row of snowpRDpwqq. The number of non-snowflake cells on this row is given by
|tr1 : pr, r1q P Invpwqu|.

Now we count the number of snowflakes in row r of snowpRDpwqq. It is the number
of r1 ą r such that row r1 of snowpRDpwqq has a dark cloud on the right of the
column wprq. By Lemma 5.13, row r1 has a dark cloud at column wpr1q ´ 1 if RDpwq

is nonempty in row r1. Thus, the number of snowflakes in row r of snowpRDpwqq is
the number of r1 ą r such that wpr1q ą wprq and pr1, r2q P Invpwq for some r2. □

6. Vector space spanned by pGw

We now study the spaces pVn :“ Q-spantpGw : w P Snu and pV :“ Q-spantpGw : w P S`u.
By Theorem 1.1, they have bases

tpGw : w P Sn is inverse fireworksu and tpGw : w P S` is inverse fireworksu

respectively. By [4], the number of inverse fireworks permutations in Sn is Bn, the
nth Bell number. Thus, pVn has dimension Bn.

We introduce another basis of pVn and pV consisting of pLα, the top-degree compo-
nents of Lascoux polynomials. One application of the top Lascoux basis is to compute
the Hilbert series of pVn and pV . For a vector space V Ď Qrx1, x2, ¨ ¨ ¨ s, the Hilbert
series of V is

HilbpV ; qq :“
ÿ

dě0
mdqd,

where md is the number of polynomials with degree d in a homogeneous basis of V .
In Subsection 6.1, we recall the definition of Bn and its q-analogue Bnpqq. In

Subsection 6.2, we compute Hilbp pVn; qq using Bnpqq and rook-theoretic results. In
Subsection 6.3, we compute Hilbp pV ; qq.
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6.1. Stirling numbers, Bell numbers and their q-analogues. Let n, k be
non-negative integers throughout this subsection. Let Sn,k be the Stirling number of
the second kind, defined by the recurrence relation

Sn`1,k “ Sn,k´1 ` kSn,k,

together with S0,0 “ 1 and S0,k “ 0 if k ą 0. Let Bn :“
řn

j“0 Sn,j be the Bell number
which satisfies the following recurrence relation

Bn`1 “

n
ÿ

j“0

ˆ

n

j

˙

Bj .

Let Rookn be the set of non-attacking rook diagrams contained in Stairn. It is an
exercise to show Bn “ |Rookn|. In [3], Butler, Can, Haglund, and Remmel built an
explicit bijection between Rookn and set partitions of rns .

Now consider the polynomial ring Qrqs. Define rnsq :“ 1 ` q ` ¨ ¨ ¨ ` qn´1. Define a
q-analogue of Sn,k recursively by:

Sn`1,kpqq “ qk´1Sn,k´1pqq ` rksqSn,kpqq,

with base cases S0,kpqq “ S0,k. Similarly, define a q-analogue of Bn by Bnpqq :“
řn

j“0 Sn,jpqq. The coefficients in Bnpqq are given in OEIS A126347. By [27], Bnpqq

satisfies the recurrence relation

Bn`1pqq “

n
ÿ

j“0
qj

ˆ

n

j

˙

Bjpqq.

Milne [16] first gave a combinatorial model for Sn,kpqq using set partitions. We
use the combinatorial model developed by Garsia and Remmel [8]. They defined a
statistic on Rookn called “inversion”. We rename it as GRn to distinguish it from the
inversion on permutations.

Definition 6.1 ([8]). Assume R P Rookn. For each pr, cq P R, mark all cells pr1, cq

with r1 P rrs in Stairn. Also, mark all cells pr, c1q with c1 P rcs in Stairn. The number
GRnpRq counts cells in Stairn that are not marked.

Garsia and Remmel prove that

(5) Sn,kpqq “
ÿ

DPRookn

|D|“n´k

qGRnpDq,

which implies

(6) Bnpqq “
ÿ

DPRookn

qGRnpDq.

From this formula, Bnpqq has degree
`

n
2
˘

since GRnpHq “
`

n
2
˘

.

6.2. Computing Hilbp pVn; qq. Define
Cn :“ tα P C` : supppαq Ď rn ´ 1s, αi ď n ´ i for all i P rn ´ 1su.

Then we can refine Theorem 2.4.

Corollary 6.2. For w P Sn, Gw expands positively into tLα : α P Cnu.

Proof. By Theorem 2.4, we can expand Gw into a sum of Lascoux polynomials. We
just need to make sure for each Lα appearing in the expansion with a nonzero coeffi-
cient, we have α P Cn.

We know the monomial xα is the leading monomial of κα, so xα appears in Lα.
Since all coefficients in the sum are positive, we know xαβm appears in Gw for some
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m P Zě0. By the monomial expansion of Gw given by Fomin and Kirillov [7], we
have α P Cn. □

By this corollary and Lemma 2.5, we have the following.

Corollary 6.3. For w P Sn, pGw expands positively into tpLα : α P Cnu.

Now we are ready to give another basis of pVn:

Proposition 6.4. The space pVn is also Q-spantpLα : α P Cnu. Moreover, it has a basis
tpLα : α P Cn is snowyu.

Proof. By Corollary 6.3 , pVn is a subspace of Q-spantpLα : α P Cnu. By Lemma 4.5,
for any α P Cn, we can find a snowy γ P Cn such that γ „ α. Then by Theorem 1.2,
pLα is a scalar multiple of pLγ . Thus, Q-spantpLα : α P Cnu is a subspace of the vector
space Q-spantpLα : α P Cn is snowyu. Notice that tpLα : α P Cn is snowyu is linear
independent since its polynomials have distinct leading terms by Theorem 1.2.

By [18, Theorem 1.4] pVn has dimension Bn. It remains to check the number of snowy
weak compositions in Cn is also Bn. In Lemma 4.20, we show darkp¨q a bijection from
snowy weak compositions in C` to Rook`. Clearly it restricts to a bijection from Cn

to Rookn, which has size Bn. □

We use the top Lascoux basis to derive Hilbp pVn; qq. Let us translate the statistic
rajp¨q on snowy weak compositions to non-attacking rook diagrams.

Definition 6.5. Take R P Rook`. Define the Northwest number of R, denoted as
NWpRq :“ rajpαq, where α is any weak composition with darkpαq “ R.

Equivalently, we may compute NWpRq as follows: For each pr, cq P R, we mark all
cells weakly above it and to its left. By Lemma 4.14, these marked cells agree with
the underlying diagram of snowpDpαqq for any α with darkpαq “ R. Then NWpRq

is just the number of marked cells. Comparing this statistic with GRnp¨q defined in
Subsection 6.1, we have the following connection.

Remark 6.6. Take R P Rookn. Then GRnpRq “ |Stairn| ´ NWpRq “
`

n
2
˘

´ NWpRq.

Finally, we can derive an expression for the degree generating function of pVn.

Proposition 6.7. We have

Hilbp pVn; qq “ qpn
2qBnpq´1q “ revpBnpqqq,

where revp¨q is the operator that reverse the coefficients of a polynomial. In other
words, it sends a polynomial fpqq of degree d to qdfpq´1q.

Proof. By Prop 6.4, Hilbp pVn; qq “
ř

α qrajpαq where the sum is over snowy α P Cn.
Apply the bijection darkp¨q to α in the summation, we have

Hilbp pVn; qq “
ÿ

RPRookn

qNWpRq “
ÿ

RPRookn

qpn
2q´GRnpRq

“ qpn
2q

ÿ

RPRookn

q´GRnpRq “ qpn
2qBnpq´1q ,

where the second equality is by Remark 6.6 and the last equality is by (6). Since Bnpqq

has degree
`

n
2
˘

, we have Hilbp pVn; qq “ revpBnpqqq. □
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6.3. Computing Hilbp pV ; qq. First, we show the top Lascoux polynomials also span
the space pV .

Proposition 6.8. We have Q-spantpLα | α P C`u “ pV .

Proof. By Corollary 2.6, pV is in the Q-span of tpLα : α P C`u. Now consider α P C`.
There exists n large enough such that α P Cn. Then pLα P pVn Ă pV . □

Corollary 6.9. The space pV has a basis tpLα : α P C` is snowyu.

With the top Lascoux basis, we have

Hilbp pV ; qq “
ÿ

α P C`,
α is snowy

qrajpαq “
ÿ

RPRook`

qNWpRq,

where the second equality is obtained by applying darkp¨q on α in the second expres-
sion. On the other hand, since pV “

⋃
ně1

pVn,
Hilbp pV ; qq is the limit of Hilbp pVn; qq as n goes to infinity. According to OEIS, coef-

ficients in Bnpqq are in A126347 and the coefficients of Hilbp pV ; qq are in A126348. A
formula for Hilbp pV ; qq in OEIS is given by Jovovic:

ś

mą0p1`
qm

1´q q. For completeness,
we check this rule using our formula of Hilbp pV ; qq involving snowy weak compositions.

Proposition 6.10. We have

Hilbp pV ; qq “
ÿ

α is snowy
qrajpαq “

ź

mą0

ˆ

1 `
qm

1 ´ q

˙

Proof. Let snowypMq be the set of all snowy weak compositions with the largest entry
being at most M . It suffices to show

ÿ

αPsnowypMq

qrajpαq “

M
ź

mą0

ˆ

1 `
qm

1 ´ q

˙

.

We prove it by induction on M . The claim is immediate when M “ 0 as both sides
are 1.

Now assume the claim above holds for some M ě 0. Let snowypMqi be the set
of all snowy weak compositions α such that its largest entry is αi “ M . With this
notation, we can express snowypMq recursively:

snowypMq “ snowypM ´ 1q
ğ

˜

ğ

iě1
snowypMqi

¸

.

Next, we define a map

ϕ : snowypM ´ 1q Ñ snowypMq1

pα1, α2, . . . q ÞÑ pM, α1, α2, . . . q

It is straightforward to see that ϕ is a bijection. Furthermore, we have rajpϕpαqq “

rajpαq`M . To get snowypMqi for i ą 1, notice that the operator si on the set of weak
compositions is a bijection between snowypMqi and snowypMqi`1. For α P snowypMqi,
we have rajpsipαqq “ rajpαq ` 1 by Corollary 4.19. Inductively, we have

ÿ

αPsnowypMqi

qrajpαq “ qM`i´1
ÿ

αPsnowypM´1q

qrajpαq.
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Finally,
ÿ

αPsnowypMq

qrajpαq “
ÿ

αPsnowypM´1q

qrajpαq `

˜

ÿ

iě1
qM`i´1

¸

ÿ

αPsnowypM´1q

qrajpαq

“

˜

1 `
ÿ

iě1
qM`i´1

¸

ÿ

αPsnowypM´1q

qrajpαq

“

ˆ

1 `
qM

1 ´ q

˙ M´1
ź

mą0

ˆ

1 `
qm

1 ´ q

˙

.

□

7. Open Problems and Future Directions
We conclude with several open problems for future study. In Section 5.3, we present
the connections between the following three constructions:

- Positions of dark clouds in snowpRDpwqq;
- First step of Viennot’s geometric construction;
- Bumps in the first row during Schensted insertion.

Question 7.1. Find further connections between Viennot’s geometric construction of
Schensted insertion and snowpRDpwqq.

Question 7.2. Find further connections between the Schensted insertion and the snow
diagram of a permutation.

The Grothendieck to Lascoux expansion, proven in [24], involves finding certain
tableaux and computing their right keys.

Question 7.3. Find a combinatorial formula for the expansion of Castelnuovo–
Mumford polynomials into top Lascoux polynomials indexed by snowy weak composi-
tions.

Finding a combinatorial formula for the structure constants cw
u,v for Grothendieck

polynomials, defined as
GuGv “

ÿ

w

cw
u,vGw ,

has been a long-standing open problem. These coefficients have a geometric interpre-
tation: They are the intersection numbers for the Schubert classes in the connective
K-theory. If we consider only the top-degree terms on both sides, we get the structure
constants for Castelnuovo–Mumford polynomials, which we denote as xcw

uv, which are
still non-negative integers.

Question 7.4. Find a combinatorial formula for xcw
uv.

The Grothendieck polynomial Gwpxq is a specialization of the double Grothendieck
polynomial Gwpx, yq by setting y1 “ y2 “ ¨ ¨ ¨ “ 0. In [11], Knutson and Miller
introduced pipe dream rules for both Gwpxq and Gwpx, yq. For Castelnuovo–Mumford
polynomials xGwpxq, we can think they correspond to a subset of pipe dreams for
Gwpxq. In [18], the authors proved a factorization of xGwpx, yq into a x-polynomial
and a y-polynomial, and they showed the the leading term is in fact,

xrajcodepwqyrajcodepw´1
q,

with coefficient 1 by constructing a pipe dream associated with it iteratively.
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Question 7.5. Use the snow diagrams to give an explicit construction of pipe dreams
for the leading term in xGwpx, yq.

In general, one can define a K-Kohnert polynomial for any diagram D:
κDpx; βq :“

ÿ

D1PKKDpDq

xwtpD1
qβexpD1

q.

Question 7.6. Find characterizations of diagram D such that the leading monomial
of pκD is given by rajcodepDq.

8. Appendix

Permutation w Gw (pGw in bold blue)
e: 1
2134: “ s1 x1

1324: “ s2 px1 ` x2q ` βx1x2

2314 “ s1s2 x1x2

3124: “ s2s1 x2
1

3214: “ s1s2s1 x2
1x2

1243: “ s3 px1 ` x2 ` x3q ` βpx1x2 ` x1x3 ` x2x3q ` β2x1x2x3

2143: “ s1s3 px1x2 ` x1x3 ` x2
1q ` βpx1x2x3 ` x2

1x2 ` x2
1x3q

`β2x2
1x2x3

1342 “ s2s3 px1x2 ` x1x3 ` x2x3q ` β2x1x2x3

1423: “ s3s2 px2
1 ` x2

2 ` x1x2q ` βpx2
1x2 ` x1x2

2q

2341 “ s1s2s3 x1x2x3

2413: “ s1s3s2 px1x2
2 ` x2

1x2q ` βx2
1x2

2

3142 “ s2s1s3 px2
1x2 ` x2

1x3q ` βx2
1x2x3

4123: “ s3s2s1 x3
1

1432: “ s3s2s3 px2
1x2 ` x1x2

2 ` x2
1x3 ` x1x2x3 ` x2

2x3q

+ βpx2
1x2

2 ` 2x2
1x2x3 ` 2x1x2

2x3q ` β2 x2
1x2

2x3

2431 “ s1s3s2s3 px2
1x2x3 ` x1x2

2x3q ` βx2
1x2

2x3

3241 “ s2s1s2s3 x2
1x2x3

3412 “ s2s1s3s2 x2
1x2

2

4132: “ s3s2s1s3 px3
1x2 ` x3

1x3q ` βx3
1x2x3

4213: “ s3s2s1s2 x3
1x2

3421 “ s2s1s3s2s3 x2
1x2

2x3

4231 “ s3s2s1s2s3 x3
1x2x3

4312: “ s3s2s1s3s2 x3
1x2

2

4321: “ s3s2s1s3s2s3 x3
1x2

2x3
Table 1. Grothendieck polynomials in S4. : refers to inverse fire-
works permutations.
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Weak compositions α Lα (pLα in bold blue)
p0, 0, 0q: 1
p1, 0, 0q: x1

p0, 1, 0q: px1 ` x2q ` β x1x2

p1, 1, 0q x1x2

p2, 0, 0q: x2
1

p2, 1, 0q: x2
1x2

p0, 0, 1q: px1 ` x2 ` x3q ` βpx1x2 ` x1x3 ` x2x3q ` β2x1x2x3

p0, 1, 1q px1x2 ` x1x3 ` x2x3q ` β2x1x2x3

p0, 2, 0q: px2
1 ` x1x2 ` x2

2q ` β px2
1x2 ` x1x2

2q

p1, 0, 1q px1x2 ` x1x3q ` βx1x2x3

p3, 0, 0q: x3
1

p2, 0, 1q: px2
1x2 ` x2

1x3q ` βx2
1x2x3

p1, 2, 0q: px1x2
2 ` x2

1x2q ` βx2
1x2

2

p0, 2, 1q: px2
1x2 ` x2

1x3 ` x1x2
2 ` x1x2x3 ` x2

2x3q

`βpx2
1x2

2 ` 2x2
1x2x3 ` 2x1x2

2x3q ` β2x2
1x2

2x3

p1, 1, 1q x1x2x3

p3, 1, 0q: x3
1x2

p3, 0, 1q: px3
1x2 ` x3

1x3q ` βx3
1x2x3

p2, 2, 0q x2
1x2

2

p2, 1, 1q x2
1x2

2

p1, 2, 1q px2
1x2x3 ` x1x2

2x3q ` βx2
1x2

2x3

p3, 2, 0q: x3
1x2

2

p3, 1, 1q x3
1x2x3

p2, 2, 1q x2
1x2

2x3

p3, 2, 1q: x3
1x2

2x3
Table 2. Lascoux polynomials in C4. : refers to snowy weak compositions.
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