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On intersections and stable intersections
of tropical hypersurfaces

Yue Ren

Abstract We prove that every connected component of an intersection of tropical hypersur-
faces contains a point of their stable intersection unless that stable intersection is empty. This
is done by studying algebraic hypersurfaces that tropicalize to them and the tropicalization of
their intersection.

1. Introduction
Tropical varieties are commonly described as combinatorial shadows of algebraic va-
rieties. The tropicalization of an algebraic variety shares many common properties
with its algebraic counterpart, such as its dimension [8, Structure Theorem 3.3.5].
This has prominently been used to show finiteness of central configurations in four
and five body problems of celestial mechanics [5, 3], as well as central configurations
with restrictions on their geometry rather than the number of bodies [4, 2]. In these
proofs, the authors rely on the fact that their central configurations satisfy certain
algebraic equations and thus lie on an algebraic variety. They then show that the
tropicalization of the algebraic variety is zero-dimensional by intersecting tropical hy-
persurfaces and eliminating all resulting positive-dimensional polyhedra. Intersections
of tropical hypersurfaces are also used in the study of Lagrangian rational homology
spheres in Calabi-Yau threefolds [10].

Computing an intersection of tropical hypersurfaces can however be an incredibly
challenging task. Tropical hypersurfaces may have many maximal polyhedra and the
computation requires intersecting all combinations thereof. While parallelisation and
a clever choice of intersection order can lead to significant improvements in perfor-
mance [6], there is no definite way to avoid the exponential blowup in the number of
intersections required. This circumstance is especially unsatisfying when one expects
the final intersection to be very small, such as in the aforementioned applications.

One alternative would be to compute the intersection “bottom-up”: if one can
identify at least one point in every connected component of the intersection, then
the remaining points can be obtained using a traversal as in the computation of
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Figure 1. The intersection and stable intersection of two tropical
plane curves. Notice how every connected component of the intersec-
tion contains a point in the stable intersection.

tropical varieties [1, 11]. When the number of hypersurfaces does not exceed the
ambient dimension, a natural candidate for such a set of starting points is their stable
intersection. The stable intersection can be computed quickly using techniques such
as tropical homotopy continuation [7]. And, due to the similarity in their definitions,
it is not unreasonable to expect every connected component of the intersection to
contain a point of the stable intersection, see Figure 1. However, until now there has
been no known proof of that statement. This paper aims to close that gap:

Theorem 3.3. Let Σ1, . . . Σk be tropical hypersurfaces in Rn with a non-empty stable
intersection

∧k
i=1 Σi ̸= ∅. Then, every connected component of their intersection⋂k

i=1 |Σi| contains a point in the support of their stable intersection |
∧k

i=1 Σi|.

Despite the obvious combinatorial nature of the statement, our proof relies on an
algebro-geometric result by Josephine Yu on generic polynomials generating prime
ideals [12], and the structural properties of tropicalizations of irreducible varieties.

2. Background
In this article, we closely follow the notation of [8]. In particular:

Notation 2.1. For the remainder of the paper, we will fix an algebraically closed
field K of characteristic 0 with non-trivial valuation val : K∗ → R. Let K[x±1] :=
K[x±1

1 , . . . , x±1
n ] be a multivariate (Laurent) polynomial ring thereover.

For the sake of brevity, we will abbreviate “pure, weighted, balanced polyhedral
complex” by “balanced polyhedral complex”, and we will consider tropical hypersur-
faces as balanced polyhedral complexes instead of supports thereof. Additionally, we
will denote the stable intersection by “∧” for better inline formatting.

We will further assume some familiarity with the basic concepts in Sections 2 and 3
of [8], such as the duality between tropical hypersurfaces and regular subdivisions
of Newton polytopes, tropicalizations of algebraic varieties, stable intersections of
balanced polyhedral complexes, and mixed volumes of polytopes. In particular, we
will be using the following results:

Theorem 2.2 ([8, Theorem 3.3.5] Structure Theorem for Tropical Varieties). Let X
be an irreducible variety in (K∗)n of dimension d. Then, trop(X) is the support of a
balanced polyhedral complex in Rn of dimension d that is connected in codimension 1.

Theorem 2.3 ([8, Theorem 3.6.1]). Let Σ1, Σ2 be two balanced polyhedral complexes
in Rn whose support is the tropicalization of two varieties X1, X2 ⊆ (K∗)n. Then,

Algebraic Combinatorics, Vol. 7 #1 (2024) 10



On (stable) intersections of tropical hypersurfaces

L′ L L′′

Σ L

L′

Figure 2. A fixed balanced polyhedral complex Σ with different
translates of an affine subspace. Notice how the stable intersection is
either always non-empty (left) or empty (right), but not both.

there is a Zariski dense subset U ⊆ (K∗)n consisting of elements with component-
wise valuation 0 such that

|Σ1 ∧ Σ2| = trop(X1 ∩ z · X2) for all z ∈ U.

Theorem 2.4 ([8, Theorem 3.6.10]). Let Σ1, Σ2 be two balanced polyhedral complexes
in Rn of codimension d and e, respectively. If the stable intersection Σ1 ∧ Σ2 is non-
empty, then it is a balanced polyhedral complex of codimension d + e.

Additionally, we will require the following theorem by Yu. Whilst [12, Theorem 3]
is more general and also covers fields of positive characteristic, we will only need and
state its specialisation to fields of characteristic 0. In the theorem, “general polyno-
mials” means polynomials whose coefficients lie in a fixed Zariski open, dense set of
the coefficient space.

Theorem 2.5 ([12, Theorem 3]). Let A1, . . . , Ak ⊆ Zn, k ⩽ n, and 0 ∈ Ai for all
i = 1, . . . , k. General polynomials in K[x] with monomial supports A1, . . . , Ak generate
a proper ideal whose radical is prime if and only if for every ∅ ̸= J ⊆ [k] one of the
following holds:

(1) dim Span
⋃

j∈J Aj > |J |, or
(2) dim Span

⋃
j∈J Aj = |J | and MV(Conv(Aj) | j ∈ J) = 1.

3. Main Theorem
In this section, we prove Theorem 3.3, beginning with two lemmas. In the first lemma,
we regard affine subspaces as balanced polyhedral complexes consisting of a single
polyhedron. We show that if an affine subspace has an empty stable intersection with
a balanced polyhedral complex, then so do its translates, see Figure 2.

Lemma 3.1. Let Σ be a balanced polyhedral complex in Rn. Let L, L′ be two parallel
affine subspaces in Rn, i.e., L = Ker(A) + v and L′ = Ker(A) + v′ for some matrix
A ∈ Rk×n and vectors v, v′ ∈ Rn. Then

L ∧ Σ = ∅ ⇐⇒ L′ ∧ Σ = ∅.

Proof. Without loss of generality, we may assume that L is a linear space, i.e., 0 ∈ L.
Note that both L and L′ are supports of stable intersections of affine hyperplanes,
i.e., L = |H1 ∧ · · · ∧ Hk| and L′ = |(H1 + v′) ∧ H2 ∧ · · · ∧ Hk| for suitable hyperplanes
H1, . . . , Hk and v′ ∈ Rn. Since H1 and H1 + v′ remain parallel affine subspaces, and
H2 ∧ · · · ∧ Hk ∧ Σ remains a balanced polyhedral complex by Theorem 2.4, we may
assume without loss of generality that L is a hyperplane and L′ is an affine hyperplane.
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Consider the projection of |Σ| to the one-dimensional orthogonal complement L⊥.
The image of the projection remains the support of a balanced polyhedral complex,
which means it is either finite or the entire complement. If the projection is finite,
then Σ is contained in a union of affine hyperplanes parallel to L and L′, and we
have L ∧ Σ = ∅ = L′ ∧ Σ. If the projection is the entire complement, then we have
L ∧ Σ ̸= ∅ ̸= L′ ∧ Σ. □

In the next lemma, the connected component of a balanced polyhedral complex Σ
is a maximal polyhedral subset Γ ⊆ Σ such that |Γ| is a connected component of |Σ|.
Note that Γ is naturally a balanced polyhedral complex. We use Lemma 3.1 to prove
a similar statement but for connected components of a stable intersection of tropical
hypersurfaces instead of translates of an affine subspace.

Lemma 3.2. Let Σ1, . . . , Σk, Σk+1 be tropical hypersurfaces in Rn with
∧k

i=1 Σi ̸= ∅.
Then for any two connected components Γ, Γ′ ⊆

∧k
i=1 Σi we have

Γ ∧ Σk+1 = ∅ ⇐⇒ Γ′ ∧ Σk+1 = ∅.

Proof. Let A1, . . . , Ak ⊆ Zn be monomial supports of polynomials with tropical hy-
persurfaces Σ1, . . . , Σk and 0 ∈ Ai for all i. We distinguish between two cases:
Case 1: If A1, . . . , Ak do not satisfy Conditions (1) or (2) of Theorem 2.5, then there
is a subset J ⊆ [k] such that dim Span(

⋃
j∈J Aj) ⩽ |J |. Note that the lineality space of∧

j∈J Σj contains the orthogonal complement of Span(
⋃

j∈J Aj). Therefore, the lineal-
ity space of

∧
j∈J Σj has codimension at most |J |. And since

∧
j∈J Σj ⊇

∧k
i=1 Σi ̸= ∅,

Theorem 2.4 implies that
∧

j∈J Σj has codimension exactly |J |. Hence, |
∧

j∈J Σj | =
L1 ∪ · · · ∪ Lr, where L1, . . . , Lr are affine subspaces parallel to its lineality space.
The claim follows by applying Lemma 3.1 to Σ :=

∧
i∈[k+1]∖J Σi and the affine sub-

spaces L1, . . . , Lr.
Case 2: If A1, . . . , Ak satisfy Conditions (1) or (2) of Theorem 2.5, consider

• K · xA :=
⊕k

i=1
⊕

α∈Ai
K · xα, the vector space of polynomial tuples (f1, . . . , fk)

where fi has monomial support Ai, and
• K |A| := K |A1|+···+|Ak|, their coefficient space.

In particular, any choice of coefficients c = (ci,α)i∈[k],α∈Ai
∈ K |A| defines a tuple

of polynomials f(c) := (fi(c))i∈[k] ∈ K · xA with fi(c) :=
∑

α∈Ai
ci,αxα and vice

versa. By Theorem 2.5, there is a Zariski open, dense subset U ⊆ K |A| such that
any c ∈ U yields an f(c) whose entries generate an ideal whose radical is prime.
By Theorem 2.2, the tropicalization trop(V (f(c))) := trop(V (⟨f1(c), . . . , fk(c)⟩)) will
be connected for any c ∈ U . We will now show that there is a c0 ∈ U for which
trop(V (f(c0))) = |

∧k
i=1 Σi|, so that the claim holds trivially as there is only one

connected component.
Pick any c ∈ U . By Theorem 2.3, combined with a simple induction on k, there is

a Zariski dense S ⊆ ((K∗)n)k−1 with trop(V (f1(c))∩z2V (f2(c))∩· · ·∩zkV (fk(c))) =
|
∧k

i=1 Σi| for all (z2, . . . , zk) ∈ S. Then for any z = (z2, . . . , zk) ∈ ((K∗)n)k−1, let
z−1 · c ∈ K |A| denote the coefficients of the polynomials f1(z−1 · c) =

∑
α∈A1

c1,αxα

and fi(z−1 · c) =
∑

α∈Ai
ci,αz−α

i xα for i > 1, so that V (f1(z−1c)) = V (f1(c)) and
V (fi(z−1c)) = ziV (fi(c)) for i > 1. Consider the rational map

φ : ((K∗)n)k−1 → K |A|, z 7→ z−1 · c.

The preimage φ−1(U) is a Zariski open set, and, since φ(1, . . . , 1) = c ∈ U , φ−1(U)
is non-empty. Thus φ−1(U) has to intersect the Zariski dense set S, and any point in
the image of the intersection gives us the desired c0 ∈ U . □

Using Lemma 3.2 we can now prove:
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Figure 3. Illustrations for the proof of Theorem 3.3. C is a con-
nected component of

⋂k
i=1 |Σi|, Γ is a connected component of∧

j∈J Σj assumed to be not contained in C, and Σi0 is a tropical
hypersurface that contributes to Γ not being contained in C.

Theorem 3.3. Let Σ1, . . . Σk be tropical hypersurfaces in Rn with a non-empty sta-
ble intersection

∧k
i=1 Σi ̸= ∅. Then every connected component of their intersection⋂k

i=1 |Σi| contains a point in the support of their stable intersection |
∧k

i=1 Σi|.

Proof. Let C be a connected component of
⋂k

i=1 |Σi| and assume that C contains
no point of the stable intersection

∧k
i=1 Σi. Let J ⊊ [k] be a maximal subset such

that C contains a point of the stable intersection
∧

j∈J Σj . Let Γ ⊆ |
∧

j∈J Σj | be the
connected component containing said point. Note that, since

∧k
i=1 Σi is non-empty,

we have k ⩽ n by Theorem 2.4. And because J ⊊ [k], Γ has to be positive dimensional
again by Theorem 2.4.

If Γ is completely contained in C, then Γ ∧ Σi = ∅ for any i /∈ J due to the
maximality of J . Lemma 3.2 then implies

∧k
i=1 Σi = ∅, contradicting the assumptions.

If Γ is not completely contained in C, then there is a point w ∈ C ∩ Γ and a
direction u ∈ Rn such that w + ε · u ∈ Γ but w + ε · u /∈ C for ε > 0 sufficiently
small, see Figure 3 left. Since w + ε · u /∈ C, we also have w + ε · u /∈

⋂k
i=1 |Σi|. But

because w + ε · u ∈
⋂

j∈J |Σj |, there must be an i0 /∈ J such that w + ε · u /∈ |Σi0 |.
Let γ ∈ Γ be a polyhedron containing w + ε · u. Let σ ∈ Σi0 be a maximal polyhedron
containing w and on the boundary of the region of Rn ∖ |Σi0 | containing w + ε · u, see
Figure 3 right. Then dim(γ + σ) = n and hence w ∈ γ ∩ σ ∈ Γ ∧ Σi0 by the definition
of stable intersection. As w ∈ C, this contradicts that J ⊆ [n] is maximal. □

4. Open questions
Our approach to prove Theorem 3.3 relies on the fact that each Σi is the tropical-
ization of an algebraic variety and on dimension arguments to show (non-)emptiness.
Consequently, it has two key limitations:

First, it cannot deal with balanced polyhedral complexes which do not arise as
tropicalizations of algebraic varieties. Such balanced polyhedral complexes are known
to exist. In fact, balanced polyhedral complexes that are tropicalizations of algebraic
varieties exhibit particularly nice properties such as higher connectivity [9]. Hence it
is not clear whether Theorem 3.3 generalises to arbitrary balanced polyhedral com-
plexes:

Algebraic Combinatorics, Vol. 7 #1 (2024) 13
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Question 4.1. Let Σ1, . . . , Σk be balanced polyhedral complexes in Rn with a non-
empty stable intersection

∧k
i=1 Σi ̸= ∅. Does every connected component of their

intersection
⋂n

i=1 |Σi| contain a point of their stable intersection |
∧k

i=1 Σi|?

Second, it cannot predict where the stable intersection points lie. Recall that the
original motivation was to find a way to identify a point on each connected com-
ponent of an intersection of tropical hypersurfaces. In case the number of tropical
hypersurfaces in Rn exceeds n, their stable intersection is empty by Theorem 2.4.
Hence their stable intersection does not provide an easy way to construct such points.
A natural alternative are the stable intersections of any n tropical hypersurfaces, see
Figure 4. However, since our techniques do not give any information on where those
stable intersection points lie, it cannot provide an answer to the following question:

Question 4.2. Let Σ1, . . . , Σk be tropical hypersurfaces in Rn with k > n and non-
empty stable intersections

∧
j∈J Σj ̸= ∅ for all J ∈

([k]
n

)
. Does every connected compo-

nent of their intersection
⋂k

i=1 |Σi| contain a point of a stable intersection |
∧

j∈J Σj |
for some J ∈

([k]
n

)
?

Figure 4. Three tropical plane curves and the stable intersection
points of any two curves thereof. Stable intersection points which lie
in the intersection of all three curves are highlighted in white.
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