

Kuang-Yu Wu Toric varieties with ample tangent bundle Volume 7, issue 1 (2024), p. 1-7.

https://doi.org/10.5802/alco.328

© The author(s), 2024.

This article is licensed under the CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE. http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics Volume 7, issue 1 (2024), p. 1-7 https://doi.org/10.5802/alco.328

Toric varieties with ample tangent bundle

Kuang-Yu Wu

ABSTRACT We give a simple combinatorial proof of the toric version of Mori's theorem that the only smooth projective varieties with ample tangent bundle are the projective spaces \mathbb{P}^n .

1. Introduction

It is a well-known theorem that the only smooth projective varieties (over an algebraically closed field k) with ample tangent bundles are the projective spaces \mathbb{P}^n_k . This is first conjectured by Hartshorne [5, Problem 2.3] and later proved by Mori [8] using the full force of his now-celebrated "bend and break" technique. Here we say that a vector bundle \mathcal{E} is ample (resp. nef) if the line bundle $\mathcal{O}_{\mathbb{P}\mathcal{E}}(1)$ on the projectivized bundle $\mathbb{P}\mathcal{E}$ is ample (resp. nef).

In this paper, we consider a toric version of this theorem and show that it admits a simple combinatorial proof.

THEOREM 1.1. Let X be an n-dimensional smooth projective toric variety (over an algebraically closed field k) with ample tangent bundle \mathcal{T}_X . Then X is isomorphic to \mathbb{P}_1^n .

In the proof we fix an ample divisor on X and consider the corresponding polytope $P \subseteq \mathbb{R}^n$. The key observation we make is that the ampleness of \mathcal{T}_X implies that the sum of any pair of two adjacent angles on a 2-dimensional face of P is smaller than π . It follows that P has to be an n-simplex, and hence X is isomorphic to \mathbb{P}^n . (1)

2. Preliminaries

Here we list out some definitions and facts regarding toric varieties and toric vector bundles that we will use in this article. One may refer to [4, 1] for more details about toric varieties, and [9, 2] for more details about toric vector bundles.

Manuscript received 5th October 2022, revised and accepted 31st July 2023.

Keywords. toric varieties, ample tangent bundle.

ISSN: 2589-5486

ACKNOWLEDGEMENTS. The author was partially supported by the NSF grant DMS-1749447.

⁽¹⁾After this work was complete the author learned of the sources [7, 3] that contain different proofs of results in this paper.

2.1. TORIC VARIETIES. We work throughout over an algebraically closed field k. By a toric variety, we mean an irreducible and normal algebraic variety X containing a torus $T \cong (k^*)^n$ as a Zariski open subset such that the action of T on itself (by multiplication) extends to an algebraic action of T on X.

Let M be the group of the characters of T, and N the group of the 1-parameter subgroups of T. Both M and N are lattices of rank n (equal to the dimension of T), i.e. isomorphic to \mathbb{Z}^n . They are dual to each other in the sense that there is a natural pairing of M and N denoted by $\langle \cdot, \cdot \rangle : M \times N \to \mathbb{Z}$.

Every toric variety X is associated to a fan Σ in $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R} (\cong \mathbb{R}^n)$. A fan Σ is said to be *complete* if it supports on the whole $N_{\mathbb{R}}$, and is said to be *smooth* if every cone in Σ is generated by a subset of a \mathbb{Z} -basis of N. A toric variety X is complete if and only if its associated fan Σ is complete, and X is smooth if and only if Σ is smooth.

There is an inclusion-reversing bijection between the cones $\sigma \in \Sigma$ and the T-orbits in X. Let $O_{\sigma} \subseteq X$ be the orbit corresponding to σ . The codimension of O_{σ} in X is equal to the dimension of σ . Each cone $\sigma \in \Sigma$ also corresponds to a T-invariant open affine set $U_{\sigma} \in X$, which is equal to the union of all the orbits O_{τ} corresponding to cones τ contained in σ . Given a 1-dimensional cone $\rho \in \Sigma$, the closure of O_{ρ} is a T-invariant Weil divisor, denoted by D_{ρ} . The class group of X is generated by the classes of the divisors D_{ρ} corresponding to the 1-dimensional cones in Σ .

2.2. POLYTOPES AND TORIC VARIETIES. Let $M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$. A lattice polytope P in $M_{\mathbb{R}}$ is the convex hull of finitely many points in M. The dimension of P is defined to be the dimension of the affine span of P. When dim $P = \dim M_{\mathbb{R}}$, we say that P is full dimensional.

Let $P \subseteq M_{\mathbb{R}}$ be a full dimensional lattice polytope, and let P_1, \ldots, P_m be the facets of P, i.e. codimension 1 faces of P. For each facet P_k , there exists a unique primitive lattice point $v_k \in N$ and a unique integer $c_k \in \mathbb{Z}$ with $P_k = \{u \in P \mid \langle u, v_k \rangle = -c_k\}$ and $\langle u, v_k \rangle \geqslant -c_k$ for all $u \in P$.

Let Σ_P be the (inner) normal fan of P. The toric variety X_{Σ_P} associated to Σ_P is called the toric variety of P, and denoted by X_P . Denote by D_k the divisor corresponding to the 1-dimensional cone generated by v_k . Then we may define a divisor on X_P by $D_P := \sum_{k=1}^m c_k D_k$. Such a divisor D_P is necessarily ample.

This process is reversible. Given an ample T-invariant divisor D on X, we have $D = \sum_{k=1}^{m} c'_k D_k$ for some integers $c'_k \in \mathbb{Z}$. Then, the polytope $P = P_{(X,D)}$ corresponding to X and D may be defined by

$$P_{(X,D)} := \{ u \in M_{\mathbb{R}} \mid \langle u, v_k \rangle \geqslant -c'_k \text{ for all } k \}.$$

This gives a 1-to-1 correspondence between full dimensional lattice polytope $P \subseteq M_{\mathbb{R}}$ and a pair (X, D) of a complete toric variety X together with an ample T-invariant divisor D on X.

We say that P is smooth if given a vertex $u \in P$, u is contained in exactly n edges (i.e. 1-dimensional faces), and $\{u_1 - u, \ldots, u_n - u\}$ is a \mathbb{Z} -basis of M, where u_1, \ldots, u_n are the next lattice points on the n edges. The toric variety X_P is smooth if and only if P is smooth.

2.3. TORIC VECTOR BUNDLES. A vector bundle $\pi: \mathcal{E} \to X$ over a toric variety $X = X_{\Sigma}$ is said to be toric (or equivariant) if there is a T-action on \mathcal{E} that is linear on each fiber and satisfies $t \circ \pi = \pi \circ t$ for all $t \in T$.

Given a cone $\sigma \in \Sigma$ and $u \in M$, define $\mathcal{L}_u|_{U_{\sigma}}$ to be the line bundle $\mathcal{O}_{U_{\sigma}}(\operatorname{div}\chi_u)$ over U_{σ} . Explicitly, $\mathcal{L}_u|_{U_{\sigma}}$ is the trivial line bundle $U_{\sigma} \times k$ equipped with the T-action given by $t.(x,z) := (t.x, \chi^u(t) \cdot z)$. If $u, u' \in M$ satisfy $u - u' \in \sigma^{\perp}$, then $\chi^{u-u'}$ is a

non-vanishing regular function on U_{σ} which gives an isomorphism $\mathcal{L}_{u}|_{U_{\sigma}} \cong \mathcal{L}_{u'}|_{U_{\sigma}}$. In fact, the group of toric line bundles on U_{σ} is isomorphic to $M_{\sigma} := M/(M \cap \sigma^{\perp})$. Therefore, we also write $\mathcal{L}_{[u]}|_{U_{\sigma}}$, where $[u] \in M_{\sigma}$ is the class of u.

Let $\mathcal{E} \to X$ be a toric vector bundle of rank r. Its restriction to an invariant open affine set U_{σ} splits into a direct sum of toric line bundles with trivial underlying line bundles [9, Proposition 2.2]; i.e. we have $\mathcal{E}|_{U_{\sigma}} \cong \bigoplus_{i=1}^{r} \mathcal{L}_{[u_i]}|_{U_{\sigma}}$ for some $[u_i] \in M_{\sigma}$. Define the associated characters of \mathcal{E} on σ to be the multiset $\mathbf{u}_{\mathcal{E}}(\sigma) \subset M_{\sigma}$ of size r that contains the $[u_i]$ showing up in the splitting.

EXAMPLE 2.1 (Associated characters of tangent bundles). Let $X = X_{\Sigma}$ be an n-dimensional smooth projective toric variety, and consider its tangent bundle \mathcal{T}_X . Fix a maximal cone $\sigma \in \Sigma$. Since X is smooth, the dual cone $\check{\sigma}$ of σ is generated by some $u_1, \ldots, u_n \in M$ that form a \mathbb{Z} -basis of M. Denote by $x_1, \ldots, x_n \in \Gamma(U_{\sigma}, \mathcal{O}_X)$ the coordinates on $U_{\sigma} \cong k^n$ corresponding to u_1, \ldots, u_n . Then $\left\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\right\}$ is a local frame of \mathcal{T}_X on U_{σ} . Each non-vanishing section $\frac{\partial}{\partial x_i} \in \Gamma(U_{\sigma}, \mathcal{T}_X)$ induces a map from the trivial line bundle $U_{\sigma} \times k$ to $\mathcal{T}_X|_{U_{\sigma}}$, the image of which is a toric line subbundle of $\mathcal{T}_X|_{U_{\sigma}}$ isomorphic to $\mathcal{L}_{u_i}|_{U_{\sigma}}$. We have $\mathcal{T}_X|_{U_{\sigma}} \cong \bigoplus_{i=1}^n \mathcal{L}_{u_i}|_{U_{\sigma}}$, and hence the associated characters of \mathcal{T}_X on σ are $\mathbf{u}_{\mathcal{T}_X}(\sigma) = \{u_1, \ldots, u_n\}$.

2.4. Positivity of toric vector bundles. Let $X = X_{\Sigma}$ be a complete toric variety. By an *invariant curve* on X, we mean a complete irreducible 1-dimensional subvariety that is invariant under the T-action. Via the cone-orbit correspondence, there is a one-to-one correspondence between the invariant curves and the codimension-1 cones; every invariant curve is the closure of an 1-dimensional orbit, which corresponds to a codimension-1 cone in Σ . For each codimension-1 cone $\tau \in \Sigma$, denote the corresponding invariant curve by C_{τ} .

The positivity of toric vector bundles can be checked on invariant curves according to the following result in [6].

THEOREM 2.2. [6, Theorem 2.1] A toric vector bundle on a complete toric variety is ample (resp. nef) if and only if its restriction to every invariant curve is ample (resp. nef).

Note that every invariant curve is a \mathbb{P}^1 . By Birkhoff–Grothendieck theorem, every vector bundle on \mathbb{P}^1 splits into a direct sum of line bundles. Hence, the positivity of vector bundles on \mathbb{P}^1 is well understood, namely $\bigoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1}(a_i)$ is ample (resp. nef) if and only if every a_i is positive (resp. non-negative). It is common to call the r-tuple (or multiset) $(a_i)_{i=1}^r$ the *splitting type* of the vector bundle.

Fix a codimension-1 cone τ , and let σ, σ' be the two maximal cones containing τ . Given $u, u' \in M$ satisfying $u - u' \in \tau^{\perp}$, define a toric line bundle $\mathcal{L}_{u,u'}$ on $U_{\sigma} \cup U_{\sigma'}$ by glueing the toric line bundles $\mathcal{L}_{u}|_{U_{\sigma}}$ and $\mathcal{L}_{u'}|_{U_{\sigma'}}$ with the transition function $\chi^{u'-u}$. Since the invariant curve C_{τ} is contained in $U_{\sigma} \cup U_{\sigma'}$, we may restrict $\mathcal{L}_{u,u'}$ to get a toric line bundle $\mathcal{L}_{u,u'}|_{C_{\tau}}$ on C_{τ} .

PROPOSITION 2.3. [6, Corollary 5.5 and 5.10] Let X be a complete toric variety. Any toric vector bundle $\mathcal{E}|_{C_{\tau}}$ on the invariant curve C_{τ} splits equivariantly as a sum of line bundles

$$\mathcal{E}|_{C_{\tau}} = \bigoplus_{i=1}^{r} \mathcal{L}_{u_i, u_i'}|_{C_{\tau}}.$$

The splitting is unique up to reordering.

Combining this with the following lemma that computes the underlying line bundle of $\mathcal{L}_{u,u'}|_{C_{\tau}}$, one gets the splitting type of $\mathcal{E}|_{C_{\tau}}$.

LEMMA 2.4. [6, Example 5.1] Let u_0 be the generator of $M \cap \tau^{\perp} \cong \mathbb{Z}$ that is positive on σ , and let m be the integer such that $u - u' = mu_0$. Then, the underlying line bundle of $\mathcal{L}_{u,u'}|_{C_{\tau}}$ is isomorphic to $\mathcal{O}_{\mathbb{P}^1}(m)$.

3. Restricting \mathcal{T}_X to invariant curves

Let $X = X_{\Sigma}$ be a smooth complete toric variety of dimension n. In this section, we consider the restrictions of the tangent bundle \mathcal{T}_X to the invariant curves. The goal is to get the splitting types in terms of the combinatorial data of the fan Σ of X. This has in fact been done in [2, Example 5.1 and 5.2] and [10, Theorem 2]. We repeat the calculation for the convenience of the readers.

Fix an (n-1)-dimensional cone $\tau \in \Sigma$. Let $\sigma, \sigma' \in \Sigma(n)$ be the two maximal cones containing τ . Let $v_1, \ldots, v_{n-1}, v_n, v_n' \in N$ be primitive vectors such that τ is generated by $\{v_1, \ldots, v_{n-1}\}$, σ is generated by $\{v_1, \ldots, v_{n-1}, v_n\}$, and σ' is generated by $\{v_1, \ldots, v_{n-1}, v_n'\}$. There are unique $u_i, u_i' \in M$ $(i = 1, \ldots, n)$ such that $\langle u_i, v_i \rangle = \langle u_i', v_i' \rangle = 1$ for all i and $\langle u_i, v_j \rangle = \langle u_i', v_j' \rangle = 0$ for all $i \neq j$, where we define $v_i' = v_i$ for $i = 1, \ldots, n-1$. The dual cones $\check{\sigma}$ and $\check{\sigma}'$ are generated by $\{u_1, \ldots, u_n\}$ and $\{u_1', \ldots, u_n'\}$, respectively.

By Example 2.1, the associated characters of \mathcal{T}_X on σ and σ' are given by

$$\mathbf{u}_{\mathcal{T}_X}(\sigma) = \{u_1, \dots, u_n\}, \ \mathbf{u}_{\mathcal{T}_X}(\sigma') = \{u'_1, \dots, u'_n\}.$$

Following Section 2.4, let C_{τ} be the invariant curve corresponding to τ . The splitting of $\mathcal{T}_{X|C_{\tau}}$ as in Proposition 2.3 is easy to get by the following fact.

LEMMA 3.1. The associated characters u_i, u_i' satisfy $u_i - u_i' \in \tau^{\perp}$ for all $i = 1, \ldots, n$, and $u_i - u_i' \notin \tau^{\perp}$ for all $i \neq j$.

Proof. Note that $u \in M$ is contained in τ^{\perp} if and only if $\langle u, v_{\ell} \rangle = 0$ for all $\ell = 1, \ldots, n-1$. The first part of the lemma follows from the fact that $\langle u_i - u'_i, v_{\ell} \rangle = 0$ for all $\ell = 1, \ldots, n-1$, and the second part of the lemma follows from $\langle u_i - u'_j, v_i \rangle = -\langle u_i - u'_i, v_j \rangle = 1$, where at least one of i, j is not n.

DEFINITION 3.2. Define $a_i \in \mathbb{Z}$ (for i = 1, ..., n) to be the integers satisfying $u_i = u'_i + a_i u_n$. Such integers exist since u_n is a primitive generator of $\tau^{\perp} \cap M \cong \mathbb{Z}$. Note that $u'_n = -u_n$ so that $a_n = 2$.

PROPOSITION 3.3. On the invariant curve C_{τ} , the restriction $\mathcal{T}_X|_{C_{\tau}}$ of the tangent bundle (as a toric vector bundle) splits into the following direct sum of toric line bundles

$$\mathcal{T}_X|_{C_{\tau}} \cong \bigoplus_{i=1}^n \mathcal{L}_{u_i,u_i'}|_{C_{\tau}}.$$

In particular, we have the following splitting of $\mathcal{T}_X|_{C_{\tau}}$ as a vector bundle

$$\mathcal{T}_X|_{C_{ au}}\cong igoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(a_i)$$
 .

Proof. By Proposition 2.3, we have that $\mathcal{T}_X|_{C_\tau}$ splits into a direct sum of toric line bundles of the form $\mathcal{L}_{u,u'}|_{C_\tau}$. This gives a bijection $\iota: \mathbf{u}_{\mathcal{E}}(\sigma) \to \mathbf{u}_{\mathcal{E}}(\sigma')$ mapping u to u' whenever $\mathcal{L}_{u,u'}|_{C_\tau}$ shows up in the splitting. Note that $u_i - \iota(u_i) \in \tau^{\perp}$ by the definition of $\mathcal{L}_{u,u'}$. Then Lemma 3.1 implies that we must have $\iota(u_i) = u'_i$ for all i, hence the splitting in the first part.

The second part follows directly from the first part together with Lemma 2.4. \Box

Remark 3.4. The integers a_i are the same as the integers b_i that show up in the "wall relation"

$$b_1v_1 + \cdots + b_{n-1}v_{n-1} + v_n + v'_n = 0$$
,

FIGURE 1. Fans of toric surfaces

mentioned in [10] and [2]. Indeed we have $b_i = -\langle u_i, v_n' \rangle = a_i$ for all $i = 1, \ldots, n-1$.

EXAMPLE 3.5. For each of the following toric surfaces X, we fix a 1-dimensional cone τ in its fan as shown in Figure 1 and compute the splitting type of $\mathcal{T}_X|_{C_{\sigma}}$.

- (1) $X = \mathbb{P}^2$. The dual cones of the maximal cones containing τ are given by $\check{\sigma} = \operatorname{Cone}\{(-1,0),(-1,1)\}$ and $\check{\sigma}' = \operatorname{Cone}\{(0,-1),(1,-1)\}$. Therefore we get $\mathcal{T}_X|_{C_\tau} \cong \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(2)$. In fact, the restrictions of \mathcal{T}_X to the other two invariant curves have the same splitting type, so \mathcal{T}_X is ample by Proposition 2.2
- (2) $X = \mathbb{P}^1 \times \mathbb{P}^1$. The dual cones of the maximal cones containing τ are given by $\check{\sigma} = \operatorname{Cone}\{(-1,0),(0,1)\}$ and $\check{\sigma}' = \operatorname{Cone}\{(-1,0),(0,-1)\}$. Therefore we get $\mathcal{T}_X|_{C_\tau} \cong \mathcal{O}_{\mathbb{P}^1}(0) \oplus \mathcal{O}_{\mathbb{P}^1}(2)$. In fact, the restrictions of \mathcal{T}_X to the other three invariant curves have the same splitting type, so \mathcal{T}_X is nef but not ample by Proposition 2.2.
- (3) Let X be the Hirzebruch surface \mathbb{F}_1 , which is isomorphic to \mathbb{P}^2 blown up at one point. The dual cones of the maximal cones containing τ are given by $\check{\sigma} = \operatorname{Cone}\{(-1,0),(0,1)\}$ and $\check{\sigma}' = \operatorname{Cone}\{(-1,1),(0,-1)\}$. Therefore we get $\mathcal{T}_X|_{C_\tau} \cong \mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(2)$, and hence \mathcal{T}_X is not nef by Proposition 2.2.

4. Polytopes and ampleness of the tangent bundle

Let $X = X_{\Sigma}$, \mathcal{T}_X , τ , σ , σ' , u_i , u'_i , a_i be as in the previous section.

Fix an ample T-invariant divisor D on X, and let $P = P_{(X,D)}$ be the corresponding polytope in the sense of Section 2.2. Note that X and Σ are simplicial as they are smooth; in particular, every maximal cone in Σ has exactly n faces of dimension (n-1), and every (n-1)-dimensional cone has exactly (n-1) faces of dimension (n-2). This implies that there are exactly n edges emanating from every vertex of P and that every edge of P is contained in exactly (n-1) faces of dimension 2.

Let $p_{\sigma} \in P$ be the vertex corresponding to the maximal cone σ . Let $P - p_{\sigma}$ denote the translation of P by $-p_{\sigma}$. Then the cone generated by $P - p_{\sigma}$ is given by $\{u \in M_{\mathbb{R}} \mid \langle u, v_i \rangle \geqslant 0 \text{ for all } i = 1, \ldots, n\}$, which is exactly the dual cone $\check{\sigma}$ of σ . Thus, each of the n edges of P emanating from p_{σ} contains exactly one of $p_{\sigma} + u_1, \ldots, p_{\sigma} + u_n$. Similarly, each of the n edges emanating from the vertex $p_{\sigma'}$ corresponding to σ' contains exactly one of $p_{\sigma'} + u'_1, \ldots, p_{\sigma'} + u'_n$.

Recall that the u_i and u_i' satisfy $u_i' = u_i - a_i u_n$ for all $i = 1, \ldots, n-1$ and $u_n' = -u_n$. Since σ and σ' contain the (n-1)-dimensional cone τ as a common face, the convex hull of $\overline{p_{\sigma}, p_{\sigma'}}$ of p_{σ} and $p_{\sigma'}$ is an edge of P; it corresponds to τ and contains $p_{\sigma} + u_n$ and $p_{\sigma'} + u_n'$. Fix $j \in \{1, \ldots, n-1\}$. Consider the points $p_{\sigma} + u_j, p_{\sigma'} + u_j' \in M$. The point $p_{\sigma} + u_j$ is on an edge emanating from p_{σ} , and $p_{\sigma'} + u_j'$ is on an edge emanating from $p_{\sigma'}$. In addition, since $(p_{\sigma} + u_j) - (p_{\sigma'} + u_j') = (p_{\sigma} - p_{\sigma'}) + a_j u_n, \overline{p_{\sigma} + u_j, p_{\sigma'} + u_j'}$

FIGURE 2. Polytopes $P(X, -K_X)$ of toric surfaces

is parallel to $\overline{p_{\sigma}, p_{\sigma'}}$. Thus, the four points $p_{\sigma}, p_{\sigma'}, p_{\sigma} + u_j, p_{\sigma'} + u'_j$ are contained in a common 2-dimensional face $A_j \subseteq P$. In fact, A_j is the 2-dimensional face of P corresponding to the (n-2)-dimensional cone $\tau \cap (u_j)^{\perp} = \tau \cap (u'_j)^{\perp}$.

Denote the angles at p_{σ} and $p_{\sigma'}$ on A_j by $\theta(p_{\sigma}, A_j)$ and $\theta(p_{\sigma'}, A_j)$, respectively. Their sum is related to the integer a_j in the following way.

PROPOSITION 4.1. The sum $\theta(p_{\sigma}, A_j) + \theta(p_{\sigma'}, A_j)$ is smaller than π if and only if $a_j > 0$, equal to π if and only if $a_j = 0$, and greater than π if and only if $a_j < 0$.

Proof. Suppose $a_j > 0$. Consider the convex hull of the four points $p_{\sigma}, p_{\sigma'}, p_{\sigma'} + u'_j, p_{\sigma} + u_j \in M$, which is either a triangle (if $p_{\sigma'} + u'_j = p_{\sigma} + u_j$) or a trapezoid with the edges $\overline{p_{\sigma} + u_j, p_{\sigma'} + u'_j}$ and $\overline{p_{\sigma}, p_{\sigma'}}$ parallel to each other. See Figure 2(1) for an example of this trapezoid. If the convex hull is a triangle, then it is clear that $\theta(p_{\sigma}, A_j) + \theta(p_{\sigma'}, A_j) < \pi$. If the convex hull is a trapezoid, since

$$((p_{\sigma'} + u'_j) - (p_{\sigma} + u_j)) - (p_{\sigma'} - p_{\sigma}) = -a_j u_n,$$

the edge $\overline{p_{\sigma} + u_i, p_{\sigma'} + u_i'}$ is shorter than $\overline{p_{\sigma}, p_{\sigma'}}$, implying $\theta(p_{\sigma}, A_j) + \theta(p_{\sigma'}, A_j) < \pi$. Similarly, if $a_j < 0$, then the edge $\overline{p_{\sigma} + u_i, p_{\sigma'} + u_i'}$ is longer than $\overline{p_{\sigma}, p_{\sigma'}}$ and hence $\theta(p_{\sigma}, A_j) + \theta(p_{\sigma'}, A_j) > \pi$. (See Figure 2(3).)

If $a_j = 0$, then the edges $\overline{p_{\sigma} + u_i, p_{\sigma'} + u_i'}$ and $\overline{p_{\sigma}, p_{\sigma'}}$ have the same length, i.e. the trapezoid is in fact a parallelogram. Therefore, we have $\theta(p_{\sigma}, A_j) + \theta(p_{\sigma'}, A_j) = \pi$. (See Figure 2(2).)

REMARK 4.2. Although the angles $\theta(p_{\sigma}, A_j), \theta(p_{\sigma'}, A_j)$ themselves are not invariant under a change of bases of M, whether their sum is smaller than, equal to, or greater than π is.

EXAMPLE 4.3. In Figure 2 are polytopes $P(X, -K_X)$ corresponding to the toric surfaces X in Example 3.5 together with their anticanonical line bundles $-K_X$, The cones τ, σ, σ' are the same as in Example 3.5, and the shaded area in each picture is the convex hull of $p_{\sigma}, p_{\sigma'}, p_{\sigma'} + u'_i, p_{\sigma} + u_j$ in the proof of Proposition 4.1

- (1) $X = \mathbb{P}^2$. Recall $\mathcal{T}_X|_{C_\tau} \cong \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(2)$ so that $a_1 = 1 > 0$. Here we see that $\theta(p_\sigma, P) + \theta(p_{\sigma'}, P) < \pi$.
- (2) $X = \mathbb{P}^1 \times \mathbb{P}^1$. Recall $\mathcal{T}_X|_{C_{\tau}} \cong \mathcal{O}_{\mathbb{P}^1}(0) \oplus \mathcal{O}_{\mathbb{P}^1}(2)$ so that $a_1 = 0$. Here we see that $\theta(p_{\sigma}, P) + \theta(p_{\sigma'}, P) = \pi$.
- (3) $X = \mathbb{F}_1$. Recall $\mathcal{T}_X|_{C_\tau} \cong \mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(2)$ so that $a_1 = -1 < 0$. Here we see that $\theta(p_\sigma, P) + \theta(p_{\sigma'}, P) > \pi$.

5. Proof of Theorem 1.1

Proof of Theorem 1.1. As in Section 4, fix an ample T-invariant divisor D on X, and let $P = P_{(X,D)}$ be the corresponding polytope. We will show that P is an n-simplex. Let A be a 2-dimensional face of P. Let m be the number of vertices of A, and let p_1, \ldots, p_m be the vertices of A, ordered so that p_k is adjacent to p_{k+1} for all $k = 1, \ldots, m$, where $p_{m+1} := p_1$. Since \mathcal{T}_X is ample, its restriction to every invariant curve is ample. Then, by Proposition 3.3 and Proposition 4.1, $\theta(p_k, A) + \theta(p_{k+1}, A) < \pi$ for all k. This implies

$$m\pi > \sum_{k=1}^{m} (\theta(p_k, A) + \theta(p_{k+1}, A)) = 2\sum_{k=1}^{m} \theta(p_k, A) = 2(m-2)\pi.$$

We get m < 4, so A is a triangle. The same is true for all 2-dimensional faces of P.

Now, we start with a vertex q_0 of P. Note that P is smooth since X is smooth. Thus, q_0 is contained in exactly n edges, and if w_1, \ldots, w_n are the next lattice points on the n edges, then $\{w_1 - q_0, \ldots, w_n - q_n\}$ is a \mathbb{Z} -basis of M. This implies that q_0 is adjacent to exactly n vertices and that every two edges containing q_0 is contained in a 2-dimensional face of P. Let q_1, \ldots, q_n be the n vertices adjacent to q_0 . For each $1 < j \leqslant n$, let A_j be the 2-dimensional face containing the edges $\overline{q_0q_1}$ and $\overline{q_0q_j}$. Since A_j is in fact a triangle, q_1 is also adjacent to q_j . Thus q_1 is adjacent to q_0, q_2, \ldots, q_n . Similarly, every q_j is adjacent to exactly $q_0, \ldots, \widehat{q_j}, \ldots, q_n$. Consequently, q_0, q_1, \ldots, q_n are the only vertices of P, and hence P is the n-simplex with vertices q_0, q_1, \ldots, q_n .

Acknowledgements. I would like to thank my advisor Julius Ross for setting this project and for discussions about this project.

References

- David A. Cox, John B. Little, and Henry K. Schenck, *Toric varieties*, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011, https://doi. org/10.1090/gsm/124.
- [2] Sandra Di Rocco, Kelly Jabbusch, and Gregory G. Smith, Toric vector bundles and parliaments of polytopes, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7715-7741, https://doi.org/10. 1090/tran/7201.
- [3] Osamu Fujino, Toric varieties whose canonical divisors are divisible by their dimensions, Osaka
 J. Math. 43 (2006), no. 2, 275-281, http://projecteuclid.org/euclid.ojm/1152203941.
- [4] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, https://doi.org/10.1515/9781400882526.
- [5] Robin Hartshorne, Ample subvarieties of algebraic varieties, vol. Vol. 156, Springer-Verlag, Berlin-New York, 1970, notes written in collaboration with C. Musili.
- [6] Milena Hering, Mircea Mustață, and Sam Payne, Positivity properties of toric vector bundles,
 Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 607-640, https://doi.org/10.5802/aif.2534.
- [7] Toshiki Mabuchi, Almost homogeneous torus actions of varieties with ample tangent bundle,
 Tohoku Math. J. (2) 30 (1978), no. 4, 639-651, https://doi.org/10.2748/tmj/1178229922.
- [8] Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593-606, https://doi.org/10.2307/1971241.
- [9] Sam Payne, Moduli of toric vector bundles, Compos. Math. 144 (2008), no. 5, 1199-1213, https://doi.org/10.1112/S0010437X08003461.
- [10] David Schmitz, On exterior powers of the tangent bundle on toric varieties, 2018, https://arxiv.org/abs/1811.02603.

KUANG-YU WU, Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, IL 60607 (USA)

E-mail: kwu33@uic.edu