范
 ALGEBRAIC COMBINATORICS

Kuang-Yu Wu
Toric varieties with ample tangent bundle

Volume 7, issue 1 (2024), p. 1-7.
https://doi.org/10.5802/alco. 328
© The author(s), 2024.
(cc) BY This article is licensed under the Creative Commons Attribution (CC-BY) 4.0 License.
http://creativecommons.org/licenses/by/4.0/

Toric varieties with ample tangent bundle

Kuang-Yu Wu

Abstract

We give a simple combinatorial proof of the toric version of Mori's theorem that the only smooth projective varieties with ample tangent bundle are the projective spaces \mathbb{P}^{n}.

1. Introduction

It is a well-known theorem that the only smooth projective varieties (over an algebraically closed field k) with ample tangent bundles are the projective spaces \mathbb{P}_{k}^{n}. This is first conjectured by Hartshorne [5, Problem 2.3] and later proved by Mori [8] using the full force of his now-celebrated "bend and break" technique. Here we say that a vector bundle \mathcal{E} is ample (resp. nef) if the line bundle $\mathcal{O}_{\mathbb{P} \mathcal{E}}(1)$ on the projectivized bundle $\mathbb{P E}$ is ample (resp. nef).

In this paper, we consider a toric version of this theorem and show that it admits a simple combinatorial proof.

Theorem 1.1. Let X be an n-dimensional smooth projective toric variety (over an algebraically closed field k) with ample tangent bundle \mathcal{T}_{X}. Then X is isomorphic to \mathbb{P}_{k}^{n}.

In the proof we fix an ample divisor on X and consider the corresponding polytope $P \subseteq \mathbb{R}^{n}$. The key observation we make is that the ampleness of \mathcal{T}_{X} implies that the sum of any pair of two adjacent angles on a 2 -dimensional face of P is smaller than π. It follows that P has to be an n-simplex, and hence X is isomorphic to \mathbb{P}^{n}. ${ }^{(1)}$

2. Preliminaries

Here we list out some definitions and facts regarding toric varieties and toric vector bundles that we will use in this article. One may refer to $[4,1]$ for more details about toric varieties, and [9, 2] for more details about toric vector bundles.

[^0]2.1. Toric varieties. We work throughout over an algebraically closed field k. By a toric variety, we mean an irreducible and normal algebraic variety X containing a torus $T \cong\left(k^{*}\right)^{n}$ as a Zariski open subset such that the action of T on itself (by multiplication) extends to an algebraic action of T on X.

Let M be the group of the characters of T, and N the group of the 1-parameter subgroups of T. Both M and N are lattices of rank n (equal to the dimension of T), i.e. isomorphic to \mathbb{Z}^{n}. They are dual to each other in the sense that there is a natural pairing of M and N denoted by $\langle\cdot, \cdot\rangle: M \times N \rightarrow \mathbb{Z}$.

Every toric variety X is associated to a fan Σ in $N_{\mathbb{R}}:=N \otimes_{\mathbb{Z}} \mathbb{R}\left(\cong \mathbb{R}^{n}\right)$. A fan Σ is said to be complete if it supports on the whole $N_{\mathbb{R}}$, and is said to be smooth if every cone in Σ is generated by a subset of a \mathbb{Z}-basis of N. A toric variety X is complete if and only if its associated fan Σ is complete, and X is smooth if and only if Σ is smooth.

There is an inclusion-reversing bijection between the cones $\sigma \in \Sigma$ and the T-orbits in X. Let $O_{\sigma} \subseteq X$ be the orbit corresponding to σ. The codimension of O_{σ} in X is equal to the dimension of σ. Each cone $\sigma \in \Sigma$ also corresponds to a T-invariant open affine set $U_{\sigma} \in X$, which is equal to the union of all the orbits O_{τ} corresponding to cones τ contained in σ. Given a 1 -dimensional cone $\rho \in \Sigma$, the closure of O_{ρ} is a T-invariant Weil divisor, denoted by D_{ρ}. The class group of X is generated by the classes of the divisors D_{ρ} corresponding to the 1-dimensional cones in Σ.
2.2. Polytopes and toric varieties. Let $M_{\mathbb{R}}:=M \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^{n}$. A lattice polytope P in $M_{\mathbb{R}}$ is the convex hull of finitely many points in M. The dimension of P is defined to be the dimension of the affine span of P. When $\operatorname{dim} P=\operatorname{dim} M_{\mathbb{R}}$, we say that P is full dimensional.

Let $P \subseteq M_{\mathbb{R}}$ be a full dimensional lattice polytope, and let P_{1}, \ldots, P_{m} be the facets of P, i.e. codimension 1 faces of P. For each facet P_{k}, there exists a unique primitive lattice point $v_{k} \in N$ and a unique integer $c_{k} \in \mathbb{Z}$ with $P_{k}=\left\{u \in P \mid\left\langle u, v_{k}\right\rangle=-c_{k}\right\}$ and $\left\langle u, v_{k}\right\rangle \geqslant-c_{k}$ for all $u \in P$.

Let Σ_{P} be the (inner) normal fan of P. The toric variety $X_{\Sigma_{P}}$ associated to Σ_{P} is called the toric variety of P, and denoted by X_{P}. Denote by D_{k} the divisor corresponding to the 1-dimensional cone generated by v_{k}. Then we may define a divisor on X_{P} by $D_{P}:=\sum_{k=1}^{m} c_{k} D_{k}$. Such a divisor D_{P} is necessarily ample.

This process is reversible. Given an ample T-invariant divisor D on X, we have $D=$ $\sum_{k=1}^{m} c_{k}^{\prime} D_{k}$ for some integers $c_{k}^{\prime} \in \mathbb{Z}$. Then, the polytope $P=P_{(X, D)}$ corresponding to X and D may be defined by

$$
P_{(X, D)}:=\left\{u \in M_{\mathbb{R}} \mid\left\langle u, v_{k}\right\rangle \geqslant-c_{k}^{\prime} \text { for all } k\right\} .
$$

This gives a 1-to-1 correspondence between full dimensional lattice polytope $P \subseteq M_{\mathbb{R}}$ and a pair (X, D) of a complete toric variety X together with an ample T-invariant divisor D on X.

We say that P is smooth if given a vertex $u \in P, u$ is contained in exactly n edges (i.e. 1 -dimensional faces), and $\left\{u_{1}-u, \ldots, u_{n}-u\right\}$ is a \mathbb{Z}-basis of M, where u_{1}, \ldots, u_{n} are the next lattice points on the n edges. The toric variety X_{P} is smooth if and only if P is smooth.
2.3. Toric vector bundles. A vector bundle $\pi: \mathcal{E} \rightarrow X$ over a toric variety $X=X_{\Sigma}$ is said to be toric (or equivariant) if there is a T-action on \mathcal{E} that is linear on each fiber and satisfies $t \circ \pi=\pi \circ t$ for all $t \in T$.

Given a cone $\sigma \in \Sigma$ and $u \in M$, define $\left.\mathcal{L}_{u}\right|_{U_{\sigma}}$ to be the line bundle $\mathcal{O}_{U_{\sigma}}\left(\operatorname{div} \chi_{u}\right)$ over U_{σ}. Explicitly, $\left.\mathcal{L}_{u}\right|_{U_{\sigma}}$ is the trivial line bundle $U_{\sigma} \times k$ equipped with the T-action given by $t .(x, z):=\left(t . x, \chi^{u}(t) \cdot z\right)$. If $u, u^{\prime} \in M$ satisfy $u-u^{\prime} \in \sigma^{\perp}$, then $\chi^{u-u^{\prime}}$ is a
non-vanishing regular function on U_{σ} which gives an isomorphism $\left.\left.\mathcal{L}_{u}\right|_{U_{\sigma}} \cong \mathcal{L}_{u^{\prime}}\right|_{U_{\sigma}}$. In fact, the group of toric line bundles on U_{σ} is isomorphic to $M_{\sigma}:=M /\left(M \cap \sigma^{\perp}\right)$. Therefore, we also write $\left.\mathcal{L}_{[u]}\right|_{U_{\sigma}}$, where $[u] \in M_{\sigma}$ is the class of u.

Let $\mathcal{E} \rightarrow X$ be a toric vector bundle of rank r. Its restriction to an invariant open affine set U_{σ} splits into a direct sum of toric line bundles with trivial underlying line bundles [9, Proposition 2.2]; i.e. we have $\left.\left.\mathcal{E}\right|_{U_{\sigma}} \cong \bigoplus_{i=1}^{r} \mathcal{L}_{\left[u_{i}\right]}\right|_{U_{\sigma}}$ for some $\left[u_{i}\right] \in M_{\sigma}$. Define the associated characters of \mathcal{E} on σ to be the multiset $\mathbf{u}_{\mathcal{E}}(\sigma) \subset M_{\sigma}$ of size r that contains the $\left[u_{i}\right]$ showing up in the splitting.

Example 2.1 (Associated characters of tangent bundles). Let $X=X_{\Sigma}$ be an n dimensional smooth projective toric variety, and consider its tangent bundle \mathcal{T}_{X}. Fix a maximal cone $\sigma \in \Sigma$. Since X is smooth, the dual cone $\check{\sigma}$ of σ is generated by some $u_{1}, \ldots, u_{n} \in M$ that form a \mathbb{Z}-basis of M. Denote by $x_{1}, \ldots, x_{n} \in \Gamma\left(U_{\sigma}, \mathcal{O}_{X}\right)$ the coordinates on $U_{\sigma} \cong k^{n}$ corresponding to u_{1}, \ldots, u_{n}. Then $\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ is a local frame of \mathcal{T}_{X} on U_{σ}. Each non-vanishing section $\frac{\partial}{\partial x_{i}} \in \Gamma\left(U_{\sigma}, \mathcal{T}_{X}\right)$ induces a map from the trivial line bundle $U_{\sigma} \times k$ to $\left.\mathcal{T}_{X}\right|_{U_{\sigma}}$, the image of which is a toric line subbundle of $\left.\mathcal{T}_{X}\right|_{U_{\sigma}}$ isomorphic to $\left.\mathcal{L}_{u_{i}}\right|_{U_{\sigma}}$. We have $\left.\left.\mathcal{T}_{X}\right|_{U_{\sigma}} \cong \bigoplus_{i=1}^{n} \mathcal{L}_{u_{i}}\right|_{U_{\sigma}}$, and hence the associated characters of \mathcal{T}_{X} on σ are $\mathbf{u}_{\mathcal{T}_{X}}(\sigma)=\left\{u_{1}, \ldots, u_{n}\right\}$.
2.4. Positivity of toric vector bundles. Let $X=X_{\Sigma}$ be a complete toric variety. By an invariant curve on X, we mean a complete irreducible 1-dimensional subvariety that is invariant under the T-action. Via the cone-orbit correspondence, there is a one-to-one correspondence between the invariant curves and the codimension- 1 cones; every invariant curve is the closure of an 1-dimensional orbit, which corresponds to a codimension- 1 cone in Σ. For each codimension- 1 cone $\tau \in \Sigma$, denote the corresponding invariant curve by C_{τ}.

The positivity of toric vector bundles can be checked on invariant curves according to the following result in [6].

Theorem 2.2. [6, Theorem 2.1] A toric vector bundle on a complete toric variety is ample (resp. nef) if and only if its restriction to every invariant curve is ample (resp. nef).

Note that every invariant curve is a \mathbb{P}^{1}. By Birkhoff-Grothendieck theorem, every vector bundle on \mathbb{P}^{1} splits into a direct sum of line bundles. Hence, the positivity of vector bundles on \mathbb{P}^{1} is well understood, namely $\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$ is ample (resp. nef) if and only if every a_{i} is positive (resp. non-negative). It is common to call the r-tuple (or multiset) $\left(a_{i}\right)_{i=1}^{r}$ the splitting type of the vector bundle.

Fix a codimension-1 cone τ, and let σ, σ^{\prime} be the two maximal cones containing τ. Given $u, u^{\prime} \in M$ satisfying $u-u^{\prime} \in \tau^{\perp}$, define a toric line bundle $\mathcal{L}_{u, u^{\prime}}$ on $U_{\sigma} \cup U_{\sigma^{\prime}}$ by glueing the toric line bundles $\left.\mathcal{L}_{u}\right|_{U_{\sigma}}$ and $\left.\mathcal{L}_{u^{\prime}}\right|_{U_{\sigma^{\prime}}}$ with the transition function $\chi^{u^{\prime}-u}$. Since the invariant curve C_{τ} is contained in $U_{\sigma} \cup U_{\sigma^{\prime}}$, we may restrict $\mathcal{L}_{u, u^{\prime}}$ to get a toric line bundle $\left.\mathcal{L}_{u, u^{\prime}}\right|_{C_{\tau}}$ on C_{τ}.

Proposition 2.3. [6, Corollary 5.5 and 5.10] Let X be a complete toric variety. Any toric vector bundle $\left.\mathcal{E}\right|_{C_{\tau}}$ on the invariant curve C_{τ} splits equivariantly as a sum of line bundles

$$
\left.\mathcal{E}\right|_{C_{\tau}}=\left.\bigoplus_{i=1}^{r} \mathcal{L}_{u_{i}, u_{i}^{\prime}}\right|_{C_{\tau}} .
$$

The splitting is unique up to reordering.
Combining this with the following lemma that computes the underlying line bundle of $\left.\mathcal{L}_{u, u^{\prime}}\right|_{C_{\tau}}$, one gets the splitting type of $\left.\mathcal{E}\right|_{C_{\tau}}$.

Lemma 2.4. [6, Example 5.1] Let u_{0} be the generator of $M \cap \tau^{\perp} \cong \mathbb{Z}$ that is positive on σ, and let m be the integer such that $u-u^{\prime}=m u_{0}$. Then, the underlying line bundle of $\left.\mathcal{L}_{u, u^{\prime}}\right|_{C_{\tau}}$ is isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}(m)$.

3. REstricting \mathcal{T}_{X} to invariant curves

Let $X=X_{\Sigma}$ be a smooth complete toric variety of dimension n. In this section, we consider the restrictions of the tangent bundle \mathcal{T}_{X} to the invariant curves. The goal is to get the splitting types in terms of the combinatorial data of the fan Σ of X. This has in fact been done in [2, Example 5.1 and 5.2] and [10, Theorem 2]. We repeat the calculation for the convenience of the readers.

Fix an ($n-1$)-dimensional cone $\tau \in \Sigma$. Let $\sigma, \sigma^{\prime} \in \Sigma(n)$ be the two maximal cones containing τ. Let $v_{1}, \ldots, v_{n-1}, v_{n}, v_{n}^{\prime} \in N$ be primitive vectors such that τ is generated by $\left\{v_{1}, \ldots, v_{n-1}\right\}, \sigma$ is generated by $\left\{v_{1}, \ldots, v_{n-1}, v_{n}\right\}$, and σ^{\prime} is generated by $\left\{v_{1}, \ldots, v_{n-1}, v_{n}^{\prime}\right\}$. There are unique $u_{i}, u_{i}^{\prime} \in M(i=1, \ldots, n)$ such that $\left\langle u_{i}, v_{i}\right\rangle=$ $\left\langle u_{i}^{\prime}, v_{i}^{\prime}\right\rangle=1$ for all i and $\left\langle u_{i}, v_{j}\right\rangle=\left\langle u_{i}^{\prime}, v_{j}^{\prime}\right\rangle=0$ for all $i \neq j$, where we define $v_{i}^{\prime}=v_{i}$ for $i=1, \ldots, n-1$. The dual cones $\check{\sigma}$ and $\check{\sigma}^{\prime}$ are generated by $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right\}$, respectively.

By Example 2.1, the associated characters of \mathcal{T}_{X} on σ and σ^{\prime} are given by

$$
\mathbf{u}_{\mathcal{T}_{X}}(\sigma)=\left\{u_{1}, \ldots, u_{n}\right\}, \mathbf{u}_{\mathcal{T}_{X}}\left(\sigma^{\prime}\right)=\left\{u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right\}
$$

Following Section 2.4, let C_{τ} be the invariant curve corresponding to τ. The splitting of $\left.\mathcal{T}_{X}\right|_{C_{\tau}}$ as in Proposition 2.3 is easy to get by the following fact.
Lemma 3.1. The associated characters u_{i}, u_{i}^{\prime} satisfy $u_{i}-u_{i}^{\prime} \in \tau^{\perp}$ for all $i=1, \ldots, n$, and $u_{i}-u_{j}^{\prime} \notin \tau^{\perp}$ for all $i \neq j$.
Proof. Note that $u \in M$ is contained in τ^{\perp} if and only if $\left\langle u, v_{\ell}\right\rangle=0$ for all $\ell=$ $1, \ldots, n-1$. The first part of the lemma follows from the fact that $\left\langle u_{i}-u_{i}^{\prime}, v_{\ell}\right\rangle=0$ for all $\ell=1, \ldots, n-1$, and the second part of the lemma follows from $\left\langle u_{i}-u_{j}^{\prime}, v_{i}\right\rangle=$ $-\left\langle u_{i}-u_{j}^{\prime}, v_{j}\right\rangle=1$, where at least one of i, j is not n.
Definition 3.2. Define $a_{i} \in \mathbb{Z}$ (for $i=1, \ldots, n$) to be the integers satisfying $u_{i}=$ $u_{i}^{\prime}+a_{i} u_{n}$. Such integers exist since u_{n} is a primitive generator of $\tau^{\perp} \cap M \cong \mathbb{Z}$. Note that $u_{n}^{\prime}=-u_{n}$ so that $a_{n}=2$.

Proposition 3.3. On the invariant curve C_{τ}, the restriction $\left.\mathcal{T}_{X}\right|_{C_{\tau}}$ of the tangent bundle (as a toric vector bundle) splits into the following direct sum of toric line bundles

$$
\left.\left.\mathcal{T}_{X}\right|_{C_{\tau}} \cong \bigoplus_{i=1}^{n} \mathcal{L}_{u_{i}, u_{i}^{\prime}}\right|_{C_{\tau}}
$$

In particular, we have the following splitting of $\left.\mathcal{T}_{X}\right|_{C_{\tau}}$ as a vector bundle

$$
\left.\mathcal{T}_{X}\right|_{C_{\tau}} \cong \bigoplus_{i=1}^{n} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)
$$

Proof. By Proposition 2.3, we have that $\left.\mathcal{T}_{X}\right|_{C_{\tau}}$ splits into a direct sum of toric line bundles of the form $\left.\mathcal{L}_{u, u^{\prime}}\right|_{C_{\tau}}$. This gives a bijection $\iota: \mathbf{u}_{\mathcal{E}}(\sigma) \rightarrow \mathbf{u}_{\mathcal{E}}\left(\sigma^{\prime}\right)$ mapping u to u^{\prime} whenever $\left.\mathcal{L}_{u, u^{\prime}}\right|_{C_{\tau}}$ shows up in the splitting. Note that $u_{i}-\iota\left(u_{i}\right) \in \tau^{\perp}$ by the definition of $\mathcal{L}_{u, u^{\prime}}$. Then Lemma 3.1 implies that we must have $\iota\left(u_{i}\right)=u_{i}^{\prime}$ for all i, hence the splitting in the first part.

The second part follows directly from the first part together with Lemma 2.4.
Remark 3.4. The integers a_{i} are the same as the integers b_{i} that show up in the "wall relation"

$$
b_{1} v_{1}+\cdots+b_{n-1} v_{n-1}+v_{n}+v_{n}^{\prime}=0
$$

Figure 1. Fans of toric surfaces
mentioned in [10] and [2]. Indeed we have $b_{i}=-\left\langle u_{i}, v_{n}^{\prime}\right\rangle=a_{i}$ for all $i=1, \ldots, n-1$.
Example 3.5. For each of the following toric surfaces X, we fix a 1-dimensional cone τ in its fan as shown in Figure 1 and compute the splitting type of $\left.\mathcal{T}_{X}\right|_{C_{\tau}}$.
(1) $X=\mathbb{P}^{2}$. The dual cones of the maximal cones containing τ are given by $\check{\sigma}=$ Cone $\{(-1,0),(-1,1)\}$ and $\check{\sigma}^{\prime}=\operatorname{Cone}\{(0,-1),(1,-1)\}$. Therefore we get $\left.\mathcal{T}_{X}\right|_{C_{\tau}} \cong \mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)$. In fact, the restrictions of \mathcal{T}_{X} to the other two invariant curves have the same splitting type, so \mathcal{T}_{X} is ample by Proposition 2.2.
(2) $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$. The dual cones of the maximal cones containing τ are given by $\check{\sigma}=\operatorname{Cone}\{(-1,0),(0,1)\}$ and $\check{\sigma}^{\prime}=\operatorname{Cone}\{(-1,0),(0,-1)\}$. Therefore we get $\left.\mathcal{T}_{X}\right|_{C_{\tau}} \cong \mathcal{O}_{\mathbb{P}^{1}}(0) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)$. In fact, the restrictions of \mathcal{T}_{X} to the other three invariant curves have the same splitting type, so \mathcal{T}_{X} is nef but not ample by Proposition 2.2.
(3) Let X be the Hirzebruch surface \mathbb{F}_{1}, which is isomorphic to \mathbb{P}^{2} blown up at one point. The dual cones of the maximal cones containing τ are given by $\check{\sigma}=\operatorname{Cone}\{(-1,0),(0,1)\}$ and $\check{\sigma}^{\prime}=\operatorname{Cone}\{(-1,1),(0,-1)\}$. Therefore we get $\left.\mathcal{T}_{X}\right|_{C_{\tau}} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)$, and hence \mathcal{T}_{X} is not nef by Proposition 2.2.

4. Polytopes and ampleness of the tangent bundle

Let $X=X_{\Sigma}, \mathcal{T}_{X}, \tau, \sigma, \sigma^{\prime}, u_{i}, u_{i}^{\prime}, a_{i}$ be as in the previous section.
Fix an ample T-invariant divisor D on X, and let $P=P_{(X, D)}$ be the corresponding polytope in the sense of Section 2.2. Note that X and Σ are simplicial as they are smooth; in particular, every maximal cone in Σ has exactly n faces of dimension $(n-1)$, and every $(n-1)$-dimensional cone has exactly $(n-1)$ faces of dimension $(n-2)$. This implies that there are exactly n edges emanating from every vertex of P and that every edge of P is contained in exactly $(n-1)$ faces of dimension 2 .

Let $p_{\sigma} \in P$ be the vertex corresponding to the maximal cone σ. Let $P-p_{\sigma}$ denote the translation of P by $-p_{\sigma}$. Then the cone generated by $P-p_{\sigma}$ is given by $\left\{u \in M_{\mathbb{R}} \mid\left\langle u, v_{i}\right\rangle \geqslant 0\right.$ for all $\left.i=1, \ldots, n\right\}$, which is exactly the dual cone $\check{\sigma}$ of σ. Thus, each of the n edges of P emanating from p_{σ} contains exactly one of $p_{\sigma}+u_{1}, \ldots, p_{\sigma}+u_{n}$. Similarly, each of the n edges emanating from the vertex $p_{\sigma^{\prime}}$ corresponding to σ^{\prime} contains exactly one of $p_{\sigma^{\prime}}+u_{1}^{\prime}, \ldots, p_{\sigma^{\prime}}+u_{n}^{\prime}$.

Recall that the u_{i} and u_{i}^{\prime} satisfy $u_{i}^{\prime}=u_{i}-a_{i} u_{n}$ for all $i=1, \ldots, n-1$ and $u_{n}^{\prime}=-u_{n}$. Since σ and σ^{\prime} contain the ($n-1$)-dimensional cone τ as a common face, the convex hull of $\overline{p_{\sigma}, p_{\sigma^{\prime}}}$ of p_{σ} and $p_{\sigma^{\prime}}$ is an edge of P; it corresponds to τ and contains $p_{\sigma}+u_{n}$ and $p_{\sigma^{\prime}}+u_{n}^{\prime}$. Fix $j \in\{1, \ldots, n-1\}$. Consider the points $p_{\sigma}+u_{j}, p_{\sigma^{\prime}}+u_{j}^{\prime} \in M$. The point $p_{\sigma}+u_{j}$ is on an edge emanating from p_{σ}, and $p_{\sigma^{\prime}}+u_{j}^{\prime}$ is on an edge emanating from $p_{\sigma^{\prime}}$. In addition, since $\left(p_{\sigma}+u_{j}\right)-\left(p_{\sigma^{\prime}}+u_{j}^{\prime}\right)=\left(p_{\sigma}-p_{\sigma^{\prime}}\right)+a_{j} u_{n}, \overline{p_{\sigma}+u_{j}, p_{\sigma^{\prime}}+u_{j}^{\prime}}$

Figure 2. Polytopes $P\left(X,-K_{X}\right)$ of toric surfaces
is parallel to $\overline{p_{\sigma}, p_{\sigma^{\prime}}}$. Thus, the four points $p_{\sigma}, p_{\sigma^{\prime}}, p_{\sigma}+u_{j}, p_{\sigma^{\prime}}+u_{j}^{\prime}$ are contained in a common 2-dimensional face $A_{j} \subseteq P$. In fact, A_{j} is the 2 -dimensional face of P corresponding to the $(n-2)$-dimensional cone $\tau \cap\left(u_{j}\right)^{\perp}=\tau \cap\left(u_{j}^{\prime}\right)^{\perp}$.

Denote the angles at p_{σ} and $p_{\sigma^{\prime}}$ on A_{j} by $\theta\left(p_{\sigma}, A_{j}\right)$ and $\theta\left(p_{\sigma^{\prime}}, A_{j}\right)$, respectively. Their sum is related to the integer a_{j} in the following way.

Proposition 4.1. The sum $\theta\left(p_{\sigma}, A_{j}\right)+\theta\left(p_{\sigma^{\prime}}, A_{j}\right)$ is smaller than π if and only if $a_{j}>0$, equal to π if and only if $a_{j}=0$, and greater than π if and only if $a_{j}<0$.

Proof. Suppose $a_{j}>0$. Consider the convex hull of the four points $p_{\sigma}, p_{\sigma^{\prime}}, p_{\sigma^{\prime}}+$ $u_{j}^{\prime}, p_{\sigma}+u_{j} \in M$, which is either a triangle (if $p_{\sigma^{\prime}}+u_{j}^{\prime}=p_{\sigma}+u_{j}$) or a trapezoid with the edges $\overline{p_{\sigma}+u_{j}, p_{\sigma^{\prime}}+u_{j}^{\prime}}$ and $\overline{p_{\sigma}, p_{\sigma^{\prime}}}$ parallel to each other. See Figure 2(1) for an example of this trapezoid. If the convex hull is a triangle, then it is clear that $\theta\left(p_{\sigma}, A_{j}\right)+\theta\left(p_{\sigma^{\prime}}, A_{j}\right)<\pi$. If the convex hull is a trapezoid, since

$$
\left(\left(p_{\sigma^{\prime}}+u_{j}^{\prime}\right)-\left(p_{\sigma}+u_{j}\right)\right)-\left(p_{\sigma^{\prime}}-p_{\sigma}\right)=-a_{j} u_{n}
$$

the edge $\overline{p_{\sigma}+u_{i}, p_{\sigma^{\prime}}+u_{i}^{\prime}}$ is shorter than $\overline{p_{\sigma}, p_{\sigma^{\prime}}}$, implying $\theta\left(p_{\sigma}, A_{j}\right)+\theta\left(p_{\sigma^{\prime}}, A_{j}\right)<\pi$.
Similarly, if $a_{j}<0$, then the edge $\overline{p_{\sigma}+u_{i}, p_{\sigma^{\prime}}+u_{i}^{\prime}}$ is longer than $\overline{p_{\sigma}, p_{\sigma^{\prime}}}$ and hence $\theta\left(p_{\sigma}, A_{j}\right)+\theta\left(p_{\sigma^{\prime}}, A_{j}\right)>\pi$. (See Figure 2(3).)

If $a_{j}=0$, then the edges $\overline{p_{\sigma}+u_{i}, p_{\sigma^{\prime}}+u_{i}^{\prime}}$ and $\overline{p_{\sigma}, p_{\sigma^{\prime}}}$ have the same length, i.e. the trapezoid is in fact a parallelogram. Therefore, we have $\theta\left(p_{\sigma}, A_{j}\right)+\theta\left(p_{\sigma^{\prime}}, A_{j}\right)=\pi$. (See Figure 2(2).)

Remark 4.2. Although the angles $\theta\left(p_{\sigma}, A_{j}\right), \theta\left(p_{\sigma^{\prime}}, A_{j}\right)$ themselves are not invariant under a change of bases of M, whether their sum is smaller than, equal to, or greater than π is.

Example 4.3. In Figure 2 are polytopes $P\left(X,-K_{X}\right)$ corresponding to the toric surfaces X in Example 3.5 together with their anticanonical line bundles $-K_{X}$, The cones $\tau, \sigma, \sigma^{\prime}$ are the same as in Example 3.5, and the shaded area in each picture is the convex hull of $p_{\sigma}, p_{\sigma^{\prime}}, p_{\sigma^{\prime}}+u_{j}^{\prime}, p_{\sigma}+u_{j}$ in the proof of Proposition 4.1
(1) $X=\mathbb{P}^{2}$. Recall $\left.\mathcal{T}_{X}\right|_{C_{\tau}} \cong \mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)$ so that $a_{1}=1>0$. Here we see that $\theta\left(p_{\sigma}, P\right)+\theta\left(p_{\sigma^{\prime}}, P\right)<\pi$.
(2) $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Recall $\left.\mathcal{T}_{X}\right|_{C_{\tau}} \cong \mathcal{O}_{\mathbb{P}^{1}}(0) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)$ so that $a_{1}=0$. Here we see that $\theta\left(p_{\sigma}, P\right)+\theta\left(p_{\sigma^{\prime}}, P\right)=\pi$.
(3) $X=\mathbb{F}_{1}$. Recall $\left.\mathcal{T}_{X}\right|_{C_{\tau}} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)$ so that $a_{1}=-1<0$. Here we see that $\theta\left(p_{\sigma}, P\right)+\theta\left(p_{\sigma^{\prime}}, P\right)>\pi$.

5. Proof of Theorem 1.1

Proof of Theorem 1.1. As in Section 4, fix an ample T-invariant divisor D on X, and let $P=P_{(X, D)}$ be the corresponding polytope. We will show that P is an n-simplex.

Let A be a 2 -dimensional face of P. Let m be the number of vertices of A, and let p_{1}, \ldots, p_{m} be the vertices of A, ordered so that p_{k} is adjacent to p_{k+1} for all $k=1, \ldots, m$, where $p_{m+1}:=p_{1}$. Since \mathcal{T}_{X} is ample, its restriction to every invariant curve is ample. Then, by Proposition 3.3 and Proposition 4.1, $\theta\left(p_{k}, A\right)+\theta\left(p_{k+1}, A\right)<\pi$ for all k. This implies

$$
m \pi>\sum_{k=1}^{m}\left(\theta\left(p_{k}, A\right)+\theta\left(p_{k+1}, A\right)\right)=2 \sum_{k=1}^{m} \theta\left(p_{k}, A\right)=2(m-2) \pi
$$

We get $m<4$, so A is a triangle. The same is true for all 2-dimensional faces of P.
Now, we start with a vertex q_{0} of P. Note that P is smooth since X is smooth. Thus, q_{0} is contained in exactly n edges, and if w_{1}, \ldots, w_{n} are the next lattice points on the n edges, then $\left\{w_{1}-q_{0}, \ldots, w_{n}-q_{n}\right\}$ is a \mathbb{Z}-basis of M. This implies that q_{0} is adjacent to exactly n vertices and that every two edges containing q_{0} is contained in a 2-dimensional face of P. Let q_{1}, \ldots, q_{n} be the n vertices adjacent to q_{0}. For each $1<j \leqslant n$, let A_{j} be the 2 -dimensional face containing the edges $\overline{q_{0} q_{1}}$ and $\overline{q_{0} q_{j}}$. Since A_{j} is in fact a triangle, q_{1} is also adjacent to q_{j}. Thus q_{1} is adjacent to $q_{0}, q_{2}, \ldots, q_{n}$. Similarly, every q_{j} is adjacent to exactly $q_{0}, \ldots, \widehat{q_{j}}, \ldots, q_{n}$. Consequently, $q_{0}, q_{1}, \ldots, q_{n}$ are the only vertices of P, and hence P is the n-simplex with vertices $q_{0}, q_{1}, \ldots, q_{n}$.
Acknowledgements. I would like to thank my advisor Julius Ross for setting this project and for discussions about this project.

References

[1] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011, https://doi. org/10.1090/gsm/124.
[2] Sandra Di Rocco, Kelly Jabbusch, and Gregory G. Smith, Toric vector bundles and parliaments of polytopes, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7715-7741, https://doi.org/10. 1090/tran/7201.
[3] Osamu Fujino, Toric varieties whose canonical divisors are divisible by their dimensions, Osaka J. Math. 43 (2006), no. 2, 275-281, http://projecteuclid.org/euclid.ojm/1152203941.
[4] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, https://doi.org/10.1515/9781400882526.
[5] Robin Hartshorne, Ample subvarieties of algebraic varieties, vol. Vol. 156, Springer-Verlag, Berlin-New York, 1970, notes written in collaboration with C. Musili.
[6] Milena Hering, Mircea Mustaţă, and Sam Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 607-640, https://doi.org/10.5802/aif. 2534.
[7] Toshiki Mabuchi, Almost homogeneous torus actions of varieties with ample tangent bundle, Tohoku Math. J. (2) 30 (1978), no. 4, 639-651, https://doi.org/10.2748/tmj/1178229922.
[8] Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593-606, https://doi.org/10.2307/1971241.
[9] Sam Payne, Moduli of toric vector bundles, Compos. Math. 144 (2008), no. 5, 1199-1213, https://doi.org/10.1112/S0010437X08003461.
[10] David Schmitz, On exterior powers of the tangent bundle on toric varieties, 2018, https:// arxiv.org/abs/1811.02603.

Kuang-Yu Wu, Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, IL 60607 (USA)
E-mail: kwu33@uic.edu

[^0]: Manuscript received 5th October 2022, revised and accepted 31st July 2023.
 KEywords. toric varieties, ample tangent bundle.
 Acknowledgements. The author was partially supported by the NSF grant DMS-1749447.
 ${ }^{(1)}$ After this work was complete the author learned of the sources [7, 3] that contain different proofs of results in this paper.

