
ALGEBRAIC
 COMBINATORICS

Kuang-Yu Wu
Toric varieties with ample tangent bundle
Volume 7, issue 1 (2024), p. 1-7.
https://doi.org/10.5802/alco.328

© The author(s), 2024.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org
e-ISSN: 2589-5486

https://doi.org/10.5802/alco.328
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/


Algebraic Combinatorics
Volume 7, issue 1 (2024), p. 1–7
https://doi.org/10.5802/alco.328

Toric varieties with ample tangent bundle

Kuang-Yu Wu

Abstract We give a simple combinatorial proof of the toric version of Mori’s theorem that the
only smooth projective varieties with ample tangent bundle are the projective spaces Pn.

1. Introduction
It is a well-known theorem that the only smooth projective varieties (over an alge-
braically closed field k) with ample tangent bundles are the projective spaces Pn

k . This
is first conjectured by Hartshorne [5, Problem 2.3] and later proved by Mori [8] using
the full force of his now-celebrated “bend and break” technique. Here we say that a
vector bundle E is ample (resp. nef) if the line bundle OPE(1) on the projectivized
bundle PE is ample (resp. nef).

In this paper, we consider a toric version of this theorem and show that it admits
a simple combinatorial proof.

Theorem 1.1. Let X be an n-dimensional smooth projective toric variety (over an
algebraically closed field k) with ample tangent bundle TX . Then X is isomorphic
to Pn

k .

In the proof we fix an ample divisor on X and consider the corresponding poly-
tope P ⊆ Rn. The key observation we make is that the ampleness of TX implies that
the sum of any pair of two adjacent angles on a 2-dimensional face of P is smaller
than π. It follows that P has to be an n-simplex, and hence X is isomorphic to Pn.(1)

2. Preliminaries
Here we list out some definitions and facts regarding toric varieties and toric vector
bundles that we will use in this article. One may refer to [4, 1] for more details about
toric varieties, and [9, 2] for more details about toric vector bundles.
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2.1. Toric varieties. We work throughout over an algebraically closed field k. By
a toric variety, we mean an irreducible and normal algebraic variety X containing
a torus T ∼= (k∗)n as a Zariski open subset such that the action of T on itself (by
multiplication) extends to an algebraic action of T on X.

Let M be the group of the characters of T , and N the group of the 1-parameter
subgroups of T . Both M and N are lattices of rank n (equal to the dimension of T ),
i.e. isomorphic to Zn. They are dual to each other in the sense that there is a natural
pairing of M and N denoted by ⟨·, ·⟩ : M × N → Z.

Every toric variety X is associated to a fan Σ in NR := N ⊗Z R (∼= Rn). A fan Σ is
said to be complete if it supports on the whole NR, and is said to be smooth if every
cone in Σ is generated by a subset of a Z-basis of N . A toric variety X is complete
if and only if its associated fan Σ is complete, and X is smooth if and only if Σ is
smooth.

There is an inclusion-reversing bijection between the cones σ ∈ Σ and the T -orbits
in X. Let Oσ ⊆ X be the orbit corresponding to σ. The codimension of Oσ in X
is equal to the dimension of σ. Each cone σ ∈ Σ also corresponds to a T -invariant
open affine set Uσ ∈ X, which is equal to the union of all the orbits Oτ corresponding
to cones τ contained in σ. Given a 1-dimensional cone ρ ∈ Σ, the closure of Oρ is a
T -invariant Weil divisor, denoted by Dρ. The class group of X is generated by the
classes of the divisors Dρ corresponding to the 1-dimensional cones in Σ.

2.2. Polytopes and toric varieties. Let MR := M ⊗Z R ∼= Rn. A lattice poly-
tope P in MR is the convex hull of finitely many points in M . The dimension of P is
defined to be the dimension of the affine span of P . When dim P = dim MR, we say
that P is full dimensional.

Let P ⊆ MR be a full dimensional lattice polytope, and let P1, . . . , Pm be the facets
of P , i.e. codimension 1 faces of P . For each facet Pk, there exists a unique primitive
lattice point vk ∈ N and a unique integer ck ∈ Z with Pk = {u ∈ P | ⟨u, vk⟩ = −ck}
and ⟨u, vk⟩ ⩾ −ck for all u ∈ P .

Let ΣP be the (inner) normal fan of P . The toric variety XΣP
associated to ΣP

is called the toric variety of P , and denoted by XP . Denote by Dk the divisor corre-
sponding to the 1-dimensional cone generated by vk. Then we may define a divisor
on XP by DP :=

∑m
k=1 ckDk. Such a divisor DP is necessarily ample.

This process is reversible. Given an ample T -invariant divisor D on X, we have D =∑m
k=1 c′

kDk for some integers c′
k ∈ Z. Then, the polytope P = P(X,D) corresponding

to X and D may be defined by

P(X,D) := {u ∈ MR | ⟨u, vk⟩ ⩾ −c′
k for all k} .

This gives a 1-to-1 correspondence between full dimensional lattice polytope P ⊆ MR
and a pair (X, D) of a complete toric variety X together with an ample T -invariant
divisor D on X.

We say that P is smooth if given a vertex u ∈ P , u is contained in exactly n edges
(i.e. 1-dimensional faces), and {u1 −u, . . . , un −u} is a Z-basis of M , where u1, . . . , un

are the next lattice points on the n edges. The toric variety XP is smooth if and only
if P is smooth.

2.3. Toric vector bundles. A vector bundle π : E → X over a toric variety
X = XΣ is said to be toric (or equivariant) if there is a T -action on E that is linear
on each fiber and satisfies t ◦ π = π ◦ t for all t ∈ T .

Given a cone σ ∈ Σ and u ∈ M , define Lu|Uσ
to be the line bundle OUσ

(div χu)
over Uσ. Explicitly, Lu|Uσ

is the trivial line bundle Uσ ×k equipped with the T -action
given by t.(x, z) := (t.x, χu(t) · z). If u, u′ ∈ M satisfy u − u′ ∈ σ⊥, then χu−u′ is a
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non-vanishing regular function on Uσ which gives an isomorphism Lu|Uσ
∼= Lu′ |Uσ

.
In fact, the group of toric line bundles on Uσ is isomorphic to Mσ := M/(M ∩ σ⊥).
Therefore, we also write L[u]|Uσ

, where [u] ∈ Mσ is the class of u.
Let E → X be a toric vector bundle of rank r. Its restriction to an invariant open

affine set Uσ splits into a direct sum of toric line bundles with trivial underlying line
bundles [9, Proposition 2.2]; i.e. we have E|Uσ

∼=
⊕r

i=1 L[ui]|Uσ
for some [ui] ∈ Mσ.

Define the associated characters of E on σ to be the multiset uE(σ) ⊂ Mσ of size r
that contains the [ui] showing up in the splitting.

Example 2.1 (Associated characters of tangent bundles). Let X = XΣ be an n-
dimensional smooth projective toric variety, and consider its tangent bundle TX . Fix
a maximal cone σ ∈ Σ. Since X is smooth, the dual cone σ̌ of σ is generated by some
u1, . . . , un ∈ M that form a Z-basis of M . Denote by x1, . . . , xn ∈ Γ(Uσ, OX) the
coordinates on Uσ

∼= kn corresponding to u1, . . . , un. Then
{

∂
∂x1

, . . . , ∂
∂xn

}
is a local

frame of TX on Uσ. Each non-vanishing section ∂
∂xi

∈ Γ(Uσ, TX) induces a map from
the trivial line bundle Uσ ×k to TX |Uσ

, the image of which is a toric line subbundle of
TX |Uσ

isomorphic to Lui
|Uσ

. We have TX |Uσ
∼=

⊕n
i=1 Lui

|Uσ
, and hence the associated

characters of TX on σ are uTX
(σ) = {u1, . . . , un}.

2.4. Positivity of toric vector bundles. Let X = XΣ be a complete toric vari-
ety. By an invariant curve on X, we mean a complete irreducible 1-dimensional sub-
variety that is invariant under the T -action. Via the cone-orbit correspondence, there
is a one-to-one correspondence between the invariant curves and the codimension-1
cones; every invariant curve is the closure of an 1-dimensional orbit, which corre-
sponds to a codimension-1 cone in Σ. For each codimension-1 cone τ ∈ Σ, denote the
corresponding invariant curve by Cτ .

The positivity of toric vector bundles can be checked on invariant curves according
to the following result in [6].

Theorem 2.2. [6, Theorem 2.1] A toric vector bundle on a complete toric variety
is ample (resp. nef) if and only if its restriction to every invariant curve is ample
(resp. nef).

Note that every invariant curve is a P1. By Birkhoff–Grothendieck theorem, every
vector bundle on P1 splits into a direct sum of line bundles. Hence, the positivity of
vector bundles on P1 is well understood, namely

⊕r
i=1 OP1(ai) is ample (resp. nef) if

and only if every ai is positive (resp. non-negative). It is common to call the r-tuple
(or multiset) (ai)r

i=1 the splitting type of the vector bundle.
Fix a codimension-1 cone τ , and let σ, σ′ be the two maximal cones containing τ .

Given u, u′ ∈ M satisfying u−u′ ∈ τ⊥, define a toric line bundle Lu,u′ on Uσ ∪Uσ′ by
glueing the toric line bundles Lu|Uσ

and Lu′ |Uσ′ with the transition function χu′−u.
Since the invariant curve Cτ is contained in Uσ ∪ Uσ′ , we may restrict Lu,u′ to get a
toric line bundle Lu,u′ |Cτ

on Cτ .

Proposition 2.3. [6, Corollary 5.5 and 5.10] Let X be a complete toric variety. Any
toric vector bundle E|Cτ

on the invariant curve Cτ splits equivariantly as a sum of
line bundles

E|Cτ =
r⊕

i=1
Lui,u′

i
|Cτ .

The splitting is unique up to reordering.

Combining this with the following lemma that computes the underlying line bundle
of Lu,u′ |Cτ , one gets the splitting type of E|Cτ .
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Lemma 2.4. [6, Example 5.1] Let u0 be the generator of M ∩ τ⊥ ∼= Z that is positive
on σ, and let m be the integer such that u − u′ = mu0. Then, the underlying line
bundle of Lu,u′ |Cτ

is isomorphic to OP1(m).

3. Restricting TX to invariant curves
Let X = XΣ be a smooth complete toric variety of dimension n. In this section, we
consider the restrictions of the tangent bundle TX to the invariant curves. The goal is
to get the splitting types in terms of the combinatorial data of the fan Σ of X. This
has in fact been done in [2, Example 5.1 and 5.2] and [10, Theorem 2]. We repeat the
calculation for the convenience of the readers.

Fix an (n − 1)-dimensional cone τ ∈ Σ. Let σ, σ′ ∈ Σ(n) be the two maximal
cones containing τ . Let v1, . . . , vn−1, vn, v′

n ∈ N be primitive vectors such that τ is
generated by {v1, . . . , vn−1}, σ is generated by {v1, . . . , vn−1, vn}, and σ′ is generated
by {v1, . . . , vn−1, v′

n}. There are unique ui, u′
i ∈ M (i = 1, . . . , n) such that ⟨ui, vi⟩ =

⟨u′
i, v′

i⟩ = 1 for all i and ⟨ui, vj⟩ = ⟨u′
i, v′

j⟩ = 0 for all i ̸= j, where we define v′
i = vi

for i = 1, . . . , n − 1. The dual cones σ̌ and σ̌′ are generated by {u1, . . . , un} and
{u′

1, . . . , u′
n}, respectively.

By Example 2.1, the associated characters of TX on σ and σ′ are given by
uTX

(σ) = {u1, . . . , un} , uTX
(σ′) = {u′

1, . . . , u′
n} .

Following Section 2.4, let Cτ be the invariant curve corresponding to τ . The splitting
of TX |Cτ

as in Proposition 2.3 is easy to get by the following fact.

Lemma 3.1. The associated characters ui, u′
i satisfy ui − u′

i ∈ τ⊥ for all i = 1, . . . , n,
and ui − u′

j /∈ τ⊥ for all i ̸= j.

Proof. Note that u ∈ M is contained in τ⊥ if and only if ⟨u, vℓ⟩ = 0 for all ℓ =
1, . . . , n − 1. The first part of the lemma follows from the fact that ⟨ui − u′

i, vℓ⟩ = 0
for all ℓ = 1, . . . , n − 1, and the second part of the lemma follows from ⟨ui − u′

j , vi⟩ =
−⟨ui − u′

j , vj⟩ = 1, where at least one of i, j is not n. □

Definition 3.2. Define ai ∈ Z (for i = 1, . . . , n) to be the integers satisfying ui =
u′

i + aiun. Such integers exist since un is a primitive generator of τ⊥ ∩ M ∼= Z. Note
that u′

n = −un so that an = 2.

Proposition 3.3. On the invariant curve Cτ , the restriction TX |Cτ
of the tangent

bundle (as a toric vector bundle) splits into the following direct sum of toric line
bundles

TX |Cτ
∼=

n⊕
i=1

Lui,u′
i
|Cτ

.

In particular, we have the following splitting of TX |Cτ
as a vector bundle

TX |Cτ
∼=

n⊕
i=1

OP1(ai) .

Proof. By Proposition 2.3, we have that TX |Cτ
splits into a direct sum of toric line

bundles of the form Lu,u′ |Cτ
. This gives a bijection ι : uE(σ) → uE(σ′) mapping u

to u′ whenever Lu,u′ |Cτ
shows up in the splitting. Note that ui − ι(ui) ∈ τ⊥ by the

definition of Lu,u′ . Then Lemma 3.1 implies that we must have ι(ui) = u′
i for all i,

hence the splitting in the first part.
The second part follows directly from the first part together with Lemma 2.4. □

Remark 3.4. The integers ai are the same as the integers bi that show up in the “wall
relation”

b1v1 + · · · + bn−1vn−1 + vn + v′
n = 0 ,
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(1) X = P2
τ

σ

σ′

(2) X = P1 × P1

τ

σ

σ′

(3) X = F1

τ

σ

σ′

Figure 1. Fans of toric surfaces

mentioned in [10] and [2]. Indeed we have bi = −⟨ui, v′
n⟩ = ai for all i = 1, . . . , n − 1.

Example 3.5. For each of the following toric surfaces X, we fix a 1-dimensional cone τ
in its fan as shown in Figure 1 and compute the splitting type of TX |Cτ .

(1) X = P2. The dual cones of the maximal cones containing τ are given by σ̌ =
Cone{(−1, 0), (−1, 1)} and σ̌′ = Cone{(0, −1), (1, −1)}. Therefore we get
TX |Cτ

∼= OP1(1) ⊕ OP1(2). In fact, the restrictions of TX to the other two
invariant curves have the same splitting type, so TX is ample by Proposi-
tion 2.2.

(2) X = P1 × P1. The dual cones of the maximal cones containing τ are given
by σ̌ = Cone{(−1, 0), (0, 1)} and σ̌′ = Cone{(−1, 0), (0, −1)}. Therefore we
get TX |Cτ

∼= OP1(0)⊕OP1(2). In fact, the restrictions of TX to the other three
invariant curves have the same splitting type, so TX is nef but not ample by
Proposition 2.2.

(3) Let X be the Hirzebruch surface F1, which is isomorphic to P2 blown up
at one point. The dual cones of the maximal cones containing τ are given
by σ̌ = Cone{(−1, 0), (0, 1)} and σ̌′ = Cone{(−1, 1), (0, −1)}. Therefore we
get TX |Cτ

∼= OP1(−1) ⊕ OP1(2), and hence TX is not nef by Proposition 2.2.

4. Polytopes and ampleness of the tangent bundle
Let X = XΣ, TX , τ , σ, σ′, ui, u′

i, ai be as in the previous section.
Fix an ample T -invariant divisor D on X, and let P = P(X,D) be the corresponding

polytope in the sense of Section 2.2. Note that X and Σ are simplicial as they are
smooth; in particular, every maximal cone in Σ has exactly n faces of dimension (n−1),
and every (n − 1)-dimensional cone has exactly (n − 1) faces of dimension (n − 2).
This implies that there are exactly n edges emanating from every vertex of P and
that every edge of P is contained in exactly (n − 1) faces of dimension 2.

Let pσ ∈ P be the vertex corresponding to the maximal cone σ. Let P − pσ

denote the translation of P by −pσ. Then the cone generated by P − pσ is given by
{u ∈ MR | ⟨u, vi⟩ ⩾ 0 for all i = 1, . . . , n}, which is exactly the dual cone σ̌ of σ. Thus,
each of the n edges of P emanating from pσ contains exactly one of pσ+u1, . . . , pσ+un.
Similarly, each of the n edges emanating from the vertex pσ′ corresponding to σ′

contains exactly one of pσ′ + u′
1, . . . , pσ′ + u′

n.
Recall that the ui and u′

i satisfy u′
i = ui−aiun for all i = 1, . . . , n−1 and u′

n = −un.
Since σ and σ′ contain the (n − 1)-dimensional cone τ as a common face, the convex
hull of pσ, pσ′ of pσ and pσ′ is an edge of P ; it corresponds to τ and contains pσ + un

and pσ′ + u′
n. Fix j ∈ {1, . . . , n − 1}. Consider the points pσ + uj , pσ′ + u′

j ∈ M . The
point pσ + uj is on an edge emanating from pσ, and pσ′ + u′

j is on an edge emanating
from pσ′ . In addition, since (pσ +uj)−(pσ′ +u′

j) = (pσ −pσ′)+ajun, pσ + uj , pσ′ + u′
j
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(1) X = P2

pσ′

pσ

(2) X = P1 × P1

pσ′

pσ

(3) X = F1

pσ′

pσ

Figure 2. Polytopes P (X, −KX) of toric surfaces

is parallel to pσ, pσ′ . Thus, the four points pσ, pσ′ , pσ + uj , pσ′ + u′
j are contained in

a common 2-dimensional face Aj ⊆ P . In fact, Aj is the 2-dimensional face of P
corresponding to the (n − 2)-dimensional cone τ ∩ (uj)⊥ = τ ∩ (u′

j)⊥.
Denote the angles at pσ and pσ′ on Aj by θ(pσ, Aj) and θ(pσ′ , Aj), respectively.

Their sum is related to the integer aj in the following way.

Proposition 4.1. The sum θ(pσ, Aj) + θ(pσ′ , Aj) is smaller than π if and only if
aj > 0, equal to π if and only if aj = 0, and greater than π if and only if aj < 0.

Proof. Suppose aj > 0. Consider the convex hull of the four points pσ, pσ′ , pσ′ +
u′

j , pσ + uj ∈ M , which is either a triangle (if pσ′ + u′
j = pσ + uj) or a trapezoid

with the edges pσ + uj , pσ′ + u′
j and pσ, pσ′ parallel to each other. See Figure 2(1)

for an example of this trapezoid. If the convex hull is a triangle, then it is clear
that θ(pσ, Aj) + θ(pσ′ , Aj) < π. If the convex hull is a trapezoid, since(

(pσ′ + u′
j) − (pσ + uj)

)
− (pσ′ − pσ) = −ajun,

the edge pσ + ui, pσ′ + u′
i is shorter than pσ, pσ′ , implying θ(pσ, Aj) + θ(pσ′ , Aj) < π.

Similarly, if aj < 0, then the edge pσ + ui, pσ′ + u′
i is longer than pσ, pσ′ and

hence θ(pσ, Aj) + θ(pσ′ , Aj) > π. (See Figure 2(3).)
If aj = 0, then the edges pσ + ui, pσ′ + u′

i and pσ, pσ′ have the same length, i.e. the
trapezoid is in fact a parallelogram. Therefore, we have θ(pσ, Aj) + θ(pσ′ , Aj) = π.
(See Figure 2(2).) □

Remark 4.2. Although the angles θ(pσ, Aj), θ(pσ′ , Aj) themselves are not invariant
under a change of bases of M , whether their sum is smaller than, equal to, or greater
than π is.

Example 4.3. In Figure 2 are polytopes P (X, −KX) corresponding to the toric sur-
faces X in Example 3.5 together with their anticanonical line bundles −KX , The
cones τ, σ, σ′ are the same as in Example 3.5, and the shaded area in each picture is
the convex hull of pσ, pσ′ , pσ′ + u′

j , pσ + uj in the proof of Proposition 4.1
(1) X = P2. Recall TX |Cτ

∼= OP1(1) ⊕ OP1(2) so that a1 = 1 > 0. Here we see
that θ(pσ, P ) + θ(pσ′ , P ) < π.

(2) X = P1 × P1. Recall TX |Cτ
∼= OP1(0) ⊕ OP1(2) so that a1 = 0. Here we see

that θ(pσ, P ) + θ(pσ′ , P ) = π.
(3) X = F1. Recall TX |Cτ

∼= OP1(−1) ⊕ OP1(2) so that a1 = −1 < 0. Here we see
that θ(pσ, P ) + θ(pσ′ , P ) > π.

Algebraic Combinatorics, Vol. 7 #1 (2024) 6
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5. Proof of Theorem 1.1
Proof of Theorem 1.1. As in Section 4, fix an ample T -invariant divisor D on X, and
let P = P(X,D) be the corresponding polytope. We will show that P is an n-simplex.

Let A be a 2-dimensional face of P . Let m be the number of vertices of A, and
let p1, . . . , pm be the vertices of A, ordered so that pk is adjacent to pk+1 for all
k = 1, . . . , m, where pm+1 := p1. Since TX is ample, its restriction to every invariant
curve is ample. Then, by Proposition 3.3 and Proposition 4.1, θ(pk, A)+θ(pk+1, A) < π
for all k. This implies

mπ >

m∑
k=1

(θ(pk, A) + θ(pk+1, A)) = 2
m∑

k=1
θ(pk, A) = 2(m − 2)π.

We get m < 4, so A is a triangle. The same is true for all 2-dimensional faces of P .
Now, we start with a vertex q0 of P . Note that P is smooth since X is smooth.

Thus, q0 is contained in exactly n edges, and if w1, . . . , wn are the next lattice points
on the n edges, then {w1 − q0, . . . , wn − qn} is a Z-basis of M . This implies that q0
is adjacent to exactly n vertices and that every two edges containing q0 is contained
in a 2-dimensional face of P . Let q1, . . . , qn be the n vertices adjacent to q0. For each
1 < j ⩽ n, let Aj be the 2-dimensional face containing the edges q0q1 and q0qj . Since
Aj is in fact a triangle, q1 is also adjacent to qj . Thus q1 is adjacent to q0, q2, . . . , qn.
Similarly, every qj is adjacent to exactly q0, . . . , q̂j , . . . , qn. Consequently, q0, q1, . . . , qn

are the only vertices of P , and hence P is the n-simplex with vertices q0, q1, . . . , qn. □
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