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Combinatorics of the Delta

conjecture at ¢ = —1

Sylvie Corteel, Matthieu Josuat-Verges & Anna Vanden
Wyngaerd

ABSTRACT In the context of the shuffle theorem, many classical integer sequences appear with a
natural refinement by two statistics ¢ and ¢: for example the Catalan and Schroder numbers. In
particular, the bi-graded Hilbert series of diagonal harmonics is a g, t-analog of (n+1)""! (and
can be written in terms of symmetric functions via the nabla operator). The motivation for this
work is the observation that at ¢ = —1, this ¢, t-analog becomes a t-analog of Euler numbers, a
famous integer sequence that counts alternating permutations. We prove this observation via a
more general statement, that involves the Delta operator on symmetric functions (on one side),
and new combinatorial statistics on permutations involving peaks and valleys (on the other
side). An important tool are the schedule numbers of a parking function first introduced by
Hicks; and expanded upon by Haglund and Sergel. Other empirical observations suggests that
non negativity at ¢ = —1 holds in far greater generality.

1. INTRODUCTION

In the early 2000s, Haglund, Haiman, Remmel, Loehr and Ulyanov stated the shuffie
conjecture [14]: a combinatorial formula for the symmetric function Ve, in terms on
labeled Dyck paths. The interest in the symmetric function Ve,, (where V is the Mac-
donald eigenoperator introduced in [1]) stems from it being the bi-graded Frobenius
characteristic of the diagonal harmonic representation of the symmetric group [17].
More than a decade after its statement, Carlsson and Mellit proved the full shuffle
conjecture, which thus became a theorem [3]. By then, many special cases were known:
for example (Ve,,e,) gives the famous g, t-Catalan numbers [11] and (Ve,, hgen—d)
the q,t-Schréder numbers [12]. A consequence of the full shuffle theorem is that the
bi-graded Hilbert series (Ve,, h}) gives a g,t-analogue of (n + 1)"~1. It can be de-
scribed combinatorially as the generating function of length n parking functions with
respect to area and number of diagonal inversions.
The famous Fuler numbers (Ey)n>0 can be defined by their generating series:

(1) Z En%:L = tan(z) + sec(z).

n=0

They answer various enumeration problems, the most famous one being that E,, is the
number of alternating permutations in &,,, that is, those o with o1 > 09 < 03 > ---.
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Furthermore, they appear in Arnold’s theory of singularity, and in number theory
via their relation with Bernoulli numbers. See [25, A000111] and the many references
therein. Seeing them in the context of Macdonald ¢, t-combinatorics is new, and is the

motivation for this project. We will show that specializing ¢ = —1 in the g, t-analog
of (n+ 1)"~! (the bi-graded Hilbert series of diagonal harmonics) gives:

(2) (Ven, hi),—y =t/ B, (1)

where E,(t) is a t-analogue of E,, appearing in [18]. This specialization at ¢ = —1 is

a t-refinement of the identity

(3) Z (_l)area(P) — En7
PEPF,

where PF,, are the parking functions of size n. The history of this identity can be
found in [21, 24, 26]. For the definition of parking functions and their correspondence
to standardly labeled Dyck paths, see [13, Chapter 5].

We will establish Equation (2) as a corollary of a more general statement involving
a generalization of the shuffle theorem: the valley version of the Delta conjecture [15].
This is a combinatorial formula for the symmetric function A/ en. We will mainly
use the following consequence of the Delta conjecture:

(4) <A;n,k,16n7 h?> — Z qdinv(P)tarea(P)xP,
PestLD**(n)

where stLD(n)** denotes the set of standardly labeled Dyck paths with k decorated
valleys and dinv and area are combinatorial statistics on this set. See Section 2.1 for
the precise combinatorial definitions. At k& = 0, we have A, _ e, = Ve,, and the
Delta conjecture reduces to the shuffle theorem.

Specializations of the shuffle theorem and Delta conjecture at ¢ = 0 or ¢ = 1 have
been extensively studied (see [10] and [28], respectively). To our knowledge, apart
from (3), nothing much was known about the specialization at ¢ = —1.

We were inspired by the following remarkable symmetric function identity, which
first appeared as the case m = 0 in [6, Theorem 4.11]:

n—k—1

n—1
(%) > (—0)*AL, L, en = Vel
k=0
Taking the scalar product with A} and evaluating at ¢ = —1, we obtain
n—1
(6) >0 (AL enhD)| = (Vealyg hT) = [l
k=0

where the second equality is an easy consequence of the shuffle theorem.
Our main result is a combinatorial interpretation of the terms of this sum, condi-
tional on (4).

THEOREM 1.1. For alln € N, we have

n—1
Z Z tarea(P)(_l)dinv(P) Zk — Z tinV3(0)Zmonot(0)7

k=0 \ PestLD(n)** €S,

where inv3 is a new statistic on permutations generalizing Chebikin’s notion of alter-
nating descents [4] and monot(o) is the number of double ascents or descents of o
(see Section 4 for the precise definitions).

Thus, if the Delta conjecture is proven to be true, we will have the following
symmetric function interpretation.
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COROLLARY 1.2. If Equation (4) is true, then for all n € N we have:

I
-

n

<A:5 & 1€n7hrf> 2k = Z finvs(o) jmonot(c)
nek— —1

0 ceS,

£
I

Notice that at z = 1 our theorem agrees with Equation (6).

The specialization at z = 0 of our theorem, and the fact that at £k = 0 the Delta
conjecture reduces to the shuffle theorem will imply our formula (2).

Our proof relies on the schedule formula decomposition of the combinatorial side of
the valley Delta conjecture provided in [16]. We use this schedule framework to identify
the valley decorated Dyck paths that do not cancel out when specializing to ¢ = —1.
We then provide a bijection between these paths and permutations. This map will be
defined via specific generating trees of the objects and will send area to invz and the
number of decorations to monot. In this way the paths with no decorations (k = 0)
get sent to permutations with no double ascents or descents, that is, alternating
permutations.

2. THE VALLEY DELTA CONJECTURE

In this section, we give the definitions needed to state the valley Delta conjecture.

O
O

@@

OGS,

FIGURE 1. An element of stLD**(8).

2.1. VALLEY-DECORATED LABELED DYCK PATHS.

DEFINITION 2.1. A Dyck path of size n is a lattice path going from (0,0) to (n,n)
consisting of east or north unit steps, always staying weakly above the line r = y,
called the main diagonal. The set of Dyck paths is denoted by D(n).

DEFINITION 2.2. A labeled Dyck path is a pair (7,w), where 7 € D(n) and w its
labeling: a word of positive integers whose i-th letter labels the i-th vertical step of ,
placed in the square to the right of this step, such that the labels appearing in the same
column are increasing from bottom to top. A labeling is said to be standard if its labels
are exactly 1,2,...,n. The set of (standardly) labeled Dyck paths of size n is denoted
by LD(n) (respectively, stLD(n)).

Standardly labeled Dyck paths are in bijection with parking functions.

Algebraic Combinatorics, Vol. 7 #1 (2024) 19
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DEFINITION 2.3. The area word of a Dyck path m € D(n) is the word a of n non-
negative integers whose i-th letter is the number of whole squares between the i-th
vertical step of m and the main diagonal x = y. The area of a Dyck path is the sum
of the letters of its area word and is denoted by area(w).

DEFINITION 2.4. Given P := (m,w) € LD(n) with area word a, the i-th vertical step
of P is called a contractible valley if

e either a;_1 > a;,

e ora;_1=a; and w;_1 < w;.
In other words, the i-th vertical step is a contractible valley if it is preceded by a
horizontal step and the following holds: after replacing the two steps L with [ (and
accordingly shifting the i-th label one cell to the left), we still get a valid labeled path
where labels are increasing in each column.

DEFINITION 2.5. A (valley) decorated labeled Dyck path is a triple (w,w,dv) where
(m,w) € LD(n) and dv is some subset of the contractible valleys of (mw,w). The ele-
ments of dv are called decorations, and we visualize them by drawing a e to the left of
these contractible valleys. The set LD(n)** denotes the decorated labeled Dyck paths
with exactly k decorations.

DEFINITION 2.6. Given P = (m,w,dv) € LD(n)** with area word a, a pair (i,j) of
indices of vertical steps with 1 < i < j < n is said to be a

e primary diagonal inversion if a; = aj,w; < w; and ¢ € dv,

e secondary diagonal inversion if a; = a; + 1,w; > w; and ¢ € dv.
The dinv of P is defined to be the total number of primary and secondary diagonal
inversions minus the number of decorated valleys and is denoted by dinv(P).

REMARK 2.7. We note that the dinv of a decorated labeled path is always a non-
negative integer. Indeed, upon some reflection, one notices that each contractible
valley forces the existence of at least one dinv pair.

DEFINITION 2.8. Given P = (m,w,dv) € LD(n)**, the area of P is simply defined
as the area of the underlying Dyck path, disregarding the labels and decorations:
area(P) = area(w).

EXAMPLE 2.9. See Figure 1 for an example of an element of stLD(8)*4. Its labeling is
34516728, its area word 01210100 and its area is 5. Its primary dinv pairs are

(1,5),(1,8),(2,6),

and its secondary dinv pairs are

(2,7),(3,4),(6,7).

Thus, since there are 4 decorated valleys, the dinv is equal to 2.

2.2. SYMMETRIC FUNCTIONS. For all the undefined notations and the unproven iden-
tities, we refer to [8], where definitions, proofs and/or references can be found.

We denote by A the graded algebra of symmetric functions with coefficients in
Q(q,t). The standard bases of the symmetric functions are the monomial {my}y,
complete {hy}x, elementary {ex}r, power {px}x and Schur {sy}, bases. We denote
by (,) the Hall scalar product on A, defined by declaring that the Schur functions
form an orthonormal basis.

For a partition u - n, we denote by

ﬁIH = FIM[X] w1 X5, ZKW (g, 1)
An

Algebraic Combinatorics, Vol. 7 #1 (2024) 20



Combinatorics of the Delta conjecture at ¢ = —1

O-ar Cc

80
iy

. |

F1GURE 2. Co-arm and co-leg of a cell in a partition.

the (modified) Macdonald polynomials, where
[?Au = I?AM(Qa t) = K)\M(Q7 1/t)tn(#)

are the (modified) Kostka coefficients (see [13] for more details).

Macdonald polynomials form a basis of the ring of symmetric functions A. This is
a modification of the basis introduced by Macdonald [23].

We identify the partition p with its Ferrers diagram, i.e., with the collection of cells
{(5,7) | 1 < i< py, 1 < j < ()} For each cell ¢ € p we define the co-arm and co-leg
(denoted respectively as aj,(c),l},(c)) as the number of cells in x that are strictly to
the left and below ¢ in p, respectively (see Figure 2). Define the following constant:

By = Bu(g,t) = 3 ¢,
cep
Let f[g] denotes the plethystic evaluation of a symmetric function f in an expression g

(see [13, Chapter 1 page 19]).

DEFINITION 2.10 ([1, 3.11)). We define the linear operator V: A — A on the eigenbasis
of Macdonald polynomials as

Vﬁu = e\u\[Bu]ﬁu = qn(ul)tn(u)ﬁu-
DEFINITION 2.11. For f € A, we define the linear operators Af,A'f: A — A on the
eigenbasis of Macdonald polynomials as
AfHu :f[Bu]Hw }Hu :f[Bn _1]HIL‘

2.3. THE STATEMENT. Now we have all the necessary definitions to state the valley
Delta conjecture, which first appeared in [15].

CONJECTURE 2.12. For all n,k € N,
Alen,k,len — Z qdinv(P)tarea(P)xD
PELD**(n)

where the sum is over the set of labeled Dyck paths of size n with k decorations on
contractible valleys.

Taking the (Hall) scalar product with A7 (i.e., the Hilbert series), the Delta con-
jecture implies (4).
3. SCHEDULE FORMULA

In this section we discuss the schedule formula for the combinatorics of the valley
Delta conjecture proved by Haglund and Sergel in [16]. Their formula is an extension
of the first work on schedule numbers by Hicks in her thesis [19].
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DEFINITION 3.1. The set of decorated permutations G** of [n] := {1,...,n} is the
set of permutations of [n] where k of its n letters are decorated, represented as &;.
Set &3 = Ly OnF. For o € &3, we denote by dec(o) its number of decorations.

n’

DEFINITION 3.2. Given P = (m,w,dv) € stLD(n)** with area word a, the diagonal
word of a decorated labeled Dyck path is the decorated permutation of n obtained as
follows. A label w; of P is said to lie in the j-th diagonal if a; = j. List all the
labels w; in the 0-th diagonal, in decreasing order, adding a decoration on the label if
1 € dv. Then do the same for the 1-st diagonal, 2-nd diagonal, and so forth. Denote
this diagonal word by dw(P).

ExAMPLE 3.3. The diagonal word of the path in Figure 1 is 86327415.

DEFINITION 3.4. For o € G,, a permutation, its major index is defined to be the sum
of the elements of the set {i € [n — 1] | o(i) > o(i + 1)}. The reverse major index of
a permutation is simply the major index of the reverse permutation o™ == g, -+ - 07.
For any marked permutation o € &9, denote by revmaj(o) the reverse major index of
its underlying permutation.

The following is an easy consequence of the definitions.
PROPOSITION 3.5. For all P € stLD(n)**, we have area(P) = revmaj(dw(P)).

Proof. Due to the condition of strictly increasing labels in the columns of labeled
Dyck paths, each diagonal has at least one label which is bigger than some label
of the previous diagonal. Thus, the labels in the j-th diagonal of P are exactly the
numbers in the (j + 1)-th decreasing run of dw(P), and they each contribute j units
to the area. 0

The following convention will greatly simplify definitions and proofs.

CONVENTION 3.6. Given o € &,,, we will implicitly consider that o is preceded by a
0-th entry: oo = 0. If 0 € &?, then g is never decorated.

DEFINITION 3.7 (Hicks [19]). For 7 € &}, define its schedule numbers sched(r) =
(si)icicn as follows. Take 1o,71,72,... to be the decreasing runs of 1o-- T, (we
have 19 = 0).
o [f 7; is undecorated and an element of r;, let
s; = #{k € r; | k is undecorated and k > 7;}
+#{k €rj_1 | k is undecorated and k < T;}.
o If 7; is decorated and an element of r;, let
s; = #{k € rj | k is undecorated and k < 7;}
+ #{k € rj11 | k is undecorated and k > T;}.

To reformulate this definition of schedule numbers, we introduce the following.

DEFINITION 3.8. Let 0 € &,,. A sequence of consecutive elements o;,...,0; (with
0<i<j)inoisa cyclic (decreasing) run if there exists an integer k such that o; +k
(mod n+1),...,0;+k (mod n+ 1) is decreasing (where the modulo means we take
the representative in {0, ...,n}). Moreover, a cyclic run o;,...,0; is left-mazimal if
either i = 0 or 0;_1,...,0; is not a cyclic run, and right-mazimal if either j = n
or 0y, ...,0541 95 not a cyclic run.

EXAMPLE 3.9. Let 0 = 0649751832. Some right-maximal cyclic runs are 064, 6497,
7518. Some left-maximal cyclic runs are 1832, 6497.
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F1cure 3. Hlustration of cyclic runs.

Note that for each j, there is a unique left-maximal cyclic run oy, ..., 0; (obtained
by choosing i to be minimal), and similarly for each i there is a unique right-maximal
cyclic run oy, ..., 0; (obtained by choosing j to be maximal).

REMARK 3.10. The definition of schedules is rephrased as follows: if 7; is undecorated
(respectively, decorated), then s; is the number of undecorated values (excluding 7;)
in the maximal decreasing cyclic run ending (respectively, starting) at 7;.

ExAMPLE 3.11. If 7 is the diagonal word of the path in Figure 1, then we have

T 0 8632 741 5

S 1212 121 1.
In Figure 3, we visualize 7 by placing dots at coordinates (i, 7;): white dots for un-
decorated and black dots for decorated 7;. Notice that if we view this picture as a
cylinder, identifying the top and the bottom, the operation o; — o; + k (mod n + 1)
can be seen as a rotation of this cylinder, hence the name “cyclic runs”. The maximal
cyclic run starting at 6 is 6327 (Figure 3, left), so that the associated schedule num-
ber is s = 2. The maximal cyclic run ending at 4 is 3274 (Figure 3, right), so the
associated schedule number is sg = 2.

Let us recall the following classical definitions.

DEFINITION 3.12. For n € N, define its g-analogue by [n], =1+ q+...+q¢" " . The
q-factorial of n is given by [n]y! = [n]gn —1]q...[1]q. Of course q is an arbitrary
choice of variable, later in the text we will also encounter t-analogues.

Now, the following result can be deduced from [16, Theorem 3.13].

THEOREM 3.13. Given T € 67'1’“ and (8;)1<i<n its schedule numbers, we have:

Z qdinv(P)tarea(P) — trevmaj(r) H [Si]q~
PestLD(n)*® i€[n]
dw(P)=1
A consequence of this theorem is that a marked permutation is the diagonal word
of some permutation if and only if all its schedule numbers are strictly positive. At
q = —1, more terms vanish as a consequence of the following.

LEMMA 3.14. Let 0 € &°, and (s1,...,8,) = sched(o). If s; > 0 for all i € [n], then

n’

there exists j > 1 such that the set of schedule numbers {s; | 1 < i < n} is equal to [j].

Algebraic Combinatorics, Vol. 7 #1 (2024) 23
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Proof. Suppose there is an index i such that s; > 1. Our goal is to show that there

exists ¢’ such that s;; = s; — 1. We distinguish two cases, (which are very similar):

e o, is not decorated. Consider the left-maximal run ending at o;, denoted R,
so R = (op,...,0;) for some h with h < i. Consider the maximal i’ such
that o, is not decorated, and h < ¢ < ¢. It exists because s; > 0. Let
R = (op,...,0u) be the left-maximal cyclic run ending at ;. We have

h' < h (because we know that (op,...,04) is a cyclic run), so R and R’
overlap on every non-decorated element of R other than o;. We deduce that
sy = s; — 1. In case of equality, we are done. Otherwise, we iterate this
construction to find ¢" such that i < ¢’ and s;» > s; — 1, and so on. The
sequence s;, S;7, ... either increases arbitrarily or decreases by 1 at each step,
and we can define the next element as long as the last element s; satisfies
s; > 1. So this sequence of schedule numbers must eventually reach the value
S; — 1.

e o, is decorated. Consider the right-maximal run beginning at o;, denoted R,
so R = (0y,...,0;) for some j. Consider the maximal i’ such that o, is not
decorated, and 7 < ¢’ < j. It exists because s; > 0. Let R = oy/,...,04 be
the left-maximal cyclic run ending at ;. We have h' < i (because we know
that (o;,...,04) is a cyclic run), so R and R’ overlap on every non-decorated
value of R other than o,;,. We deduce that s;; > s; — 1. In case of equality, we
are done. Otherwise, we are back to the situation of the previous case.

In either case, we eventually find i’ as announced. The statement in the lemma follows
by iteration. O

A consequence of this lemma is that the product []}_,[si]; at ¢ = —1 is 0 unless
all schedule numbers are 1 (if s; > 1 for some i, one of the factors is [2], = 1 + ¢).
Therefore, the schedule formula of Theorem 3.13 becomes:

DY (e [0 s <1
. 0 otherwise.
PestLD(n)®
dw(P)=1

NOTATION. We denote by &9 (1™) to be the subset of & of marked permutations
with schedule 1.

Now, summing Equation (7) over all possible permutations with & decorations T,
we get the following interpretation of the combinatorics of the Hilbert series of the
Delta conjecture at ¢ = —1:

__1)\dinv(P)area(P) _ revmaj(t)
(8) (—1)dim (P ¢ .

PestLD(n)*k TEGLE(1™)

REMARK 3.15. We announced in the introduction that in the case k = 0 and t = 1,
the left-hand side of (8) is the Euler number E,. Comparing with the right-hand
side, this means that undecorated permutations o € &,, with schedule 1™ are counted
by the Euler number E,. On the other side, Ramassamy [27, Corollary 5] gave a
new combinatorial interpretation of the Euler number E, as the number of total

cyclic orders on {0,...,n} such that (¢,7 + 1,7 + 2) is clockwise oriented for each
i €{0,...,n—2}. Undecorated permutations o € &,, with schedule 1™ are simply in
bijection with Ramassamy’s total cyclic orders via o — (0,07 1(1),...,071(n)).

We close this section by providing a bijection between &, and &9 (1™), whose
inverse is given by simply removing the decorations. The existence of this bijection
means that each permutation can be decorated in exactly one way, so that the result
has schedule 1™.
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LEMMA 3.16. Let 0 € &3 (1™). Let oy, ...,00 be a left-mazimal cyclic run, and as-
sume that oy is undecorated. Then oy, is undecorated as well, and og41,...,00—1 are
decorated.

Proof. Since sy = 1, there is exactly one undecorated entry in o, ...,o0,_1. Denote
o, this undecorated entry. If u # k, oy, is decorated and has at least two undecorated
entries (namely o, and oy) in the right-maximal cyclic run beginning at ox. This
would give s; > 2, which contradicts sy = 1. Thus, u = k, and we get that oy in the
only non-decorated entry in og,...,00_1. O

LEMMA 3.17. For each permutation o € &, there exists exactly one decorated per-
mutation with underlying permutation o and schedule 1™.

Proof. Assuming that there exists a decoration of o so that the schedule is 17, the
previous lemma readily gives necessary conditions on how to find it (in particular,
uniqueness will follow from existence): we proceed from right to left (starting from
o, and ending at o1), noting than o, is necessarily undecorated (otherwise we have
n = 0). We define a sequence of indices i1 > ig > -+ > i,, for some m > 1 as follows;
o Z'1 =n,
e knowing i;, we find i, by the condition that oy, , -0y, is the left-maximal
cyclic run ending at oy,
e the sequence stops at i, = 0.
We claim that decorating the indices not in {i1,...,%,,} yields the unique decoration
such that the associated schedule is 1™. It remains only to check that the schedule of
this decorated permutation is indeed 1.
By construction, we have s = 1 if o is undecorated. It remains to show s, = 1
when oy, is decorated. So, consider a right-maximal cyclic run oy, ..., o, where oy is
decorated.

e Suppose s; = 2. So, there are two (or more) undecorated entries in this
run, say o; and o; with & < ¢ < j. The left-maximal cyclic run ending
at o; contains at least oy,...,0;, so o; being undecorated contradicts the
construction of 71 > iy > --- > i, as above.

e Suppose s = 0. So, there are no undecorated entries in this run. Let o; be
an undecorated entry with ¢ > &k and ¢ minimal (this exists because oy, is
undecorated). We have ¢ > ¢ (because 041, ...,0¢ are decorated). Consider
the left-maximal cyclic run ending at o;, denoted oy, ..., 0;. It cannot begin
at o, with ¢/ < k, because oy, ...,0; is not a cyclic run (the right-maximal
cyclic run beginning at oy, ends at oy, and i > £). Thus, i’ > k, so oy,...,0;
does not contain any undecorated entry apart from ;. But this means s; = 0,
which is a contradiction.

Other cases being excluded, we thus have s; = 1. This completes the proof of existence
and uniqueness of the decoration with schedule 1™. ]

4. PERMUTATIONS
We continue to use Convention 3.6: for any o € &,,, we set og = 0.

DEFINITION 4.1. Given a permutation o = o1 ---0, and an index i € {2,...,n}, we
say that o; is a

e double ascent if 0;_o < 0;_1 < 0y;

e double descent if o;_o > 0,1 > 05

e peak if 0, 0 < 01 > 0y

o valley if 0;,_0 > 0,1 < 0;.
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DEFINITION 4.2. For 0 € &,,, we define

monot(o) = #{i € {2,...,n} | 0; is a double descent or a double ascent}.

DEFINITION 4.3. Let 0 € &,,, a pair (i,7) with 1 < i < j < n is said to be a 3-inversion
if one of the following holds:

o; 1s a double ascent and oj_1 < 0; < 0j;
o 1s a double descent and o;_1 > 0; > 0j;
o is a peak and o; > 0j;

o; is a valley and o; < 0.

The number of 3-inversions of o is denoted by inv3(o).

EXAMPLE 4.4. For n = 3, 123 has zero 3-inversions, 132 and 321 have one 3-inversions,
231 and 312 have two 3-inversion and 213 has three 3-inversions.

Though the definition of the statistic might not seem very natural, we will see
in the proof of Proposition 4.6 that it can be tracked via a rather simple insertion
procedure on permutations (similar to the Lehmer codes).

We recall the following classical definitions.

DEFINITION 4.5. A statistic I on permutation is called Mahonian if
Z t1) = [n],.
oES

Two classical Mahonian statistics are the major index (Definition 3.4) and the
inversion number defined by

inv(o) = #{(i,j) | 1<i<j<nand o; > 0;}.

From the main result in Section 5 (Theorem 5.1) and the fact that revmaj is Ma-
honian, we will be able to deduce the following.

PROPOSITION 4.6. The statistic invs is Mahonian, that is:
> ™ = [n]L.
ogES,

In [4], Chebikin defines another variant of the inversion statistic.

DEFINITION 4.7. Let 0 € &,,, define é;(0) to be the number of indices j > i such that
e 1 s odd and o; > 0j; or
e i is even and o; < 0.
Leti(o) =¢é1(0) + ...+ én—1(0).
PROPOSITION 4.8 ([4, Corollary 3.5]). The statistic i is Mahonian. Indeed, we have
> 0=
g€Sy,

DEFINITION 4.9. An alternating permutation of [n] is a permutation o € &,, such
that o1 > 09 < g3 > ---. We denote the set of such permutations by A,. In other
words,

A, = {o € &, | monot(c) = 0}.

The alternating permutations are counted by the Euler numbers F,.
One can easily check that if ¢ is alternating then (o) = inv3(o). But this is not
true in general. For example if o = 123, inv3(c) = 3 and (o) = 1.

DEFINITION 4.10. A 31-2 pattern in o0 € G, is a triple 1 < i <i+1 < j < n such
that o; > 0; > 0;41. We denote by 31-2(c) the number of 31-2 patterns in o.
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In [18], the authors introduced an interesting t-analogue to the Euler numbers that
was subsequently studied in [4] and [20].

DEFINITION 4.11. For all n € N, define:
©) Bo(t)= 3 471750),
oed,

This polynomial F,(t) has several beautiful properties including the facts that
the generating functions > o, Ean(t)2" and 3, 5 Eont1(t)2" have nice continued
fraction expressions [18, 20].

We study here a shift of this t-analogue, namely ¢ln*/4) E,(t). This t-analogue is
naturally connected to our 3-inversion statistic.

PROPOSITION 4.12. For all n € N,

(10) g, (1) = Y @),
oeU,

Proof. This is a Corollary of Lemma 9.4 of [4]. In this lemma, Chebikin proves that

if o € 2, then [n?/4] + 31-2(¢) = i(0), and we just remarked that if o € 21, then

inv3(o) =i(0). O
5. GENERATING TREES

The goal of this section is to prove the following. Recall that we denote by &2 (1™)
the subset of &}, of decorated permutations with schedule 1.

THEOREM b5.1. There is a bijection ¢ : &2 (1™) — &,, with the following properties:

(i) revmaj(r) = inv3(o(7)),
(ii) dec(7) = monot(¢(T)).

We will exhibit this bijection by constructing two isomorphic generating trees.

5.1. THE TREE FOR DECORATED PERMUTATIONS OF SCHEDULE 1". We continue to
use Convention 3.6: for any o € G,,, we set o9 = 0.

Let 7 € &,,. Using Definition 3.8, we know that 7y ...7; is a cyclic run if and only
if 1 > ... > 7;. The generation of the tree will rely on the following manipulation.

DEFINITION 5.2. Let 7 € &, and 1 < k < n+ 1. Denote by k + 7 the permutation o
of Gp41 defined by

gg — 0,
oit1=(k+7) modn+1 for0<i<n.
EXAMPLE. If n =7, 7 = 01423657, and k = 3, we have
k+ 7 =034756182.

LEMMA 5.3. Let 1 € &, and o =k +7. For 0 <i<j<n, 7;---7; s a cyclic run of
T if and only if 0441 -+ - 0541 s a cyclic run of o. Moreover, for 1 < j < n, (to---7;
is a cyclic run and 7, + k > n+1) if and only if oo --- 041 is a cyclic run.

Proof. The first statement is a direct consequence of the definition of a cyclic run
(Definition 3.8). Note that for any permutation 7, 79 ... 7; is a cyclic run if and only if
71 > ... > 7;. Therefore, 0y ...0j41 is a cyclicrun if and only if k = 01 > ... > 0j41.
As ;41 = (1j+k) mod n+1, we have that 0,1 < kif and only if 7, +k > n+1. O

The structure of the generating tree will closely depend upon the following quantity.
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DEFINITION 5.4. Given T € &2 (1™), we define its structural attribute, a(7) to be the
value of its first undecorated letter (excluding oo = 0).

DEFINITION 5.5. Define a tree T; of decorated permutations as follows. Take its root
to be 01 € &;. For 1 € G5 (1™) withn > 1 and 1 < k < n+1, the k-th descendant of
7 in 77, denoted §y(T) is the decorated permutation whose underlying permutation is
o =k + 7. The decorations of o are as follows:

e 0o = 0 is never decorated,

e 07 is decorated if and only if k > n+1—a(7),

e fori > 2, 0; is decorated if and only if T;,_1 is decorated.

See the tree on the left in Figure 5 for an illustration of the first three levels of this
tree.

EXAMPLE 5.6. For example, take n = 5 and 7 = 053421. Then a(7) = 3 and so
n+1—a(r) = 3. We have

So(7) = 0215643, 64(7) = 0431265.

Let us prove some observations about 7. Suppose that 7 is a decorated permutation
and its schedule is 1™.

LEMMA 5.7. Take 7 € &5,(17). If 79...7; is a right-mazimal cyclic run then there is
a unique £ such that 1 < £ < j and 1p is undecorated.

Proof. Call r :=7y...7;. If r it contained at least two undecorated letters, the second
largest one would have schedule 2. If r contains no undecorated letters there must be
exactly one undecorated 7; with ¢ > j in the maximal decreasing cyclic run starting at
T for all 1 < k < j. It follows that the maximal decreasing run ending at 7; contains
only decorated letters and so its schedule would be 0 (see Remark 3.10). O

PROPOSITION 5.8. The n-th level of the tree T1 contains exactly all the decorated
permutations whose schedule numbers are 1™.

Proof. Take 7 € &2(1™). We have to show that for all k € [n+1], sched(dx (7)) = 17 +1.
The result will then follow from Lemma 3.17 and the fact that the tree in Definition 5.5
clearly generates all permutations of n at the n-th level.

Set 74 := a(7), the unique undecorated entry in the right-maximal cyclic run con-
taining 79. Thanks to Lemma 5.7, this ¢ is unique.

We construct the decorated permutation o = 0y (7).

Thanks to Lemma 5.3 we know that if 79 ... 7; is not a cyclic run then the cyclic
runs that contain o1 are in bijection with the cyclic runs that contain 7; and the
schedule of o1 is equal to the schedule of 7;, which is one.

Moreover, if j > 0 and 7y ...7; is a cyclic run and 7; is decorated, the cyclic runs
that start at o4 are in bijection with the cyclic runs that start at 7; and the schedule
of 041 is equal to the schedule of 7;, which is one.

We just have to show that 0,11 and o7 have schedule 1.

If v+ k >n+1 then (by Lemma 5.3), 0¢...0¢4+1 is a cyclic run. As oyy; is not
decorated, we must decorate o; to force that o441 and o1 have schedule 1.

If o+ k <n+1then og...0041 is not a cyclic run but oy ...0p41 is. Therefore,
01...0p41 is a left maximal run and to force oyy; to have schedule 1, o3 must be
non-decorated (otherwise oy has schedule 0). Moreover, if o7 is not decorated, its
schedule is 1, and we can conclude the proof. O

PROPOSITION 5.9. For all decorated permutations T, we have
revmaj(dx (7)) = revmaj(r) + (n + 1 — k).
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Proof. This is clear for k = n + 1, as d,4+1(7) is obtained by appending n + 1 at
the beginning of 7 (which creates no new descent in the reversed permutation, thus
preserving the reverse major index).

Next, we show revmaj(dx(7)) = revmaj(dx—1(7)) — 1. To go from dj_1(7) to ox(7),
we add 1 to every letter, and replace n + 1 with 1. Let m be the index of n + 1 in
0k—1(7)"™ . Then we have:

(Des(dp—1(T)*)~{mpHu{m -1} ifm>1,

DeS((sk(T)rev) = {DGS(ék—l(T)rev) N {m} if m=1.

Indeed, the m-th letter of d;_1 (7)™ was equal to n + 1 and so was a descent, but in
0 (7)™ it equals 1 and so is not descent. Furthermore, if m > 1, the (m — 1)-th letter
of i (7)™ is followed by 1 and so must be a descent. In any case

revmaj(d (7)) = revmaj(dx—1(7)"™")

—m+m—1=revmaj(dp_1(7)®) -1

and the result follows. O

Finally, the following property follows easily from Definitions 5.4 and 5.5.

PROPOSITION 5.10. Recall that dec(7) is the number of decorations of T € &9 (1™).
We have:

dec(0y (7)) = dec(7) + x(n + 1 — k < a(1)).
Furthermore, we have:

k ifn+1—k>a(r),
a(t)+k (mod n+1) otherwise.

a(0k(T)) = {

5.2. A SECOND TREE RELATED TO PEAKS AND VALLEYS.

DEFINITION 5.11. Define a tree To of permutations as follows. Take its root to be
1€ 6. Foro e &, and1 <1 < n+1, define gi(c) € Spp1 to be the unique
permutation o' such that o, =1 and o',...,0,, are in the same relative order as
O1y...,0p. In other words, we have

o, =0+ x(0; =2 1)

for 1 <1< n+1. This permutation is called the insertion of [ in o. The permutations
(o) for 1 <1< n+1 wil form the descendants of o in Ts.

See the tree on the right in Figure 5. Later (Definition 5.14), we will define a total
order on the descendants of a node in 73, in a way that will give the isomorphism
with 77. This ordering will closely depend upon the following quantity.

DEFINITION 5.12. Given o € &, define its structural attribute:

~ n+1_0n Z'fanfl<0—n,
a(o) = :
On Zf(Tn,1 > Onp,

where we consider g = 0 in case n = 1.
PROPOSITION 5.13. For o € &,,, the map v on {1,2,...,n+ 1} defined by
inv3(m (o)) = invs(o) + ¥ (1)

is a bijection onto {0,1,...,n}.
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FIGURE 4. Contribution to invs for the n+ 1 different insertions into
a permutation of n.

Proof. Take 0 € &,, and set o’ = (o). Notice that for j < n we have that (4, j)
forms a 3-inversion in o if and only if it forms a 3 inversion in ¢’ (see Definitions 4.3
and 5.11). Tt follows that inv3(c’) = inv3(c’) + s where s is the number of 3-inversions
of the form (i,n + 1).

We distinguish two cases. We have drawn a schematic representation of the proof
in Figure 4.

(1) Either o ends with an ascent, that is 0,_1 < op. So we have @ = a(o) =
n+1— o,. This is illustrated in the left part of Figure 4, where the values in
red are the value of ¢(I).

e For [ > o,, 0], is a double ascent. The number of i’s such that o, <
o) < oy, isequal tol — (0, +1). So for l =0, + 1,00, +2,...,n+1 we
have ¢(I) =0,1,...,a — 1, respectively.

e For | < 0y, 0, is a peak. The number of i’s such that o > o, is
equal ton+l—1.Soforl = o,,0,—1,...,1 wehave ¢(I) = a,a+1,...,n,
respectively.

(2) Or, o ends with a descent, that is 0,—1 > 0,. So we have a = a(0) = oy,.
This is illustrated in the right part of Figure 4.

e For | < 0y, 0, is a double descent. The number of i such that o], >
o; > 0,1 equals 0, —[. So for | = 0,0, — 1,...,1 we have ¢(l)
0,1,...,a — 1, respectively.

e For | > oy, 0, is a valley. The number of i such that o] > oy, is
equaltol—1.Soforl =0,+1,...,n+1, we have ¥(l) = a,a+1,...,n,
respectively.

In each of the two cases, we see that the values taken by ¥ () are exactly 0,...,n. O

DEFINITION 5.14. For 0 € &,, we define the k-th descendant of o in 73, Sk(g), to be
the unique descendant n;(o) such that ¥(l) =n+1—k, in other words inv3(dx(0)) =
inv3(o) + (n+1— k).

Finally, we can deduce the following from the proof of Proposition 5.13.

Algebraic Combinatorics, Vol. 7 #1 (2024) 30



Combinatorics of the Delta conjecture at ¢ = —1

PROPOSITION 5.15. Recall that monot(o) denotes the number of double ascents and
descents of 0 € &,,. We have:

monot(n (o)) = monot(o) + x(n+ 1 — k < a(o)).
Furthermore, we have:
. k ifk<n+1-a(o),
TONC TR o)
a(o) ifk>n+1-—a(o).
5.3. ISOMORPHISM OF THE TREES. To prove Theorem 5.1, we define ¢ recursively as
follows:

$(0k(a)) = 1i(¢(0)) for all o € [H &5(1").

n>1
In Figure 5, the k-th descendant of each node is the k-th descendant from the bottom,
so that the image by ¢ of an element in the left tree can be obtained by looking for
the corresponding element in the right tree, if we were to “superpose” one tree on the
other.

From this definition of ¢ and the definition of k-th descendant as being the descen-
dant adding n 4+ 1 — k units to the relevant statistic in both trees (See Definition 5.5,
Proposition 5.9 and Definition 5.14), we may conclude that

revmaj(c) = inv3(é(0)).
From Proposition 5.10 and Proposition 5.15, we deduce
dec(o) = monot(¢(o)).

Thus, we have now established Theorem 5.1.
6. CONCLUSION AND FUTURE DIRECTIONS

Let us now put the pieces together.

Proof of Theorem 1.1. From the bijection in Theorem 5.1, we may deduce that
Z grevma(r) dec(o) _ Z 4inva(e) monot()
eSS (1) oS,
Recall Equation 8:
Z (—1)dinv(P) garea(P) _ Z grevmaj(r)
PestLD(n)*k TEGSLE(1™)

Combining these last two equations and summing over k, we get:

n—1
Z Z 2i_area(P)(_l)dinv(P) Zk — Z tinV3(U)Zmonot(0)’
k=0 \ Pe&stLD(n)** €S,
which is exactly the statement in Theorem 1.1. O

Since the left-hand side of (8) is exactly the combinatorics of the Hilbert series
of the Delta conjecture (Equation 4) at ¢ = —1, the validity of the Delta conjecture
would imply

Zk _ § tinV3(U)Zmonot(U)’
ceG,

n—1
(11) D (AL enhT)
k=0

qg=—1

as announced in Corollary 1.2.
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FIGURE 5. 77 and 75 up to level 4.

Since at k£ = 0 the Delta conjecture reduces to the shuffle theorem, our result
implies that

<V6nah?>|q:—l _ Z finva(o) — Z finva(o) _ th2/4J En(t),

oeS, oe,
monot(c)=0
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where the last equality comes from Proposition 4.12. Thus, we have established (2).

6.1. ON ¢,t-SYMMETRY AND THE RISE DELTA. We remark that our results rely heav-
ily on the schedule number formula. This formula breaks up the combinatorics of the
valley Delta conjecture into sets of paths with the same diagonal word and thus the
same area, and expresses the dinv as a product of g-analogues. Even though it is easy
to see from the symmetric function that

AL enlXiqt] = A,

€n—k—1

n—k—1
this g, t-symmetry is not at all obvious on the combinatorial side. In particular, there
is no schedule formula that fixes dinv and expresses area as a product of t-analogues.
Thus, we have statements for ¢ = —1 but not for ¢ = —1. In the same vein, there
is no known schedule formula for the rise version of the Delta conjecture (which is
now a theorem [9]) and so (11) remains conditional on the valley Delta conjecture
(Conjecture 2.12).

6.2. ON REFINEMENTS OF THE DELTA CONJECTURE. Let us now say a few words
about how our results relate to the well-known refinements of the Delta conjecture.
The compositional (valley) Delta conjecture is a refinement of Conjecture 2.12,
giving a formula for the symmetric function 6., VC, in terms of (valley or rise) deco-
rated Dyck paths, where « is a composition dictating at which points the path touches
the diagonal x = y. Summing over all compositions, we have > . 0,_;VC, =
Al . en. See [7] for more details on the compositional Delta conjecture. The combi-
natorics in this paper suggests that the following symmetric function identities hold:

> (00, VCa, h)lg=1 =0,

aFn—k
a#(n—k)
<@ekVC’(n_k),h7f>\q:,1 = <A/en_k_1em h711>|q:*1'

Indeed, schedule 1™ paths always have composition n — k. If the Delta conjecture
is true, this would prove these symmetric function identities. As it stands, only the
k = 0 case is proven, via the shuffle theorem.

Similar identities can be found for the touching refinement ©,VE, ;, of the Delta
conjecture, for ¢ = —1 and (-, h'):

(Oe, VEn 1, h1)|g=—1 =0 ifl>1,
<®€kVEn,1a h?>|q:—1 = <A,en,k,len7 h?>|q:—1'
Furthermore, when setting ¢ = —1 instead of ¢, we noticed that

(=)™ YUV Ep i, hi) =1

is a g-analogue of the number of ordered forests of k& increasing unordered trees with
n vertices and in which all outdegrees are < 2 (sequence [25, A185421]). The trees in
these forests are counted by the Euler numbers. Using these combinatorial objects,
we managed to interpret the following symmetric function identity at ¢ = 1:

Z<VEn,h h)i=—1 = (Ven, hi)|i=—1.
=1

6.3. ON REPRESENTATION-THEORETIC INTERPRETATIONS. Famously, the symmetric
function of the shuffle theorem is the bi-graded Frobenius characteristic of the diag-
onal co-invariant module [17]. The symmetric function Ay _, e, is conjectured to
be the character of the 2-bosonic, 1-fermionic diagonal module [30]. At present, we
know of no representation-theoretic interpretation of the evaluation of at ¢ = —1.
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Some manipulation of Bergeron’s conjecture for characters of general boson-fermion
diagonal modules [2, Conjecture 1] might provide some hints in this direction.

6.4. MORE POSITIVITY AT ¢ = —1. Computational evidence suggests that the eval-
uation at ¢ = —1 yields ¢-positive results for many other polynomials related to the
shuffle theorem and Delta conjecture. For example

o (Vey, h,) for any partition y;

o (Vw(py); hT), where Vw(py,) is the symmetric function related to the square
theorem (conjectured in [22] and proved in [29]);

e (0.,0.,Ve,_k_1,ht), where O, O, Ve, _j_; is the symmetric function intro-
duced in [7] that conjecturally unifies both versions of the Delta conjecture;

e (O, €1, h‘{\|+1>, see the Theta trees conjecture in [5].

It would thus be interesting to study the ¢ = —1 evaluation in a more general
framework, for example in modified Macdonald polynomials.

6.5. AN OPEN (COMBINATORIAL) PROBLEM. Let us end this section with a combi-
natorial problem. Consider the sums

(12) Dnj(t)y= > "),
ceS,,
monot (o) <j
In particular, this is 0 if j < 0, and Dy, j(t) = Dy n—1(t) if j > n —1.
CONJECTURE 6.1. Forn > 1 and 0 < j < n — 1, we have:
(13) Dy j(t) = t" 77 j 4+ 1] Dp1j41(t) + [0 — j — e Dy i1 (b).

It would be very interesting to give a combinatorial proof of (13). Of course, one
might try to do to this starting from the other combinatorial interpretation:

Dn,j (t) — Z trevmaj(o’)'
ceGS®(1M),
dec(0)<j

In the case t = 1, it is possible to give a combinatorial proof of the conjecture, based
on the combinatorial interpretation in (12). The idea is to consider the map o + o’
(where, for 0 € &,,, 0/ € &,,_1 is obtained by removing the entry n), and examine
how monot is distributed among the n pre-images of a given o € &,,_1.
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