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Extremal weight projectors II, glN case

Hoel Queffelec & Paul Wedrich

Abstract We define diagrammatic extremal weight projectors for glN (N ⩾ 2), a refinement
of Jones–Wenzl projectors and Kuperberg’s clasps. As by-products, we obtain compatible dia-
grammatic presentations of the representation categories of glN and its Cartan subalgebra, and
a categorification of power-sum symmetric polynomials.

1. Introduction
The topological motivation for this article is the search for an extension of Khovanov–
Rozansky link homologies [15, 17] to invariants of links in 3-manifolds other than R3.
Since quantum link homologies, in their mode of definition and computation, currently
depend on the presentation of links as 2-dimensional projections, the most accessible
3-manifolds in this endeavor are thickened surfaces Σ×I. Just as Khovanov homology
categorifies the Jones polynomial, the surface link homologies should categorify surface
skein modules [24, 32, 1]. These admit an algebra structure induced by stacking links,
with distinguished bases (conjecturally) satisfying strong integrality and positivity
properties [12, 30, 21, 22, 6]. They provide quantizations of surface character varieties
that play an important role in quantum Teichmüller theory [5]. Both aspects make
such skein algebras prime targets for categorification via link homology technology.

In order to categorify quantum invariants, it is useful to have explicit, combinato-
rial or diagrammatic descriptions of underlying representation categories. For exam-
ple, Khovanov homology can be built from a categorification of the Temperley–Lieb
category, which describes the representation category of Uq(sl2), and all incarnations
of Khovanov–Rozansky homology implicitly employ a categorification of the MOY or
web calculus for the representation category of Uq(glN ) [23, 9].

The main purpose of the present paper is to provide representation-theoretic tools
for categorifying skein algebras. The key novelty when working with skein algebras
is that their proposed distinguished bases are obtained from links colored not by
irreducible representations of the corresponding quantum group, but colored only by
the sums of their extremal weight spaces, i.e. the weight spaces for weights in the Weyl
group orbit of the highest weight. In [28, Section 1.3] we have proposed a strategy for
lifting these colorings to the categorified level of toric link homologies, which is inspired
by Khovanov’s categorification of the colored Jones polynomial [16]. The main tool
necessary in this approach is a diagrammatic presentation of a certain subcategory
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of representations of a Cartan subalgebra U(h) ⊂ U(glN ), which is the first result in
this paper:

Result 1.1. In Corollary 2.39 we prove that there exists a diagrammatic presentation
for a suitable full subcategory of the representation category of U(h), given by an affine
extension NAWebess of the web calculus for U(glN ) in which

∧k(V )-labeled essential
circles are set to zero for 0 < k < N .

We emphasize that we deal with universal enveloping algebras, rather than their
quantizations. The former are intended to control the C-linear morphism spaces in
our skein module categorifications [28, Section 1.3], whereas the expected quantum
parameter q is promoted to a grading on objects. This is related to the fact that
annular Khovanov homology [13] has a natural action of U(sl2), not of Uq(sl2). An
additional quantization seems possible, see Remark 1.5, but will not play a role here.
For a detailed discussion of the relation between our diagrammatic presentation and
one that follows from the work of Cautis–Kamnitzer [8, Section 2.6], we refer to the
paper by Lacabanne–Tubbenhauer–Vaz [20] that appeared during revisions on this
paper.

In [28], we have constructed a diagrammatic presentation for the case of sl2, and
identified idempotent morphisms that encode the projections onto sums of extremal
weight spaces in finite-dimensional U(sl2)-representations. These extremal weight pro-
jectors are analogous to, but finer than Jones–Wenzl projectors [14, 33] (every Jones–
Wenzl projector splits into a non-negative linear combination of extremal weight pro-
jectors), and they can also be defined recursively. In this article, we identify and study
extremal weight projectors for glN .

Result 1.2. In Section 2.8 we give an explicit recursive description of the idempotents
in the diagrammatic category NAWebess that correspond to projections onto the ex-
tremal weight spaces in the U(glN )-representations Symk(V ). We call them extremal
weight projectors.

In fact we prove a slightly stronger version of this result in a central extension
of NAWebess, which has an additional grading by winding number, that will be
important for categorifying skein modules, see Theorem 2.28.

The sl2 extremal weight projectors can be considered as categorifications of Cheby-
shev polynomials of the first kind by decategorifying their images to elements of the
representation ring K0(Rep(sl2)) ∼= Z[X]. Analogously, the extremal weight projec-
tors for glN categorify power-sum symmetric polynomials in the representation ring
of glN . Such categorifications of classical orthogonal polynomials are of independent
interest, see e.g. [18]. Motivated by this, we prove a categorified Newton identity.

Result 1.3. In Theorem 3.5 we prove that the extremal weight projectors satisfy a cat-
egorified version of the Newton identity relating power-sum symmetric and elementary
symmetric polynomials.

The main application for our diagrammatic extremal weight projectors, however,
is in categorifying toric skein modules. In [29], we construct a categorification of the
gl2 skein module of the thickened torus via a toric gl2 foam category, whose homo-
topy category is the target of a toric link homology functor. (The use of gl2 foams, as
opposed to Bar-Natan cobordisms [2], is necessary to guarantee the functoriality of
the resulting link homology, see [4, 10].) The category 2AWebess describes morphism
spaces in this foam category, with affine webs corresponding to rotationally symmet-
ric foams. In particular, the rotation foams generated by extremal weight projectors
represent indecomposable objects in the Karoubi completed toric foam category. In
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Section 4, we prove a delooping lemma for gl2 webs and decomposition formulas for
tensor products of gl2 extremal weight projectors, which are used in [29] to show that
the toric gl2 foams indeed categorify the gl2 skein module of the thickened torus. We
expect that rotation foams generated by the extremal weight projectors for glN give
indecomposable objects in a candidate categorification of the glN skein algebra of the
torus based on glN foam categories.

Remark 1.4. Affine web categories have appeared before in work of the first-named
author [25] on skein modules, and of Cautis–Kamnitzer [8] on a K-theoretic version of
the derived geometric Satake correspondence for SLN . The main differences are that
here we work at q = 1, which makes the affine web categories symmetric monoidal,
and that we take a quotient by

∧k(V )-labeled essential circles for 0 < k < N . It
is unclear to us how to define an analogous quotient for generic q that would admit
extremal weight projectors.

Affine web categories for glN can also be seen as (idempotent completions of)
quotients of HOMFLYPT skein categories as studied, for example in [7, Section 4].

Remark 1.5. Affine web categories at generic q describe morphism spaces in quan-
tized toric foam categories, which can be defined using a quantized horizontal trace
construction. This is analogous to the quantized annular Bar-Natan cobordisms of
Beliakova–Putyra–Wehrli [3]. However, such a quantization involves a non-canonical
choice of a simple closed curve on the torus, that breaks a natural mapping class group
action which is desirable for categorified skein modules. In [29], we thus proceed with
affine webs at q = 1 and unquantized toric foam categories.

2. Affine glN webs and extremal weight projectors
We start by recalling the diagrammatic calculus of glN webs, which describes the
category of representations of Uq(glN ) that is monoidally generated by exterior powers
of the vector representation and their duals.

2.1. The category of glN webs. The category NWebq of glN webs is the C(q)-
linear pivotal tensor category with objects generated by points on the line R that
are labeled with integers in the set {1, . . . , N} and that carry an orientation up or
down. We may consider the tensor unit as a 0-labeled point without orientation.
The morphisms in NWebq are spanned by webs that are properly embedded in the
strip R × [0, 1], and composition is given by (the bilinear extension) of stacking in
the interval direction. Webs are trivalent graphs, with edges oriented and labeled by
elements of {1, . . . , N}, with a flow condition at each vertex imposing that the sum
of incoming labels equals the sum of the outgoing ones. When properly embedded
in the strip, these graphs are interpreted as mapping from the bottom sequence of
boundary points (with labels and orientations) to that at the top. The morphisms
in NWebq, represented by C(q)-linear combinations of webs, are considered modulo
isotopy relative to the boundary and subject to certain local relations. To describe
the relations, it is convenient to temporarily allow edges labeled by 0 and trivalent
vertices involving such edges. The relations make use of quantum integers and quantum
binomial coefficients defined for m ∈ N, n ∈ Z as [n] := qn−q−n

q−q−1 , [n]! =
∏n
i=1[i], and[

n
m

]
:= [n]!

[m]![n−m]! . Locally, the following relations hold:
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lk =
[
k + l

k

]
k + l

, l

k

=
[
N − k

l

]
k

, =(1)

b

a

k l

=
∑
t

[
k − l + a− b

t

]
a − t

b − t

k l

,
1

1

k l

=
1

1

k l

+ [N − k − l]
k l

as well as their orientation reversals. The following relations are useful consequences
of the ones above:

(2)
l

=
l

=
[
N

l

]
,

N N

=
N N

,

k N

=
k N

N − k

The first equation is a special case of the second relation in (1), obtained by setting
k = 0 and erasing 0-labeled edges.

2.2. Link with Uq(glN )-representation theory. Let Rep(Uq(glN )) denote the
C(q)-linear pivotal tensor category of Uq(glN )-representations that is monoidally gen-
erated by quantum exterior powers of the vector representation and their duals. The
main purpose of the diagrammatic calculus of glN webs is to describe this category.

Theorem 2.1. There exists an equivalence of C(q)-linear pivotal tensor categories

ϕ : NWebq → Rep(Uq(glN ))

that sends k-labeled upward points to k-fold exterior powers of the vector representa-
tion of Uq(glN ).

Essentially, this theorem is due to Cautis–Kamnitzer–Morrison [9], although they
state it for Uq(slN ) in [9, Theorem 3.3.1]. Versions for Uq(glN ) have appeared as
special cases of [27, Main Theorem A] and [31, Theorem 3.20]. We now describe the
functor ϕ explicitly.

Recall that Uq(glN ) is the C(q)-algebra generated by Ei, Fi for 1 ⩽ i ⩽ N − 1 and
L±1
j for 1 ⩽ j ⩽ N subject to the following relations:

LiEi = qEiLi, LiFi = q−1FiLi, Li+1Ei = q−1EiLi+1, Li+1Fi = qFiLi+1(3)

[Ei, Fj ] = δi,j
LiL

−1
i+1 − Li+1L

−1
i

q − q−1 , [Li, Lj ] = 0.(4)

E2
i Ej − [2]EiEjEi + EjE

2
i = 0 if |i− j| = 1 and [Ei, Ej ] = 0 otherwise;(5)
analogously for Fis.

It is a Hopf algebra with coproduct, antipode and counit as follows:

∆(Ei) = Ei ⊗ LiL
−1
i+1 + 1 ⊗ Ei, ∆(Fi) = Fi ⊗ 1 + L−1

i Li+1 ⊗ Fi

∆(L±1
i ) = L±1

i ⊗ L±1
i

S(L±1
i ) = L∓1

i , S(Ei) = −EiL−1
i Li+1, S(Fi) = −LiL−1

i+1Fi

ϵ(L±1
i ) = 1, ϵ(Ei) = 0, ϵ(Fi) = 0

Let V = C(q)⟨v1, v2, . . . vN ⟩ denote the vector representation of Uq(glN ) and V ∗ =
C(q)⟨v∗

1 , v
∗
2 , . . . , v

∗
N ⟩ its dual.
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To leftward oriented cups and caps, the functor ϕ associates the natural evaluation
and co-evaluation maps for duals:

ϕ7−→

{
C → V ⊗ V ∗

1 7→
∑N
k=1 vk ⊗ v∗

k

,
ϕ7−→

{
V ∗ ⊗ V → C
v∗
k ⊗ vl 7→ δk,l

Let
∧k

V denote the k-th quantum exterior power of V . This has a basis indexed
by subsets S = {i1, . . . , ik} ⊂ {1, 2, . . . , N} of size k. If 1 ⩽ i1 < · · · < ik ⩽ N , we
use the following notation for the corresponding basis vector: vS := vi1 ∧ · · · ∧ vik .
The dual (

∧k
V )∗ ∼=

∧k
V ∗ then has the dual basis given by vectors v∗

S and we have
corresponding thickness k cap and cup morphisms as above.

k
ϕ7−→

{
C →

∧k
V ⊗

∧k
V ∗

1 7→
∑

|S|=k vS ⊗ v∗
S

, k
ϕ7−→

{∧k
V ∗ ⊗

∧k
V → C

v∗
S ⊗ vT 7→ δS,T

The other duality maps, that is, rightward oriented caps and cups, are perturbed
by powers of q.

k
ϕ7−→

{
C →

∧k
V ∗ ⊗

∧k
V

1 7→
∑

|S|=k q
−ϵSv∗

S ⊗ vS
, k

ϕ7−→

{∧k
V ⊗

∧k
V ∗ → C

vS ⊗ v∗
T 7→ δS,T q

ϵS

Here ϵS =
∑
i∈S(N + 1 − 2i).

Merges of thick strands act as (q-deformed) exterior product:

k l

k + l
ϕ7−→


∧k

V ⊗
∧l

V →
∧k+l

V

vS ⊗ vT 7→ 0 if S ∩ T ̸= ∅
vS ⊗ vT 7→ (−q)ϵS,T vS∪T otherwise

(6)

Here ϵS,T is the number of inversions in the concatenation of the ordered lists of
elements of S and T . The split vertex acts as follows:

k l

k + l

ϕ7−→

{∧k+l
V →

∧k
V ⊗

∧l
V

vS 7→ (−1)kl
∑
T⊂S,|T |=k(−q)−ϵS∖T,T vT ⊗ vS∖T

(7)

Analogous formulas hold for merges and splits of duals, which implies that merges
and splits can be slid around caps and cups:

k l

k + l
ϕ7−→


∧k

V ∗ ⊗
∧l

V ∗ →
∧k+l

V ∗

v∗
S ⊗ v∗

T 7→ 0 if S ∩ T ̸= ∅
v∗
S ⊗ v∗

T 7→ (−1)kl(−q)−ϵS,T v∗
S∪T otherwise

(8)

and:
k l

k + l

ϕ7−→

{∧k+l
V ∗ →

∧k
V ∗ ⊗

∧l
V ∗

v∗
S 7→

∑
T⊂S,|T |=k(−q)ϵS∖T,T v∗

T ⊗ v∗
S∖T

(9)

This concludes the description of the functor ϕ.
The category Rep(Uq(glN )) is braided, and by virtue of Theorem 2.1, so is

NWebq. The diagrammatic description of the braiding of two fundamental Uq(glN )-
representations in NWebq is given as follows:

(10)

k l

= (−q)kl
∑
a,b⩾0

b−a=k−l

(−q)b−k
b

a

k l
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In particular, a crossing of two 1-labeled strands is given by:

= − q 2

For negative crossings, one uses the above formulas with q inverted. (Setting q = 1
recovers the ordinary braiding given by swapping tensor factors.)

Lemma 2.2. The following analogs of Reidemeister moves hold in NWebq, where
strands can carry all possible orientations and labels.

q−k(N−1)

k

=
k

= qk(N−1)

k

,

= , = , =

We will refer to the last relation as a forkslide move.

Proof. The Reidemeister II, III and forkslide moves follow from the property of a
braiding, and our braiding convention is only a minor rescaling of the one in [9,
Corollary 6.2.3], see also [31, Section 2.4]. The Reidemeister I moves can be verified
inductively as in [25, Lemma 2.9]. □

Definition 2.3. We denote by NWeb+ the full subcategory of NWeb with objects
given by arbitrary sequences with exclusively upward pointing orientations.

In the following we will use the same superscript + to indicate analogous full
subcategories of other web categories, consisting of those objects with upward (or
outward) pointing orientations. The next lemma is a well-known consequence the
proof of Theorem 2.1 using quantum skew Howe duality, see [9, Section 4.3 (fullness)
and Section 5 (ladder webs)] and analogously in [27, Prop 6.8] and [31].

Lemma 2.4. The morphism spaces of NWeb+ are spanned by upward-pointing webs,
i.e. webs whose edges admit oriented parametrisations with derivative having a positive
vertical component everywhere.

In the following, we will consider skein modules of isotopy classes of webs as in
Section 2.1, but embedded in different surfaces, modulo the local relations from (1),
and we will also vary the ground ring. In the following sections we deal with webs over
C, whose defining relations are obtained from (1) by specializing q = 1. We indicate
categories of webs at q = 1 by the omission of the q-subscript, e.g. NWeb instead
of NWebq. The functor ϕ also specializes to q = 1 and then relates NWeb to the
symmetric monoidal category of U(glN )-representations.

Note that setting q = 1 identifies the evaluation of positive and negative crossings
in terms of webs in (10), and so we sometimes do not display any over- or under-
crossing information in graphics. In particular, the braid group action induced by
1-labeled crossings becomes a symmetric group action.

2.3. Affinization at q = 1. In [28], we considered an affine extension of the
Temperley-Lieb category, and extended an analog of the functor ϕ to this more gen-
eral category. Just as in this simpler sl2 case, we will consider a more general affine
web category that will give us the freedom to extend the diagrammatic presentation
of the representation category of U(glN ) to a Cartan subalgebra.
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We define the category NAWeb to be the C-linear category with morphisms spaces
spanned by webs properly embedded in the annulus [0, 1] × [0, 1]/{(0, s) ∼ (1, s) | s ∈
[0, 1]}, subject to the same local relations as in NWeb, i.e. relations (1) at q = 1.
We remember the seam α = {(0, s) ∼ (1, s) | s ∈ [0, 1]}, which will be drawn as a
dashed line in illustrations. The endpoints of a web are on the two boundary circles
[0, 1] × {0} ∖ {(0, 0)} and [0, 1] × {1} ∖ {(0, 1)}, so that the web can be interpreted
as a mapping from the configuration of points on the first (inner) circle to the second
(outer) one. We further require of webs that their endpoints are disjoint from the
endpoints of the seam.

Just as before, one can compose annular webs by stacking the annuli. It is easy to
see that the morphisms of NAWeb can be generated from those morphisms that are
supported in the strip (0, 1)× [0, 1] (which may be considered as specifying morphisms
in NWeb), and the additional new wrapping morphisms:

D =

. . .

∗
∗

, D−1 =

. . .

∗
∗

When starting from an abstract annulus rather than our concrete model, a choice
of seam endpoints is necessary to make the composition in NAWeb well-defined
and a choice of seam is necessary to distinguish identity morphisms from all other
(invertible) wrapping morphisms.

We also stress that in NAWeb webs can come with any orientation on the bound-
ary.

2.4. Link with representation theory. We will extend the domain of the functor
ϕ from NWeb to NAWeb by sending the wrapping morphisms to maps between
U(glN )-representations, which respect the weight space decomposition but break the
U(glN )-action. This will allow us to build new diagrammatic projectors, and we will
now explain how to choose this preferred extension.

We first consider a single counterclockwise wrap morphism D = D1 of a single
1-labeled outward pointing strand.

1

∗

The requirement that ϕ(D) respects the weight space decomposition of V implies that
ϕ(D)(vk) = γkvk for some γk ∈ C and the desired invariance under ambient isotopy
forces these scalars to be invertible. In fact, this choice of scalars determines the action
of ϕ(Dk), the k-labeled version of the wrap. To see this, note that the first relation in
(1) allows one to open a digon in the k-edge. Iterating this procedure, one can open
a k-blister in the k-edge, i.e. a configuration of nested digons with k-many parallel
1-edges in the innermost part (see the proof of Lemma 2.9 below for an illustration).
Sliding one half of the k-blister around the wrap Dk, the eigenvalues of ϕ(Dk) can
be seen to be k-fold products of the eigenvalues of ϕ(D): ϕ(Dk)(vS) = (

∏
i∈S γi)vS .

Furthermore, inverse wraps have inverse eigenvalues: ϕ(D−1
k )(vS) = (

∏
i∈S γi)−1vS .

Next, we would like to have relations of the form:
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(11) ϕ


. . .

∗
∗

 = ϕ


. . .

∗
∗


To ensure that ϕ respects such isotopy relations for sliding cups and caps around the
annulus, we need to have ϕ(Dk)(v∗

S) = (
∏
i∈S γi)−1v∗

S and ϕ(D−1
k )(v∗

S) = (
∏
i∈S γi)v∗

S ,
which determine the maps assigned to inward pointing versions of D and D−1.

In order to be able to project onto the 1-dimensional spaces spanned by specific
standard basis vectors in V , we would like ϕ(D) to have distinct eigenvalues on the vk.
Furthermore, we would like to find a set of diagrammatic relations in the annular web
category that enforces a choice of ϕ(D) with distinct eigenvalues, or in other words,
with a separable characteristic polynomial

∏N
i=1(X − γi) =

∑N
k=0 X

N−k(−1)kek(γ⃗).
Here ek(γ⃗) = ek({γ1, . . . , γN}) denotes the k-th elementary symmetric polynomial
evaluated at the complex numbers γ1, . . . , γN .

Lemma 2.5. Suppose that ϕ is a functor from NAWeb to complex vector spaces,
which agrees on the subcategory NWeb with the functor from Theorem 2.1 and such
that ϕ(D) respects the weight space decomposition of V . Then the coefficients of the
characteristic polynomial of ϕ(D) are determined by the image of ϕ on endomorphisms
of the empty object. More precisely:

(12) ϕ

 ∗
k

∗

 =
∑

|S|=k

(
∏
i∈S

γi)idC = ek(γ⃗)

The annular web shown on the left-hand side will be called an essential circle in the
annulus.

Proof. The morphism can be written as the composition of a k-cup, a k-wrap and a
k-cap. The sum

∑
|S|=k comes from the cup and the factors from the action of the

wrap on vS . □

We now prescribe ϕ(D) : V → V to have the separable characteristic polynomial
XN − 1, and we may index the roots as γk = ζk = ek2πi/N . This choice of relation is
homogeneous with respect to a Z/NZ-grading by winding number, see Definition 2.15,
and it has the effect of setting ek(γ⃗) = 0 for 1 ⩽ k < N and eN (γ⃗) = (−1)N−1 in
(12). (More general evaluations are studied in [20].) We now extend the definition of
ϕ to the new generators D in the general case, that is, allowing more than one strand.

Definition 2.6. Let V ⊗W be the image under ϕ of the domain of D and W ⊗V its
co-domain. Then we define ϕ(D) to be the linear map determined by vk⊗w 7→ ζkw⊗vk
for vk ∈ V and any w ∈ W . Furthermore we set ϕ(D−1) = ϕ(D)−1 and analogously
for the duals.

Let h denote the Cartan subalgebra of diagonal matrices in glN , h1, . . . , hN its
standard basis elements, and consider U(h) ⊂ U(glN ). We denote by Rep(h) the
category of finite-dimensional U(h)-representations of integral weights, i.e. where the
hi act semisimply with integral eigenvalues. Note that the inclusion h ↪→ glN induces
a restriction functor Rep(glN ) → Rep(h) and that ϕ(D) and ϕ(D−1) are morphisms
in Rep(h).

Algebraic Combinatorics, Vol. 7 #1 (2024) 194



Extremal weight projectors II

Lemma 2.7. The functor ϕ : NAWeb → Rep(h) is well-defined.

Proof. We will show that ϕ respects all relations defining the morphism spaces of
NAWeb. All morphisms in NAWeb are linear combinations of compositions of caps
or cups between adjacent strands, vertices, as well as the morphisms D and D−1,
considered modulo local linear relations and isotopy. As usual in skein theory, it
suffices to impose the local linear relations in a fixed disk, e.g. away from the seam α.
These relations are respected by ϕ because we extended ϕ from NWeb ⊂ NAWeb.
It thus remains to check that ϕ respects the isotopy relations of sliding caps, cups and
vertices along wraps around the annulus. However, the images under ϕ of the wrap
morphisms were precisely chosen for these relations to hold (see Equation (11)). □

2.5. The tensor product on annular webs. Let ⊗ : NAWeb × NAWeb →
NAWeb denote the bi-functor given on objects by concatenation and on morphisms
by superimposing a pair of annular webs (W1,W2) as follows:

∗

∗

W2

W1

and resolving all crossings via (10). In words, we stack the annular web W1 on top
of the annular web W2, making sure that the “legs” of W1 meet the inner (source)
boundary of the annulus to the left of the legs of W2. Similarly, the “arms” of W1
meet the outside (target) boundary of the annulus to the left of all arms of W2.
This operation creates new crossings, as the legs of W1 might cross strings from W2,
and arms of W2 might cross strings from W1. The operation is well-defined thanks to
Lemma 2.2. In the above picture we have drawn W1 stacked on top of W2, with strands
leaving the former crossing over the latter. However, since we are working at q = 1,
over- and under-crossings are equal and using isotopy relations it is straightforward
to check that ⊗ together with the symmetric braiding from NWeb yield a symmetric
monoidal structure on NAWeb such that both the inclusion NWeb → NAWeb
and ϕ : NAWeb → Rep(h) become symmetric monoidal functors. This also justifies
why we have described the action ⊗ to be “superimposing” annular webs.

Definition 2.8. For m ⩾ 0 we denote by NAWeb(m) the endomorphism algebra in
NAWeb of the object consisting of a sequence of m points with label 1 and outward
orientation. We denote by si for 1 ⩽ i ⩽ m the element of this endomorphism algebra
that is given by the crossing between the strands in positions i and i+1, with positions
understood modulo m. We also write ui = id2 −si for the corresponding dumbbell web.

More generally, for two objects k⃗ and l⃗ we use the shorthand NAWeb(k⃗, l⃗) :=
Hom

NAWeb(k⃗, l⃗). We will also use these notation conventions for other categories.

The following lemma will allow us to freely express webs in terms of images of
1-labeled tangles, which will be very useful in a number of proofs.

Lemma 2.9. Every element of NAWeb(m) for m ⩾ 0 can be written as a C-linear
combination of 1-labeled annular tangles.
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As we will see later, we may assume that the closed components are essential
circles (possibly carrying higher labels) and the non-closed components are oriented 1-
labeled arcs from the inner to the outer boundary circle, that are everywhere outward
pointing.

Proof. We include this classical proof for completeness. It is well-known that every
closed web can be written as a C-linear combination of webs W with only 1-labeled
edges, interacting at most in 2-labeled dumbbells, see e.g. [31, Proof of Lemma 4.1].
Indeed, the argument can be inductively built from the following two operations:

k = 1
k!

. . . and

. . .

. . .

k

k

= (−1)k

. . .

. . .

k − 1

k − 1

+ (−1)k+1

. . .

. . .

k − 1

k − 1

The remaining 2-labeled dumbbells can now be expanded in terms of crossings and
their oriented resolutions, resulting in a linear combination of 1-labeled annular tan-
gles. □

An analogous result is true at generic q over C(q).

Lemma 2.10. The endomorphism algebra of the empty object in NAWeb is isomor-
phic to C[c1, . . . , cN−1, c

±1
N ], where ci denotes the counter-clockwise oriented i-labeled

essential circle in the annulus and c−1
N the N -labeled clockwise oriented essential circle.

Proof. The proof proceeds in two steps. First we show that any closed web in the
annulus can be written as a C-linear combination of collections of essential circles
from the set {c1, c2, . . . , cN , c

−1
N }. The essential circles commute, which is easily seen

by applying Reidemeister II moves, and cN and c−1
N are indeed mutually inverse by

(2). Second, we check that the counter-clockwise oriented circles are algebraically
independent.

By Lemma 2.9 any closed web may be expressed as a linear combination of 1-labeled
annular links. Recall that we are working at q = 1, so crossings signs are irrelevant
and the components of the link can be pulled apart into a disjoint union. Moreover,
each of the components can be assumed to wrap exclusively clockwise or counter-
clockwise around the annulus. (By this we mean that upon choosing an orientation of
the seam α, all intersection points of α with the link component have the same sign.)
The annular evaluation algorithm from [26, Lemma 5.2] implies that any such web can
be resolved in terms of concentric essential circles of various labels. Hence, the same
is true for the original web. To finish the first part, note that the clockwise-oriented
circle of label i is equal to cN−ic

−1
N . This follows from the last relation in (2).

In order to prove algebraic independence, we use an extension of the functor ϕ from
Lemma 2.7. Let R = C[X±1] = C[X±1

1 , . . . , X±1
N ] be a Laurent polynomial ring in N

variables and consider the category RRep(h) obtained by tensoring all morphism
spaces in Rep(h) by R. Then ϕR : NAWeb → RRep(h) can be defined just as ϕ
was above, except that the Xi now play the role of the eigenvalues of the 1-labeled
counter-clockwise wrap: ϕR(D)(vk) := Xkvk.

For a closed annular web W , it follows that ϕ(W ) ∈ R. In particular, counter-
clockwise oriented circles ci evaluate to elementary symmetric polynomials ei(X) in the
variables Xk and their clockwise counterparts evaluate to ei(X−1). As a consequence
of the first part of this proof, the evaluation of closed annular webs ϕR(W ) takes
values in the symmetric part RSN ∼= C[e1(X), . . . , eN−1(X), eN (X)±1] of R. Now the
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algebraic independence of the ci follows from the algebraic independence of their
images ei(X) under ϕR. □

An analogous version of this result holds for NAWebq over C(q). The second part
in its q = 1 version is already sufficient to establish algebraic independence of the
counter-clockwise essential circles in NAWebq.

Just as in the non-annular case, we denote by NAWeb+ the full subcategory of
NAWeb with objects given by all upward, or outward, pointing boundary sequences.
The following is the analog of Lemma 2.4.

Lemma 2.11. The morphism spaces of NAWeb+ are spanned by webs with all edges
outward oriented (i.e. admitting an oriented parametrisation with derivative having
a positive radial component everywhere), but potentially superimposed with essential
circles.

Note that Lemma 2.10 allows us to restrict to counter-clockwise essential circles,
except for the N -labeled ones.

Proof. We will prove the claim for webs W whose source and target objects are only
1-labeled. The general claim follows by a usual merging argument.

Lemma 2.9 allows us to write W as a linear combination of annular tangles. The
closed components of these tangles evaluate to essential circles thanks to Lemma 2.10,
while the non-closed components can be isotoped to be outward oriented arcs. (This
shortcut is possible since we work at q = 1.) The superposition of such outward arcs
is itself a linear combination of outward webs, as desired. □

2.6. Equivalences between blocks. The categories NWeb, NAWeb and all of
their specializations and quotients considered in the following decompose into blocks
(i.e. full subcategories) indexed by m ∈ Z, which consist of those objects, whose signed
sum of labels equals m. Here we count upward oriented boundary points positively,
and downward pointing ones negatively. We indicate such blocks by the subscript m,
e.g. NWebm.

We will use the notation λ for the endofunctors of these categories that act on
objects by tensoring with a single N -labeled upward boundary point on the right and
on morphisms by superimposing with an upward-oriented N -labeled edge parallel
to the seam and with boundary points to the right of all other boundary points.
We denote by λ∗ the analogous operation with downward orientations. We give an
example for NAWeb:

∗

∗

λ−→ N

∗

∗

λ∗

−→ N

N

∗

∗

Here we display the N -labeled strand as crossing over the remaining web for better
visibility, even though this has no significance at q = 1.

Lemma 2.12. The endofunctors λ and λ∗ establish an equivalence between the blocks
NAWebm and NAWebm+N .

Proof. Using isotopy relations, it is easy to see that the following types of webs provide
natural isomorphisms between the identity functor on NAWebm and the endofunctor
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given by the composition λ∗ ◦ λ:

N

∗

∗

Analogously, there are natural transformations between λ◦λ∗ and the identity functor
on NAWebm. □

2.7. The quotients by essential circles. It is a key observation that the functor
ϕ : NAWeb → Rep(h) is not faithful.

Proposition 2.13. We have the following identities in Rep(h):

(13) ϕ


· · ·
· · ·

∗
∗

k

 = ϕ


· · ·
· · ·

∗
∗

k

 =
{

(−1)N−1id if k = N

0 otherwise
.

Proof. First consider the case where there are no strands mapping between the inner
and outer circles. In this case, the result follows by specializing (12) at γl = ek2πi/N .

In the case where there are strands crossing the essential k-labeled circle, the result
follows similarly: a crossing is sent under ϕ to the transposition u⊗ v → v ⊗ u. Then
the computation in the proof of Lemma 2.5 can be performed even in the presence of
extra strands, yielding the same scalar. □

Definition 2.14. We let NAWebess denote the quotient of NAWeb by the tensor
ideal generated by the k-labeled essential circles ck for k < N . We define NAWebess

to be quotient of NAWeb by the tensor ideal generated by the ck for k < N as well
as cN + (−1)N .

Note that the monoidal structure ⊗ and the functor ϕ descend to the quotients
NAWebess and NAWebess. One of the key results of this paper will be to prove that
this category NAWebess is equivalent to the full subcategory of Rep(h) generated
by the images of the objects of Rep(glN ).

Upon reinterpreting linear categories as locally unital algebras, NAWebess can
be thought of as a central extension of NAWebess. For every object there exists an
automorphism, always denoted cN , given by the N -labeled counter-clockwise oriented
essential circle superimposed onto the identity morphism of the object, which “com-
mutes” with all morphisms. Then NAWebess is obtained from NAWebess by setting
cN = (−1)N−1.

Definition 2.15. Let W be a web in NAWeb. Then the flow winding number wf (W )
of W is given by the algebraic intersection number of the web with the segment α
(assuming no trivalent vertex occurs on it), where k-labeled edges crossing α count as
±k.

It is clear that all web relations in NAWeb and NAWebess preserve the flow
winding number. This Z-grading on the morphism spaces of these categories descends
to a Z/NZ grading on NAWebess.

The following corollaries are implied by Lemma 2.10 and Lemma 2.11.
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Corollary 2.16. The endomorphism algebra of the empty object in NAWebess is C
and in NAWebess it is isomorphic to the Laurent polynomial ring over C generated
by an essential N -labeled circle.

Corollary 2.17. The morphism spaces of NAWebess,+ are spanned by outward
pointing webs. The same is true in NAWebess,+ up to superposition with an integer
power of the N -labeled essential circle cN .

Lemma 2.18. In NAWebess(1) we have DN = (−1)N−1cN , where we abuse notation
by writing cN for the superposition of the identity on 1 with the counterclockwise
N -labeled essential circle. In NAWebess(1) this specializes to DN = id1.

Proof. We compute:

(−1)N−1cN = (−1)N−1
∗
∗N

= ∗
∗N

= ∗
∗N-1

◦D

= (−1)N−1
∗
∗N-1

◦D + ∗
∗N-1

◦D = ∗
∗N-2

◦D2

= · · · = − ∗
∗1

◦DN−1 + DN = DN

The second equality arises by resolving the crossing while the third is an isotopy. The
equalities then alternate between such which hold by expanding a crossing and such
that use isotopies and (13). □

Remark 2.19. An analogous argument shows
∑N
i=0 D

N−i(−1)ici = 0 in NAWeb,
c.f. [8, Section 8.2].

Consider the algebra C[D±1]/⟨DN − 1⟩. Lemma 2.18 implies that this surjects
onto the subalgebra of NAWebess(1) generated by the wrapping morphisms D and
D−1, and the flow winding grading implies that the surjection is an isomorphism. The
Chinese remainder theorem implies C[D±1]/⟨DN − 1⟩ ∼=

⊕N
j=1 C[D]/⟨D − ej2πi/N ⟩.

Definition 2.20. For 1 ⩽ k ⩽ N we denote by Pk ∈ C[D] a chosen representa-
tive for the idempotent that projects onto the direct summand C[D]/⟨D − ek2πi/N ⟩ of
C[D±1]/⟨DN − 1⟩.

By abuse of notation we also write Pk for the corresponding orthogonal idempotents
in NAWebess(1). It is a straightforward but crucial observation that ϕ(Pk(D)) is the
projection V ↠ C⟨vk⟩ ↪→ V .

Theorem 2.21. The functor ϕ : NAWeb → Rep(h) is full.

Proof. We show that the induced functor on the quotient NAWebess is full. For this,
let k⃗ and l⃗ be objects in NAWebess and ⃗k be the dual of k⃗, which is obtained from
k⃗ by inverting orientations and the order of the sequence. We consider the duality
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isomorphism f : NAWebess(k⃗, l⃗) → NAWebess(∅, l⃗ ⊗ ⃗k) and its inverse, which can
be explicitly described as the following operations on diagrams.

f : ∗

∗

7→ ∗

∗

, f−1 : ∗

∗

7→ ∗

∗
Since these operations are given by tensoring with an identity morphism and then pre-
composing with cups, or post-composing with caps, there are corresponding isomor-
phisms ϕ(f±1) between the relevant morphism spaces in the target category Rep(h).

To prove the theorem, it now suffices to check that ϕ restricts to a surjective map
from the morphism space NAWebess(∅, l⃗ ⊗ ⃗k) to Rep(h)(C, ϕ(⃗l ⊗ ⃗k)), the latter of
which is isomorphic to the zero weight space in ϕ(⃗l ⊗ ⃗k) via the map that evaluates
elements of the morphism space at 1 ∈ C.

Next we claim that it is enough to prove surjectivity in the case where l⃗⊗ ⃗k consists
entirely of entries 1, the first n of which point outward and the last n inward. Indeed,
if all weight zero vectors in this tensor product are in the image (upon evaluation at
1 ∈ C), then composing with the images of merge webs and the symmetric braiding,
one may find any weight zero vector of a tensor product of fundamentals and their
duals in the respective image.

Actually, it is sufficient to find for every 1 ⩽ k ⩽ N a morphism Lk ∈
NAWebess(∅, (1, 1∗)), such vk ⊗ v∗

k = ϕ(Lk)(1), as then we can take diagram-
matic tensor products of such morphisms Lki

, composed with permutations, to find
any standard basis vector of weight zero in the image. To show that vk ⊗ v∗

k is in the
image, we invert the bending process via the isomorphisms f±1 and ϕ(f±1), and the
problem becomes equivalent to finding the projection V ↠ C⟨vk⟩ ↪→ V in the image
of ϕ. But this we have already seen; it is given by ϕ(Pk). □

Later, we will prove that ϕ induces a functor from NAWebess to Rep(h) that is
not only full, but also faithful (see Theorem 2.35). Nevertheless, we will continue to
work in the more general framework of NAWebess whenever possible.

2.8. Extremal weight projectors. In [28], we defined the concept of extremal
weight projectors in the context of (affine) sl2 skein theory. This involved finding a suit-
able quotient of the affine Temperley-Lieb category, in which we identified a family of
idempotents akin to Jones-Wenzl projectors and corresponding, on the representation-
theoretic side, to projections onto the direct sum of the top and bottom weight spaces
in the tensor powers of the vector representation of U(sl2). The same question natu-
rally extends beyond the sl2 case, and the definition can be adapted and generalized
to the glN case as follows.

Definition 2.22. The elements Tm ∈ NAWebess(m) are recursively defined via:
• T1 = id1,
• T2 = 1

N

∑N−1
k=0 D−k ⊗Dk,

• Tm+1 = (idm−1 ⊗ T2)(Tm ⊗ id1) for m ⩾ 2.

In the following we abbreviate the notation for standard basis elements of V m to
va1a2···am := va1 ⊗ va2 ⊗ · · · ⊗ vam .

Theorem 2.23. The element ϕ(Tm) is the endomorphism of V ⊗m projecting onto the
sum of extremal weight spaces C⟨vi···i | i ∈ {1, . . . , N}⟩ in Symm(V ) ⊂ V ⊗m.
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Proof. For m = 1 this is tautological. For m = 2 we compute ϕ(D−1 ⊗ id1)(vij) =
ζ−ivij and ϕ(id1 ⊗D)(vij) = ζjvij . Thus we have:

ϕ(T2)(vij) = 1
N

N−1∑
k=0

ζk(j−i)vij =
{
vii if i = j

0 if i ̸= j

For the vanishing, recall that 0 = (XN − 1) = (X − 1)(1 + X + · · · + XN−1), so if
XN = 1 but X ̸= 1, then X is a zero of the cyclotomic polynomial. In particular, this
holds for X = ζ(j−i) when i ̸= j.

For the induction step, we see immediately from the recursion that ϕ(Tm+1) anni-
hilates vϵ1ϵ2···ϵm+1 unless ϵ1 = · · · = ϵm =: ϵ. In the remaining cases we have:

ϕ(idm−1 ⊗ T2)ϕ(Tm ⊗ id1)(vϵ···ϵk) = ϕ(idm−1 ⊗ T2)(vϵ···ϵk) =
{
vϵ···ϵϵ if k = ϵ

0 if k ̸= ϵ

So ϕ(Tm+1) is the extremal weight projector. □

In the following we show that the Tm are idempotents that satisfy a number of
properties analogous to the extremal weight projectors ϕ(Tm). This will lead to a
proof that ϕ is indeed faithful on NAWebess. We start by studying properties of T2.

Lemma 2.24. The endomorphism T2 is an idempotent in NAWebess and thus also in
the quotient NAWebess.

Proof. We compute:

T 2
2 = 1

N2

N−1∑
k=0

N−1∑
l=0

D−k−l ⊗Dk+l = 1
N

N−1∑
l=0

D−l ⊗Dl = T2

We are using that D−N−i ⊗DN+i = (−1)2N−2cN
−1cN (D−i ⊗Di) = D−i ⊗Di. □

Lemma 2.25. In NAWebess(3) we have that id1 ⊗ T2 and T2 ⊗ id1 commute.

Proof. (id1 ⊗ T2)(T2 ⊗ id1) = 1
N2

∑N−1
k,l=0 D

−k ⊗Dk−l ⊗Dl = (id1 ⊗ T2)(T2 ⊗ id1) □

The following lemma states a relation that is trivially satisfied on the representation-
theoretic side, i.e. after applying ϕ, but which is non-obvious in NAWebess and
NAWebess. For the latter, the result can be deduced from [8, Equation (37)].

Lemma 2.26. The idempotent T2 absorbs the crossing s = s1 between its two strands.
More precisely sT2 = T2s = T2 in NAWebess(2) and thus also in NAWebess(2).

The diagrammatic proof is involved and we postpone it until Section 2.10. The
reason for the result to hold after applying ϕ is because ϕ(T2) projects onto the span
of the vectors vi,i (see Theorem 2.23), and a crossing acts as the identity on this
subspace.

Lemma 2.27. In NAWebess(2) we have D−1T2D = T2.

Proof. For this we rewrite T2 in terms of D−1 ⊗ id1 = D−1s and id1 ⊗D = Ds. Using
Lemma 2.26 and (D−1s)N (Ds)N = D−N ⊗DN = 1, we compute:

D−1T2D = D−1sT2D = 1
N

N−1∑
k=0

D−1s(D−1s)k(Ds)kDss = T2s = T2. □

We can now state and prove the following theorem, establishing that the Tm’s
are indeed idempotents, and that they satisfy desirable properties with respect to
crossings, turnbacks, and wrapping morphisms.
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Theorem 2.28. The elements Tm of NAWebess satisfy the following properties:
(1) T 2

m = Tm;
(2) Tm(idk ⊗Tn ⊗ idm−n−k) = (idk ⊗Tn ⊗ idm−n−k)Tm = Tm for 1 ⩽ n < m and

0 ⩽ k ⩽ m− n;
(3) (Tk ⊗ idm−k)(idm−l ⊗ Tl) = (idm−l ⊗ Tl)(Tk ⊗ idm−k) = Tm for k + l > m;
(4) Tmsi = siTm = Tm for m ⩾ 2;
(5) Tmui = uiTm = 0 for m ⩾ 2;
(6) D−1TmD = Tm.

Here, si and ui again refer to crossings and dumbbell webs between the strands in
position i and i+ 1, see Definition 2.8.

Proof. We have already checked in Lemma 2.24 that T2 is idempotent. From the
definition, it is clear that Tm is a product of m − 1 distinct factors of the form
idk ⊗ T2 ⊗ idm−2−k for 0 ⩽ k ⩽ m − 2. Lemma 2.25 implies that these factors
commute and so Tm is an idempotent (1) that absorbs smaller Tn, i.e. (2). It is also
clear that overlapping projectors Tl and Tk combine as in (3). The crossing absorption
property of T2 now implies the one for Tm and crossings si for 1 ⩽ i ⩽ m− 1.

Using crossing absorption, we obtain the rotation conjugation invariance (6) from
the T2 case:
D−1TmD = D−1(Tm−1 ⊗ id1)(idm−2 ⊗ T2)(Tm−1 ⊗ id1)D

= (id1 ⊗ Tm−1)D−1sm−1 · · · s2s1(T2 ⊗ idm−2)s1s2 · · · sm−1D(id1 ⊗ Tm−1)
= (id1 ⊗ Tm−1)((D−1T2D) ⊗ idm−2)(id1 ⊗ Tm−1)
= (id1 ⊗ Tm−1)(T2 ⊗ idm−2)(id1 ⊗ Tm−1) = Tm

This implies the missing crossing absorption relation (4)
Tmsm = TmD

−1sm−1D = D−1Tmsm−1D = D−1TmD = Tm.

Finally, the ui annihilation property (5) is equivalent to si crossing absorption. □

Now we can give an alternative recursion relation for Tm for m ⩾ 3. This is the
direct generalization of the defining recursive relation in [28, Definition 15], and it is
reminiscent of the Jones-Wenzl projectors.

Corollary 2.29. The idempotents Tm satisfy the following recursion for m ⩾ 3:
Tm = (Tm−1 ⊗ id1)sm−1(Tm−1 ⊗ id1)

Graphically, we write this as:

(14) ∗

∗

Tm

:= ∗

∗

Tm−1

Tm−1

Proof. We check this identity as follows.
(Tm−1 ⊗ id1)sm−1(Tm−1 ⊗ id1) = (Tm−1 ⊗ id1)sm−2 · · · s2s1(id1 ⊗ Tm−1)s1s2 · · · sm−1

= (Tm−1 ⊗ id1)(id1 ⊗ Tm−1)s1s2 · · · sm−1

= Tms1s2 · · · sm−1 = Tm

The first equation holds by isotopy, the third by item (3) of Theorem 2.28, and the
others follows from crossing absorption. □
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Lemma 2.30. Let m,n ∈ N with m + n ⩾ 3, then (Tm ⊗ Tn)sm(Tm ⊗ Tn) = Tm+n.
This means, crossing-connected projectors can be combined.

Proof. We may assume that m ⩾ 2 and compute:

(idm ⊗ Tn)(Tm ⊗ idn)sm(Tm ⊗ idn)(idm ⊗ Tn)
= (idm ⊗ Tn)(Tm+1 ⊗ idn−1)(idm ⊗ Tn)
= Tm+n

Here we have used the projector recursion (14) and the fact that overlapping projectors
can be combined, i.e. (3) in Theorem 2.28. □

Next we consider the images of the idempotents Tm in the quotient category
NAWebess. Recall the morphisms {Pa}a∈{1,...,N} that were introduced just before
Theorem 2.21 as diagrammatic versions of projectors on eigenspaces. We will see in
Lemma 2.34 that they can be combined to give an alternate definition of the extremal
weight projectors, which amounts to saying that in the quotient category NAWebess,
the sum of extremal weight spaces can be broken into individual weight spaces.

Lemma 2.31. In NAWebess we have (Pa ⊗Pb) ◦ T2 = T2 ◦ (Pa ⊗Pb) = δa,b(Pa ⊗Pb).

Proof. The C-algebra R := C[X±1, Y ±1]/⟨XN − 1, Y N − 1⟩ surjects onto the subal-
gebra of NAWebess(2) generated by wraps and their inverses via the map 1 7→ id2,
X 7→ D ⊗ id1 = sD and Y 7→ id1 ⊗ D = Ds. We will check the desired equalities
in R, where T2 is represented by 1

N

∑N−1
k=0 X−kY k and Pa ⊗ Pb is represented by

Pa(X)Pb(Y ), which then implies that these equalities also hold in NAWebess(2).
Note that the idempotents Pa(X)Pb(Y ) decompose R ∼=

⊕
a,b Pa(X)Pb(Y )R into

1-dimensional summands, which precisely consist of simultaneous eigenvectors for
multiplication by X and Y with eigenvalues ζa and ζb respectively. Thus we can
compute the action of T2 on such an idempotent as:

Pa(X)Pb(Y )T2 = Pa(X)Pb(Y ) 1
N

N−1∑
k=0

X−kY k = Pa(X)Pb(Y ) 1
N

N−1∑
k=0

ζk(b−a)

= δa,bPa(X)Pb(Y ). □

Corollary 2.32. In NAWebess we have T2 =
∑N
k=1 Pk ⊗ Pk.

Corollary 2.33. In NAWebess we have s(Pk ⊗ Pk) = (Pk ⊗ Pk)s = Pk ⊗ Pk.

Proof. We only consider composing with s on the left:

s(Pk ⊗ Pk) = sT2(Pk ⊗ Pk) = T2(Pk ⊗ Pk) = Pk ⊗ Pk

Here we have used Lemma 2.31 twice and Lemma 2.26 in between. □

Lemma 2.34. In NAWebess we have Tm =
∑N
k=1 P

⊗m
k .

Proof. We have observed this for m = 2 in Corollary 2.32. For m = 1 this follows from
the decomposition 1 =

∑N
k=1 Pk in C[D]/⟨DN − 1⟩. Also, it is not hard to see that

the Pk’s slide through crossings, e.g. s ◦ (Pk ⊗ id1) = (id1 ⊗ Pk)s in NAWebess(2).
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Now we proceed inductively for m ⩾ 2:
Tm+1 = (Tm ⊗ id1)sm(Tm ⊗ id1)

=
N∑
k=1

N∑
l=1

(Pk ⊗ · · · ⊗ Pk ⊗ id1)sm(Pl ⊗ · · · ⊗ Pl ⊗ id1)

=
N∑
k=1

(idm−1 ⊗ Pk ⊗ id1)sm(Pk ⊗ · · · ⊗ Pk ⊗ id1)

=
N∑
k=1

sm(Pk ⊗ · · · ⊗ Pk ⊗ Pk) =
N∑
k=1

P⊗m
k

Here we have used the orthogonality of the idempotents Pk to proceed to the second
line and the sliding property to proceed to the third line. The final crossing absorption
follows from Corollary 2.33. □

2.9. Faithfulness of the diagrammatic presentation. We will now combine
the previous results to prove the following theorem.

Theorem 2.35. The functor ϕ : NAWebess 7→ Rep(h) is faithful.

We partition the proof of the theorem into three parts.

Proposition 2.36. The restriction of ϕ to the endomorphism algebra NAWebess(n)
is injective.

Proof. To see this result, we will exhibit a spanning set in NAWebess(n) that is
sent under ϕ to a linear basis. Consider ϵ, ϵ′ ∈ {1, · · · , N}n so that |{i, ϵi = k}| =
|{i, ϵ′i = k}| for all k = 1, · · · , N . Choose σϵ′

ϵ ∈ Sn to be the smallest in length so that
ϵ′σ(i) = ϵi. For example, it can be inductively defined by assigning to 1 the smallest
r so that ϵ′r = ϵ1, etc. Recall the notation Pk for the polynomial such that Pk(D) ∈
NAWebess(1) is the projector onto the ζk eigenspace of D. In NAWebess(n), denote
wi = idi−1 ⊗D ⊗ idn−i the complete wrap of the i-th strand. We define:

ϕϵ
′

ϵ := σPϵn
(wn) · · ·Pϵ1(w1).

It is easy to see that the set {ϕϵ′

ϵ } is linearly independent, because it is so under ϕ.
On the other hand, we can deduce from Lemma 2.11 and its proof that this set

spans NAWebess(n). Indeed, given the essential circle relations, we first deduce
that any element W ∈ NAWebess(n) is made of a composition of elements from
Sn → NAWebess(n) and the wraps wi. From there, using far-commutation and the
formulas:

wisi−1 = si−1wi−1, wisi = siwi+1,

one can see that this gives an algebra epimorphism ⟨wi⟩ ⋊Sn ↠ NAWebess(n).
Now, by construction, the polynomials {Pk(w)}k∈{0,...,N−1} form a basis

of C[w]/(wN − 1), and since the wi’s commute, it follows that the elements
Pϵn

(wn) · · ·Pϵ1(w1) span ⟨wi⟩i∈{1,...,n−1} ⊂ NAWebess(n). Thus, any element in
NAWebess(n) can be written as a linear combination of terms of the kind σ̃ϕϵϵ with
σ̃ in the image of Sn. It remains to see that σ̃ can be assumed to be of minimal
length, which is equivalent to saying that no two strands corresponding to the same
value in ϵ cross. Via isotopies, this reduces to the identities proven in Corollary 2.33.

This proves that the set {ϕϵ′

ϵ } spans NAWebess(n) and concludes the proof. □

Proposition 2.37. The restriction of ϕ to any morphism space in NAWebess,+ is
injective.
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Proof. Suppose a linear combination
∑
i ciWi of webs Wi in such a morphism space

is sent to zero under ϕ. Then for each web in this linear combination we pre-compose
with a merge web M and post-compose with a splitter web S (they depend only on the
common source resp. target object of all webs Wi) in order to obtain an endomorphism∑
i ciSWiM in NAWebess whose source and target is a sequence of 1s. Then we have

ϕ(
∑
i

ciSWiM) =
∑
i

ciϕ(S)ϕ(Wi)ϕ(M) = 0

and Proposition 2.36 implies that
∑
i ciSWiM = 0. Now we consider the merge

(split) web M ′ (S′) obtained by reflecting S (M) in a horizontal line and reversing
orientations. Then we compute

∑
i ciWi = c

∑
i ciM

′SWiMS′ = 0 where c ̸= 0 is a
scalar resulting from opening bigons; see the first relation in (1). □

Proof of Theorem 2.35. Since ϕ is a braided monoidal functor and since NAWebess

has duals, the statement follows from Proposition 2.37. To make this argument more
explicit, letW be a linear combination of webs in some morphism space ofNAWebess,
which is sent to zero under ϕ. There exists a composition of invertible bending and
braiding operations similar to those used in the proof of Theorem 2.21 that transforms
W into a linear combination W ′ of webs in a morphism space as in Proposition 2.37,
which is also sent to zero under ϕ. The proposition then implies W ′ = 0 and, by
invertibility of the operations, W = 0. □

The final result of this section is best expressed in terms of Karoubi envelopes, the
definition of which we recall now.

Definition 2.38. The Karoubi completion of a category C is the category Kar(C)
with objects given by pairs (X, e), where X is an object of C and e ∈ HomC(X,X) an
idempotent. Morphisms between (X, e) and (Y, f) are of the form f ◦ g ◦ e with g ∈
HomC(X,Y ). We will modify this classical definition in the following more specialized
cases:

• If C is linear but not yet additive, then we pass to the additive closure before
taking the idempotent completion as above. The resulting additive and linear
category will also be denoted Kar(C).

• If the morphism spaces of C furthermore admit a Z-grading deg, i.e. C is Z-
pre-graded, then in the definition of the Karoubi completion we only consider
homogeneous idempotents. The resulting category is denoted Kar(C)∗; it is
again pre-graded. We reserve the notation Kar(C) for the Z-graded, additive,
linear category whose objects are generated by formal grading shifts wk(X, e)
of the objects (X, e) in Kar(C)∗ and morphism are required to be of degree
zero. I.e. g : wk(X, e) → wl(Y, f) is required to satisfy deg(g) = l − k.

Note that if C is additive or monoidal, then the Karoubi completion Kar(C) inherits
these structures.

Corollary 2.39. The functor ϕ induces an equivalence of additive, C-linear pivotal
categories:

Kar(NAWebess)∗ ≃ Rep(h).

Proof. This follows from Theorems 2.21 and 2.35 since Rep(h) is already idempotent
complete and any of its objects can be written as the direct sum of ϕ-images of
idempotents in NAWebess since Pk is sent to the projection onto the span of vk, see
the observation following Definition 2.20. □

Let Rep+(h) denote the full subcategory of Rep(h) containing only those integral
h-representations whose weights have non-negative entries.
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Remark 2.40. The functor ϕ restricts to a fully faithful functor NAWebess,+ →
Rep+(h) that induces an equivalence of C-linear monoidal categories

Kar(NAWebess,+)∗ ≃ Rep+(h).

2.10. Proof of Lemma 2.26. This section contains a proof of the fact that the T2
projector absorbs crossings. It can be safely skipped on a first read-through.

In order to prove Lemma 2.26 we study the endomorphism algebra of the object 2
in NAWebess. For k ⩾ 1 we introduce the following notation:

Ek := ∗
∗k

, Bk := ∗
∗k

, Ak := ∗
∗k-2

, D2 := ∗
∗

Here we set A1 = 0, B2 = D2 and A2 = id, and doubled edges stand for 2-labeled
edges. Note that in the definition of Bk, we haven’t depicted the orientation of one of
the strands: this is because it depends on k. More precisely, we have:

B1 := ∗
∗1

1

, B2 = D2, Bk := ∗
∗k

if k ⩾ 3.

Note also that Ak = Bk = Ek = 0 for k > N .

Lemma 2.41. The following statements hold in the endomorphism algebra of the 2-
labeled upward point in NAWebess:

(1) Ek = δk,NcN ,
(2) D2 is invertible and central,
(3) Bk = AkD2 for k ⩾ 2,
(4) B1Ak = −Ek−1 +Ak−1D2 +Ak+1 for k ⩾ 2,
(5) BN = EN = cN and thus AN = cND

−1
2 .

Note that only (1) and (5) depend on the value of N .

Proof. (1) holds by definition of NAWebess, (2) and (3) follow from isotopies. For
(4) we resolve the crossing in Ek−1 to obtain:

∗

∗
k − 1

= ∗

∗
k − 1

− ∗

∗
k − 1

+ ∗

∗
k − 1

Here the first and third summands are Bk−1 = Ak−1D2 and Ak+1 respectively. The
web in the second summand simplifies as follows:

∗

∗
k − 1

= ∗

∗

k − 2

1

= ∗

∗

k − 2

1

= B1Ak. □
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As a corollary, we get that the elements Ak can be written in terms of powers of
B1 and D2:

Corollary 2.42. The elements Ak for k < N + 2 satisfy the recursion Ak :=
B1Ak−1 −Ak−2D2 for k ⩾ 5 with initial conditions A3 = B1 and A4 = B2

1 −D2.

Proof. We induct on k. For k = 1 < N we use Lemma 2.41 to obtain B1 = B1A2 =
−E1 + A1D2 + A3 = A3. Similarly, for k = 2 < N , we get from Lemma 2.41 that
B2

1 −D2 = B1A3 −A2D2 = −E2 +A4 = A4. For the recurrence relation we compute:
B1Ak−1 −Ak−2D2 = −Ek−2 +Ak = Ak if 5 ⩽ k < N + 2. □

Remark 2.43. We will now find expressions for T2 which are more convenient in the
following proof. First we introduce the notation t = D−1sD for the rotation conjugate
of the crossing. Now we use the facts that D2 is central in NAWebess(2) and that
(sD)−1 and (Ds) commute to write (sD)−k(Ds)k = (ts)k, which gives:

T2 = 1
N

N−1∑
k=0

(ts)k

Further, we resolve the crossings as s = id2 − u and t = id2 − v where u = u1 is the
2-labeled dumbbell and v its conjugate. So we have:

(15) T2 = 1
N

N−1∑
k=0

((id2 − v)(id2 − u))k

If we write M and S for the merge and split vertices on two strands, such that
SM = u, we get the following equality for k ⩾ 2:

· · · vuvu︸ ︷︷ ︸
k factors

= D1−kSBk−1
1 M

We will now attempt to rewrite the expressions Xn := D1−nSAn+1M in
terms of powers of B1. We can then use the relation XN = 0 to deduce
a relation between compositions of the webs u and v. To this end we define
R2k−1 := (id2 − v)(id2 − u) · · · (id2 − v)︸ ︷︷ ︸

2k−1 factors

and Sx :=
∑x
k=1 R2k−1.

Lemma 2.44. For 2 ⩽ n ⩽ N we have:

Xn =
{
u−Rn−1u− uSn/2−1u even n

u− uS(n−1)/2u odd n

Proof. We will use the notation Yn for the entries on the right-hand side of the
equation in the statement of the lemma. The proof of Xn = Yn proceeds by induction
on n. For n = 2 we have X2 = vu = u− (id2 − v)u = Y2. Similarly, for n = 3, we have

X3 = D−2SA4M = D−2S(B2
1 −D2)M = uvu− u = u− u(1 − v)u = Y3

since u2 = 2u by the bigon relation. We prove the remaining cases recursively. For
this, note that the elements Xn = D1−nSAn+1M inherit a recurrence relation from
the elements An+1:

Xn = D1−nSAn+1M = D1−nSB1AnM −D1−nSAn−1D2M(16)
= D1−nSB1AnM −D3−nSAn−1M

=
{
vXn−1 −Xn−2 even n

uXn−1 −Xn−2 odd n
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Here we have used D1−nSB1 = vD2−nS for even n and D1−nSB1 = uD2−nS for odd
n. Now it remains to check that the Yn also satisfy this recurrence (16). Indeed, for
odd N > 4 we can verify:

Yn − uYn−1 + Yn−2 = (u− uS(n−1)/2u) − u(u−Rn−2u− uS(n−3)/2u)
+ (u− uS(n−3)/2u)

= u(−S(n−1)/2 +Rn−2 + S(n−3)/2)u = 0

Here we have used that Sx − Sx−1 = R2x−1. In order to check the recurrence for Yn
in the case of even n we need an auxiliary computation. For odd x ⩾ 1 we have

Sx = (id2 − v) + (id2 − v)(id2 − u)Sx−1

= (id2 − v) + (id2 − v)Sx−1 − uSx−1 + vuSx−1

= 2id2 − v + (id2 − u)Sx−2 − uSx−1 + vuSx−1

which implies:

vuSn/2−1u = −2u+ vu+ Sn/2u− (id2 − u)Sn/2−2u+ uSn/2−1u

= −2u+ vu+Rn−1u+Rn−3u+ uSn/2−2u+ uSn/2−1u

Here we have used (id2 − v)Sx = id2 + (id2 − u)Sx−1. Now we check the recurrence
for even n > 3:

Yn − vYn−1 + Yn−2 = (u−Rn−1u− uSn/2−1u) − v(u− uSn/2−1u)
+ (u−Rn−3u− uSn/2−2u)

= 2u− vu−Rn−1u−Rn−3u− uSn/2−2u− uSn/2−1u

+ vuSn/2−1u

= 0

This completes the proof of the Lemma. □

Proof of Lemma 2.26. We only prove T2s = T2, which is equivalent to NT2u = 0 by
expanding the crossing and multiplying by N . Using (15) we compute:

NT2u =
N−1∑
k=0

((id2 − v)(id2 − u))ku = u−
N−1∑
k=1

((id2 − v)(id2 − u))k−1(id2 − v)u

= u−
N−1∑
k=1

R2k−1u

Now note that id2 = (sD)−N (Ds)N = ((id2 − v)(id2 − u))N implies that

(17) R2k−1 = ((id2 − u)R2N−2k−1(id2 − u))−1 = (id2 − u)R2N−2k−1(id2 − u).

Now we distinguish two cases. For even N we expand:

NT2u = u−
N/2∑
k=1

R2k−1u−
N−1∑

k=N/2+1

R2k−1u

= u−
N/2∑
k=1

R2k−1u− (id2 − u)
N/2−1∑
l=1

R2l−1(id2 − u)u

= u−
N/2∑
k=1

R2k−1u+ (id2 − u)
N/2−1∑
l=1

R2l−1u = u−RN−1u− uSN/2−1u = XN
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Here we have used (17) for the second equality and Lemma 2.44 for the last equality.
For odd N we expand analogously:

NT2u = u−
(N−1)/2∑
k=1

R2k−1u−
N−1∑

k=(N+1)/2+1

R2k−1u

= u−
(N−1)/2∑
k=1

R2k−1u+ (id2 − u)
(N−1)/2∑
l=1

R2k−1u = u− uS(N−1)/2u = XN

We conclude the proof by noting that XN = D1−NSAN+1M = 0 in NAWebess since
AN+1 = 0. □

Remark 2.45. The expression XN in the rewritten form in Lemma 2.44 expresses
the longest Kazhdan–Lusztig basis element Hsts... = Htst... in the type I2(N) Hecke
algebra in terms of products of Hs := u and Ht := v, see [11, Section 2.3]. In
particular, the relation XN = 0 suggests that NAWebess(2) is related to a quotient
of the Hecke algebra by the 2-cell containing the basis element associated to the
longest word.

3. Categorification of power-sum symmetric polynomials
Before turning to the topological applications of our work, we will in this section focus
on identifying more precisely the structures that are categorified by the categories
defined before. The main result of this section consists in a categorification of Newton’s
identities for power-sum and elementary symmetric polynomials (see Theorem 3.5).

Let X = {X1, . . . , XN} be an alphabet of N variables and denote by Sym(X) :=
C[X1, . . . , XN ]SN the ring of symmetric polynomials in X. Recall that Sym(X) ∼=
C[e1(X), . . . , eN (X)], where ej(X) denotes the jth elementary symmetric polynomial
in X. We use the notation hj(X) for the jth complete symmetric polynomial.

Definition 3.1. The split Grothendieck group of an additive category C is the abelian
group K0(C) defined as the quotient of the free abelian group spanned by the isomor-
phism classes [X] of objects X of C, modulo the ideal generated by relations of the
form [A⊕B] = [A] + [B] for objects A, B of C.

If C is monoidal, then K0(C) inherits a unital ring structure with multiplication
[A] · [B] := [A⊗B].

The following lemma is classical.

Lemma 3.2. There is an isomorphism

K0(Rep+(glN )) ⊗ C ∼= K0(Kar(Rep+(glN ))) ⊗ C ∼= Sym(X) ∼= C[e1(X), . . . , eN (X)]

sending the classes of the fundamental representations [
∧k

V ] to the elementary sym-
metric polynomials ek(X). The class of the simple representation indexed by the parti-
tion λ is then given by the Schur polynomial πλ(X). If one includes duals, one obtains

K0(Rep(glN )) ⊗ C ∼= K0(Kar(Rep(glN ))) ⊗ C ∼= C[X±1]SN

∼= C[e1(X), . . . , eN−1(X), e±1
N (X)].

For example, the classes of the symmetric and anti-symmetric power representa-
tions are related as follows.

(18) hm+1(X) =
m+1∑
i=1

(−1)ihm+1−i(X)ei(X)
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This can also be seen in the Grothendieck group of NWeb, at the cost of passing to
the Karoubi envelope. For this, we recall the symmetric clasps [19], which are higher-
rank analogs of Jones–Wenzl projectors, and their anti-symmetric counterparts.

Definition 3.3. The symmetric and anti-symmetric clasps Hm ∈ NWeb and Vm ∈
NWeb are defined by H1 = V1 = id1 and then:

Hm+1

m + 1

:= Hm

m

− m

m+ 1 Hm

Hm

m

,
Vm+1

m + 1

:= 1
(m+ 1)!

m + 1

Note that the clasps are related by:

Hm+1

m + 1

= Hm

m

− 2m
m+ 1 Hm

V2

Hm

m

,
Vm+1

m + 1

= Vm

m

− 2m
m+ 1 Vm

H2

Vm

m

It is well-known that ϕ sends Hm and Vm to the projections onto simple repre-
sentations in V ⊗m given by the m-fold symmetric and anti-symmetric powers of the
vector representation respectively. These formulas indeed match Young symmetrizers.
The formula for Hm is the q = 1 specialization of the Jones-Wenzl recursion, see [33].
Matching the definition of Vm to the projection onto the m-fold exterior power di-
rectly follows from Equations 6 and 7. We will also use the symbols Hm and Vm to
refer to the objects of the Karoubi envelope Kar(NWeb) that correspond to these
idempotents.

Theorem 3.4. In Kar(NWeb) there is an isomorphism
⌊ k−1

2 ⌋⊕
i=0

(k, Vk−1−2i ⊗H2i+1) ≃
⌊ k

2 ⌋⊕
i=0

(k, Vk−2i ⊗H2i)

which categorifies (18). Here Hm and Vm refer to the objects of the Karoubi envelope
corresponding to the clasps from Definition 3.3.

The proof of this is similar to but easier than the proof of Theorem 3.5 below, and
thus omitted.

3.1. Categorified Newton’s identities. We now explicitly show that the projec-
tors Tm categorify the power-sum symmetric polynomials pm(X) = Xm

1 + · · ·+Xm
N in

the same sense as the clasps Hm categorify the complete symmetric polynomials. To
this end, we prove that the projectors Tm satisfy categorified versions of the classical
Newton identities:

pk(X) = (−1)k−1kek(X) −
k−1∑
j=1

(−1)k−jek−j(X)pj(X) for 1 ⩽ k(19)

Theorem 3.5. In Kar(NAWebess)∗, there is an isomorphism
⌊ k−1

2 ⌋⊕
i=0

(k, Vk−1−2i ⊗ T2i+1) ≃
⊕
k

(k, Vk) ⊕
⌊ k

2 ⌋⊕
i=1

(k, Vk−2i ⊗ T2i)

whose nonzero components are described in the proof; they connect the i-indexed sum-
mand on the left to the i- and (i + 1)-indexed terms on the right, where we declare
⊕k(k, Vk) to be indexed by 0. Here Vm and Tm refer to the objects of the Karoubi enve-
lope corresponding to the anti-symmetric clasps from Definition 3.3 and the extremal
weight projectors from Section 2.8, respectively.
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Proof. The desired isomorphism takes the shape of a “zig-zag”, i.e. each direct sum-
mand maps non-trivially to at most two direct summands (including ⊕k(k, Vk)) on
the other side. A typical segment of the zig-zag looks as follows:

(
k,

· · ·

· · ·
k-l

· · ·

· · ·
l

)
(
k,

· · ·
k-l-1
· · ·

· · ·
l + 1
· · ·

)

(
k,

· · ·
k-l+1

· · ·

· · ·
l-1
· · ·

)

· · ·

· · ·

(k-l)
· · ·
k-l
· · ·

k-l-1
· · ·

· · ·
l

· · ·

· · ·
l+1

· · ·
k-l-1
· · ·

k-l
· · ·

· · ·
l+1
· · ·

l

· · ·

· · ·
k-l
· · ·
k-l+1
· · ·

· · ·
l

· · ·
l-1
· · ·

(k-l+1)
· · ·

k-l+1
· · ·
k-l
· · ·

· · ·
l-1
· · ·

· · ·
l

Above, gray-colored boxes stand for the anti-symmetric clasps Vm, as pictured in
Definition 3.3, while the other rectangles are our extremal weight projectors Tm. These
formulas are only valid when l ⩾ 2, and we will deal with the l = 1 term at the end.

We check that the composite of the maps to the right with the maps to the left
induce the identity on the components of the left. For this, we compute

(k − l + 1)
l

k-l+1
l

= −(k − l − 1) lk-l + (k − l)
lk-l

lk-l

(k − l)
k-l

l+1
k-l

= (k − l) lk-l − (k − l)
lk-l

lk-l

by expanding the middle projectors on the left-hand side using the recursions in (14)
and Definition 3.3. Adding both equations, we obtain the desired equality:

(k − l + 1)
l

k-l+1
l

+ (k − l)
k-l

l+1
k-l

= lk-l

We also check that all other components of this endomorphism of the left-hand side
are zero:

(k − l)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

k-l

k-l-1

l

l+1

l+2

= 0 = (k − l + 1)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

k-l

k-l+1

k-l+2

l

l-1

l-2

These expressions are zero because the middle projectors can be absorbed into the
top and bottom projectors respectively. The results have anti-symmetric clasps and
extremal weight projectors that share two strands, which forces them to equal zero.

To finish the proof, we need to look at the top and bottom ends of the zig-zag.
The top end, which contains (k, Tk) is treated precisely as in the generic case. The
bottom end is more interesting, as it involves k copies of the object (k, Vk).
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(
k,

· · ·

· · ·
k-1

)
(
k,

· · ·

· · ·
k-2

· · ·

· · ·
2

)

⊕
k

(
k,

· · ·
k

· · ·
)

· · ·

(k-1)
· · ·
k-1

· · ·
2

· · ·

k-1
· · ·

2

In order to obtain the desired isomorphism, one needs to express the following term
as a sum of k orthogonal projections onto k copies of the exterior power:

· · ·

· · ·
k-1 − (k − 1)

· · ·
k-1

· · ·

· · ·

2

k-1

To this end, we introduce the following diagram as corresponding to taking the
polynomial Pi (i = 0 . . . N − 1) in the wrap (i.e. Pi(D) from Definition 2.20), thus
projecting onto the i-th eigenspace of the wrap:

i

and more generally in the case of k parallel strands, for a tuple I = (i1, . . . , ik) we
use the diagrams

I := i1 ik

which correspond to the projectors Pi1 ⊗· · ·⊗Pik . In the following we consider subsets
A ⊂ {0, . . . , N−1} as tuples of distinct elements, with the usual ordering. We write sA
for the tuple obtained from this by acting with a permutation s. The corresponding
projectors satisfy:

k

k

I = 0 if il = im for l ̸= m

Now one can write:

(20) k-1 =
k-1

k-1 =
∑

A⊂{0,...,N−1}
|A|=k,
s∈Sk

k-1

k-1

sA +
∑

B⊂{0,...,N−1}
|B|=k−1,x∈B

s∈Sk−1

k-1

k-1

sB x

Here we have expanded the identity web between the two anti-symmetric clasps
into a sum of projectors, noting that the clasps will kill k-tuples that have two equal
elements in the first k − 1 entries. The two summands correspond to the two alter-
natives of having a last entry x that is distinct from the first k − 1 ones, or a repeat.
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Now, we make use of the following equality:

2

2

a b =
2

2

b a = (−1)2

2

2

b a

to rewrite the two summands in (20). The first sum is partitioned into k terms, the
j-th of which contains those projectors sA that project to the j-th largest element
of A on the right-most strand. For a fixed A and j, there are (k − 1)! permutations
s such that sA is of this type, each of which produces an identical summand by the
previous equation.

In the second summand, we similarly reorder the x in sB to the right-most strand,
which collects together k − 1 identical terms.

k-1 =


k∑
j=1

∑
A⊂{0,...,N−1}

|A|=k,
x j-th largest entry of A

(k − 1)!
k-1

k-1

A ∖ x x

 + (k − 1)


∑

x∈{0,...,N−1}
C⊂{0,...,N−1}

|C|=k−2
s∈Sk−2

k-1

k-1

sC, x x



(21)

The remaining summation in the second term is over (k − 2)-element subsets C and
their permutations. Faithfulness of ϕ implies that the anti-symmetric clasps absorb
this sum of projectors and so we get:

(k−1)


∑

x∈{0,...,N−1}
C⊂{0,...,N−1}

|C|=k−2
s∈Sk−2

k-1

k-1

sC, x x


= (k−1)

 ∑
x∈{0,...,N−1} k-1

k-1

x x

 = (k−1)
k-1

2
k-1

The k terms in the first summand in (21) are clearly orthogonal to each other and
to the second summand, from which it follows that they are idempotents. It remains
to argue that they are isomorphic to anti-symmetric clasps in the Karoubi envelope.
To this end, we fix a j and argue that

∑
A⊂{0,...,N−1}

|A|=k,
x j-th largest entry of A

(k − 1)!
k

k-1

A ∖ x x and
∑

A⊂{0,...,N−1}
|A|=k,

x j-th largest entry of A

k!
k-1

k

A ∖ x x
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give the desired inverse isomorphisms. So we simplify both composites:

∑
A,B⊂{0,...,N−1}

|A|=|B|=k,
x j-th largest entry of A
y j-th largest entry of B

k!(k − 1)!

k

k-1

A ∖ x x

B ∖ y y

k

=
∑

A⊂{0,...,N−1}
|A|=k,

x j-th largest entry of A

k!
k

k

A ∖ x x

=
∑

A⊂{0,...,N−1}
|A|=k

k!
k

k

A = k

Summands in the composite of the left-hand side are zero unless x = y and A∖ x =
B ∖ y and the anti-symmetric clasp is absorbed at the cost of dividing by (k − 1)!.
The second equality is just a reordering, while the third uses that the anti-symmetric
projectors absorb the sum of all A-projectors at the cost of dividing by k!. For the
other composite we get:

∑
A,B⊂{0,...,N−1}

|A|=|B|=k,
x j-th largest entry of A
y j-th largest entry of B

k!(k − 1)!

k-1

k

B ∖ y y

A ∖ x x

k-1

=
∑

A⊂{0,...,N−1}
|A|=k,

x j-th largest entry of A

(k − 1)!
k-1

k-1

A ∖ x x

Here we have used the same absorption property as in the first step in the computation
of the other composite. □

Remark 3.6. In the case k = N we can give an alternative characterization of the
more mysterious part of the isomorphism in Theorem 3.5, which involves the N -fold
direct sum of objects (N,VN ). Indeed, after (21) and the following displayed equation,
the goal was to decompose

N-1 − (N − 1)
N-1

2
N-1

=
∑

A={0,...,N−1}
s∈SN

N-1

N-1

sA

into a sum of N orthogonal idempotents, which are individually isomorphic to
(N,VN ). It is easy to check that the above is equal to

N∑
x=1

(idN−1 ⊗D−x)VN (idN−1 ⊗Dx),

which is manifestly a sum of idempotents, which are orthogonal since VN (idN−1 ⊗
Dk−l)VN = δk,lVN .

Question 3.7. Can the extremal weight projectors and symmetric clasps be used to
give categorifications of the following identities?

(22) khk(X) =
k∑
j=1

hk−j(X)pj(X) for 1 ⩽ k ⩽ N

An isomorphism categorifying this identity for k = 2 is easy to construct. For k ⩾ 3
such an isomorphism cannot be of zig-zag shape as for (19).
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3.2. Categorification of the symmetric polynomial ring. An easy conse-
quence of Corollary 2.39 is the following.

Lemma 3.8. There is an algebra isomorphism

K0(Kar(NAWebess,+)∗) ⊗ C ∼= K0(Rep+(h)) ⊗ C ∼= C[X]

sending the class of the object (1, Pi) to [C⟨vi⟩] and further to Xi.

We have seen that the extremal weight projectors in NAWebess,+ categorify the
power sum symmetric polynomials. However, by Lemma 3.8 the Grothendieck group
of the Karoubi envelope of NAWebess,+ is larger than the symmetric polynomial
ring Sym(X) ∼= K0(Kar(NWeb+)) ∼= K0(Rep+(glN )). To see this, recall that the
objects in Rep+(h) are direct sums of non-negative integral glN weight spaces. How-
ever, in the Grothendieck group, the classes of such direct sums can be written as
linear combinations of classes of glN -representations (if and) only if the correspond-
ing polynomials are invariant under the Weyl group SN . In this section, we identify
a sub-category of NAWebess,+ that is SN -equivariant, that contains the extremal
weight projectors and has Sym(X) as Grothendieck group.

To this end, note that SN acts by (outer) automorphisms on h and thus by linear
automorphisms on every object of Rep(h), which permute weight spaces. With respect
to these actions we make the following definition.

Definition 3.9. We let Rep(h)SN denote the subcategory of Rep(h) with objects that
are stable under SN and morphisms that are SN -equivariant.

Lemma 3.10. The category Rep(h)SN is semi-simple and the homomorphism

Sym(X) ∼= K0(Rep+(glN )) ⊗ C → K0(Rep(h)SN ) ⊗ C

induced by the inclusion is an isomorphism.

Proof. The indecomposable objects in Rep(h)SN are of the form C⟨vs(ϵ1),...,s(ϵn)|s ∈
SN ⟩. In other words, the span of the extremal weight vectors in the SN -orbit of
a (highest weight) vector v0,...,0,1,...,1,...,N−1 with multiplicities ni of the weights i
determined by a partition λ : n0 ⩾ n1 ⩾ · · · ⩾ nN−1 of n. There are no morphisms
between distinct indecomposables and their endomorphism algebras are 1-dimensional
over C. This shows that Rep(h)SN is semi-simple. The isomorphism follows since
the classes of these indecomposables can be expressed as linear combinations of the
classes of tensor products of fundamental representations in the same way as monomial
symmetric polynomials can be expressed as polynomials in elementary symmetric
polynomials. □

We aim to describe the subcategory Rep(h)SN of Rep(h) by a subcategory of
NAWebess,+.

Definition 3.11. Let NAWeb+,ess
s denote the symmetric monoidal C-linear subcat-

egory of NAWebess,+ with the same objects, but with morphisms spaces generated
(under tensor product and composition) by morphisms in NWeb+ and the extremal
weight projectors Tm for m ⩾ 1.

Note that the restriction of ϕ to the subcategory NAWeb+,ess
s has image contained

in Rep(h)SN .

Proposition 3.12. The functor ϕ : NAWeb+,ess
s → Rep(h)SN is fully faithful

and induces an equivalence of C-linear monoidal categories Kar(NAWeb+,ess
s ) ≃

Rep(h)SN .
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Proof. Faithfulness is inherited from Theorem 2.35. We shall prove fullness by showing
that the image of ϕ contains the projections onto the simple objects in Rep(h)SN

as identified in the proof of Lemma 3.10. Indeed, if λ : n0 ⩾ n1 ⩾ · · · ⩾ nN−1 is a
partition of n, then we will construct an idempotent morphism in NAWeb+,ess

s that
projects onto the span of the SN -orbit of the vector v0,...,0,1,...,1,...,N−1 with weights
i appearing with multiplicities ni.

To this end, we first define an auxiliary projector On in NAWeb+,ess
s for the case

where ni ∈ {0, 1} for 1 ⩽ i ⩽ N . We set O1 = id1 and O2 = id2 − T2. For n ⩾ 2 we
inductively define:

On+1 := s1(id1 ⊗On)s1(id1 ⊗On)(On ⊗ id1)

It is easy to check that the image of On under ϕ is the desired projection, and so the
On are the desired diagrammatic idempotents by faithfulness of ϕ. It is also clear that
the On are contained in NAWeb+,ess

s .
Now let λ : n0 ⩾ n1 ⩾ · · · ⩾ nk be a partition of n with k non-zero parts ni. Then

consider the projector built as the composite of Tn1 ⊗· · ·⊗Tnk
, the permutation given

by the product of the transpositions (ni, n−i) for 1 ⩽ i ⩽ k, the projector idn−k⊗Ok,
the inverse permutation, and again Tn1 ⊗ · · · ⊗ Tnk

.
The image of this element under ϕ is the idempotent projecting onto the span of

the SN -orbit of the vector v0,...,0,1,...,1,...,N−1 with weights i of multiplicities ni, and
by faithfulness of ϕ it is itself an idempotent in NAWeb+,ess

s . □

Corollary 3.13. There is an algebra isomorphism

K0(Kar(NAWeb+,ess
s ) ⊗ C ∼= Sym(X)

sending the the class of the object (m,Tm) to the m-th power-sum symmetric polyno-
mial.

Remark 3.14. The isomorphisms of Theorem 3.5, which categorify the Newton iden-
tities, holds in NAWeb+,ess

s , although the direct sum decomposition
⊕

k(k, Vk) on
the right-hand side is not SN -equivariant.

4. Special properties of the gl2 case
We now review some of the special properties of the extremal weight projectors in
the N = 2 case. This special case is of course very close to the sl2 one that was
studied in [28], but the subtle difference between sl2 and gl2 is needed in topological
applications. The idea of using the present construction to categorify the Frohman-
Gelca formula for the skein algebra of the torus [12] motivates two major aspects
of this section. Lemma 4.4 in particular describes some of the starting cases of the
inductive proof in [12], and Lemma 4.15 is key in our next paper [29] to check that
the categorical construction does decategorify to the skein module.

In this context, we encode 2-labeled edges in webs as double edges and henceforth
omit the labels. For convenience, we list the gl2 web relations for generic q separately.

= (q + q−1)∅ = , = ∅ =(23)

= (q + q−1) , = =(24)

= , = , = , =(25)
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In fact, gl2 webs satisfy generalizations of the 1-labeled circle relation in (23) that
we now describe.

Lemma 4.1 (The delooping lemma). Let W be a gl2-web (in a disc or some other
surface) and denote by c(W ) the unoriented multi-curve (i.e. a possibly non-connected
curve) obtained by erasing all 2-labeled edges. Suppose that c(W ) contains a circle c
which bounds a disc D in the complement of c(W ). Then W = (q + q−1)V , where V
is a web that agrees with W outside a neighborhood of the disc D and with underlying
curve c(V ) obtained by removing the circle in question from c(W ).

Proof. We only consider W in a neighborhood of the disc D bounded by c. We will
find a sequence of web relations which reduce the interaction of 2-labeled edges with
c until c can be removed via a the first relation in (23). There are three types of
interaction of c with 2-labeled edges to consider in sequence (see Figure 1):

(1) Any 2-labeled circle contained in D (see, for example, the first picture in
Figure 1) can be removed using one of the relations in (23), starting with an
innermost one.

(2) Suppose there exists a 2-labeled edge in the interior of D with boundary on
c. We take an innermost such edge, i.e. one which encloses a region in the disc
with no other 2-labeled edges in the interior (see, for example, the 2-labeled
edge at the bottom left of the second picture in Figure 1). Such an intersection
edge can be removed via the bigon relations in (24), provided there are no
2-labeled edges hitting the boundary of D from the outside in the relevant
region. Otherwise, jump to (3) to remove external edges first. Note that they
always come in pairs for orientation reasons.

(3) There is a pair of 2-labeled edges, hitting c from outside D, which are ad-
jacent in the sense that an arc along c connects them without hitting other
2-labeled edges. Then one application of the saddle relations in (25) creates a
2-labeled edge connecting two points on c from the outside (see the right side
of Figure 1), which can be removed as in (2).

This algorithm relates W to a web that contains c as an oriented 1-labeled circle that
can be removed via (23). □

, , →

Figure 1. Types of interaction of 2-labeled edges with a 1-labeled
circle bounding a disc: internal circles, internal and external edges.

In the following, we again work in the q = 1 specialization.

Lemma 4.2. The morphism spaces in 2AWebess,+ are spanned by outward pointing
webs, except for the endomorphism space of the empty object, which is isomorphic to
C[c±1

2 ].

Proof. This follows from Corollaries 2.16 and 2.17. □
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4.1. Decomposing the tensor product of extremal weight projectors.
We have seen that the tensor product of extremal weight projectors Tm ⊗ Tn decom-
poses as a sum of orthogonal idempotents, one of which is Tm+n. For gl2 we will
explicitly describe the difference Tm ⊗ Tn − Tm+n in terms of the projector T|m−n|.
The situation here is very similar to the sl2-case investigated in [28].

Let pTr1 denote the linear maps on the morphism spaces of 2AWeb+ that acts on
a web W by first tensoring with id1 and then pre- and post-composing the result with
splitter and merge webs (the k = l = 1 specialization of the webs from Equations (7)
and (6)) between the new strand and the two rightmost 1-labeled bottom and top
boundary strands if they exist—otherwise we declare the result to be zero. We use
the shorthand pTrn := (pTr1)n. The following is an example of pTr2 applied to a web
W :

∗

∗

W

We can decompose pTrn(W ) = Mn(W ⊗ idn)Sn where Sn is a splitter web and Mn

is a merge web:

(26) Sn =
∗

∗

and Mn =
∗

∗

Above, the dots on the left in Sn mean that the first strands in Sn are just parallel
copies of strands (1 or 2 labeled depending on the labeling of W ). On the right there
are n 2-labeled strands emerging from the source side. The leftmost splits first, with
one newly created 1-labeled strand being braided to the right, crossing other 2-labeled
strands. This process is iterated on all of the remaining 2-labeled strands on the right.
The picture to have in mind is that if one erases the 2-labeled strands, one sees n
nested cups on the right of the picture. Mn is obtained by the reverse process.

Recall that λ denotes the endofunctor of 2AWebess given on morphisms by ten-
soring with a 2-labeled strand on the right as shown in the following:

∗

∗

λ−→
∗

∗

Lemma 4.3. The extremal weight projectors in 2AWebess satisfy pTrn(Tm) =
λn(Tm−n) for 1 ⩽ n < m and also for n = m if we set T0 = 2.
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Proof. The cases m = 1 and m = 2 are easily checked, so we assume m ⩾ 3. Then we
proceed by induction on n. For n = 1 we start by expanding

pTr1(Tm) = pTr1((Tm−1 ⊗ id1)sm−1(Tm−1 ⊗ id1)) = λ(Tm−1)pTr1(sm−1)λ(Tm−1)

The result follows from the Reidemeister 1 type move pTr1(sm−1) = λ(idm−1) and
idempotency of Tm−1. The induction step n → n + 1 is analogous, except that it
additionally involves Reidemeister 2 moves between 1- and 2-labeled strands. □

Lemma 4.4. For m,n ⩾ 1 we have an orthogonal decomposition of idempotents Tm ⊗
Tn = Tm+n + em,n in 2AWebess where e1,1 = u1/2 +D−1u1D/2 and em,n = (Tm ⊗
Tn)um(Tm ⊗ Tn) otherwise.

Proof. For m = n = 1 this follows from the explicit description of T2. Otherwise we
use Lemma 2.30:

Tm+n = (Tm ⊗ Tn)sm(Tm ⊗ Tn) = (Tm ⊗ Tn) − (Tm ⊗ Tn)um(Tm ⊗ Tn).

Since em,n contains um, it is orthogonal to Tm+n. This implies that em,n is an idem-
potent as well. □

Lemma 4.5. For 1 ⩽ n,m and n + m ⩾ 3, the idempotent em,n can alternatively be
written as

em,n = (Tm ⊗ Tn)(Tm−r ⊗ (SrMr) ⊗ Tn−r)(Tm ⊗ Tn)
where 1 ⩽ r ⩽ min(m,n) and Mr and Sr are the merge and splitter webs introduced
in Equation (26).

Proof. By using forkslides we can write SrMr = βu1 · · ·urβ−1 where β is the permu-
tation (1, 2r, 2, 2r−1, . . . , r, r+1). After replacing ui by id−si, we see that SrMr can
be expressed as a signed sum of 2r permutations, with precisely 2r−1 terms carrying
minus signs. The identity appears only once with positive sign, and all other permu-
tations γ satisfy γ ∈ S2r∖(Sr×Sr) and thus (Tm⊗Tn)(Tm−r⊗γ⊗Tn−r)(Tm⊗Tn) =
Tm+n by Lemma 2.30 and crossing absorption. This implies:

(Tm ⊗ Tn)(Tm−r ⊗ (SrMr) ⊗ Tn−r)(Tm ⊗ Tn)
= (Tm ⊗ Tn) + (2r−1 − 1)Tm+n − 2r−1Tm+n = em,n. □

Lemma 4.6. For 1 ⩽ n ⩽ m we have (idm−n⊗Mn)(Tm⊗Tn)(idm−n⊗Sn) = λn(Tm−n)
in 2AWebess.

Proof. This follows from Lemma 4.3 once we have proved that Mn(Tn ⊗ Tn) =
Mn(Tn ⊗ idn). The case n = 1 is trivial, whereas for n = 2 we have M2(T2 ⊗ T2) −
M2(T2 ⊗ id2) = M2(T2 ⊗ e1,1) and it is not hard to check that the latter is zero. For
the induction step we compute

Mn(Tn ⊗ Tn) = Mn(idn−2 ⊗ T2 ⊗ T2 ⊗ idn−2)(Tn−1 ⊗ id2 ⊗ Tn−1)
= Mn(idn−2 ⊗ T2 ⊗ idn)(Tn−1 ⊗ id2 ⊗ Tn−1)
= Mn(Tn−1 ⊗ id2 ⊗ Tn−1)(idn−2 ⊗ T2 ⊗ idn)
= Mn(Tn−1 ⊗ idn+1)(idn−2 ⊗ T2 ⊗ idn) = Mn(Tn ⊗ idn)

In the first and last line, we use (3) in Theorem 2.28. For the second and last line we
use the case n = 2 and the induction hypothesis for n− 1. The third line arises from
projector commutation. □

Proposition 4.7. For 1 ⩽ n < m the idempotents em,n, en,m and λn(Tm−n) represent
isomorphic objects in Kar(2AWebess).
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Proof. We use Lemma 4.5 to write em,n = (Tm ⊗Tn)(Tm−n ⊗Sn)(Tm−n ⊗Mn)(Tm ⊗
Tn). Then it is immediate from Lemma 4.6 that the maps (Tm ⊗ Tn)(Tm−n ⊗ Sn)
and (Tm−n ⊗ Mn)(Tm ⊗ Tn) are inverse isomorphisms between the elements of the
Karoubi element represented by the idempotents em,n and λn(Tm−n). The proof for
en,m is similar. □

Proposition 4.8. The idempotent em,m is isomorphic to λm(∅) ⊕ wλm(∅) in
Kar(2AWebess,+).

Proof. For m = 1 we have e1,1 = u1/2 +D−1u1D/2. The two summands are orthog-
onal idempotents. The first is isomorphic to λ(∅) in Kar(2AWebess,+), while the
conjugation by D in the second summand makes it isomorphic to wλ(∅) . For m > 1
we rewrite

em,m = (Tm ⊗ Tm)(id1 ⊗ (Sm−1Mm−1) ⊗ id1)(Tm ⊗ Tm)
= (Tm ⊗ Tm)SmMm(Tm ⊗ Tm)/2
+ (Tm ⊗ Tm)D−1u2m−1D(id1 ⊗ (Sm−1Mm−1) ⊗ id1)(Tm ⊗ Tm)/2
= (Tm ⊗ Tm)Sm︸ ︷︷ ︸

ϕ1

◦Mm(Tm ⊗ Tm)/2︸ ︷︷ ︸
ψ1

+ (Tm ⊗ Tm)D−1(Sm−1 ⊗ S1)︸ ︷︷ ︸
ϕ2

◦ (Mm−1 ⊗M1)D(Tm ⊗ Tm)/2︸ ︷︷ ︸
ψ2

The equality in the second line can be verified by inserting D−1(Sm−1Mm−1⊗T2)D
between two factors of Tm ⊗ Tm and realizing that the result is zero. To prove the
proposition it remains to verify that ψiϕj = δi,jλ

m(∅). We give one example for
orthogonality:

ψ1ϕ2 = Mm(Tm ⊗ Tm)D−1(Sm−1 ⊗ S1)/2
= Mm(Tm ⊗ idm)D−1(Sm−1 ⊗ S1)/2 = λm−1(∅) ⊗ (M1D

−1S1) = 0

Here we have used the proof of Lemma 4.6, an isotopy and the essential torus relation.
The proof of ψ2ϕ1 = 0 is analogous. ψ1ϕ1 = λm(∅) follows from Lemma 4.3. It
remains to check

ψ2ϕ2 = (Mm−1 ⊗M1)D(Tm ⊗ Tm)D−1(Sm−1 ⊗ S1)/2 = λm(∅).

For m = 2 this follows by expanding the left copy of T2 and seeing that all terms
except the identity term die. The result is evaluated using Lemma 4.3. For m ⩾ 3,
we use the recursion on the left copy of Tm, absorb the resulting copies of Tm−1 as
the proof of Lemma 4.6 and then simplify via Lemma 4.3. The result is a equal to
λm−2(∅) superimposed with the m = 2 case, which we have already checked. □

4.2. Skeleta. Recall that we put basepoints on the boundary components of the
annulus and fix a connecting arc α between them, which cuts the annulus into a
square – this is drawn as a dashed line above.

Lemma 4.9. The endomorphism algebra of Tm in Kar(2AWebess)∗ is isomorphic to
C[D±1] if m ⩾ 1 and isomorphic to C[c±1

2 ] if m = 0. In Kar(2AWebess) both are
given by C.

Proof. Any endomorphism of Tm is represented by a linear combination of outward
pointing webs with m 1-labeled input and output strands. Such webs factor into
dumbbells ui and wraps D±1. Since Tm kills all ui, the endomorphism algebra is
generated by the isomorphisms D±1. Since all web relations in 2AWebess preserve
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the flow winding number of the web around the annulus, it is clear that the elements
Dm for m ∈ Z are linearly independent. □

Lemma 4.10. The endomorphism algebra of λk(Tm) in Kar(2AWebess)∗ is isomorphic
to C[λk(D±1)] if m ⩾ 1 and isomorphic to C[D±1

2 ] if m = 0. In Kar(2AWebess) both
types of endomorphism algebras are isomorphic to C. Furthermore, in both versions
of the Karoubi envelope, there are no non-zero morphisms between λk(Tm) and λl(Tn)
(or their w-shifts) unless m = n and k = l.

Proof. The first part is an immediate corollary of Lemma 4.9, due to the fact that λ is
an auto-equivalence, which guarantees that it induces isomorphisms on endomorphism
algebras. For the second part, it is clear that we need m+ 2k = n+ 2l to have both
objects in the same block. Now suppose, without loss of generality, that k < l. Then
an application of the essential inverse (λ∗)k provides an isomorphism between the
morphism space in question and Hom(Tm, λl−k(Tn)). However, any web representing
a morphism in that space necessarily contains a merge vertex, which is killed by Tm.
Thus Hom(Tm, λl−k(Tn)) = 0. □

Lemma 4.11. For m ⩾ 1 and any a, b and k, we have

Kar(2AWebess)(waλk(Tm), wbλk(Tm)) ∼= C⟨λk(Db−a)⟩.

On the other hand:

Kar(2AWebess)(waλk(∅), wbλk(∅)) ∼=


C⟨D(b−a)/2

2 ⟩ if a− b is even and k ⩾ 1
C⟨c(b−a)/2

2 ⟩ if a− b is even and k = 0
0 if a− b is odd

Clearly, all such non-zero morphisms are isomorphisms.

In particular, this implies, that all objects of the form waλk(Tm) are actually
isomorphic to unshifted objects λk(Tm) if m ⩾ 1. The objects waλk(∅), on the other
hand, are isomorphic to their versions with a = 1 or a = 0.

Lemma 4.12. Any object in Kar(2AWebess,+) is isomorphic to a direct sum of objects
λk(Tm) for m > 1, k ⩾ 0 or λk(∅) or wλk(∅) for k ⩾ 0.

Proof. It suffices to decompose the objects in 2AWebess,+ into a formal direct sum
of objects of the above type. Moreover, since 2-labeled objects are isomorphic to
idempotents on 1-labeled objects in the Karoubi envelope, we only need to decompose
idm. Then any idempotent endomorphism of idm will give rise to an idempotent
endomorphism of the decomposition, which is necessarily block-diagonal (there are
no morphisms between distinct objects of the form λk(Tm−2k) or wλm/2(∅)) and has
entries in C. Such idempotent matrices can be diagonalized, and thus decompose into
objects of type λk(Tm−2k) or wλm/2(∅).

The decomposition for idm follows inductively from the parallel product formulas
in Propositions 4.7 and 4.8. More precisely, if we already know that idm is isomorphic
to a direct sum of terms λki(Tm−2ki

) and possibly wλm/2(∅) if m is even, then idm+1
can be decomposed into summands

λki(Tm−2ki) ⊗ id1 ∼= λki(Tm−2ki ⊗ T1)

∼=

{
λki(Tm−2ki+1) ⊕ λki+1(Tm−2ki−1) m− 2ki > 1
λki(T2) ⊕ λki+1(∅) ⊕ wλki+1(∅) m− 2ki = 1

as well as λm/2(∅) ⊗ id1 ∼= wλm/2(∅) ⊗ id1 ∼= λm/2(T1). □
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Since orientation of the boundary can be reversed by means of the auto-equivalences
λ and λ∗, one easily extends the previous result to the whole category:

Corollary 4.13. Any object in Kar(2AWebess) is isomorphic to a direct sum of
objects λk(Tm) for m > 1, k ∈ Z or λk(∅) or wλk(∅) for k ∈ Z. Here we identify
λ−1 = λ∗.

Definition 4.14. A subcategory D of a category C is a skeleton of C if the inclusion
of D into C is an equivalence of categories and additionally no two distinct objects of
D are isomorphic.

Lemma 4.15. The full subcategory of Kar(2AWebess) containing (lexicographically
ordered direct sums of) the objects λk(Tm) and sλk(∅) for k,m ⩾ 0 is a skeleton of
Kar(2AWebess,+). Moreover, this skeleton is semisimple.

Proof. The inclusion of this full subcategory is essentially surjective by Lemma 4.12.
Moreover, by Lemma 4.10, the decomposition of an object of Kar(2AWebess,+) into
a lexicographically ordered direct sum of such simples is essentially unique. In par-
ticular, there are also no isomorphisms between distinct direct sums of simples. We
have also seen that the endomorphism algebras of simples are isomorphic to C, which
implies that the skeleton is semisimple. □
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