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Hook-shape immanant characters from
Stanley–Stembridge characters

Nathan R. T. Lesnevich

Abstract We consider the Schur-positivity of monomial immanants of Jacobi–Trudi matri-
ces, in particular whether a non-negative coefficient of the trivial Schur function implies non-
negative coefficients for other Schur functions in said immanants. We prove that this true for
hook-shape Schur functions using combinatorial methods in a representation theory setting.
Our main theorem proves that hook-shape immanant characters can be written as finite non-
negative integer sums of Stanley–Stembridge characters, and provides an explicit combinatorial
formula for these sums. This resolves a special case of a longstanding conjecture of Stanley and
Stembridge that posits such a sum exists for all immanant characters. We also provide several
simplifications for computing immanant characters, and several corollaries applying the main
result to cases where the coefficient of the trivial Schur function in monomial immanants of
Jacobi–Trudi matrices is known to be non-negative.

1. Introduction
A fundamental class of objects in the theory and construction of symmetric functions
is Jacobi–Trudi matrices. They are indexed by skew shapes, which are ordered pairs
of partitions where the Young diagram of the second is contained in that of the first.
Jacobi–Trudi matrices are of particular interest as their determinants are skew-Schur
functions. In the case where the skew shape is simply a partition, the determinant is
the Schur function indexed by that partition. Schur functions are essential in combi-
natorics and the representation theory of symmetric groups.

Less studied is the theory of immanants. A virtual character of the symmetric group
is a function from the symmetric group to the integers that is constant on conjugacy
classes. In particular, characters of representations are virtual characters. The sign
character of Sn is w 7→ sgn(w), and appears in the definition of a determinant of an
n× n matrix M = [mij ],

det(M) =
∑

w∈Sn

sgn(w)m1,w(1), . . . ,mn,w(n).

Immanants are analogues of determinants in which the sign character is replaced with
a virtual character of the symmetric group. When the chosen virtual character is the
character of an irreducible representation, the corresponding immanant is called ordi-
nary. This paper is motivated by the study of immanants that use virtual characters
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corresponding to monomial symmetric functions under the Frobenius characteristic
map, called monomial immanants.

Combinatorialists have studied immanants of Jacobi–Trudi matrices, in particular
which immanants can be expanded non-negatively in the monomial or Schur bases
of symmetric functions, as the skew-Schur functions can for determinants. For any
symmetric function this property is referred to as being monomial-positive or Schur-
positive, respectively.

It was originally conjectured by Goulden and Jackson [5] and proven by Greene
[6] that ordinary immanants of Jacobi–Trudi matrices are monomial-positive. It was
conjectured by Stembridge [16] and proven by Haiman [8] that ordinary immanants
of Jacobi–Trudi matrices are Schur-positive.

We are here concerned with the following related conjecture of Stembridge.

Conjecture 1.1. [16, Conj. 4.1] Monomial immanants of Jacobi–Trudi matrices are
Schur-positive.

In [16, §4], Stembridge defined a virtual character Γθ
µ/ν , where θ ⊢ N is a partition

and µ/ν is a skew shape with such that N = |µ/ν|. The character Γθ
µ/ν is defined in

detail in Section 2 below. We call Γθ
µ/ν the immanant character, so named as it yields

an equivalent formulation of Conjecture 1.1.

Conjecture 1.2. [16, Conj. 4.1′] Γθ
µ/ν is the character of a permutation representa-

tion of Sn whose transitive components are each isomorphic to the action of Sn on
cosets of a Young subgroup.

Conjectures 1.1 and 1.3 are also stated in [15] using the language of symmetric
functions.

Perhaps better known (and more often studied, as in [12, 4, 7, 11, 9, 2, 1], and
many others) is the Stanley–Stembridge conjecture [16, 15], which is Conjecture 1.2
in the particular case that θ = (N) (the original Stanley–Stembridge conjecture is a
more general statement, but was reduced to this form in [7]). Because of this, we call
Γ(N)

µ/ν the Stanley–Stembridge character.
The following conjecture of Stanley and Stembridge reduces Conjecture 1.2 to the

Stanley–Stembridge conjecture.

Conjecture 1.3. [15, Conj. 5.1] Every immanant character Γθ
µ/ν is a non-negative

integral sum of Stanley–Stembridge characters.

Conjectures 1.1 and 1.3 are proven assuming the skew shape µ/ν contains no 2 × 2
box in its Young diagram [15, §2]. This paper proves the case of Conjecture 1.3 when
θ is a hook-shape partition (N − k, 1, . . . , 1) and µ/ν is arbitrary. Our main theorem
is the following.

Theorem 1.4. Let θ be a hook-shape partition and µ/ν a skew shape. Then the im-
manant character Γθ

µ/ν is a non-negative integer sum of Stanley–Stembridge charac-
ters.

Theorem 1.4 is Corollary 4.3 below, which gives an explicit combinatorial construc-
tion of the Stanley–Stembridge character summands.

We apply Theorem A to prove new cases of Conjecture 1.2.

Corollary 1.5. Let θ be a hook partition and µ/ν a skew shape such that µ/ν either:
• is pre-abelian, or
• contains no 3 × 3 box.

Then Conjecture 1.2 holds for Γθ
µ/ν .
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Corollary 1.5 is a combination of Corollary 4.8 and Corollary 4.10.
We now give a brief overview of the contents of this paper. Section 2 gives neces-

sary constructions and definitions for our proofs. Subsection 2.3 in particular contains
background material on the connection to Hessenberg functions that is necessary to
understand the proof of our main theorem. Section 3 contains computational reduc-
tions whose proofs are relegated to Appendix A. These reduce Conjectures 1.1 and
1.3 to a smaller class of skew shapes. Section 4 contains the proof of Theorem 1.4, in-
cluding an explicit decomposition of Γθ

µ/ν into Stanley–Stembridge characters when θ
is a hook partition. This section also contains several corollaries of interest, including
the results of Corollary 1.5.

2. Characters, immanants, and Hessenberg functions
A partition λ of length ℓ =: ℓ(λ) of a positive integer n is a weakly decreasing sequence
(λ1, . . . , λℓ) of positive integers such that

∑ℓ
i=1 λi = n. If λ is a partition of n we write

λ ⊢ n. The Young diagram of λ is a collection of upper-left justified boxes containing λi

boxes in row i. A standard Young tableau is a filling of a Young diagram with distinct
integers from [n] that increases along rows and down columns. A semi-standard Young
tableau is a filling of those boxes with positive integers weakly increasing along rows
and strictly increasing down columns. The content of a semi-standard Young tableau
is the list c = (c1, . . .) such that the ci is the number of times i appears in the tableau.

Given a partition λ ⊢ n and any sequence of non-negative integers c that sum
to n, the Kostka number Kλ,c is the number of semi-standard Young tableaux with
shape λ and content c. The value Kλ,c is unaffected by re-ordering the entries of c or
removing zeros. For example, if c = (4, 2, 3, 1) and c′ = (1, 2, 3, 4) then Kλ,c = Kλ,c′

for all λ ⊢ 10.

Example 2.1. Let θ = (6, 1, 1) and c = (2, 2, 3, 1). Then Kθ,c = 3 and the semistan-
dard Young tableaux of shape θ and content c are

1 1 2 3 3 4
2
3

1 1 2 3 3 3
2
4

1 1 2 2 3 3
3
4

.

Note that Kθ,c =
(3

2
)

in this case.

The following lemma shows that Kostka numbers associated to hook partitions are
particularly nice.

Lemma 2.2. Let θ = (N − k, 1, . . . , 1) be a partition of N and c a content with r
nonzero entries. Then Kθ,c =

(
r−1

k

)
.

Proof. We may assume that c1, . . . , cr are the nonzero entries of c. Consider the
(

r−1
k

)
size-k subsets of {2, . . . , r}. Note that the top-left box in any semi-standard tableaux
of shape θ and content c must be 1. Given a semistandard tableau of shape θ and
content c, the set of entries in rows 2 through k+ 1 determine a unique size-k subset
of {2, . . . , r}. This correspondence defines a bijection. □

Given two partitions µ and ν such that ℓ(µ) ⩾ ℓ(ν) and µi ⩾ νi for all i, then we
say ν < µ and the pair of partitions is called a skew shape, denoted µ/ν. The Young
diagram of µ/ν is the diagram of µ with the boxes of ν removed. If µ/ν is a skew
shape, its length ℓ(µ/ν) is the largest index i such that νi ⪇ µi. If µ ⊢ Nµ and ν ⊢ Nν

then the size of µ/ν is |µ/ν| := Nµ −Nν . Standard and semistandard tableaux of skew
shapes are defined with the same conditions on rows and columns as for partitions.
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2.1. Characters and symmetric functions. Let Sn be the symmetric group on
n letters, and C(w) the conjugacy class and Z(w) the centralizer of w in Sn. When
the particular symmetric group is not clear from context, we will write Cn(w) and
Zn(w) to denote the conjugacy class and centralizer of w in Sn. A virtual character
of Sn is a function from Sn to Z that is constant on conjugacy classes. As conjugacy
classes are in bijection with partitions, virtual characters are also functions from the
set {λ ⊢ n} of partitions of n to Z. We will denote the conjugacy class of Sn associated
to λ ⊢ n by C(λ). A virtual character is a character if it arises as the character of a
representation of Sn.

Example 2.3. The length ℓ(w) of a permutation w ∈ Sn is the number of inversions
of w. The sign character of Sn is defined by sgn(w) = (−1)ℓ(w). A slightly more
complicated example is the character that counts the number of fixed points of each
permutation: w 7→ |{i ∈ [n] | w(i) = i}|. Both are virtual characters, and also happen
to be characters of the sign and natural representations of Sn respectively.

Symmetric functions (with coefficients in Z) are formal power series in Z[x1, . . .]
invariant under any permutation of the variables. The symmetric functions form a
graded ring over Z denoted by Λ with several important bases. Each of these bases
is indexed by partitions of positive integers. The bases used herein are the monomial,
homogeneous, and Schur symmetric functions, denoted by {mλ}, {hλ}, and {sλ},
respectively. We also make use of the power-sum symmetric functions {pλ}, which
form a basis of Q ⊗ Λ. For more information on the enumerative combinatorics of
symmetric function bases see [13, 14].

There is a natural inner product on the space of virtual characters. If χ and ψ are
virtual characters of Sn, the character inner product is the bilinear map on the space
of virtual characters given by

⟨χ, ψ⟩ = 1
n!
∑

w∈Sn

χ(w)ψ(w).

Much like Λ, the space of all virtual characters of symmetric groups can also be given
a graded ring structure. The induction product of virtual characters ϕ of Sk and ψ of
Sℓ is

ϕ ◦ ψ := (ϕ× ψ)
xSk+ℓ

Sk×Sℓ
,

which is itself a character of Sk+ℓ [10].
There is also an inner product on the ring of symmetric functions. Let ⟨·, ·⟩ : Λ → Q

be defined so that the Schur symmetric functions basis is orthonormal. With this inner
product the monomial and homogeneous functions form dual bases, so

⟨mλ, hµ⟩ =
{

1 if λ = µ

0 otherwise
.

There is an isometric isomorphism between the ring of symmetric functions and
the ring of virtual characters of all symmetric groups via the Frobenius characteristic
map Frob, which produces a symmetric function from a virtual character χ on Sn

defined by:

Frob(χ) :=
∑
µ⊢n

z−1
µ χ(µ)pµ, where zµ = n!

|C(µ)| .

The Frobenius characteristic map sends the characters of irreducible representations
to the Schur symmetric function basis and the characters of representations defined
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by the action of the symmetric group on cosets of Young subgroups to the homoge-
neous symmetric function basis. The monomial symmetric functions are mapped to
by virtual characters called monomial virtual characters. We fix the notation

Frob−1(sλ) =: χλ, Frob−1(hλ) =: ηλ, and Frob−1(mλ) =: ϕλ.

Since the {χλ} are characters of irreducible representations, we will call them ir-
reducible characters. Since the {ηλ} correspond to induced characters of the trivial
character on Young subgroups, we will call them induced trivial characters. As such,
if χ is a virtual character of Sn, the following are equivalent:

(1) χ is the character of a permutation representation of Sn whose transitive
components are each isomorphic to the action of Sn on cosets of a Young
subgroup,

(2) Frob(χ) =
∑
λ⊢n

cλhλ where every cλ is a non-negative integer (i.e. Frob(χ) is

h-positive), and
(3) χ =

∑
λ⊢n

cλη
λ where every cλ is a non-negative integer.

Recall that {hλ} and {mλ} are dual bases in symmetric functions, so {ηλ} and {ϕλ}
are dual bases in the space of virtual characters of Sn.

For more information on the correspondence between symmetric functions, char-
acters, and representations see [10], and for a very thorough treatment of symmetric
functions see [13].

2.2. Immanants and the immanant character. An immanant is a generalization
of the determinant where the sign character is replaced with any virtual character.

Definition 2.4. Let M = [mij ]1⩽i,j⩽n be an n×n matrix with entries from an algebra
over C, and χ : Sn → Z a virtual character. The immanant of M with respect to χ is

χ[M ] :=
∑

w∈Sn

χ(w)m1,w(1) · · ·mn,w(n).

When χ = χλ is the character of an irreducible representation χλ[M ] is referred to
as an ordinary immanant, and when χ = ϕλ is a monomial virtual character ϕλ[M ]
is called a monomial immanant.

We consider matrices of symmetric functions, particularly Jacobi–Trudi matrices.

Definition 2.5. Let µ/ν be a skew shape of length n. The Jacobi–Trudi matrix Hµ/ν

associated to µ/ν is the n × n matrix whose (i, j)-th entry is the homogeneous sym-
metric function hµi−νj+i−j,

Hµ/ν := [hµi−νj+i−j ]1⩽i,j⩽n.

We set h0 = 1, and if µi − νj + i− j < 0 then we set hµi−νj+i−j = 0.

Example 2.6. The following are some (virtual) characters of S3 and the Jacobi–
Trudi matrix associated to skew shape (2, 2, 2)/(1). Note that ϕ(2,1) is the monomial
character corresponding to m(2,1).

Char (1, 1, 1) (2, 1) (3)
sgn 1 −1 1
χ(2,1) 2 0 −1
ϕ(2,1) 0 2 −3

H(2,2,2)/(1) =

h1 h3 h4
1 h2 h3
0 h1 h2
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Computing the associated immanants, we obtain

sgn
[
H222/1

]
= s(2,2,2)/(1) = s(2,2,1)

χ(2,1) [H(2,2,2)/(1)
]

= 2h(2,2,1) − h(4,1)

= 2s(2,2,1) + 2s(3,1,1) + 4s(3,2) + 3s(4,1) + s(5)

ϕ(2,1) [H(2,2,2)/(1)
]

= 2(h(3,2) + h(3,1,1)) − 3h(4,1)

= 2s(3,1,1) + 4s(3,2) + 3s(4,1) + s(5).

The determinants of Hµ/ν are well studied, as by the Jacobi–Trudi identity
det(Hµ/ν) = sµ/ν is a skew-Schur function. In particular if ν = ∅ then det(Hµ/ν) = sµ

is a Schur function. Skew-Schur functions are known to be Schur positive, a fact that
follows from the Littlewood-Richardson rule [13]. Recall that Haiman proved

Theorem 2.7. [8] Ordinary immanants of Jacobi–Trudi matrices are Schur-positive.

Conjecture 1.1 considers whether monomial immanants of Jacobi–Trudi matrices
are Schur positive, as is the case with the determinant and other ordinary immanants.

To study Conjecture 1.1, we introduce a character originally defined by Stembridge
[16].

Definition 2.8. Let θ ⊢ N , and µ/ν a skew shape with |µ/ν| = N . Let n be at least
the length of µ/ν, and w ∈ Sn. Let δ := (n−1, . . . , 1, 0), and let w ∈ Sn act on integer
sequences by shuffling, so that w(a1, . . . , an) = (aw−1(1), . . . , aw−1(n)). The immanant
character Γθ

µ/ν is the function

(1) Γθ
µ/ν(w) = n!

|C(w)|
∑

w′∈C(w)

Kθ,µ+δ−w′(ν+δ)

We will denote µ+ δ − w′(ν + δ) as ŵ′ when µ, ν, and δ are clear.

The following is stated in [16] and we include the proof here for the reader’s con-
venience.

Lemma 2.9. [16] Let ϕ be any virtual character. Then the inner product ⟨Γθ
µ/ν , ϕ⟩ is

the coefficient of sθ in the Schur expansion of the immanant ϕ[Hµ/ν ].

Proof. First, the coefficient of sθ in the Schur expansion of hλ is the Kostka number
Kθ,λ. Let ϕ be a virtual character. The character inner product of Γθ

µ/ν with ϕ is

〈
Γθ

µ/ν , ϕ
〉

= 1
n!
∑

w∈Sn

Γθ
µ/ν(w)ϕ(w)

= 1
n!
∑

w∈Sn

 n!
|C(w)|

∑
w′∈C(w)

K
θ,ŵ′

ϕ(w)

=
∑

w∈Sn

K
θ,ŵ
ϕ(w).
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On the other hand, the immanant of Hµ/ν with respect to ϕ is

ϕ[Hµ/ν ] =
∑

w∈Sn

ϕ(w)
n∏

i=1
hµi−νw(i)+w(i)−i

=
∑

w∈Sn

ϕ(w)h
ŵ

=
∑

w∈Sn

ϕ(w)
∑
θ⊢N

K
θ,ŵ
sθ

=
∑
θ⊢N

( ∑
w∈Sn

ϕ(w)K
θ,ŵ

)
sθ.

This concludes the proof. □

Recall that ηλ and ϕλ are dual bases, so ⟨Γθ
µ/ν , ϕ

λ⟩ is the coefficient of ηλ in Γθ
µ/ν .

Thus Lemma 2.9 is the connection between Conjectures 1.1 and 1.2 above.
Theorem 2.7 states that ordinary immanants of Jacobi–Trudi matrices are Schur-

positive, so ⟨Γθ
µ/ν , χ

λ⟩ is a non-negative integer for all partitions λ. The irreducible
characters form an orthonormal basis of the space of characters of Sn, so Γθ

µ/ν is an
integer sum of irreducible characters, and in particular, Γθ

µ/ν is indeed a character.

2.3. Hessenberg functions. If θ = (N), then all of the Kostka numbers in equation
(1) are either 0 or 1 depending on whether or not µ+ δ − w(ν + δ) has any negative
entries. Thus the character Γ(N)

µ/ν depends only on the pattern of zeros in the Jacobi–
Trudi matrix Hµ/ν .

The pattern of nonzero entries in a Jacobi–Trudi matrix corresponds to a combi-
natorial object called a Hessenberg function.

Definition 2.10. A Hessenberg function is a weakly increasing function h : [n] →
[n] such that h(i) ⩾ i for all i ∈ [n]. Each such function is denoted by a vector,
(h(1), h(2), . . . , h(n)).

The Hessenberg function h determined by the pattern of zeros in Hµ/ν is given by

h(j) = max{i ∈ [n] | µi − νj + j − i ⩾ 0}.

Recall that the i-th row and j-th column of Hµ/ν is hµi−νj+j−i. Thus in regards to
the matrix Hµ/ν , h(j) is the row index of the last nonzero entry in the j-th column
of Hµ/ν .

Example 2.11. If n = 5, µ = (3, 2, 2, 1, 1) and ν = ∅, then

Hµ/ν =


h3 h4 h5 h7 h8
h1 h2 h3 h4 h5
1 h1 h2 h3 h4
0 0 1 h1 h3
0 0 0 1 h1

 .
There are three nonzero entries in the first two columns, four in the third column,
and five in the fourth and fifth columns. So the associated Hessenberg function is
h = (3, 3, 4, 5, 5).

Lemma 2.12. Let µ/ν be a skew shape. Then ŵ−1 has no negative entries if and only
if w(i) ⩽ h(i) for all i ∈ [n].
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Proof. Fix i ∈ [n]. Then(
ŵ−1

)
w(i)

= (µ+ δ − w−1(ν + δ))w(i) = µw(i) − νi + i− w(i).

By definition h(i) = max{j ∈ [n] | µj − νi + i − j ⩾ 0}. So if w(i) > h(i) then
(µ+δ−w−1(ν+δ))w(i) < 0. Similarly, if w(i) ⩽ h(i) then (µ+δ−w−1(ν+δ))w(i) ⩾ 0.

Since {w(i) | i ∈ [n]} = [n], this concludes the proof. □

In the case of Example 2.11, the set of w ∈ Sn such that ŵ−1 has no negative
entries is {w ∈ S5 | w(1), w(2) ⩽ 3 and w(3) ⩽ 4}. Given a Hessenberg function h,
the indicator function ĥ : Sn → {0, 1} will denote whether or not µ+ δ − w−1(ν + δ)
has negative entries. By Lemma 2.12,

ĥ(w) :=
{

1 if w(i) ⩽ h(i) for all i ∈ [n]
0 otherwise.

Example 2.13. Let h = (3, 3, 4, 4). The following diagrams depict each permutation
matrix imposed over a diagrams with box (i, j) shaded whenever i ⩽ h(j).

1234 3142 3412
1

1
1

1

1
1

1
1

1
1

1
1

According to the pictures, we get ĥ(1234) = 1, ĥ(3142) = 1, and ĥ(3412) = 0.

Lemma 2.14 below allows us to compute Γ(N)
µ/ν using only the data of the Hessenberg

function corresponding to µ/ν.

Lemma 2.14. Let µ/ν be a skew shape with corresponding Hessenberg function h. Then

Γ(N)
µ/ν(w) = n!

|C(w)|
∑

w′∈C(w)

ĥ(w′)

Proof. The Kostka number K(N),ŵ
is 1 whenever ŵ has only non-negative entries and

0 otherwise. By Lemma 2.12 this occurs precisely when w−1(i) ⩽ h(i) for all i ∈ [n].
Since C(w) is closed under inverses, we may ignore the nuance of distinguishing w
and w−1 in the sum for Γh. □

By Lemma 2.14, if µ/ν is a skew shape with corresponding Hessenberg function h,
we let Γ(N)

µ/ν = Γh, where

Γh := n!
|C(w)|

∑
w′∈C(w)

ĥ(w′).

The following example demonstrates how to compute a particular Γh.

Example 2.15. Let h = (3, 3, 4, 4). The following table lists each conjugacy class
by the associated partition λ, the permutations w in that conjugacy class such that
ĥ(w) = 1, and the value that Γh takes on that conjugacy class.
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λ ĥ(w) = 1 Γh

(1, 1, 1, 1) 1234 4!
1 · 1

(2, 1, 1) 2134 4!
6 · 4

1324
1243
3214

(2, 2) 2143 4!
3 · 1

(3, 1) 2314 4!
8 · 3

1342
3124

(4) 2341 4!
6 · 3

3142
3241

For example, the cycle type of the permutation 4231 is (2, 1, 1), so Γh(4231) = 4!
6 ·4 =

16.

3. Computational simplifications
In this section, we give several simplifications for computing Γθ

µ/ν . The methods of
proof are technical representation-theoretic computations and are not used in the
other sections of our paper. As such, the proofs are delayed to Appendix A.

Let µ = (5, 4, 2, 2, 1) and ν = (3, 2, 2), and µ̂ = (5, 4, 2, 1) and ν̂ = (3, 2). The
associated diagrams are as follows.

Note that the skew shape skew shape µ̂/ν̂ is simply the skew shape µ/ν with the
empty third row removed.

Proposition 3.1 below asserts that the immanant characters Γθ
µ/ν and Γθ

µ̂/ν̂
are

equal. In particular, it tells us that to compute Γθ
µ/ν it suffices consider skew shapes

without empty (zero) rows in the middle.

Proposition 3.1. Suppose µ/ν is a skew shape such that µi = νi for some i ∈ [n],
where n ⩾ ℓ(µ/ν). Let µ̂ and ν̂ denote, respectively, the partitions µ and ν with their
i-th components removed. Then Γθ

µ/ν(w) = Γθ

µ̂/ν̂
(w) for all w ∈ Sn and θ ⊢ N .

Appending empty rows to a skew shape µ/ν allows one to consider Γθ
µ/ν as a char-

acter of a symmetric group on more letters than µ/ν has nonzero rows. Proposition
3.2 below confirms that this process does not meaningfully alter the character.

Proposition 3.2. Let µ/ν be a skew shape of length at most n−1. If Γθ
µ/ν =

∑
i Γ(N)

µi/νi

as characters in Sn−1, then Γθ
µ/ν =

∑
i Γ(N)

µi/νi
in Sn. In particular, if Conjecture 1.3

is true for characters Γθ
µ/ν of Sℓ(µ/ν) then it is true in general.

By Proposition 3.2, we may always assume that Γθ
µ/ν is a character of Sn where n

is the number of nonempty rows in the skew diagram.
Consider the skew shapes µ0/ν0 = (5, 4, 2, 1)/(3, 2) and µ1/ν1 = (5, 4, 3, 2)/(3, 3, 1).

The respective diagrams are as follows.
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From these diagrams, we see that we may swapped the order of the connected com-
ponents of µ0/ν0 to obtain µ1/ν1. Proposition 3.3 below asserts that the immanant
characters Γθ

µ0/ν0 and Γθ
µ1/ν1 are equal.

Proposition 3.3. Suppose µ0/ν0 and µ1/ν1 are skew shapes whose skew diagrams
have identical connected components. Then Γθ

µ0/ν0 = Γθ
µ1/ν1 .

Consider µ/ν = (5, 4, 2, 1)/(3, 2), whose diagram appears above. The connected
components of µ/ν are (3, 2)/(1) and (2, 1). The following proposition allows one to
compute the µ/ν Stanley–Stembridge character of S4 from the (3, 2)/(1) and (2, 1)
Stanley–Stembridge characters both of S2, and is due to Stanley and Stembridge.

Proposition 3.4. [15, §5] Let µ/ν be a disconnected skew shape with components
µ0/ν0 and µ1/ν1. Let Ni =

∣∣µi/νi
∣∣. Then

Γ(N)
µ/ν = Γ(N0)

µ0/ν0 ◦ Γ(N1)
µ1/ν1 .

Proposition 3.4 can be generalized to all immanant characters. For example Propo-
sition 3.5 below allows one to compute the immanant character Γθ

µ/ν of S4 using im-
manant characters of the skew shapes (3, 2)/(1) and (2, 1). In general, it allows one
to compute Γθ

µ/ν from the immanant characters of the connected components of µ/ν.

Proposition 3.5. Let µ/ν be a disconnected skew shape with components µ0/ν0 and
µ1/ν1. Let Ni =

∣∣µi/νi
∣∣. Then

Γθ
µ/ν =

∑
λ⊢N0
λ<θ

∑
σ⊢N1

cθ
λσΓλ

µ0/ν0 ◦ Γσ
µ1/ν1 ,

Where cθ
λσ is the Littlewood-Richardson coefficient.

We summarize the consequences of the above computational reductions to Conjec-
tures 1.1 and 1.3 in Corollary 3.6 below.

Corollary 3.6. If Conjectures 1.1 and 1.3 hold for skew shapes µ/ν and n such that
µ/ν is connected and n is the length of µ/ν, then they hold in full generality.

Proof. Assume the conjectures hold as in the claim. Proposition 3.2 ensures we may
take n to be the length of µ/ν. The immanant character for a disconnected skew shape
can be written as the non-negative integral sum of immanant characters of connected
components via Proposition 3.5. The induction product of induced trivial characters
is itself an induced trivial character, so Conjecture 1.1 follows from Proposition 3.5.
The induction product distributes over sums of characters, so Conjecture 1.3 follows
from Proposition 3.5 and Proposition 3.4. □

4. The hook partition case
We aim to prove Conjecture 1.3 when θ is a hook partition, which asserts that Γθ

µ/ν =∑
i∈I Γ(Ni)

µi/νi , where the sum is over some finite index set I. Considering the value at
w = id, if the conjecture holds then |I| = Kθ,µ−ν .

Lemma 4.1 below yields an avenue for a combinatorial proof for special cases of
Conjecture 1.3.

Lemma 4.1. Fix θ and µ/ν and set n = ℓ(µ/ν). If there exists a finite set of Hessenberg
functions {hi | i ∈ I} such that for all w ∈ Sn, ĥi(w) = 1 for precisely K

θ,ŵ
-many

i ∈ I, then Conjecture 1.3 holds for the character Γθ
µ/ν .

Algebraic Combinatorics, Vol. 7 #1 (2024) 146



Hook-shape immanant characters

Proof. Say that
Kθ,µ+δ−w′(ν+δ) =

∑
i∈I

ĥi(w′)

for all w′ ∈ Sn. Let λ ⊢ n. Then

n!
|C(λ)|

∑
w′∈C(λ)

(
Kθ,µ+δ−w′(ν+δ)

)
= n!

|C(λ)|
∑

w′∈C(λ)

(∑
i∈I

ĥi(w′)
)

=
∑
i∈I

 n!
|C(λ)|

∑
w′∈C(λ)

ĥi(w′)

 .

Since λ was arbitrary, Γθ
µ/ν =

∑
i∈I

Γhi . By Lemma 2.14 the claim follows. □

Recall from Lemma 2.2 that the Kostka numbers for hook partitions are particu-
larly nice, as if ℓ(c) is the number of nonzero entries in c, and θ is a hook partition of

length k + 1, then Kθ,c =
(
ℓ(c) − 1

k

)
.

The following allows us to apply Lemma 4.1 in the case where θ is a hook. This is
the key combinatorial result of this section.

Theorem 4.2. Let θ = (N − k, 1, . . . , 1) be a hook partition and µ/ν a skew shape
with no empty rows and with associated Hessenberg function h : [n] → [n]. Let θ ⊢ N
and |µ/ν| = N . Then

K
θ,ŵ

=
∑

J⊂[n−1]
|J|=k

ĥJ(w),

for all w ∈ Sn, where for each J ⊂ [n− 1], hJ is the Hessenberg function

hJ(i) =
{
h(i) − 1 if i ∈ J and µh(i) − νi + i− h(i) = 0
h(i) otherwise.

Proof of Theorem 4.2. First we verify that hJ is in fact a Hessenberg function. If
hJ(i) < i, then since h(i) − 1 ⩽ hJ(i) either h(i) < i or h(i) = i. If h(i) < i then we
reach contradiction as h is a Hessenberg function. If h(i) = i and hJ(i) < i then i ∈ J
and µh(i) − νi + i− h(i) = µi − νi + i− i = 0. This contradicts our assumption that
µ/ν had no nonzero rows. So we have that hJ(i) ⩾ i for all i ∈ [n].

Now we check that hJ is non-decreasing. Since h is non-decreasing, if hJ(i) >
hJ(i+ 1) then h(i) = h(i+ 1) and h(i+ 1) − 1 = hJ(i+ 1). We have however that

0 ⩽ µh(i) − νi + i− h(i)
⪇ µh(i) − νi+1 + (i+ 1) − h(i)
= µh(i+1) − νi+1 + (i+ 1) − h(i+ 1),

so µh(i+1) −νi+1 + (i+ 1) −h(i+ 1) ̸= 0, and thus hJ(i+ 1) = h(i+ 1) ⩾ h(i) ⩾ hJ(i).
Thus every hJ is a Hessenberg function.

Since hJ(i) ⩽ h(i) for all subsets J and for all i ∈ [n], ĥ(w) = 0 implies that
ĥJ(w) = 0 for all J . Thus it suffices to restrict our attention to those w such that
ĥ(w) = 1.

Recall ŵ denotes the sequence µ+ δ − w(ν + δ) of n integers. Let Zw = {i ∈ [n] |
ŵw(i) = 0}, and let zw = |Zw|. Note n /∈ Zw. The content ŵ has n− zw many nonzero
terms, and thus K

θ,ŵ
=
(

n−zw−1
k

)
by Lemma 2.2.
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Consider w ∈ Sn such that ĥ(w) = 1 and ĥJ(w) = 0. We will show that J ∩
Zw = {i ∈ [n − 1] | hJ(i) < w(i) = h(i)}. Say that i ∈ J ∩ Zw. Since i ∈ Zw,
µw(i) − νi + i− w(i) = 0, and so w(i) = h(i). Since i ∈ J and µh(i) − νi + i− h(i) =
µw(i) − νi + i − w(i) = 0, we see that hJ(i) = h(i) − 1 = w(i) − 1. So hJ(i) < w(i),
and so J ∩ Zw ⊆ {i ∈ [n− 1] | hJ(i) < w(i) = h(i)}.

Let i ∈ {i ∈ [n− 1] | hJ(i) < w(i) = h(i)}. Then hJ(i) < h(i). By the construction
of hJ , i ∈ J and µh(i) − νi + i− h(i) = 0. Since w(i) = h(i), µw(i) − νi + i−w(i) = 0
and so i ∈ Zw. Thus we have the other direction of containment and J ∩ Zw = {i ∈
[n− 1] | hJ(i) < w(i) = h(i)}.

We next claim that ĥJ(w) = 1 if and only if J ∩Zw = ∅. We use the presentation
J ∩ Zw = {i ∈ [n− 1] | hJ(i) < w(i) = h(i)}. If ĥJ(w) = 1 then there exist no i ∈ [n]
such that hJ(i) < w(i), and so J ∩ Zw = ∅. On the other hand, if ĥJ(w) = 0 then
there exists an i ∈ [n− 1] such that hJ(i) < w(i). Since w(i) ⩽ h(i), it must be that
w(i) = h(i). So i ∈ J ∩ Zw and J ∩ Zw ̸= ∅.

Now J ∩ Zw = ∅ exactly when J ⊂ ([n− 1] ∖ Zw). There are precisely(
|[n− 1] ∖ Zw|

|J |

)
=
(
n− zw − 1

k

)
= K

θ,ŵ

many such subsets J . This concludes the proof. □

We apply Theorem 4.2 to obtain an expansion for hook partition immanant char-
acters in terms of Stanley–Stembridge characters.

Corollary 4.3. Let θ = (N − k, 1, . . . , 1) be a hook partition and µ/ν a skew shape
with no empty rows and associated Hessenberg function h : [n] → [n]. Let θ ⊢ N =
|µ/ν|. Then

(2) Γθ
µ/ν =

∑
J⊂[n−1]

|J|=k

ΓhJ ,

where

hJ(i) =
{
h(i) − 1 if i ∈ J and µh(i) − νi + i− h(i) = 0
h(i) otherwise.

Furthermore, if we collect terms in (2) so that

Γθ
µ/ν =

∑
J

cJΓhJ

where each hJ is a unique Hessenberg function, then

cJ =
(
a

b

)
, where

a =
∣∣{i ∈ [n− 1] | µh(i) − νi + i− h(i) > 0}

∣∣
b = k −

∣∣{i ∈ [n− 1] | h(i) ̸= hJ(i)}
∣∣ .

Proof. Equation (2) follows directly from Lemma 4.1 and Theorem 4.2. By con-
struction cJ is the number of J ′ ⊂ [n] such that |J ′| = k and hJ = hJ′ . Those
J ′ must contain the i ∈ [n] such that i ∈ J and hJ(i) < h(i). The remaining
k −

∣∣{i ∈ [n− 1] | h(i) ̸= hJ(i)}
∣∣ elements of j ∈ J ′ can be any j such that hJ′(j) =

h(j), in particular any j ∈ [n− 1] such that µh(j) − νj + j − h(j) > 0. □

Given Lemma 2.9, Corollary 4.3 states that in the Schur expansion of the ψ-
immanant of a Jacobi–Trudi matrix for any virtual character ψ, the hook partition
Schur coefficients are non-negative sums of trivial Schur coefficients in the Schur ex-
pansions for ψ-immanants of some collection of Jacobi–Trudi matrices.
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Example 4.4. Let θ = (6, 1, 1) and µ/ν = (3, 3, 3, 1)/(1, 1) so h = (3, 3, 4, 4). The
subsets J ⊂ [3] and Hessenberg functions hJ from Theorem 4.2 are

J ⊂ {1, 2, 3} hJ

{1, 2} µh(1) − ν1 + 1 − h(1) = 0
µh(2) − ν2 + 2 − h(2) = 1 (2, 3, 4, 4)

{1, 3} µh(1) − ν1 + 1 − h(1) = 0
µh(3) − ν3 + 3 − h(3) = 0 (2, 3, 3, 4)

{2, 3} µh(2) − ν2 + 2 − h(2) = 1
µh(3) − ν3 + 3 − h(3) = 0 (3, 3, 3, 4)

and so
K(6,1,1),ŵ

= h{1,2}(w) + h{1,3}(w) + h{2,3}(w)
for all w ∈ Sn, and in particular

Γ(6,1,1)
(3,3,3,1)/(1,1) = Γ(2,3,4,4) + Γ(2,3,3,4) + Γ(3,3,3,4).

We may also visualize the Hessenberg function hJ for each subset J as follows. Look
at the corners of the Hessenberg function cut out in the Jacobi–Trudi matrix and
remove the corner if it contains a 1 and the column is indexed by an element of J .

{1, 2} {1, 3} {2, 3}
↓ ↓
h2 h3 h5 h6

h1 h2 h4 h5

1 h1 h3 h4

0 0 1 h1

2 3 4 4

↓ ↓
h2 h3 h5 h6

h1 h2 h4 h5

1 h1 h3 h4

0 0 1 h1

2 3 3 4

↓ ↓
h2 h3 h5 h6

h1 h2 h4 h5

1 h1 h3 h4

0 0 1 h1

3 3 3 4

The Hessenberg functions h{1,2} = (2, 3, 4, 4), h{1,3} = (2, 3, 3, 4), and h{2,3} =
(3, 3, 3, 4) are easily obtained from the above diagrams.

As an application of our result, we apply Theorem 4.2 where the Stanley–
Stembridge conjecture is already known in order to prove the hook partition version
of Conjecture 1.1 in those cases. A Hessenberg function is abelian if h(h(1) + 1)) = n
or if h(1) = n. In the abelian case, the Stanley–Stembridge conjecture is known.

Theorem 4.5. [9] If h is abelian, then Γh is the character of a permutation represen-
tation of Sn whose transitive components are each isomorphic to the action of Sn on
cosets of a Young subgroup.

Definition 4.6. Let µ/ν be a skew shape and Hµ/ν the associated Jacobi–Trudi ma-
trix. Let H ′

µ/ν be the matrix obtained from Hµ/ν by replacing all 1-s with 0-s. The
pattern of nonzero entries in H ′

µ/ν determines a Hessenberg function h′. We say the
skew shape µ/ν is pre-abelian if h′ is an abelian Hessenberg function.

Example 4.7. The skew shapes (3, 3, 3, 1)/(1, 1), (4, 3, 2, 1), and (2, 2, 1, 1)/(1, 1) for
example are not pre-abelian. If we were to replace “1”-s with “0”-s in the Jacobi–Trudi
matrices H(3,3,3,1)/(1,1), H(4,3,2,1), and H(2,2,1,1)/(1,1), the patterns of zeros correspond
to Hessenberg functions (2, 3, 3, 4), (2, 3, 3, 4), and (1, 2, 3, 4) respectively. None of
these are abelian Hessenberg functions.

On the other hand, the following skew shapes are pre-abelian, and appear with the
corresponding Jacobi–Trudi matrices.
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(4, 4, 4, 4)/(1) (6, 5, 4, 4)/(2, 1) (2, 2, 2, 2)

h3 h5 h6 h7

h2 h4 h5 h6

h1 h3 h4 h5

1 h2 h3 h4

h4 h6 h8 h9

h2 h4 h6 h7

1 h2 h4 h5

0 h1 h3 h4

h2 h3 h4 h5

h1 h2 h3 h4

1 h1 h2 h3

0 1 h1 h2

In essence, a skew shape is pre-abelian if the sum (2) in Theorem 4.2 yields only
abelian Hessenberg functions.

Corollary 4.8. If θ is a hook partition and µ/ν is pre-abelian, then Γθ
µ/ν is the

character of a permutation representation of Sn whose transitive components are each
isomorphic to the action of Sn on cosets of a Young subgroup. In other words, under
these assumptions Conjecture 1.2 holds.

Proof. If h is pre-abelian then hJ is abelian for all J ⊂ [n − 1]. So the Hessenberg
functions in the decomposition from Corollary 4.3 are all abelian. Apply Theorem
4.5. □

The following result is due to Dahlberg.

Theorem 4.9. [3, Thm. 5.4] If h is such that h(i) − i ⩽ 2, then Γh is the character of
a permutation representation of Sn whose transitive components are each isomorphic
to the action of Sn on cosets of a Young subgroup.

Note the Dahlberg result is actually stronger, as the paper proves the result for
a much larger collection of Hessenberg functions. The larger collection is not as con-
ducive to applying Corollary 4.3.

Corollary 4.10. Suppose θ is a hook partition. If µ/ν is a skew shape associated
to Hessenberg function h such that h(i) − i ⩽ 2 for all i ∈ [n], then Γθ

µ/ν is the
character of a permutation representation of Sn whose transitive components are each
isomorphic to the action of Sn on cosets of a Young subgroup. In other words, under
these assumptions Conjecture 1.2 holds.

Proof. Each hJ from the decomposition in Corollary 4.3 has the property that hJ(i) ⩽
h(i). Apply Theorem 4.9. □

There are several other classes of Hessenberg functions for which the Stanley–
Stembridge conjecture is known. Any time the summands from Corollary 4.3 are
known to fall exclusively within the known cases, we obtain a partial proof of Con-
jecture 1.1. In particular, whenever the Jacobi–Trudi matrix does not contain any 1-s
at all, the decomposition in Corollary 4.3 will simply be many copies of the origi-
nal Hessenberg function. This occurs for skew shape µ/ν with associated Hessenberg
function h when µh(i) − νi + i− h(i) > 0 for all i ∈ [n]. For any Hessenberg function
h, it is possible to construct a Jacobi–Trudi matrix whose pattern of nonzero entries
corresponds to h and that contains no entries that are 1. As such, for any particular
Hessenberg function h where the Stanley–Stembridge conjecture is known, there are
skew shapes µ/ν for which the decomposition in equation (2) contains

(
n−1

k

)
copies

of Γh.

Appendix A. Computational proofs
A reference for the representation-theoretic calculations below is [10]. A reference for
the combinatorial calculations for skew-Kostka numbers is [13, §7].
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Definition A.1. Let H be a subgroup of G. If χ is a character of H, then the induced
character of χ on G is

χ↑G
H (w) := 1

|H|
∑
x∈G

χ◦(xwx−1) where χ◦(v) =
{
χ(v) if v ∈ H

0 if v /∈ H.

for all w ∈ G.

The following lemma allows us to restrict the w ∈ Sn we must consider when
computing an immanant character whose skew shape is disconnected.

Lemma A.2. Let µ/ν be a skew shape and i ∈ [n] such that µi+1 ⩽ νi. If µ+δ−w(ν+δ)
has non-negative entries, then w ∈ S{1,...,i} × S{i+1,...,n}.

Proof. We proceed by contrapositive. A permutation w ∈ S{1,...,i} ×S{i+1,...,n} if and
only if w({1, . . . , i}) = {1, . . . , i}. As such, w /∈ S{1,...,i} × S{i+1,...,n} if and only if
there exists a j ∈ {1, . . . , i} such that w(j) > i. Then

(µ+ δ − w(ν + δ))w(j) = µw(j) + δw(j) − νj − δj

= (µw(j) − νj) + (j − w(j))
⩽ (µi+1 − νi) + (j − w(j))
⪇ 0.

This concludes the proof. □

Proposition A.3 (Proposition 3.1). Say µ/ν is a skew shape such that µi = νi for
some i ∈ [n]. Let µ̂ and ν̂ denote, respectively, the partitions µ and ν with their i-th
components removed. Then Γθ

µ/ν = Γθ

µ̂/ν̂
for all θ.

Proof. Fix w ∈ Sn. We will show that

(3)
∑

w′∈C(w)

Kθ,µ+δ−w′(ν+δ) =
∑

w′∈C(w)

K
θ,µ̂+δ−w′(ν̂+δ).

Let w′ ∈ Sn such that µ + δ − w′(ν + δ) has no negative entries. Since µi = νi, it
follows that µi ⩽ νi−1 and µi+1 ⩽ νi. By Lemma A.2, w′ ∈

(
S{1,...,i−1} × S{i,...,n}

)
∩(

S{1,...,i} × S{i+1,...,n}
)
. In particular, w′ ∈ S{1,...,i−1} × S{i+1,...,n}. It follows

Kµ+δ−w′(ν+δ) ̸= 0 only if w′ ∈ S{1,...,i−1} × S{i+1,...,n}.
Now let w′ ∈ Sn such that µ̂+δ−w′(ν̂+δ) has no negative entries. Since µ̂i ⩽ ν̂i−1

and 0 = µ̂n ⩽ ν̂n−1, by Lemma A.2, w′ ∈
(
S{1,...,i−1} × S{i,...,n}

)
∩ S{1,...,n−1}. In

particular, w′ ∈ S{1,...,i−1} × S{i,...,n−1}. It follows Kµ̂+δ−w′(ν̂+δ) ̸= 0 only if w′ ∈
S{1,...,i−1} × S{i,...,n−1}.

Consider the automorphism Sn → Sn given by v 7→ civc
−1
i where ci := (n, n −

1, . . . , i) in cycle notation. If v ∈ S{1,...,i−1} × S{i+1,...,n} and k ∈ [n], then

civc
−1
i (k) =


v(k) if k ∈ {1, . . . , i− 1}
v(k + 1) − 1 if k ∈ {i, . . . , n− 1}
n if k = n.

So v 7→ civc
−1
i is also a bijection from S{1,...,i−1} × S{i+1,...,n} → S{1,...,i−1} ×

S{i,...,n−1}, as well as a bijection C(w) → C(w). We prove equation (3) (and thus
the claim) by showing for all w′ ∈ Sn,

Kθ,µ+δ−w′(ν+δ) = K
θ,µ̂+δ−(ciw′c−1

i
)(ν̂+δ).

In particular, we will prove that whenever w′ ∈ S{1,...,i−1} × S{i+1,...,n}, it is possible
to re-order the entries of µ + δ − w′(ν + δ) to obtain µ̂ + δ − ciw

′c−1
i (ν̂ + δ). Since
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it suffices to show this for sequences with non-negative entries, we may assume w′ ∈
S{1,...,i−1} × S{i+1,...,n}.

Now µj = µ̂j and νj = ν̂j when j = 1, . . . , i− 1. Thus for all j ∈ {1, . . . , i− 1},

(µ+ δ)j − (ν + δ)(w′)−1(j) = (µ̂+ δ)j − (ν̂ + δ)(w′)−1(j)

= (µ̂+ δ)j − (ν̂ + δ)(ciw′c−1
i

)−1(j).

In other words, the first i− 1 entries of µ+ δ−w′(ν+ δ) and µ̂+ δ− (ciw
′c−1

i )(ν̂+ δ)
are identical.

Now w′(i) = i, so (µ + δ − w′(ν + δ))i = 0 and ciw
′c−1

i (n) = n so (µ̂ + δ −
(ciw

′c−1
i )(ν̂+ δ))n = 0 as well. Fix k ∈ {i, . . . , n− 1}. Note µ̂k = µk+1 and ν̂k = νk+1.

We show that the k-th element in µ̂ + δ − (ciw
′c−1

i )(ν̂ + δ) is equal to the k + 1-st
element in µ+ δ − w′(ν + δ).

(
µ̂+ δ − (ciw

′c−1
i )(ν̂ + δ)

)
k

= µ̂k + δk − (ν̂ + δ)(ciw′c−1
i

)−1(k)

= µ̂k + δk − ν̂(w′)−1(k+1)−1 − δ(w′)−1(k+1)−1

= µk+1 + δk+1 + 1 − ν(w′)−1(k+1) − δ(w′)−1(k+1) − 1
= (µ+ δ − w′(ν + δ))k+1 .

Thus we have a bijection between the entries of µ+δ−w′(ν+δ) and µ̂+δ−ciw
′c−1

i (ν̂+
δ), so Kθ,µ+δ−w′(ν+δ) = K

θ,µ̂+δ−(ciw′c−1
i

)(ν̂+δ). □

Proposition A.4 (Proposition 3.2). Let µ/ν be a skew shape of length at most n− 1.
If Γθ

µ/ν =
∑

i Γ(N)
µi/νi

as characters in Sn−1, then Γθ
µ/ν =

∑
i Γ(N)

µi/νi
as characters of Sn.

In particular, if Conjecture 1.3 is true for characters Γθ
µ/ν of Sℓ(µ/ν) then Conjecture

1.3 is true for Γθ
µ/ν characters of Sm where m ⩾ ℓ(µ/ν).

Proof. When viewed as a character of Sn, denote Γθ
µ/ν as Γn, and by Γn−1 when

viewed as a character of Sn−1. For k ∈ {n− 1, n}, let Ck(w) be the conjugacy classes
of w in Sk, let Zk(w) be the centralizer of w in Sk, and let δk = (k−1, . . . , 1, 0). We will
show that Γn = Γn−1↑Sn

Sn−1
. Let w ∈ Sn. If Cn(w)∩Sn−1 = ∅, then Γn−1↑Sn

Sn−1
(w) =

0 by definition. Since ℓ(µ/ν) ⩽ n − 1, we know that µn = νn ⩽ νn−1. So, if w′ ∈ Sn

is such that µ + δn − w′(ν + δn) has no negative entry, then w′(n) = n by Lemma
A.2. As Cn(w) consists of derangements, if w′ ∈ Cn(w) then µ+ δn −w′(ν + δn) has
a negative entry. So Γn(w) = 0 as well.

If Cn(w) ∩ Sn−1 ̸= ∅, there exists a v ∈ Sn−1 such that χ(w) = χ(v) for any
class function χ on Sn. Thus it suffices to prove that Γn(w) = (Γn−1)

xSn

Sn−1
(w) for

w ∈ Sn−1.
Conjugacy classes in symmetric groups are characterized by cycle types, so if v, w ∈

Sn−1, then v ∈ Cn−1(w) if and only if v ∈ Cn(w). In particular, if w ∈ Sn−1 then
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Sn−1 ∩ Cn(w) = Cn−1(w). Finally |Zn(w)| = n!
|Cn(w)| , so

(Γn−1)
xSn

Sn−1
(w) = 1

|Sn−1|
∑

x∈Sn

Γ◦
n−1(xwx−1)

= 1
(n− 1)! |Zn(w)|

∑
σ∈Cn−1(w)

Γn−1(σ)

= 1
(n− 1)! |Zn(w)| |Cn−1(w)| Γn−1(w)

= n! |Cn−1(w)|
(n− 1)! |Cn(w)|

 (n− 1)!
|Cn−1(w)|

∑
w′∈Cn−1(w)

Kθ,µ+δn−1−w′(ν+δn−1)


= n!

|Cn(w)|
∑

w′∈Cn−1(w)

Kθ,µ+δn−1−w′(ν+δn−1).

On the other hand, the first n − 1 elements of δn are exactly one greater than the
those in δn−1. More specifically, under point-wise addition of integer sequences (and
considering δn−1 as a sequence of length n by appending the integer 0), δn = δn−1 +
(1, 1, . . . , 1). In particular, noting w′((1, 1, . . . , 1)) = (1, 1, . . . , 1), up to appending a
0, δn−1 − w′(δn−1) = δn − w′(δn). So

Γn(w) = n!
|Cn(w)|

∑
w′∈Cn(w)

Kθ,µ+δn−w′(ν+δn)

= n!
|Cn(w)|

∑
w′∈Cn−1(w)

Kθ,µ+δn−1−w′(ν+δn−1).

Thus Γn(w) = (Γn−1)
xSn

Sn−1
(w) for all w ∈ Sn−1.

The proposition now follows by linearity of induced characters. The “particular"
part of our claim follows by induction on n. □

Proposition A.5 (Proposition 3.3). Let µ0/ν0 and µ1/ν1 be two skew shapes whose
Young diagrams have identical connected components. Let θ ⊢ N =

∣∣µ0/ν0
∣∣ =

∣∣µ1/ν1
∣∣.

Then Γθ
µ0/ν0 = Γθ

µ1/ν1 .

Proof. This will proceed similarly to the proof of Proposition 3.1 (Proposition A.2).
First, let n = ℓ(µ0/ν0) = ℓ(µ1/ν1), so Γθ

µ0/ν0 and Γθ
µ1/ν1 are characters of Sn.

A disconnected skew shape µ/ν is naturally associated to a Young subgroup S of
Sn, defined by the rule that the simple transposition (i, i+ 1) ∈ S if µi+1 ⪈ νi (i.e. if
the i-th and i+ 1-th rows of µ/ν are in the same connected component). By Lemma
A.2, Kθ,µ+δ−w′(ν+δ) = 0 whenever w′ /∈ S. Let S0 and S1 be the Young subgroups
corresponding to µ0/ν0 and µ1/ν1 respectively. Let I0, I1 be, respectively, sets orbits
of S0 and S1 on [n].

Finally let σ ∈ Sn so that permuting the rows of µ0/ν0 via σ (i.e. sending row i to
row σ(i)) gives µ1/ν1. We require that σ be order preserving within the row indices
of each connected component of µ0/ν0.

We prove that

(4)
∑

w′∈C(w)

Kθ,µ0+δ−w′(ν0+δ) =
∑

w′∈C(w)

Kθ,µ1+δ−w′(ν1+δ).
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Let ϕσ : Sn → Sn be the automorphism ϕσ(w) = σwσ−1. Note ϕσ(C(w)) = C(w).
Equation (4) will follow directly once we show that

Kθ,µ0+δ−w′(ν0+δ) = Kθ,µ1+δ−ϕσ(w′)(ν1+δ)

for all w ∈ Sn.
We observe that ϕσ(S0) = S1, and that σ is order preserving within the row indices

of each connected component of µ0/ν0, so for all s, t ∈ I0 ∈ I0 and w′ ∈ S0,

σ(t) − σ(s) = t− s, and t− w′(s) = σ(t) − ϕσ(w′)(σ(s)).

Let k ∈ I0 ∈ I0 and w′ ∈ S0. Then w′−1(k) ∈ I0 and

µ0
k − w′(ν0)k = µ0

k − ν0
w′−1(k)

= µ1
σ(k) − ν1

σw′−1(k)

= µ1
σ(k) − ν1

ϕσ(w′−1)σ(k)

= µ1
σ(k) − ϕσ(w′)(ν1)σ(k).

Similarly

δk − w′(δ)k = (n− k − 1) − (n− w′−1(k) − 1)

= w′−1(k) − k

= ϕσ(w′−1)(σ(k)) − σ(k)
= δσ(k) − ϕσ(w′)(δ)σ(k).

Combining the previous two calculations, it follows that

(µ0 + δ − w′(ν0 − δ))k = µ0
k − w′(ν0)k + δk − w′(δ)k

= µ1
σ(k) − ϕσ(w′)(ν1)σ(k) + δσ(k) − ϕσ(w′)(δ)σ(k)

= (µ1 + δ − ϕσ(w′)(ν1 − δ))σ(k).

We conclude that Kθ,µ0+δ−w′(ν0+δ) = Kθ,µ1+δ−ϕσ(w′)(ν1+δ)). □

Proposition A.6 (Proposition 3.5). Let µ/ν be a disconnected skew shape with two
component skew shapes µk/νk and µr/νr. Let Nk =

∣∣µk/νk
∣∣ and Nr = |µr/νr|. Then

Γθ
µ/ν =

∑
λ⊢Nk
λ<θ

∑
σ⊢Nr

cθ
λσΓλ

µk/νk ◦ Γσ
µr/νr ,

where cθ
λσ is a Littlewood-Richardson coefficient.

Proof. We will abuse notation and let k = ℓ(µk/νk) and r = ℓ(µr/νr). First, we
require two facts about Kostka numbers. The skew-Kostka number Kθ/λ,c for skew
shape θ/λ and finite integer sequence c is the number of semi-standard tableaux of
shape θ/λ and content c. Let θ ⊢ N and c = (c1, . . . , ck, . . . , ck+r) be a finite sequence
of non-negative integers that sum to N . Let Mk =

∑k
i=1 ci. Then

(5) Kθ,c =
∑

λ⊢Mk
λ<θ

Kλ,(c1,...,ck) ·Kθ/λ,(ck+1,...,ck+r).

Secondly, skew Kostka numbers are sums of Kostka numbers via the Littlewood-
Richardson rule [13]. Formally,

(6) Kθ/λ,c =
∑

σ

cθ
λσKσ,c.
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As in the proof of Proposition 3.2 (Proposition A.3), we let δr = (r− 1, . . . , 1, 0). For
any element x = xkxr of Sk × Sr,

µ+ δn − x(ν + δn) = (µk + δnk − xk(νk + δk)) · (µr + δr − xr(νr + δr)),

where · is concatenation of sequences.
Let w ∈ Sn be arbitrary. We proceed by evaluating and simplifying the expression∑

λ<θ
λ⊢Nk

∑
σ

cθ
λσΓλ

µk/νk ◦ Γσ
µr/νr (w).

By definition,

Γλ
µk/νk ◦ Γσ

µr/νr (w) =
(

Γλ
µk/νk × Γσ

µr/νr

)xSn

Sk×Sr

(w)

= 1
k!r!

∑
x∈Sn

(
Γλ

µk/νk × Γσ
µr/νr

)◦ (
x−1wx

)
= 1
k!r! |Zn(w)|

∑
x∈Cn(w)

(
Γλ

µk/νk × Γσ
µr/νr

)◦
(x) .

Now Γλ
µk/νk × Γσ

µr/νr is defined to be zero on all elements not in Sk × Sr. To shorten
notation moving forward, let Ckr

n (w) := Cn(w) ∩ (Sk × Sr). Then

Γλ
µk/νk ◦ Γσ

µr/νr (w) = 1
k!r! |Zn(w)|

∑
xkxr∈Ckr

n (w)

(
Γλ

µk/νk × Γσ
µr/νr

)
(xkxr)

= 1
k!r! |Zn(w)|

∑
xkxr∈Ckr

n (w)

Γλ
µk/νk (xk) Γσ

µr/νr (xr) .

By definition

Γλ
µk/νk (xk) = k!

|Ck(xk)|
∑

x′
k

∈Ck(xk)

Kλ,µk−δk+x′
k

(νk−δk), and

Γσ
µr/νr (xr) = r!

|Cr(xr)|
∑

x′
r∈Cr(xr)

Kσ,µr−δr+x′
r(νr−δr).

To further shorten notation, let K
λ,x̂′

k

and K
σ,x̂′

r
denote the Kostka numbers in the

above sums. Now Γλ
µk/νk ◦ Γσ

µr/νr (w) is equal to

|Zn(w)|
k!r!

∑
xkxr∈Ckr

n (w)

 k!
|Ck(xk)|

∑
x′

k
∈Ck(xk)

K
λ,x̂′

k

 r!
|Cr(xr)|

∑
x′

r∈Cr(xr)

K
σ,x̂′

r


= |Zn(w)|

∑
xkxr∈Ckr

n (w)

1
|Ck(xk)| |Cr(xr)|

∑
x′

k∈Ck(xk)
x′

r∈Cr(xr)

K
λ,x̂′

k

K
σ,x̂′

r
.

Now we decompose Ckr
n (w) further. If λk, λr are partitions, we write λk · λr for the

partition constructed by concatenating λk and λr and reordering to be decreasing.
Let ρn(w) be the cycle type of w in Sn so that Cn(w) = {w′ ∈ Sn | ρn(w′) = ρn(w)}.
Define ρk and ρr similarly. Let Cn(λ) denote the conjugacy class of cycle type λ in
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Sn. Then

Cn(w) ∩ (Sk × Sr) = {xkxr ∈ Sk × Sr | ρk(xk) · ρr(xr) = ρn(w)}

=
⊔

λk·λr=ρn(w)
λk⊢k, λr⊢r

{xkxr ∈ Sk × Sr | ρk(xk) = λk, ρr(xr) = λr)}

=
⊔

λk·λr=ρn(w)
λk⊢k, λr⊢r

Ck(λk) × Cr(λr)

Now Γλ
µk/νk ◦ Γσ

µr/νr (w) simplifies to

|Zn(w)|
∑

λk·λr=ρn(w)
λk⊢k, λr⊢r

∑
xk∈Cw(λk)
xr∈Cr(λr)

1
|Ck(λk)| |Cr(λr)|

∑
x′

k∈Ck(λk)
x′

r∈Cr(λr)

K
λ,x̂′

k

K
σ,x̂′

r

= |Zn(w)|
∑

λk·λr=ρn(w)
λk⊢k, λr⊢r

∑
x′

k∈Ck(λk)
x′

r∈Cr(λr)

K
λ,x̂′

k

K
σ,x̂′

r

= |Zn(w)|
∑

xkxr∈Ckr
n (w)

K
λ,x̂k

K
σ,x̂r

.

Concatenating x̂k and x̂r gives x̂kxr = x̂. From equations A.2 and A.3, we see that∑
λ⊢Nk
λ<θ

∑
σ⊢Nr

cθ
λσΓλ

µk/νk ◦ Γσ
µr/νr (w) =

∑
λ⊢Nk
λ<θ

∑
σ⊢Nr

cθ
λσ |Zn(w)|

∑
xkxr∈Ckr

n (w)

K
λ,x̂k

K
σ,x̂r

= |Zn(w)|
∑

xkxr∈Ckr
n (w)

∑
λ⊢Nk
λ<θ

K
λ,x̂k

∑
σ⊢Nr

cθ
λσKσ,x̂r

= |Zn(w)|
∑

xkxr∈Ckr
n (w)

∑
λ⊢Nk
λ<θ

K
λ,x̂k

K
θ/λ,x̂r

= |Zn(w)|
∑

xkxr∈Ckr
n (w)

K
θ,x̂k·x̂r

= |Zn(w)|
∑

x∈Ckr
n (w)

K
θ,x̂
.

By Lemma A.2, K
θ,x̂

= 0 whenever x /∈ Sk ×Sr, so
∑

x∈Ckr
n (w)

K
θ,x̂

=
∑

x∈Cn(w)

K
θ,x̂

, and

we obtain exactly Γθ
µ/ν(w). Since w was arbitrary, this proves the proposition. □
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