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Isospectral reductions and quantum walks
on graphs

Mark Kempton & John Tolbert

Abstract We give a new formula for computing the isospectral reduction of a matrix (and
graph) down to a submatrix (or subgraph). Using this, we generalize the notion of isospectral
reductions. In addition, we give a procedure for constructing a matrix whose isospectral re-
duction down to a submatrix is given. We also prove that the isospectral reduction completely
determines the restriction of the quantum walk transition matrix to a subset. Using these, we
construct new families of simple graphs exhibiting perfect quantum state transfer.

1. Introduction
Isospectral reductions are a valuable recent tool for studying spectra of graphs and
matrices. Given a graph G with adjacency matrix A, and a subset S of its vertex set,
the isospectral reduction of A to S is given by

R(λ, S, A) = AS×S − AS×S

(
AS×S − λI

)−1
AS×S

where for X, Y subsets of the vertex set, AX×Y denotes the submatrix of A with
rows from X and columns from Y . Note that R(λ, S, A) is an |S| × |S| matrix with
entries that are rational functions in the variable λ. Isospectral reductions have the
remarkable feature of yielding a smaller matrix that preserves the spectral properties
of the original. We give a more detailed development in Section 2. See also [6] for a
detailed introduction. Isospectral reductions have been used in a variety of contexts
in graph theory and network science. In particular, they have been used to improve
the eigenvalue approximations of Gershgorin, Brauer, and Brualdi [12, 1, 2]; study the
pseudo-spectra of graphs and matrices [16]; create stability preserving transformations
of networks [3, 4, 20]; and study the survival probabilities in open dynamical systems
[5].

Notably, recent work [18] has shown that isospectral reductions can be used to
characterize when two vertices u and v of graph G are cospectral, i.e. when G\u
and G\v have the same spectrum. Cospectral vertices are of interest in understand-
ing what spectral information can reveal about a graph. In addition, much of the
research around cospectral vertices is motivated by applications to quantum informa-
tion theory. Specifically, we say that there is perfect state transfer from vertex u to v
at time t = τ if the quantum walk transition matrix e−itA satisfies

e−iτAeu = γev
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for some unit complex number γ, where ex denotes the indicator vector for vertex x,
that is, the vector whose x entry is 1 and all other entries are 0. We will give more
detailed preliminaries concerning quantum walks and perfect state transfer in Section
4. See also [13, 17] for good surveys introducing this area.

It is well known (see [13, 17]) that a necessary condition for perfect state transfer
from u to v is that u and v be cospectral. Some recent work [21] has already investi-
gated the question of using isospectral reductions to construct graphs with cospectral
vertices as in [18] and achieve approximate perfect state transfer with appropriate
weights. One goal of the present paper is to build off of the work of [18] and establish
an even stronger connection between the isospectral reduction and quantum state
transfer phenomena. Indeed, one of our main results (Theorem 4.1 below) is that
the restriction of the quantum walk transition matrix to a subset of vertices is com-
pletely determined by the isospectral reduction to that subset. In particular, whether
and when perfect state transfer occurs between two vertices can be completely de-
termined by the isospectral reduction to those two vertices. This makes the question
raised in [18] of how to reverse engineer the isospectral reduction process of significant
relevance to the quantum state transfer problem. The other main contribution of this
paper is to address this question and give a procedure for constructing a matrix with
entries in R or C whose isospectral reduction is given. We refer to this as unfolding
the isospectral reduction.

1.1. Outline. The remainder of this paper is organized as follows. In Section 2,
we begin with the basic preliminaries regarding isospectral reductions, and prove
several new lemmas and technical results that will be useful later when investigating
the unfolding of isospectral reductions. In Section 2.1, we give a new expression for
isospectral reductions, namely

(1) R(λ, S, A) = λI −
(
ΣT (λI − A)−1Σ

)−1

where Σ = [I 0]T (see Theorem 2.12 below). This new formula will provide some
necessary insight for several of the results later on. First, in Section 2.2, we investigate
the combinatorial interpretation of isospectral reductions in terms of walk generating
functions, and prove a relationship between the walk generating function relative to
a subset, and the non-returning walk generating function for that subset (Theorem
2.14), generalizing a formula involving single node subsets from [18]. Next in Section
2.3, we use the formula from (1) to define generalized isospectral reductions, replacing
the matrix Σ with any matrix with orthonormal columns, and deduce many of the
classic results from the theory of isospectral reductions in the generalized case. In
Section 2.4, we show how the theory of equitable partitions of matrices can be viewed
as a special case of these generalized isospectral reductions (Theorem 2.21).

In Section 3, we directly address the question of unfolding an isospectral reduction,
that is, constructing a matrix with real or complex entries with a given isospectral
reduction. In particular, we give necessary and sufficient conditions for a reduction
to have a Hermitian unfolding, and give a procedure for finding such an unfolding
(Theorem 3.4).

In Section 4 we apply these ideas to the theory of quantum walks on graphs. We
first give the necessary preliminaries regarding quantum walks, perfect state transfer,
and other tools, and then prove that the isospectral reduction completely determines
the quantum walk matrix restricted to a subset (Theorem 4.1). The proof of this
theorem relies heavily on the perspective given from the formula in (1).

Finally, in Section 5, we apply the quantum walk determination theorem of Section
4, along with the unfolding procedure of Section 3, to give a novel procedure to
construct new examples of simple graphs exhibiting perfect state transfer. The idea
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here is to start with a graph whose quantum walk behavior is known, isospectrally
reduce down to a conveniently chosen subset, then unfold the result to a new graph
that will have the same quantum walk behavior as the original. Specifically, we start
with hypercubes, which are known to have perfect state transfer in constant time, and
describe how to construct a new family of graphs (with considerably less symmetry)
with perfect state transfer at the same time.

2. Isospectral reductions
The isospectral reduction of a graph (square matrix) to a subset of its vertex set (to
a principal sub-matrix) is a graph (matrix)-valued function that captures some of the
original graph’s (matrix’s) spectral properties in a smaller graph (matrix). We use
notation from [6, 18]: let W be the set of rational functions p(λ)/q(λ) with complex
coefficients in the variable λ with no common factors and deg(p) ⩽ deg(q). Let Wn×n

be the set of n × n matrices whose entries come from W.

Definition 2.1. For a matrix A =
[
M C
D F

]
the isospectral reduction to the M block

(indexed by the set S) is given by

R (λ, S, A) = M + C (λI − F )−1
D ∈ W|S|×|S|.

Throughout this paper, G will be a (possibly directed and/or weighted) graph (pos-
sibly with loops) on the vertex set V , S a nonempty subset of V , and the adjacency

matrix of G will be A =
[
M C
D F

]
, where the rows and columns of the M block of A

correspond to the vertices in S. Note that if G is an undirected graph, then we will
have D = CT . The isospectral reduction of a graph G can be viewed as the weighted
graph whose (weighted) adjacency matrix is the matrix isospectral reduction of the
adjacency matrix of G. As such, we will not hereafter distinguish between graph and
matrix reductions, or indeed between graphs and matrices: G will always be a graph,
and A the adjacency matrix of that graph. See [6, 18] for detailed development of the
theory of both graph and matrix isospectral reductions. The conventional notation
for the isospectral reduction M + C (λI − F )−1

D of A to S is RS (A), but in order
to disambiguate which variable plays the role of λ we will instead use the notation
R (λ, S, A). The use of the formula M + C (λI − F )−1

D rather than the more con-
ventional AS×S − AS×S

(
AS×S − λI

)−1
AS×S is meant to improve readability and

clarify the roles of each of the submatrices in the isospectral reduction.
A remarkable fact that makes isospectral reductions useful and interesting is that

they preserve the graph’s eigenvalues in the following sense.

Theorem 2.2 (Theorem 2.2 of [6]). A =
[
M C
D F

]
as above,

det (λI − R (λ, S, A)) = det (λI − A)
det (λI − F ) .

Isospectral reductions also satisfy the nice property that they can be applied in
sequence to successively smaller subsets, and the result is independent of the order in
which things are done, as seen in the following result.

Theorem 2.3 (Theorem 2.5 of [6]). For any S′ ⊆ S, R (λ, S′, R (λ, S, A)) =
R (λ, S′, A).
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Isospectral reductions can also capture some information about eigenvectors of a
matrix [11]. Indeed, under some mild conditions on the set S, we have that the restric-
tion of an eigenvector to S remains an eigenvector after plugging in the associated
eigenvalue into the isospectral reduction.

Theorem 2.4 (Theorem 1 of [11]). Let Au = λ0u. Then plugging λ0 into R(λ, S, A)
satisfies

R(λ0, S, A)uS = λ0uS

where uS denotes the restriction of u to the set S.

Furthermore, the isospectral reduction R (λ, S, A) captures many walk counting
properties of A as they apply to S, and for instance is sufficient to tell whether two
vertices in S are cospectral in G.

Theorem 2.5 (Theorem 3.3 and Corollary 3.4 of [18]). Two vertices u and v of a
graph G are cospectral if and only if R(λ, {u}, A) = R(λ, {v}, A). Equivalently, the
2 × 2 reduction R(λ, {u, v}, A) has an automorphism.

Much of the motivation for this paper is to find an “unfolding" procedure that would
let us construct graphs with interesting spectral properties by “unfolding" isospectral
reductions that exhibit the desired properties. With this is mind, the remainder of
this section will be dedicated to proving several preliminary technical results that will
be useful later on.

The following lemmas show us how to realize a sum of arbitrary isospectral re-
ductions as an isospectral reduction itself. Here, we work with arbitrary matrices
Mi, Ci, Di, and Fi.

Lemma 2.6. Let A =

M1 + M2 C1 C2
D1 F1 0
D2 0 F2

 with the first block indexed by the set S.

Then
R (λ, S, A) = R

(
λ, S,

[
M1 C1
D1 F1

])
+ R

(
λ, S,

[
M2 C2
D2 F2

])
.

Proof. We calculate the reduction:

R

λ, S,

M1 + M2 C1 C2
D1 F1 0
D2 0 F2


= (M1 + M2) +

[
C1 C2

] (
λI −

[
F1 0
0 F2

])−1 [
D1
D2

]
= (M1 + M2) +

[
C1 C2

] [
(λI − F1)−1 0

0 (λI − F2)−1

] [
D1
D2

]
= M1 + M2 + C1 (λI − F1)−1

D1 + C2 (λI − F2)−1
D2

=
(

M1 + C1 (λI − F1)−1
D1

)
+

(
M2 + C2 (λI − F2)−1

D2

)
. □

Corollary 2.7. Let A =


M1 + M2 + · · · + Mk C1 C2 · · · Ck

D1 F1 0 · · · 0
D2 0 F2 · · · 0
...

...
...

. . .
...

Dk 0 0 · · · Fk

 be a matrix with

finitely many blocks and define Ri = R
(

λ, S,

[
Mi Ci

Di Fi

])
. Then R (λ, S, A) = R1 +

Algebraic Combinatorics, Vol. 7 #1 (2024) 228



Isospectral reductions and quantum walks on graphs

R2 +· · ·+Rk. Conversely, any sum of isospectral reductions is an isospectral reduction
where the block corresponding to the complement of the set we are reducing to is block
diagonal.

Theorem 2.8. If X =
[
I 0
0 Q

]
is partitioned conformal to A =

[
M C
D F

]
with Q invert-

ible, then

R
(
λ, S, X−1AX

)
= R (λ, S, A) .

Proof. First we calculate X−1AX = (I ⊕ Q)−1A(I ⊕ Q) more explicitly. Note that[
I 0
0 Q

]−1
A

[
I 0
0 Q

]
=

[
M CQ

Q−1D Q−1FQ

]
,

and thus

R
(

λ, S,

[
M CQ

Q−1D Q−1FQ

])
= M + CQ

(
λI − Q−1FQ

)−1
Q−1D

= M + CQ
(
Q−1 (λI − F ) Q

)−1
Q−1D

= M + CQQ−1 (λI − F )−1
QQ−1D

= M + C (λI − F )−1
D

= R
(

λ, S,

[
M C
D F

])
= R (λ, S, A) . □

Theorem 2.9. The poles of R
(

λ, S,

[
M C
D F

])
(where S indexes M) occur at eigen-

values of F .

Proof. This follows directly from the definition R (λ, S, A) = M + C (λI − F )−1
D.
□

Theorem 2.10. Let A =
[
M C
D F

]
where the block M is indexed by S. The entries of the

reduction R (λ, S, A) are rational functions in λ. Writing R (λ, S, A) in its canonical
partial-fraction-decomposition form, the constant part of R (λ, S, A) is M .

Proof. From the definition of the isospectral reduction, R (λ, S, A) = M +
C (λI − F )−1

D. Thus the Frobenius norm ∥R (λ, S, A) − M∥ =
∥∥∥C (λI − F )−1

D
∥∥∥.

This is bounded by ∥C∥
∥∥∥(λI − F )−1

∥∥∥ ∥D∥. Since
∥∥∥(λI − F )−1

∥∥∥ can be made arbi-
trarily small by choosing large λ, the norm of this difference approaches 0 as λ −→ ∞.
Hence the limit of R (λ, S, A) as λ −→ ∞ is M . □

Theorem 2.11. Let a pole µ of R (λ, S, A) be given where F is a normal matrix. The
residue of R (λ, S, A) at µ is CEµD, where Eµ is the orthogonal projection onto the
µ-eigenspace of F .

Proof. Let the eigendecomposition of F be F =
∑

νEν , with the sum ranging
over eigenvalues ν of F and Eν being the orthogonal projection matrix onto the
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ν eigenspace for F . We may calculate

lim
λ−→µ

(λ − µ) R (λ, S, A) = lim
λ−→µ

(λ − µ)
(

M + C (λI − F )−1
D

)
= 0 + C

(
lim

λ−→µ
(λ − µ) (λI − F )−1

)
D

= 0 + C

(
lim

λ−→µ
(λ − µ)

(
λI −

∑
νEν

)−1
)

D

= 0 + C

(
lim

λ−→µ
(λ − µ)

∑
(λ − ν)−1

Eν

)
D

= 0 + C

(
lim

λ−→µ
(λ − µ) (λ − µ)−1

Eµ

)
D

= CEµD. □

2.1. A new perspective on isospectral reductions.

Theorem 2.12. Given A =
[
M C
D F

]
with rows and columns indexed by V and parti-

tioned as S ∪ S, then

R (λ, S, A) = λI −
(

ΣT (λI − A)−1 Σ
)−1

,

where Σ =
[
I
0

]
has rows indexed by S ∪ S and columns indexed by S.

Proof. Examine the matrix

0 I 0
I M C
0 D F

. Compute the reduction of this matrix to its

first block in two different ways. First, reducing directly to the first block gives 0 +[
I 0

] (
λI −

[
M C
D F

])−1 [
I
0

]
= ΣT (λI − A)−1 Σ. Secondly, reduce in stages—first to

the block defined by the first two partition classes as[
0 I
I M

]
+

[
0
C

]
(λI − F )−1 [

0 D
]

=
[
0 I
I M

]
+

[
0

C (λI − F )−1

] [
0 D

]
=

[
0 I
I M

]
+

[
0 0
0 C (λI − F )−1

D

]
=

[
0 I

I M + C (λI − F )−1
D

]
=

[
0 I
I R (λ, S, A)

]
and then to the first block directly: 0+I (λI − R (λ, S, A))−1

I = (λI − R (λ, S, A))−1.
These two ways of calculating the reduction must give equivalent results by Theorem
2.3, so (λI − R (λ, S, A))−1 = ΣT (λI − A)−1 Σ. The result follows immediately. □

2.2. Walk generating functions. While Theorem 2.12 is interesting in its own
right as an alternate way of thinking of and computing the isospectral reduction, we
will see in this section how it reveals information about walk generating functions.
This stems from a combinatorial interpretation of the walk generating functions.

Algebraic Combinatorics, Vol. 7 #1 (2024) 230



Isospectral reductions and quantum walks on graphs

We will recall some notation from [18]. Let G be a graph and S a subset of the
vertex set. We define two walk generating functions. First, define

WS(t) =
∞∑

ℓ=0
wℓ(S)tℓ

where wℓ(S) denotes the |S| × |S| matrix whose (a, b) entry is the number of walks
of length ℓ in G beginning at a and ending at b. That is, WS(t) is the generating
function for enumerating walks in the subset S. It is easy to see that

WS(t) =
(
(I − tA)−1)

S,S

by expanding (I − tA)−1 as an infinite geometric series, and recalling that the entries
Aℓ count walks of length ℓ in the graph. We will denote by

W ∗
S(t) =

∞∑
ℓ=1

w∗
ℓ (S)tℓ

where w∗
ℓ (S) is the |S|×|S| matrix whose (a, b) entry is the number of walks of length

ℓ from a to b in G that leave S on their first step and do not return till the last step
(the S-non-returning walks from a to b). In [18], the following relationship between
W ∗

S(t) and R(λ, S, A) was obtained.

Lemma 2.13 (Theorem 3.6 of [18]).

R (λ, S, A) = λW ∗
S

(
1
λ

)
.

Furthermore, in [18], it was proven that in the specific instance when S = {a}
consists of a single vertex, then the relationship between Wa and W ∗

a is given by

Wa(t) = 1
1 − W ∗

a (t) .

This can be proven from direct combinatorial methods, or from identities involving
isospectral reductions (see Section 3.2 of [18]). Theorem 2.12 immediately gives a
generalization of this identity to arbitrary subsets.

Theorem 2.14. Let G be a graph and S some subset of the vertex set. Then
WS(t) = (I − W ∗

S(t))−1.

Proof. Let t = 1
λ . From Theorem 2.12 we have

R (λ, S, A) = λI −
((

(λI − A)−1)
S,S

)−1

= 1
t
I − 1

t

((
(I − tA)−1)

S,S

)−1
.

Then from Lemma 2.13 we have that
W ∗

S(t) = I − WS(t)−1

from which the result follows. □

Thus, any property of a subset of a graph that can be determined by the walk
generating function can also be determined by the isospectral reduction to that subset.

We may interpret the formula (λI − R (λ, S, A))−1 = Σ∗ (λI − A)−1 Σ to say that
the S-non-returning walk generating function provided by the isospectral reduction of
A to S is exactly what we need to use in place of edges to calculate the walk generating
function of A restricted to S using the normal formula. Isospectral reductions are like
generalized edges in this sense. Just as edges are the minimal walks in a graph which
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compose to give all other walks and walk-count functions through the walk generating
function power series, non-returning walks are the minimal walks from the set S to
itself which compose by the same power series to give all walks from S to itself.

2.3. Generalized isospectral reductions. In addition to giving us another way
to compute isospectral reductions, the alternate reduction formula from Theorem 2.12
suggests a generalization of the isospectral reduction.

Definition 2.15. For a matrix Σ with full column rank and rows indexed by the vertex
set of the graph with adjacency matrix A, define the generalized reduction of A with
respect to Σ in terms of λ to be

R (λ, Σ, A) := λI −
(

Σ∗ (λI − A)−1 Σ
)−1

.

Remark 2.16. In our definition, we are requiring Σ to have orthonormal columns. We
could define this more generally where Σ simply has linearly independent columns,
and replace Σ∗ with the pseudoinverse of Σ in the definition. However, the assumption
of orthonormal columns will make some of the theory easier, and will be sufficiently
general for all that we will be doing.

This formula provides a new way of thinking of many of the classic results about
isospectral reductions. For instance we have the following.

Theorem 2.17. Let Σ1 be an n × k matrix with orthonormal columns and Σ2 a k × r
matrix with orthonormal columns. Then Σ1Σ2 has orthonormal columns and

R(λ, Σ1Σ2, A) = R(λ, Σ2, R(λ, Σ1, A)).

The proof is a straightforward computation, and Theorem 2.3 can be viewed as a
simple special case.

Theorem 2.18. Let Σ have orthonormal columns, and let ∆ be a matrix whose
columns are an orthonormal basis for the orthogonal complement of the columns
space of Σ. We have

det(λI − R(λ, Σ, A)) = det(λI − A)
det(λI − ∆∗A∆) .

Proof. Let X be the matrix with the same number of rows and columns as Σ whose
ith column is the ith basis vector and let Y be the matrix such that

[
X Y

]
= I

and let U =
[
Σ ∆

]
. Note that R (λ, X, A) is the standard reduction of A to its first

dim (col (Σ)) rows and columns. Note also that Σ = UX and Σ∗ = X∗U∗. We have

det(λI − R (λ, Σ, A)) = det
(

λI −
(

λI −
(

Σ∗ (λI − A)−1 Σ
)−1

))
= det

(
λI −

(
λI −

(
X∗U∗ (λI − A)−1

UX
)−1

))
= det

(
λI −

(
λI −

(
X∗ (λI − U∗AU)−1

X
)−1

))
= det (λI − R (λ, X, U∗AU))

= det (λI − A)
det (λI − Y ∗U∗AUY )

= det (λI − A)
det (λI − ∆∗A∆)

by Theorem 2.2. □
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Finally, we can generalize Theorem 2.4 to apply to eigenvectors of generalized
reductions.

Theorem 2.19. If Au = λ0u, then

R(λ0, Σ, A)Σ∗u = λ0Σ∗u.

Proof. Writing Σ = UX where X∗ = [I 0], the result follows directly from Theorem
2.4 applied to U∗AU , similar to the above. □

2.4. Divisor matrices of equitable partitions. In this section, we will see that
the theory of divisor matrices of equitable partitions can be viewed as a special case
of the generalized isospectral reduction. Recall that a partition Π = (V1, ..., Vk) of the
vertex set of a graph G is called an equitable partition of G if, for all i, j (including
i = j), there are constants ci,j such that any vertex from part Vi of the partition has
exactly ci,j neighbors in part Vj . Equivalently, if we look at the block partition of the
adjacency matrix A of G, each block has constant row sums.

An equivalent way of looking at equitable partitions is as follows. Given a partition
Π with k parts of G, let P be the n × k indicator matrix of Π—that is, the matrix
whose columns are indicator vectors for the parts of the partition. Then Π is an
equitable partition of G if and only if there is some k × k matrix d with AP = Pd.
Here d is called the divisor matrix or quotient matrix of the equitable partition. It is
well known that eigenvalues of d are eigenvalues of A, and corresponding eigenvectors
x of d lift to eigenvectors Px of A. See, for example, [15, Chapter 9.3] for a detailed
development of the theory of equitable partitions.

It is common in studying equitable partitions to replace the indicator matrix P with
the corresponding matrix whose columns have been normalized. Then we still have
AP = Pd for some k × k matrix d, but now since P T P = I, we can directly express
d = P T AP , which is a symmetric matrix. We will refer to this as the symmetrized
divisor matrix.

Example 2.20. For instance, suppose G is the following graph.

1

2

3

4

It is easy to see G has an equitable partition ({1}, {2, 3}, {4}). The indicator matrix
and divisor matrix, respectively, are

P =


1 0 0
0 1 0
0 1 0
0 0 1

 , d =

0 2 0
1 1 1
0 2 0

 .

Normalizing the columns gives normalized indicator matrix and symmetrized divisor
matrix

P =


1 0 0
0 1√

2 0
0 1√

2 0
0 0 1

 , d =

 0
√

2 0√
2 1

√
2

0
√

2 0

 .

Both versions of d have eigenvalues 0, (1 ±
√

17)/2 which are also eigenvalues of A.
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Theorem 2.21. Let G be a graph with adjacency matrix A, and suppose G has an
equitable partition with normalized indicator matrix P and symmetrized divisor matrix
d. Then

d = R(λ, P, A).

Proof. Starting from the equation AP = Pd it follows that P (λI − d)−1 =
(λI − A)−1

P . Then since P T P = I we deduce that (λI − d)−1 = P T (λI − A)−1
P

from which we conclude that

d = λI −
(

P T (λI − A)−1
P

)−1

= R (λ, P, A) . □

Thus the normalized divisor matrices of equitably partitioned matrices are exactly
the same as the generalized reductions of those matrices with respect to the normalized
partition matrices of those equitable partitions. Note that it is remarkable that in the
case of the normalized partition matrix P , when there is an equitable partition, this
generalized reduction works out in such a way that all dependence on the variable λ
cancels and the reduction leaves us with a matrix with coefficients from the base field.
This ultimately stems from the equation AP = Pd, and indeed, whenever Σ has a
column space that is invariant under the action of A, we will see a similar cancellation
of the dependence on λ in the generalized isospectral reduction. Indeed, if we took
Σ to consist of orthonormal eigenvectors of A, then the generalized reduction using
Σ would simply yield a diagonal matrix with the corresponding eigenvalues on the
diagonal. Thus the theory of diagonalization of a Hermitian matrix can be viewed a
specific case of generalized isospectral reductions as well.

3. Unfolding isospectral reductions
This section will be dedicated to investigating the problem of constructing a matrix
with entries in R or C that has a given isospectral reduction. We will refer to this
process as “unfolding" the isospectral reduction.

Definition 3.1. An s×s matrix R whose entries are rational functions in the variable
λ is unfoldable if there exists some matrix A ∈ Cn×n (for some n > s) and some
subset S of the index set of A with |S| = s such that

R(λ, S, A) = R.

We will call such a matrix A an unfolding of R.

Theorem 3.2. If the (finitely many) matrices R1, R2, . . . , Rk are unfoldable, then their
sum is also unfoldable.

Proof. This is a straightforward corollary of Corollary 2.7. The M blocks of the un-
foldings are added together, the C blocks are added to the right, the D blocks are all
present going downwards, and the F blocks grow diagonally downwards. □

Lemma 3.3. Any matrix of the form R (λ) = 1
(λ−ν)n K, where K ∈ Cs×s and n ∈ N,

is unfoldable. Furthermore, in the case where n = 1, ν is real, and K is positive
semidefinite, R (λ) has a Hermitian unfolding, and these conditions are necessary for
such an R to have a Hermitian unfolding.

Proof. For the non-Hermitian case we work by induction with the base case n = 1.
Choose any matrices X and Y such that XY = K (such as the rank decompo-

sition of K). Then the matrix
[

0 X
Y νI

]
has the reduction (to its first block) 0 +

Algebraic Combinatorics, Vol. 7 #1 (2024) 234



Isospectral reductions and quantum walks on graphs

X (λI − νI)−1
Y = (λ − ν)−1

XY = R (λ), so unfoldings exist in all cases for n = 1
by construction.

Note that for K positive semidefinite and ν real we could choose X, Y such that

Y = X∗, and in this case
[

0 X
Y νI

]
becomes a Hermitian unfolding of R, proving the

sufficiency part of our result for Hermitian matrices.
Continuing with the induction, assume that unfoldings always exist for matrices of

the specified form for a given n ⩾ 1. Consider an arbitrary matrix R (λ) = 1
(λ−ν)n+1 K

of the “next" form. Once again, write K = XY . By our inductive assumption, 1
(λ−ν)n X

has some unfolding—call it
[
M C
D F

]
. Since 1

(λ−ν)n X approaches 0 as λ −→ ∞, we have

from Theorem 2.10 that M = 0. Finally, consider the matrix

 0 0 C
Y νI 0
0 D F

. Reducing

this matrix to its first block yields

0 +
[
0 C

] ([
λI 0
0 λI

]
−

[
νI 0
D F

])−1 [
Y
0

]
=

[
0 C

] ([
(λ − ν) I 0

−D λI − F

])−1 [
Y
0

]
=

[
0 C

] [
(λ − ν)−1

I 0
(λI − F )−1

D (λ − ν)−1 (λI − F )−1

] [
Y
0

]
= C (λI − F )−1

D (λ − ν)−1
Y

=
(

M + C (λI − F )−1
D

)
(λ − ν)−1

Y

= 1
(λ − ν)n X (λ − ν)−1

Y By construction of M, C, D, F

= 1
(λ − ν)n (λ − ν)−1

XY

= 1
(λ − ν)n+1 K

so 1
(λ−ν)n+1 K indeed has an unfolding. Since K and ν were arbitrary, the existence of

arbitrary unfoldings for matrices of the form 1
(λ−ν)n K implies the same for matrices

of the form 1
(λ−ν)n+1 K, and by induction on the base case n = 1 we have the first

part of our theorem.
For necessity of the Hermitian unfoldability conditions, consider the Hermitian

matrix
[
M C
D F

]
and its reduction M + C (λI − F )−1

D to its first block. Now F

must be Hermitian, so it has the eigendecomposition F =
∑

νi projVi
expressing

it as a real linear combination of projections onto its eigenspaces (the sum is
taken over eigenvalue-eigenspace pairs of F ). Then λI − F =

∑
(λ − νi) projVi

and

(λI − F )−1 =
∑

(λ − νi)−1 projVi
. Finally, the reduction of

[
M C
D F

]
to its first block

is M +
∑

(λ − νi)−1
C projVi

C∗. Write C projVi
C∗ = Ki and cancel off zero terms

to get R (λ) = M +
∑

i∈I (λ − νi)−1
Ki, where I is some indexing set. Since the

nonzero terms are canceled and each νi is distinct, R (λ) has exactly |I| poles. There
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must only be a single term left(1) (and M must equal 0) if R (λ) is to take the form
1

(λ−ν)n K, since the latter only ever has one pole (and has zero constant part). Hence
any R (λ) arising as the reduction of a Hermitian matrix and having the desired form
takes the form 1

λ−νi
Ki for some real νi (an eigenvalue of the Hermitian F -block of

its Hermitian unfolding). Furthermore, since Ki = C projVi
C∗ is star-congruent to

a positive semidefinite projection matrix, it is itself positive semidefinite. Then the
conditions K is positive semidefinite, ν is real, n = 1 are both necessary and sufficient
for 1

(λ−ν)n K to have a Hermitian unfolding, as desired. □

Theorem 3.4. Every matrix-valued function R (λ) of λ having as its entries rational
functions in λ with numerator degrees not exceeding their respective denominators’
degrees has an unfolding. Furthermore, such a matrix has a Hermitian unfolding iff
all of its (entries’) poles are real and simple, the residue matrix at each of those those
poles (calculated such that the i, j entry of the ν-residue matrix is the residue of the
function Ri,j (λ) at ν) is positive semidefinite, and limλ−→∞ R (λ) is Hermitian.

Proof. Let I index the poles of R (λ) (a number is a pole of R (λ) if it is the
pole of some entry of R (λ)), label the associated poles νi, and label their orders
ni. Then we can take a partial fraction decomposition (entrywise) of R (λ) to get
R (λ) = M +

∑
i∈I

∑ni

k=1
1

(λ−νi)k Ki,k, where there are no positive powers of λ in
the sum because of the degree conditions. M is unfoldable because it is a constant
matrix, and hence reduces to itself. Every other term in the sum is unfoldable by
Lemma 3.3. By Theorem 3.2 we have the result. Furthermore, both theorems give
algorithms for constructing their associated unfoldings, so combining them with the
partial fraction decomposition in this way gives us a general unfolding procedure.
First partial-fraction-decompose, then find M as the constant term, then find unfold-
ings for each term by rank-decomposing the coefficient matrices, then combine all the
unfoldings by appending C blocks to the right of M , F blocks on the diagonal, and
D blocks downwards from M .

The case for Hermitian unfoldings is similar. Note that if the unfoldings
[
M1 C1
D1 F1

]
and

[
M2 C2
D2 F2

]
are Hermitian then

M1 + M2 C1 C2
D1 F1 0
D2 0 F2

 will also be; this enables us to

still use Theorem 3.2 to construct the unfoldings. If all of our stated conditions are
met then we can use Lemma 3.3 to unfold each term in a Hermitian way (the trivial
unfolding of the M block will clearly be Hermitian as well by the last condition); it
remains to prove necessity.

The condition that limλ−→∞ R (λ) be Hermitian is clearly necessary, since this
limit is equal to the M block of any unfolding by Theorem 2.10, and is hence a
principal submatrix of every unfolding. Principal submatrices of Hermitian matrices
must always be Hermitian. For the necessity of the other conditions we refer back to
the proof of Lemma 3.3, where we showed that the reduction of a Hermitian matrix
takes the form M +

∑
i∈I

1
λ−νi

Ki where each νi is the eigenvalue of a Hermitian
matrix (and hence real) and each Ki is star-congruent to an orthogonal projection
matrix (and hence positive semidefinite). Anything of this form clearly has simple real
poles and positive semidefinite residues at those poles, so the remaining conditions
are also necessary as well as sufficient. □

(1)Or none, in which case R is the constant zero matrix, trivially has itself as a Hermitian
unfolding, and trivially satisfies the conditions in the conclusion with K = 0, ν = 0, n = 1
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The unfolding procedure can now produce general weighted digraphs from general
W-matrices and graphs with Hermitian adjacency matrices from W-matrices satisfy-
ing a few additional conditions. It is natural to look for ways to continue specializing
the procedure and eventually to seek out an unfolding procedure for unweighted sym-
metric zero-one graphs without loops. Let us start by removing loops from the graph
produced by the unfolding procedure.

Theorem 3.5. Any reduction R with a Hermitian unfolding such that limλ−→∞ R (λ)
has only zeros on its diagonal (is “hollow") has in particular a hollow Hermitian
unfolding.

Proof. Let A =
[
M C
D F

]
be the unfolding of R obtained by the Hermitian unfolding

procedure above. The condition that limλ−→∞ R (λ) is hollow is exactly the condition
that M is hollow (so said condition is necessary for any matrix to have a hollow
unfolding). Recall Theorem 2.8. The strategy of our proof will be to construct a
correctness-preserving similarity sending a general Hermitian unfolding of R to a hol-

low one. First we have to fix A’s trace. Note that

M C 0
C∗ F 0
0 0 − tr (F )

 is also a Hermitian

unfolding of R. We seek to show that the Hermitian matrix
[
F 0
0 − tr (F )

]
is unitarily

similar to a hollow matrix, say by U∗
[
F 0
0 − tr (F )

]
U = F ′. Then by correctness-

preserving similarities (Theorem 2.8) we will have that

 M
[
C 0

]
U

U∗
[
C
0

]
F ′

 is also a

Hermitian unfolding for R, and in particular a hollow one. We only need the following
lemma:

Lemma 3.6. Any Hermitian matrix with trace zero is unitarily similar to a hollow
matrix.

Proof. We proceed by induction on the size of the matrix. Clearly the result holds
for one-by-one matrices, as we only need to check that

[
0
]

is hollow. Suppose that it
holds for n × n matrices. Then let a general (n + 1) × (n + 1) trace-zero Hermitian
matrix A be given. Because A has zero trace, it either has all zero eigenvalues (and
then is the zero matrix by Hermiticity and satisfies our desired conclusion without
the application of any unitary similarities) or it has some positive and some nega-
tive eigenvalues with corresponding eigenvectors. Consider the function sending an
(n + 1)-dimensional vector x to x∗Ax. This function is obviously continuously dif-
ferentiable on the (n + 1)-dimensional unit sphere. The unit sphere is also simply
connected and contains vectors x+, x− for which the function is positive and nega-
tive, respectively (take them to be unit eigenvectors of A corresponding to positive
and negative eigenvalues). Then by the intermediate value theorem there is some unit
vector x0 for which x∗

0Ax0 = 0. Pick an orthonormal basis for the orthogonal comple-
ment of the span of x0 and make the vectors comprising this basis the columns of a
new matrix V . Now U =

[
x0 V

]
is unitary because it has orthonormal columns, and

U∗AU =
[

x∗
0Ax0 x∗

0AV
V ∗Ax0 V ∗AV

]
=

[
0 x∗

0AV
V ∗Ax0 V ∗AV

]
. Because unitary similarities preserve

the trace and Hermiticity, V ∗AV is a trace-zero n × n Hermitian matrix. By our
inductive hypothesis there is a unitary matrix W such that W ∗V ∗AV W is hollow.
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Let X = U

[
1 0
0 W

]
. Then X∗AX =

[
0 x∗

0AV W
W ∗V ∗Ax0 W ∗V ∗AV W

]
is a hollow Hermitian

matrix which is unitarily similar to A. By induction our lemma is proved. □

Using the lemma we construct a unitary matrix sending
[
F 0
0 − tr (F )

]
, turn that

into a correctness-preserving unitary similarity, and use that similarity to give us a
new hollow Hermitian unfolding for R as discussed above. □

The reduction tells us the restrictions of all powers of A to the M block, and
hence the eigenvectors of A as projected to the S-subspace. If all of these vectors can
be chosen to be purely real then the Hermitian unfolding procedure can be chosen
as a real-symmetric unfolding procedure and the hollowing procedure above can be
performed to give a real-weighted symmetric loopless unfolding procedure. There is
great difficulty in general in making the entries of such graphs integers by means of
correctness-preserving transformations. If that can be accomplished the result can
often be treated as a residue matrix to give an unfolding with entries in {−1, 0, 1}. If
they can be made positive integers it is possible to obtain a simple graph unfolding.

4. Quantum walks
As mentioned in the introduction, a quantum walk on a graph G is described by the
unitary transition matrix

U(t) = e−itA

where A is the adjacency matrix of G. We say there is perfect state transfer (PST)
from u to v at time τ if

U(τ)eu = γev

for some unit complex number γ. Since U(t) is a unitary matrix, PST at time τ is
equivalent to saying that U(τ) is block diagonal, with a block indexed by u and v

equal to
[

0 γ
γ 0

]
.

A generalization of PST called fractional revival is defined as follows. We say
fractional revival (FR) occurs on a subset S of the vertices of G at time τ if, for any
ϕ supported only on S, U(τ)ϕ is also supported only on S. Fractional revival at time
τ is equivalent to the existence of an |S| × |S| unitary matrix H such that

U(τ) =
[
H 0
0 U ′

]
for some U ′. We call this fractional revival on S with respect to H. See [7, 8] for more

details. Note that PST from u to v is FR with respect to the matrix
[

0 γ
γ 0

]
on the set

{u, v}.
Both PST and FR have approximations, called, respectively, pretty good state

transfer (PGST) and pretty good fractional revival (PGFR). PGFR amounts to saying
that for every ϵ > 0 there is a time τ for which U(τ) has a block decomposition[

H M
M∗ U ′

]
with ||M || < ϵ, and PGST is a similar approximation to PST. See [9, 14]

for more details.
The goal of this section will be to study the quantum walk matrix, and hence each

of these quantum communication phenomena, by way of the isospectral reduction. We
will use some well-known tools related to the Laplace transform of a function. Recall
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that the Laplace transform Lt−→s is a linear operator from functions in t to functions
in s defined by

Lt−→sf (t) =
∫ ∞

0
f (t) e−stdt,

and L−1
t−→s denotes its inverse. The Laplace transform is defined to act element-wise

on matrix- or vector-valued functions (and hence commutes with all left- and right-
matrix actions on matrix-valued functions by linearity). We will in particular use the
fact that

Lt−→seAt = (sI − A)−1

for any matrix A. See any standard text (e.g. [10]) for details on the Laplace transform.
Our main result of this section establishes an equivalence between the information

provided by the restricted quantum walk matrix Σ∗U (t, A) Σ and the corresponding
generalized isospectral reduction R (λ, Σ, A).

Theorem 4.1. Let U (t, A) := e−itA be the quantum walk matrix on A in terms of the
variable t. Then

Σ∗U (t, A) Σ = L−1
t−→s

(
(sI + iR (is, Σ, A))−1

)
and

R (λ, Σ, A) = λI − i (Lt→−iλ (Σ∗U(t, A)Σ))−1
.

Proof. We compute as follows:

Σ∗U (t, A) Σ =Σ∗e−itAΣ

=Σ∗
(
L−1

t−→s (sI + iA)−1
)

Σ

=L−1
t−→sΣ∗

(
i (isI − A)−1

)
Σ

=iL−1
t−→−iλΣ∗ (λI − A)−1 Σ

=iL−1
t−→−iλ

(
λI −

(
λI −

(
Σ∗ (λI − A)−1 Σ

)−1
))−1

=iL−1
t−→−iλ (λI − R (λ, Σ, A))−1

=L−1
t−→−iλ (−iλI + iR (λ, Σ, A))−1

=L−1
t−→s (Is + iR (is, Σ, A))−1

.

The second formula is a direct corollary to the first. □

Note that this is the second theorem of this form. Earlier we saw that the
walk-generating function for a graph (as restricted to a subset S of the graph’s
vertex set) can be obtained by the similar-looking formula

(∑∞
i=0 Aiti

)
S×S

=(
I − tR

( 1
t , S, A

))−1. In fact, the restriction of any power series in A to a subset
can be obtained from the isospectral reduction of A to that subset by passing to
the walk-generating function and taking its Maclaurin expansion to get each term(
Ai

)
S×S

as i ranges through the natural numbers. If the power series has no zero
coefficients then a reverse formula also exists.

Corollary 4.2. If G and H are two graphs, and S ⊂ V (G) and T ⊂ V (H) are
such that R(λ, S, AG) = R(λ, T, AH), then there is perfect state transfer between
two vertices of S in G if and only if there is perfect state transfer between the two
corresponding vertices of T in H.
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We could state similar corollaries for any other local quantum state transfer phe-
nomenon, such as pretty good state transfer, fraction revival, pretty good fractional
revival, etc.

5. Examples
5.1. Examples from hypercubes. Consider the hypercube graph Qn. Because Qn

is the Cartesian product of n 2-paths, and 2-paths exhibit perfect state transfer be-
tween their endpoints at time t = π

2 , Qn also exhibits perfect state transfer between
any pair of antipodal vertices at t = π

2 (see [13] for more information). Choose a
pair a, b of antipodal vertices. The distance partition gives an equitable partition of
Qn which places a, b into singlet classes. This is associated to a matrix P with or-
thonormal columns such that AP = Pd for some matrix d, (where A is the adjacency
matrix of Qn), and such that the columns corresponding to the {a} , {b} classes of
the distance partition are the standard basis vectors ea, eb corresponding to a, b. Let
A′ be any equitably partitionable matrix with the same divisor matrix as A (Qn),
A′P ′ = P ′d. By Theorems 2.3 and 2.21,

R (λ, {a, b} , A) =R
(
λ,

[
ea eb

]
, A

)
=R

(
λ, P

[
e{a} e{b}

]
, A

)
=R

(
λ,

[
e{a} e{b}

]
, R (λ, P, A (Qn))

)
=R

(
λ,

[
e{a} e{b}

]
, d

)
=R

(
λ,

[
e{a} e{b}

]
, R (λ, P ′, A′)

)
=R

(
λ, P ′ [

e{a} e{b}
]

, A′)
=R

(
λ,

[
ea eb

]
, A′) a, b are singlets of the partition

=R (λ, {a, b} , A′)

and so by Theorem 4.1,
[
U (t, A)

]
{a,b}×{a,b} =

[
U (t, A′)

]
{a,b}×{a,b} and so A′ also

exhibits perfect state transfer at time t between vertices a and b. For instance, the
equitably partitioned matrix

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0


describes a 4-regular (loopless, symmetric, unweighted) graph with an equitable dis-
tance partition, the same divisor matrix as the 4-hypercube, and hence the same
quantum state transfer as the hypercube occurring at the same time t. The same
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holds for any graph of this form where the 4 × 6 sub-matrices have three ones per
column and two per row. This gives rise to at least four non-isomorphic graphs.

5.2. Weighted examples. Let p (x) = x15+3x11+3x7+x3

8 and define U ′ (t) =[
p (cos t) p (i sin (t))

p (i sin (t)) p (cos (t))

]
. The polynomial p is chosen here so that U ′ (t) will still

satisfy several conditions required of a submatrix of a quantum walk matrix (such as
having rows and columns with norm at most 1 for all t ∈ R), and that when treated
as such it exhibits quantum state transfer between the first and second rows/columns
at time t = π

2 . Using the quantum walk/reduction equivalence (Theorem 4.1) and
unfolding formulas above we may numerically approximate a matrix A such that the
restriction of

[
e−itA

]
to its first two rows and columns equals U (t) for all t.(2) For

this particular example, we get

A =



0. 0. 0.027978 −0.0922718 0.242288 −0.486778 0.823341 −1.16907 1.46643 −1.46643 1.16907 −0.823341 0.486778 −0.242288 0.0922718 0.027978
0. 0. 0.027978 0.0922718 0.242288 0.486778 0.823341 1.16907 1.46643 1.46643 1.16907 0.823341 0.486778 0.242288 0.0922718 −0.027978

0.027978 0.027978 −14.9999 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
−0.0922718 0.0922718 0. −12.9986 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.242288 0.242288 0. 0. −10.9883 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
−0.486778 0.486778 0. 0. 0. −8.94012 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.823341 0.823341 0. 0. 0. 0. −6.77289 0. 0. 0. 0. 0. 0. 0. 0. 0.
−1.16907 1.16907 0. 0. 0. 0. 0. −4.37061 0. 0. 0. 0. 0. 0. 0. 0.
1.46643 1.46643 0. 0. 0. 0. 0. 0. −1.54827 0. 0. 0. 0. 0. 0. 0.

−1.46643 1.46643 0. 0. 0. 0. 0. 0. 0. 1.54827 0. 0. 0. 0. 0. 0.
1.16907 1.16907 0. 0. 0. 0. 0. 0. 0. 0. 4.37061 0. 0. 0. 0. 0.

−0.823341 0.823341 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.77289 0. 0. 0. 0.
0.486778 0.486778 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8.94012 0. 0. 0.

−0.242288 0.242288 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10.9883 0. 0.
0.0922718 0.0922718 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 12.9986 0.
0.027978 −0.027978 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 14.9999



.

Now we apply the correctness-preserving similarities to clean up this matrix. Call
the submatrix of A consisting of its first two columns and all but the last two rows
C and let C have a singular-value decomposition as C = UΣV ∗. Conjugating A by[
I2 0
0 V

]
gives us the matrix

A′ =



0. 0. 2.12132 2.12132 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 2.12132 −2.12132 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2.12132 2.12132 −0.0833333 0. 0.196751 0.284463 −2.57647 0.68318 −0.977199 0.856952 2.48288 0.481143 2.08239 0.141588 0.571262 −0.0163498
2.12132 −2.12132 0. 0.0833333 0. 2.05577 0.219783 2.41895 0.39145 −1.05739 0.312072 −2.6215 0.129941 −1.2529 0.024631 0.197587

0. 0. 0.196751 0. −14.9973 0.0037521 −0.033984 0.0090112 −0.0128894 0.0113033 0.0327495 0.0063463 0.0274669 0.0018676 0.007535 −0.0002157
0. 0. 0.284463 2.05577 0.0037521 −8.5725 −0.0047034 0.307882 0.0858303 −0.548067 0.15351 −0.770738 0.0912691 −0.336743 0.0219053 0.0509662
0. 0. −2.57647 0.219783 −0.033984 −0.0047034 −6.7053 −0.0536042 −1.27472 −0.13598 −2.27623 −0.110415 −1.35281 −0.0405812 −0.324624 0.005575
0. 0. 0.68318 2.41895 0.0090112 0.307882 −0.0536042 −5.01216 0.13078 −3.04851 0.308603 −2.82363 0.194183 −1.09495 0.0478674 0.155452
0. 0. −0.977199 0.39145 −0.0128894 0.0858303 −1.27472 0.13078 −6.30342 0.0416119 −6.03507 −0.0373148 −3.23428 −0.0253876 −0.734529 0.0045148
0. 0. 0.856952 −1.05739 0.0113033 −0.548067 −0.13598 −3.04851 0.0416119 −5.09013 0.289492 −5.12205 0.202933 −1.83847 0.052339 0.24869
0. 0. 2.48288 0.312072 0.0327495 0.15351 −2.27623 0.308603 −6.03507 0.289492 −2.22977 0.114164 −3.32338 0.02211 −0.726791 −0.001291
0. 0. 0.481143 −2.6215 0.0063463 −0.770738 −0.110415 −2.82363 −0.0373148 −5.12205 0.114164 3.11392 0.0937966 −1.26269 0.0255681 0.166242
0. 0. 2.08239 0.129941 0.0274669 0.0912691 −1.35281 0.194183 −3.23428 0.202933 −3.32338 0.0937966 7.31687 0.0228196 −0.348013 −0.0021095
0. 0. 0.141588 −1.2529 0.0018676 −0.336743 −0.0405812 −1.09495 −0.0253876 −1.83847 0.02211 −1.26269 0.0228196 10.562 0.0066175 0.0552393
0. 0. 0.571262 0.024631 0.007535 0.0219053 −0.324624 0.0478674 −0.734529 0.052339 −0.726791 0.0255681 −0.348013 0.0066175 12.925 −0.0006645
0. 0. −0.0163498 0.197587 −0.0002157 0.0509662 0.005575 0.155452 0.0045148 0.24869 −0.001291 0.166242 −0.0021095 0.0552393 −0.0006645 14.9928



.

Because this is a correctness-preserving similarity, A′ has the same reduction (to
its first two rows and columns) as A, and hence the same restricted quantum walk
matrix as A. Now let C ′ be the submatrix of A′ consisting of the third and fourth
rows and the fifth through final columns, and let V ′ be the right unitary matrix in

the singular value decomposition for C ′. Conjugating A′ by
[
I4 0
0 V ′

]
gets us a new

matrix A′′ with the same restricted quantum walk matrix as A. By iterating this
process (and applying some similarities by block-diagonal matrices with two-by-two

unitary matrices such as
[
1 0
0 1

]
and

[ √
2

2

√
2

2√
2

2 −
√

2
2

]
on the diagonal) we may find the

(2)Code to accomplish this procedure can be found at:

https://github.com/JakkobMath/Isospectral-reduction-code
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block-tridiagonal matrix

A′′ =



0. 0. −3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. −3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

−3. 0. 0. −0.0833333 −4.47136 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. −3. −0.0833333 0. 0. −4.47136 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. −4.47136 0. 0. 0.200041 −5.56723 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. −4.47136 0.200041 0. 0. 5.56723 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. −5.56723 0. 0. 0.619732 6.40559 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 5.56723 0.619732 0. 0. 6.40559 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 6.40559 0. 0. −1.31413 7.07649 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 6.40559 −1.31413 0. 0. 7.07649 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 7.07649 0. 0. 3.17371 −7.21365 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 7.07649 3.17371 0. 0. −7.21365 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. −7.21365 0. 0. −5.45303 −7.37469 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. −7.21365 −5.45303 0. 0. 7.37469
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. −7.37469 0. 0. −11.0904
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7.37469 −11.0904 0.



.

By construction, A′′ has the same reduction to its first two rows and columns as
A. Finally, we conjugate A′′ by the diagonal matrix with diagonal entries

1, 1, −1, −1, 1, 1, −1, 1, −1, 1, −1, 1, 1, −1, −1, −1

to obtain the matrix

A′′′ =



0. 0. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
3. 0. 0. −0.0833333 4.47136 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 3. −0.0833333 0. 0. 4.47136 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 4.47136 0. 0. 0.200041 5.56723 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 4.47136 0.200041 0. 0. 5.56723 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 5.56723 0. 0. −0.619732 6.40559 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 5.56723 −0.619732 0. 0. 6.40559 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 6.40559 0. 0. 1.31413 7.07649 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 6.40559 1.31413 0. 0. 7.07649 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 7.07649 0. 0. −3.17371 7.21365 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 7.07649 −3.17371 0. 0. 7.21365 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7.21365 0. 0. 5.45303 7.37469 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7.21365 5.45303 0. 0. 7.37469
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7.37469 0. 0. −11.0904
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7.37469 −11.0904 0.



.

This matrix has mostly positive entries, has the same reduction to its first two
vertices as A, has the U ′ (t) defined above as the restriction of its quantum walk
matrix to its first two rows and columns, and has no loops. Its eigenvalues are the
odd integers between −15 and 15 inclusive, each with multiplicity one. It exhibits
perfect state transfer between its first two vertices and is the matrix of minimal size
having U ′ (t) as a restriction of its quantum walk matrix. Furthermore, any matrix
having U ′ (t) as a submatrix of its quantum walk matrix may be obtained from A′′′ by
appending new rows and columns such that the existing eigenvalues are preserved and
the restrictions of the eigenvectors of the new matrix to its first 16 rows and columns
match the eigenvectors of A′′′, applying conjugations by invertible matrices that equal
the identity matrix on their first two rows and columns, and applying conjugations
by permutation matrices.
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