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Tanisaki witness relations
for harmonic differential forms

Joshua P. Swanson

Abstract Inspired by a series of conjectures and formulas related to higher coinvariant alge-
bras, we present two families of relations involving harmonic differential forms of the symmetric
group. Our relations, together with a novel bijection, are sufficient to give a filtration of the
1-forms suggested by work of Haglund–Rhoades–Shimozono with composition factors given by
Tanisaki quotients. These are “almost all” of the necessary relations in a certain asymptotic
sense we make precise.

1. Introduction
1.1. Overview of results. We present a large family of relations between harmonic
differential forms of the symmetric group. These relations are involved in a series of
conjectures and results concerning higher coinvariant algebras. Combining a recent
conjecture of Zabrocki [23] on super diagonal coinvariant algebras with results of
Haglund–Rhoades–Shimozono [10] on generalized coinvariant algebras related to the
Delta Conjecture of Haglund–Remmel–Wilson [9] suggests the existence of a filtration
of the harmonic differential forms of the symmetric group whose successive quotients
are cohomology rings of Springer fibers; see Question 1.3. These cohomology rings were
given a well-known presentation by Tanisaki [22]. Separately, a recent conjecture of
Wallach and the author [21](1) gives an explicit description of the harmonic differential
forms in terms of certain differential operators from [20] applied to the Vandermonde
determinant.

Our main results are two families of “Tanisaki witness relations” between these
explicit harmonic differential forms, Theorem 1.10 and Theorem 1.14. Together with
a novel bijection, Theorem 1.6, our relations are sufficient to prove the hoped-for
filtration for 1-forms, Corollary 1.13. They also provide “almost all” of the neces-
sary relations in a certain asymptotic sense, see Remark 1.12. Our arguments are
combinatorial and effectively construct certain intricate sign-reversing involutions.

Our results provide further evidence for the above conjectures and precisely iden-
tify some of the remarkably rich structure underlying them. We hope they will spur
additional research on this topic, especially from topological, homological, algebraic,
or geometric perspectives.

The rest of this introduction describes these developments and their context in de-
tail and states our main results. We introduce the classical coinvariants, the Tanisaki
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(1)This conjecture was proven by Rhoades–Wilson [16] after this manuscript was submitted.
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ideals, the generalized coinvariant algebras, the Delta Conjecture and higher coin-
variant algebras, classical harmonics, harmonic differential forms, the flip action, the
potential filtration which motivated this work, Tanisaki witness relations, our first
family of relations which we call the Generic Pieri Rule, our result for 1-forms, and
our second family of relations.

1.2. Classical coinvariants. The coinvariant algebra of the symmetric group Sn

is the quotient

(1) Rn := Q[x1, . . . , xn]
⟨er(n) : r ∈ [n]⟩ ,

where the generators are the elementary symmetric polynomials

er(n) := er(x1, . . . , xn) :=
∑

1⩽i1<···<ir⩽n

xi1 · · · xir .

The classical coinvariant algebra is very well understood from topological, geometric,
and combinatorial perspectives [2, 6, 8, 14, 18]. As one example, Borel [4] showed that
Rn is a presentation for the cohomology ring of the complete flag variety.

1.3. Tanisaki ideals. A series of authors (see [7, p.83]) more generally considered
the cohomology ring of the Springer fiber Xµ consisting of complete flags in Cn fixed
by the unipotent matrix with Jordan blocks of size µ1 ⩾ · · · ⩾ µn ⩾ 0 for a partition
µ ⊢ n. The complete flag variety is the case µ = (1, . . . , 1), corresponding to the
identity matrix.

Tanisaki [22] gave a presentation of the cohomology rings H∗(Xµ),

(2) Rµ := Q[x1, . . . , xn]
Iµ

where

(3) Iµ := ⟨er(S) : |S| − d|S|(µ) < r ⩽ |S|, S ⊂ [n]⟩

is a Tanisaki ideal, with dk(µ) := µ′
n + µ′

n−1 + · · · + µ′
n−k+1 and

(4) er(S) :=
∑

{i1<···<ir}⊂S

xi1 · · · xir
.

Here µ′ is the transpose of µ. We give a more compact, diagrammatic description of
the Tanisaki ideals in Section 2.

The cohomology rings H∗(Xµ) carry a non-obvious [14] graded Sn-module struc-
ture, which is compatible with the natural action of Sn on Rµ. The graded Frobe-
nius series encoding the graded Sn-module decomposition of Rµ is the dual Hall–
Littlewood symmetric function up to a twist,

(5) GrFrob(Rµ; q) = qb(µ)Q′
µ(x; q−1) = revq Q′

µ(x; q),

where b(µ) :=
∑

i(i − 1)µi and revq F (q) := qdeg F F (q−1) is the q-reversal operator.
See [7]. (The revq in (5) was inadvertently neglected in [10, (7.1)].)

1.4. Generalized coinvariant algebras. In a different direction, Haglund–
Rhoades–Shimozono [10] introduced the generalized coinvariant algebras

Rn,k := Q[x1, . . . , xn]
⟨xk

1 , . . . , xk
n, en(n), en−1(n), . . . , en−k+1(n)⟩
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while studying the Delta Conjecture of Haglund–Remmel–Wilson [9], which we will
discuss shortly. They gave the following compact description of the graded Frobenius
series of Rn,k [10, Thm. 6.14] generalizing (5) when k = n,
(6)

GrFrob(Rn,k; q) = revq

 ∑
µ⊢n

ℓ(µ)=k

q
∑k

i=1
(i−1)(µi−1)

(
k

m1(µ), . . . , mn(µ)

)
q

Q′
µ(x; q)


where ℓ(µ) := #{j : µj ̸= 0}, mi(µ) := #{j : µj = i}, and

(
k

m1,...,mn

)
q

is a q-
multinomial coefficient.

Haglund–Rhoades–Shimozono ask whether a filtration of Rn,k could be found to
prove (6) directly using (5), with successive quotients Rµ up to q-shifts [10, Prob-
lem 7.1]. A geometric description of Rn,k was later given by Rhoades–Pawlowski [14],
though an appropriate filtration has been elusive. Pursuing such a filtration has been
the primary motivation of the present work.

1.5. The Delta Conjecture and higher coinvariant algebras. The Delta
Conjecture of Haglund–Remmel–Wilson [9] hypothesizes a certain symmetric function
identity,

(7) ∆′
ek−1

(en) = Cn,k(x; q, t), 0 ⩽ k ⩽ n − 1

where ∆′
f is a certain modified Macdonald eigenoperator and Cn,k(x; q, t) is either of

two explicit combinatorial expressions(2). See [9, §3] for details.
The main result of Haglund–Rhoades–Shimozono is [10, Thm. 6.11],

(8) GrFrob(Rn,k; q) = revq ωCn,k(x; q, 0),

where ω : sλ 7→ sλ′ is the usual involution on symmetric functions. Representation-
theoretically, ω corresponds to tensoring with the sgn representation. Consequently,
Rn,k provides a representation-theoretic model for the right-hand side of the t = 0
specialization of the Delta Conjecture, up to a twist.

Zabrocki [23] recently introduced the super-diagonal coinvariant algebra SDRn

and conjectured that it gives a representation-theoretic model for the left-hand side
of the full Delta Conjecture in the sense that

(9) GrFrob(SDRn; q, t, z) =
n−1∑
k=0

zk∆′
en−k−1

(en).

The t = 0 specialization of Zabrocki’s model differs from the generalized coinvariant
algebras Rn,k and is instead the super coinvariant algebra

(10) SDRn|t=0 = SRn := Q[x1, . . . , xn, θ1, . . . , θn]
Jn

,

where Jn is the ideal generated by the bi-homogeneous non-constant Sn-invariants.
Here the xi commute, the θi anti-commute, and Sn acts simultaneously on x and
θ variables. That is, xixj = xjxi, xiθj = θjxi, θiθj = −θjθi, σ · xi = xσ(i), and
σ · θi = θσ(i). We may think of θi1 · · · θik

as the differential k-form dxi1 ∧ · · · ∧ dxik
,

and more generally Q[x1, . . . , xn, θ1, . . . , θn] is the ring of differential forms on V = Qn

with polynomial coefficients.

(2)The “rise” version has been independently proven by D’Adderio–Mellit [5] and Blasiak–
Haiman–Morse–Pun–Seelinger [3].
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The ideal Jn can be given a very explicit description. Let d be the exterior deriv-
ative defined by

df :=
n∑

i=1

∂f

∂xi
dxi =

(
n∑

i=1
∂xi

θi

)
f.

Solomon showed [17]
(11) Jn = ⟨er(n), der(n) : r ∈ [n]⟩.

Remark 1.1. After this work was submitted, Rhoades–Wilson [16] proved the Hilbert
series specialization of the t = 0 case of Zabrocki’s conjecture (9). Consequently, the pn

1
component of the formula (16) below motivating this work has been entirely proven.
Our results continue to provide additional evidence for (16) and therefore for the full
t = 0 case of Zabrocki’s conjecture.

1.6. Classical harmonics. The coinvariant algebra Rn has a distinguished set of
coset representatives called the harmonics,

Hn := {f ∈ Q[x1, . . . , xn] : ∂er(n)f = 0 for all r ∈ [n]}.

Here ∂g is the polynomial differential operator defined by replacing each xi with ∂xi
.

The natural projection Hn → Rn is an isomorphism of graded Sn-modules, so for
many purposes we may replace Rn with Hn. See [21] for details.

The alternating component of Hn,
Hsgn

n := {f ∈ Hn : ∀σ ∈ Sn, σ · f = sgn(σ)f},

is spanned by the classical Vandermonde determinant,

∆n :=
∏

1⩽i<j⩽n

(xj − xi).

Steinberg [19, Thm. 1.3(c)] showed that
(12) Hn = Q[∂x1 , . . . , ∂xn

]∆n.

Intuitively, we think of ∆n as a “tent pole” which the remaining elements of Hn “hang
off.”

1.7. Harmonic differential forms. Likewise, the super coinvariant algebras SRn

may be replaced with the harmonic differential forms,
SHn := {ω ∈ Q[x1, . . . , xn, θ1, . . . , θn] : ∂er(n)ω = 0 = ∂der(n)ω, r ∈ [n]}.

Here ∂θi
is an interior product. See [21] for details. Let SHk

n denote the k-form com-
ponent of SHn.

In [20], Wallach and the author gave the following basis of size 2n−1 for the alter-
nating component of SHn,

SHsgn
n := {ω ∈ SHn : σ · ω = sgn(σ)ω for all σ ∈ Sn}

= SpanQ{di1 · · · dik
∆n : 1 ⩽ i1 < · · · < ik ⩽ n − 1}.(13)

Here

di :=
n∑

j=1
∂i

xj
θj

is a generalized exterior derivative which lowers x-degree by i and raises θ-degree by
1. For brevity, we write

dI := di1 · · · dik

where I = {i1 < · · · < ik} ⊂ [n − 1]. We sometimes abbreviate {i1, . . . , ik} as i1 · · · ik.
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In [21], Wallach and the author conjectured the following generalization of Stein-
berg’s equation (12),
(14) SHn = Q[∂x1 , . . . , ∂xn ]{dI∆n : I ⊂ [n − 1]}.

Among the evidence for (14) provided in [21], we showed that the bi-graded support
of SHn is precisely that predicted by (14), supporting the notion that the elements
dI∆n are the “tent poles” of SHn. Rhoades–Wilson [16] have since completely proven
(14).

Remark 1.2. Rhoades–Wilson [15] have defined variations on the harmonics SHn by
introducing “superspace Vandermondes,” which are alternants coming from particular
terms in certain dI∆n’s. They construct modules by closing these superspace Van-
dermondes under partial derivatives which provably satisfy the appropriate analogue
of (16) below. It is an open problem to connect their modules to the harmonics SHn.

1.8. The flip action. Since SHn is closed under partial differentiation, we may
consider it as a Q[x1, . . . , xn]-module under the flip action

g · ω := ∂gω

for ω ∈ SHn. Since ed(n) ·ω = ∂ed(n)ω = 0 by definition, SHn is an Rn-module under
the flip action. Note that the flip action lowers x-degree.

Given I ⊂ [n − 1], define a component SHI of SHn from (14) by
(15) SHI := Q[∂x1 , . . . , ∂xn

]dI∆n.

Let Ann SHI be the annihilator of dI∆n under the flip action, so that SHI
∼=

Q[x1, . . . , xn]/Ann SHI as Q[x1, . . . , xn]-modules.
Suppose for the sake of illustration that Ann SHI = Iµ is a Tanisaki ideal and

b(µ) + i1 + · · · + ik =
(

n
2
)
. Since di1 · · · dik

∆n transforms by sgn and has x-degree(
n
2
)

− i1 − · · · − ik, and since the flip action lowers x-degree, we have

GrFrob(SHI ; q) = ωq(n
2)−i1−···−ik GrFrob(Q[x1, . . . , xn]/Ann SHI ; q−1)

= ω revq GrFrob(Q[x1, . . . , xn]/Iµ; q)
= ωQ′

µ(x; q).
Consequently, using the super harmonics SHn and considering the flip action can
entirely account for the twists in (8). We are thus led to the study of the Q[x1, . . . , xn]-
module structure of SHn.

1.9. A potential filtration. Combining (14), the t = 0 case of Zabrocki’s con-
jecture (9), the t = 0 case of the Delta Conjecture (7), and Haglund–Rhoades–
Shimozono’s Q′

µ-expansion formula (6) gives

GrFrob

 ∑
I⊂[n−1]

SHI ; q, z


=
∑
µ⊢n

zn−ℓ(µ)q
∑ℓ(µ)

i=1
(i−1)(µi−1)

(
ℓ(µ)

m1(µ), . . . , mn(µ)

)
q

ωQ′
µ(x; q).

(16)

The left-hand side of (16) is indexed by subsets of [n − 1]. Expanding the multino-
mial coefficients, we may consider the right-hand side to be indexed by strong com-
positions of n, namely sequences α = (α1, . . . , αk) with αi ⩾ 1 and α1 + · · · + αk = n,
which are well-known to be in bijection with 2[n−1]. Combining all of these observa-
tions, we are led to the following question, which has motivated the present work.
Here Iα := Iµ if µ is the weakly decreasing rearrangement of α.
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Question 1.3. Is there a total order I1 < I2 < · · · on 2[n−1] and a bijection Φn

from 2[n−1] to the set of strong compositions α ⊨ n for which the successive filtration
quotients ∑

j⩽m SHIj∑
j<m SHIj

are annihilated precisely by the Tanisaki ideal IΦn(Im) acting as partial differential
operators?

Additional motivation for considering Question 1.3 comes from a desire to find
explicit bases for the super coinvariant algebras SRn. Garsia–Procesi [7] gave explicit
monomial bases {xα} for the Tanisaki ideals Iµ. Hence given a total order and bijec-
tion satisfying Question 1.3, we have an explicit basis for SHn of the form {∂xαdI∆n}.

We also have a purely enumerative consequence of Question 1.3. In this situation,

(17) GrFrob

 ∑
I⊂[n−1]

SHI ; q, z

 =
∑

I⊂[n−1]

z|I|q(n
2)−sum(I)−b(Φn(I))ωQ′

Φn(I)(x; q),

where sum(I) :=
∑

i∈I i, b(α) := b(µ), and Q′
α(x; q) := Q′

µ(x; q) where µ is the weakly
decreasing rearrangement of the strong composition α. Define the coinversion number
of α ⊨ n by

coinv(α) := #{1 ⩽ i < j ⩽ ℓ(α) : αi < αj}.

Recall that ∑
qcoinv(α) =

(
ℓ(µ)

m1(µ), . . . , mn(µ)

)
q

,

where the sum is over all rearrangements α of µ ⊢ n. Combining (16) and (17) then
gives

(18)
∑
α⊨n

zn−ℓ(α)q2b(α)−(ℓ(α)
2 )+coinv(α) =

∑
I⊂[n−1]

z|I|q(n
2)−sum(I),

where we have used the fact that ωQ′
µ(x; q)|sgn = qb(µ).

The classic “stars and bars” bijection from 2[n−1] to {α ⊨ n} does not satisfy (18).
In Section 3, we define a new bijection which does respect (18). It is more convenient
to describe the inverse map Ψn, which we do now. See Example 1.5.
Definition 1.4. Given a strong composition α of n, create a left-justified diagram of
cells, where the ith row from the top has αi cells. Let mi denote the number of cells
in columns 1, 2, . . . , i. First fill the cells of the second column from top to bottom with
numbers m1, m1 −1, m1 −2, . . ., skipping missing cells in that column. Now delete the
first column and any empty rows and repeat this procedure on the new second column
using a maximum of m2, and continue in this fashion. Afterwards, Ψn(α) is the set
of numbers filling the columns 2, 3, . . . of α.
Example 1.5. When α = (1, 3, 2, 1, 3, 1) ⊨ 11, the procedure gives

5 9
4

2 7

.

Here m1 = 6 and m2 = 9. In the first phase, we fill the second column with numbers
6, 5, 4, 3, 2, 1, skipping the missing cells 6, 3, 1. In the second phase, we remove the
first, fourth, and sixth rows and fill the remaining cells of the third column with
9, 8, 7, skipping the missing cell 8. In all, Ψ11(1, 3, 2, 1, 3, 1) = {2, 4, 5, 7, 9}.
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Theorem 1.6. The bijection Ψn : {α ⊨ n} → 2[n−1] satisfies

n − ℓ(α) = |I|

2b(α) −
(

ℓ(α)
2

)
+ coinv(α) =

(
n

2

)
− sum(I)

whenever Ψn(α) = I. Consequently,∑
α⊨n

zn−ℓ(α)q2b(α)−(ℓ(α)
2 )+coinv(α) =

∑
I⊂[n−1]

z|I|q(n
2)−sum(I).

Remark 1.7. The condition (18) does not uniquely determine the bijection Φn. For
instance, one could replace coinv with inv or maj using a number of well-known
bijections. As we show below, the bijection Φn from Theorem 1.6 is sufficient to answer
Question 1.3 for 1-forms. However, computational evidence suggests a different order
may be required in general. See Section 8 for further discussion.

1.10. Tanisaki witness relations. Given a total order and bijection satisfying
Question 1.3, for each generator er(S) of the Tanisaki ideal IΦn(Im), we must have a
relation of the form

(19) ∂er(S)dIm
∆n =

∑
j<m

∂fj
dIj

∆n where fj ∈ Q[x1, . . . , xn],

which we call a Tanisaki witness relation. By homogeneity, we may restrict the terms
in the Tanisaki witness relations to k-forms where |Ij | = k is fixed.

Example 1.8. When n = 3, k = 1, we have α ∈ {(2, 1), (1, 2)} with I ∈ {{1}, {2}}.
The Tanisaki ideal I(2,1) has the same generators as the classical coinvariant ideal
I(1n) together with e2(2) and its images under S3. We find relations

∂e2(2)d{2}∆3 = 0
∂e2(2)d{1}∆3 = ∂e1(2)d{2}∆3.

Hence I(2,1) annihilates both SH{2} ⊂ SH1
3 and (SH{1} + SH{2})/SH{2}, so the

composition factors are both quotients of I(2,1). By counting dimensions, there are no
further relations, so the composition factors are precisely I(2,1), answering Question
1.3 in the affirmative in this case using the order {2} < {1}.

Example 1.9. The relations between ∂er(m)dI∆n are generally quite complicated. For
instance, at n = 7, k = 2, we have

0 = 5∂e5(5)d16∆7 − 4∂e4(5)d26∆7 + 3∂e3(5)d36∆7 − 2∂e2(5)d46∆7 + ∂e1(5)d56∆7

+ 3∂e5(5)d25∆7 − 2∂e4(5)d35∆7 + ∂e3(5)d45∆7

+ ∂e5(5)d34∆7.

and at n = 8, k = 3 we have

0 = 4∂e6(6)d356∆8 − 8∂e5(6)d357∆8 + 4∂e4(6)d367∆8

− 3∂e5(6)d456∆8 + 6∂e4(6)d457∆8 − 3∂e3(6)d467∆8.

The first of these is explained by our results below, though the second is not.

1.11. The Generic Pieri Rule. All Tanisaki ideals Iµ with ℓ(µ) = n − k for µ ̸=
(1n) contain the generator en−k(n − 1). The following provides all necessary Tanisaki
witness relations for this “generic” generator, and is one of our main results.
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Theorem 1.10 (“Generic Pieri Rule”). Suppose I = {i1 < · · · < ik} ⊂ [n − 1]. Then∑
(−1)d∂en−k−d(n−1)dj1···jk

∆n = 0,

where the sum is over all subsets J = {j1 < · · · < jk} ⊂ [n − 1] for which

1 ⩽ i1 ⩽ j1 < i2 ⩽ j2 < i3 ⩽ j3 < · · · < ik ⩽ jk < n,

where
d := (j1 − i1) + · · · + (jk − ik).

Remark 1.11. Our terminology in Theorem 1.10 arises from the fact that the clas-
sical Pieri rule is a multiplicity-free expansion of the product of a Schur function
by an elementary symmetric polynomial, together with the fact that the generator
en−k(n − 1) is generic in the sense above.

Remark 1.12. The generator en−k(n − 1), together with its images under Sn, is the
only generator in Iµ for µ = (2k, 1n−2k) when n ⩾ 2k, aside from the generators
of I(1n). The fraction of α ⊨ n with ℓ(α) = n − k where α is a rearrangement of
µ = (2k, 1n−2k) tends to 1 for each fixed k as n → ∞. In this asymptotic sense, the
Generic Pieri Rule gives “almost all” of the necessary Tanisaki witness relations.

The Generic Pieri Rule answers the 1-form case of Question 1.3 in the affirmative.
More explicitly, we prove the following special case of (17).

Corollary 1.13. The order {n − 1} < {n − 2} < · · · < {1} gives a filtration of SH1
n

by SH{i}’s where the composition factors are annihilated precisely by the Tanisaki
ideal I(2,1n−2). In particular,

(20) GrFrob
(
SH1

n; q
)

= [n − 1]qωQ′
(2,1n−2)(x; q).

1.12. Extreme hook relations. In contrast to Theorem 1.10, which applies to
any I ⊂ [n − 1], we also have Tanisaki witness relations corresponding to the least
generic shapes in the following sense. Let α be the result of removing the first column
of α and removing empty rows, or equivalently subtracting 1 from each entry and
removing 0’s. For α ⊨ n with ℓ(α) = n − k, consider β := α ⊨ k. As noted above,
for fixed k, the probability that β = (1k) tends to 1 as n → ∞. By contrast, the
proportion of such α with β = (k) is the smallest possible among all β ⊨ k.

Slightly more generally, we consider α ⊨ n with ℓ(α) = n − k and α = (s, 1k−s) for
some 1 ⩽ s ⩽ k. The Tanisaki ideal Iα is generated by

en−k(n − 1), en−s(n − 2), . . . , en−s(n − s)

together with their images under Sn and the generators of the classical coinvariant
ideal I(1n). The following result gives Tanisaki witness relations for each of these
generators.

Theorem 1.14. Suppose I = {i1 < · · · < ik} ⊂ [n−1] is such that for some 1 ⩽ s ⩽ k
we have

i1, . . . , ik−s+1 ⩽ n − k

ik−s+2 = n − s + 1
ik−s+3 = n − s + 2

...
ik = n − 1.
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Pick 0 ⩽ u ⩽ s. Then

(21)
∑

(−1)d∆s(jk−s+1, . . . , jk)
(

d + u

u

)
∂en−s−d(n−s+u)dJ∆n = 0,

where the sum is over all subsets J = {j1 < · · · < jk} ⊂ [n − 1] for which

j1 = i1, . . . , jk−s = ik−s

d := (jk−s+1 − ik−s+1)+ · · · + (jk − ik) ⩾ 0.

Remark 1.15. The condition on I in Theorem 1.14 is equivalent to Φn(I) = α where
α ⊨ n, ℓ(α) = n − k, and α = (s, 1k−s) for some 1 ⩽ s ⩽ k.

1.13. Paper organization. The rest of the paper is organized as follows. In Section
2, we describe a set of “essential” Tanisaki ideal generators. In Section 3, we give the
inverse to the bijection Ψn from Definition 1.4 and prove Theorem 1.6. In Section 4,
we introduce a combinatorial model for the terms in our main identities. In Section
5, we prove the Generic Pieri Rule, Theorem 1.10, and the 1-form result, Corollary
1.13. In Section 6, we introduce some symmetric group actions and give a shifted
Vandermonde identity, Corollary 6.4. In Section 7, we use the results of the previous
sections to prove our second family of Tanisaki witness relations, Theorem 1.14. In
Section 8, we discuss further directions.

2. Essential Tanisaki generators
We now describe a small subset of the Tanisaki ideal generators which in fact suffice
to generate Iµ. See Example 2.2 for a simple graphical interpretation of this set of
“essential” generators.

Lemma 2.1. Given µ ⊢ n, compute d0, . . . , dµ1−1 iteratively by d0 := 1 and

di := di−1 + (µ′
i − 1).

Then

(22) Iµ = Sn · ⟨ed1
(n − 1), ed2

(n − 2), . . . , ed
µ1−1

(n − µ1 + 1), e1(n), . . . , en(n)⟩.

Proof. First recall from (4) that the Tanisaki ideal associated to µ ⊢ n is by definition

Iµ := ⟨Tµ⟩

where
Tµ := {er(S) : |S| − d|S|(µ) < r ⩽ |S|, S ⊂ [n]}

with dk(µ) := µ′
n + µ′

n−1 + · · · + µ′
n−k+1. Here µ′ is padded with 0’s if necessary so

that it has n entries.
We have n−dn(µ) = 0, so er(n) ∈ Tµ for 1 ⩽ r ⩽ n. We similarly have ed

i
(n − i) ∈

Tµ for 1 ⩽ i ⩽ µ1 − 1 if
(n − i) − dn−i < di,

or equivalently if

(n − i) − µ′
n − · · · − µ′

i+1 ⩽ µ′
1 + · · · + µ′

i − i.

Equality holds in this last expression, so in fact (n − i) − dn−i = di − 1. Write I ′
µ for

the right-hand side of (22). We have just shown that I ′
µ is contained in Iµ.

Conversely, we show er(S) ∈ I ′
µ for |S| − d|S|(µ) < r ⩽ |S|, S ⊂ [n] by downward

induction on |S|. By Sn-symmetry, we may suppose S = {1, 2, . . . , n − i}. In the base
case i = 0, er(n) ∈ I ′

µ. Next suppose 0 < i < µ1. We further induct on r. In the base
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case, r = (n − i) − dn−i(µ) + 1 = di and er(n − i) ∈ I ′
µ by assumption. For r > di,

we have the simple identity

er(n − i + 1) = er(n − i) + xn−i+1er−1(n − i).

By induction on r, er−1(n − i) ∈ I ′
µ. On the other hand, r > di ⩾ di−1, so

er(n − (i − 1)) ∈ I ′
µ by induction on i. Hence er(n − i) ∈ I ′

µ, completing the induc-
tion on r, and hence on i. Finally, if i ⩾ µ1, we have dn−i = 0, so no such r exists,
completing the proof. □

Example 2.2. Let µ = (5, 3, 1, 1, 1). After drawing the diagram of µ, compute the
sequence d by writing 1 above the first column, adding one less than the length of the
first column and writing the result above the second column, etc. Here we have

d = 1, 5, 6, 7, 7

so that

I(5,3,1,1,1) = Sn · ⟨e5(n − 1), e6(n − 2), e7(n − 3), e7(n − 4), e1(n), . . . , en(n)⟩

where n = 11.

Example 2.3. Suppose µ ⊢ n has ℓ(µ) = n − k and µ ̸= (1n). Then d1 = n − k, so
en−k(n − 1) ∈ Iµ, which is the “generic” generator involved in the Generic Pieri Rule,
Theorem 1.10. Moreover, if µ = (1k), so µ = (2k, 1n−2k), this is the only generator up
to the Sn-action aside from the generators of the classical coinvariant ideal I(1n).

Example 2.4. Suppose µ ⊢ n has ℓ(µ) = n − k and µ = (s, 1k−s) for 1 ⩽ s ⩽ k. Then
d = 1, n − k, n − s, . . . , n − s and the essential generators of Iµ are

en−k(n − 1), en−s(n − 2), . . . , en−s(n − s)

3. Subset to composition bijection
We now describe the inverse Φn : 2[n−1] → {α ⊨ n} to the map Ψn from Subsection
1.9 described in Definition 1.4. Along the way, we prove the statistic preservation
result for the maps Φn and Ψn, Theorem 1.6. This section may be read independently
of the others.

We begin by considering a step of a recursive decomposition on strong compositions.
We also define a notion of “degree” inspired by (18) and describe the effect of this
recursive step on the degree.

Definition 3.1. Let α ⊨ n be a strong composition of n of length ℓ(α). Set

coinv(α) := #{1 ⩽ i < j ⩽ ℓ(α) : αi < αj}.

Let µ(α) denote the partition of n obtained by rearranging α in weakly decreasing
order. Set

deg(α) := coinv(α) +
ℓ(α)∑
i=1

(i − 1)(2µ(α)i − 1) = coinv(α) + 2b(α) −
(

ℓ(α)
2

)
.

Finally, let α be the strong composition obtained by removing 1 from every row of α
and deleting empty rows.
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Example 3.2. When α = (1, 3, 2, 1, 3, 1), we have µ(α) = (3, 3, 2, 1, 1, 1), α = (2, 1, 2)
so

α = µ(α) = α =

and
coinv(α) = 3 + 0 + 1 + 1 + 0 + 0 = 5

b(α) = 0 · 3 + 1 · 3 + 2 · 2 + 3 · 1 + 4 · 1 + 5 · 1 = 19
deg(α) = 5 + 2 · 19 − 15 = 28
deg(α) = 1 + 2 · 4 − 3 = 6.

Lemma 3.3. Let α ⊨ n. Suppose ℓ(α) = r and ℓ(α) = s. Then

deg(α) = deg(α) +
(

r

2

)
− s + j1 + · · · + js

where {1 ⩽ j ⩽ r : αj > 1} = {j1, . . . , js}.

Proof. By considering coinversions of α starting from a row of length 1 separately, it
is easy to see that

coinv(α) = coinv(α) + (j1 − 1) + · · · + (js − s).
On the other hand, we have

r∑
i=1

(i − 1)(2µ(α)i − 1) −
s∑

i=1
(i − 1)(2µ(α)i − 1)

=
r∑

i=s+1
(i − 1)(2 · 1 − 1) +

s∑
i=1

(i − 1)2(µ(α)i − µ(α)i)

=
r∑

i=s+1
(i − 1) +

s∑
i=1

2(i − 1)

=
(

r

2

)
+

s∑
i=1

(i − 1).

The result follows by combining these observations. □

We likewise consider a step of a recursive decomposition on subsets of [n − 1].
We again define a notion of “degree” inspired by (18) and describe the effect of
this recursive step on the degree. Finally we restate and prove Theorem 1.6 below
(Theorem 3.9).

Definition 3.4. Fix n. Let I ⊂ [n − 1]. Define

deg(I) :=
(

n

2

)
−
∑
i∈I

i.

Suppose I = {i1 < · · · < ik}. Let I ⊂ [k − 1] be defined as follows. There is some
unique 1 ⩽ s ⩽ k such that
(23) 1 ⩽ i1 < · · · < is ⩽ n − k < is+1 < · · · < ik ⩽ n − 1.

Set
I := {i′

1, . . . , i′
k−s} ⊂ [k − 1] where i′

j := is+j − n + k.
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Example 3.5. Let n = 11 and I = {2, 4, 5, 7, 9} ⊂ [10]. Here k = 5 and

i1 < i2 < i3 ⩽ n − k = 6 < i4 < i5,

so s = 3 and I = {i4 − 6, i5 − 6} = {7 − 6, 9 − 6} = {1, 3} ⊂ [4]. We see

deg(I) =
(

11
2

)
− (2 + 4 + 5 + 7 + 9) = 28

deg(I) =
(

5
2

)
− (1 + 3) = 6.

Lemma 3.6. Let I = {i1 < · · · < ik} ⊂ [n − 1] and I = {i′
1, . . . , i′

k−s} ⊂ [k − 1] as
above. Then

deg(I) = deg(I) +
(

n − k

2

)
+ s(n − k) −

s∑
j=1

ij .

Proof. We compute

deg(I) − deg(I) =
(

n

2

)
−
(

k

2

)
+

k−s∑
j=1

i′
j −

k∑
j=1

ij

=
(

n

2

)
−
(

k

2

)
+

k−s∑
j=1

(is+j − n + k) −
k∑

j=1
ij

=
(

n

2

)
−
(

k

2

)
− (n − k)(k − s) +

k∑
j=s+1

ij −
k∑

j=1
ij

=
(

n − k

2

)
+ s(n − k) −

s∑
j=1

ij .

□

Definition 3.7. We recursively define a bijection Φn from subsets I of [n − 1] to
strong compositions α of n as follows. Take |I| = k. We will ensure ℓ(Φn(I)) = n−k.
For k = 0, set Φn(∅) = (1n). For k > 0, we have I ⊂ [k−1] and s satisfying (23). Let
β = Φk(I), so ℓ(β) = n − k − |I| = k − (k − s) = s. Construct α from β by requiring
α = β and

{1 ⩽ j ⩽ n − k : αj > 1} = {j1 < · · · < js}

where

j1 = n − k + 1 − is

...
js = n − k + 1 − i1.

Example 3.8. Consider

I = {2, 4, 5 | 7, 9} ⊂ [11 − 1] α = (1, 3, 2, 1, 3, 1)
I = {1, 3 | } ⊂ [5 − 1] α = (2, 1, 2)

I = ∅ ⊂ [2 − 1] α = (1, 1)
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Here | indicates the two halves of the decompositions from (23). The corresponding
diagrams using the inverse map Ψn from Definition 1.4 are

3

1
5 9
4

2 7

The elements left of | indicate where to attach elements of α to (1n−k) to form α,
from right to left. We have Φ2(I) = α, Φ5(I) = α, and Φ11(I) = α.

Theorem 3.9. The bijection Ψn : {α ⊨ n} → 2[n−1] satisfies

n − ℓ(α) = |I|

2b(α) −
(

ℓ(α)
2

)
+ coinv(α) =

(
n

2

)
− sum(I)

whenever Ψn(α) = I. Consequently,∑
α⊨n

zn−ℓ(α)q2b(α)−(ℓ(α)
2 )+coinv(α) =

∑
I⊂[n−1]

z|I|q(n
2)−sum(I).

Proof. We’ve ensured n − ℓ(α) = |I|. The second condition is equivalent to

deg(Φn(I)) = deg(I).

In the base case,

deg(Φn(∅)) = deg((1n)) =
n∑

i=1
(i − 1) =

(
n

2

)
= deg(∅).

Inductively, we may suppose that deg(I) = deg(α). By Lemma 3.3 and Lemma 3.6,
where r = n − k,

deg(I) = deg(I) +
(

n − k

2

)
+ s(n − k) − (i1 + · · · + is)

= deg(I) +
(

r

2

)
+ s(n − k) − (s(n − k + 1) − js − · · · − j1)

= deg(α) +
(

r

2

)
− s + j1 + · · · + js

= deg(α),

which completes the proof. □

We also note that, from this recursive description, it is easy to see that Φn and Ψn

are in fact inverses, hence bijections.

4. Marked staircase diagrams
We now introduce a combinatorial model for the terms in ∂er(m)dI∆n using deco-
rated diagrams. We will use relations between these diagrams to build sign-reversing
involutions in the subsequent sections.
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4.1. Staircases. Let ∆n :=
∏

1⩽i<j⩽n(xj − xi) denote the Vandermonde determi-
nant in n variables. We have
(24) ∆n =

∑
σ∈Sn

(−1)sgn(σ)x
σ(1)−1
1 · · · xσ(n)−1

n .

We model the monomials appearing in (24) as follows.

Definition 4.1. An n-staircase is a bottom-justified arrangement of n columns of
cells with heights 0, 1, . . . , n − 1, each used exactly once. The sign of an n-staircase
with column heights h1, . . . , hn in order from left to right is (−1)c where

c = #{i < j : hi > hj}.

Equivalently, the sign is sgn ∆n(h1, . . . , hn), where we have used the signum func-
tion. The monomial weight of such an n-staircase is xh1

1 · · · xhn
n , and the weight is

(−1)cxh1
1 · · · xhn

n .

Example 4.2. The 6-staircase with heights h1 = 1, h2 = 5, h3 = 3, h4 = 0, h5 =
2, h6 = 4 is

and has weight (−1)7x1x5
2x3

3x2
5x4

6.

By (24), ∆n is the weight generating function of the n-staircases.

4.2. Marked staircases. Monomials in ∂er(m)dI∆n arise from applying some se-
quence of operators ∂

ij
xj θj to a monomial from (24), followed by ∂xJ

for some J ⊂ [m].
We model these terms diagrammatically as follows. See Example 4.4.

Definition 4.3. A marked staircase is an n-staircase where some of the boxes have
been filled with ×’s or ◦’s subject to the following constraints:

(1) Any ×’s are top-justified in their column.
(2) Any ◦’s are top-justified in their column below any ×’s.
(3) A column may have at most one ◦.
(4) The last i ⩾ 0 columns are colored grey and are forbidden from containing

◦’s. They may still contain ×’s.
Furthermore, the weight of a marked staircase is the product of the following three
terms.

• The monomial weight of a marked staircase is xg1
1 · · · xgn

n θc1 · · · θck
where gℓ

denotes the number of unmarked boxes in column ℓ and {c1 < · · · < ck} is the
set of indexes of columns which contain ×’s.

• The sign of a marked staircase is (−1)c sgn ∆k(j1, . . . , jk) where (−1)c is the
sign of the underlying n-staircase and jℓ is the number of ×’s in column cℓ.
Note that this is zero if and only if j1, . . . , jk are not all distinct.

• The order of a marked staircase is the product of the heights at which the ×’s
and ◦’s appear.

Example 4.4. The marked 6-staircase
×
× ×

×
× ×

◦ ◦
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has monomial weight x3
2x3

3x6θ2θ5θ6, sign (−1)7 sgn ∆3(2, 1, 3) = 1, and order 1 · (5 ·
4) · (2 · 1) · (4 · 3 · 2) = 960. The weight is thus 960x3

2x3
3x6θ2θ5θ6, which represents a

term in ∂e2(5)d123∆6.

Lemma 4.5. Suppose I = {i1 < · · · < ik} ⊂ [n − 1]. Then

∂er(n−m)dI∆n

is the weight generating function for marked n-staircases with r ◦’s, ×’s of lengths
i1, . . . , ik, and the last m columns grey.

Proof. Applying diℓ
to ∆n is essentially the same as picking a marked n-staircase and

picking a column to add iℓ ×’s to, ignoring scalars and the θ-part for the moment.
Analogously, applying ∂er(n−m) is the same as picking r of the first n − m columns
to add ◦’s to, namely the non-grey columns. The scalars arising from applying these
x-derivatives are precisely the product of the heights of the marks involved, which is
the order. The x-part of the monomial weight is thus correct.

For the θ-part, suppose c′
ℓ is the index of the column with iℓ ×’s. We are hence

tracking the term ∂i1
xc′

1
θc′

1
· · · ∂ik

xc′
k

θc′
k

in di1 · · · dik
, so the required θ-part is θc′

1
· · · θc′

k
.

Let c1 < · · · < ck be the increasing rearrangement of c′
1, . . . , c′

k and say that column
cℓ has jℓ ×’s. Let cℓ = c′

σ(ℓ) for some σ ∈ Sk, so that jℓ = iσ(ℓ). We have

θc′
1

· · · θc′
k

= sgn(σ)θc1 · · · θck
.

Since i1 < · · · < ik has the same relative order as 1 < · · · < k,

sgn(σ) = sgn ∆n(σ(1), . . . , σ(k))
= sgn ∆n(iσ(1), . . . , iσ(k))
= sgn ∆n(j1, . . . , jk).

□

Remark 4.6. Lemma 4.5 remains valid if we use a multiset {{i1 ⩽ · · · ⩽ ik}} ⊂ [n−1],
since if the indexes are not all distinct, dI = 0 and the weights are zero. We will use
such degenerate terms in a later argument.

4.3. Marked staircase relations. The following operations preserve or negate
the monomial weight of a marked staircase. We provide examples of each operation,
where the altered portions have been highlighted.

Lemma 4.7.
A. Taking a non-grey column with at least two ×’s and without an ◦ and replac-

ing the bottommost × with an ◦ toggles the parity of the number of ◦’s and
preserves weight if it is non-zero.

×
× ×

◦ ×

= ×
× ×

◦ ◦

B. Taking non-grey columns of height v and v − 1 where the column of height v
has an ◦ and the column of height v − 1 does not have an ◦ and swapping the
columns and the ◦ while preserving the number of ×’s in each original column
negates the weight and preserves the number of ◦’s.

×
× ×
◦ ×

= −1 · ×
◦ ×

× ×
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C. If j ×’s appear in a non-grey column with no ◦ and j − 1 ×’s appear in a
column with an ◦, swapping the final × and ◦ negates the weight and preserves
the number of ◦’s, assuming j ⩾ 2.

×
× ×
◦

= −1 · ×
× ◦
×

D. Given two columns with blocks of ×’s at the same height, we may move the
stack of ×’s above the common height from one column to the other. The
number of ◦’s is preserved and the weight is either preserved up to a sign or
is zero.

×
×

× ×
×

= ±1 · ×
×
× ×

×

In the particular example for relation (D), the parity of c changes, which cancels
with the sign change from the θ-part, so the weight is in fact preserved.

5. Generic Pieri Rule proof
We now turn to the proof of our first, larger family of Tanisaki witness relations,
Theorem 1.10. Our overall strategy will be to collect together certain types of marked
staircases and cancel them amongst themselves using relations (A)-(C) from Lemma
4.7. Before proving Theorem 1.10, we introduce some notation used in the proof.

Notation 5.1. For J = {j1 < · · · < jk} ⊂ [n − 1], let {j1, . . . , jk}r denote the weight
generating function of the marked n-staircases with ×’s of lengths j1 < · · · < jk, r
◦’s, and the final column greyed out. By Lemma 4.5,

{j1, . . . , jk}r = ∂er(n−1)dJ∆n.

Additionally, we decorate j1, . . . , jk to indicate the weight generating function of such
staircases subject to the following mutually exclusive and exhaustive constraints:

(i) j♭ means the column with j ×’s has an ◦;
(ii) j♮ means the column with j ×’s does not have an ◦ and is not greyed out;

and
(iii) j♯ means the column with j ×’s is greyed out.

For convenience, we restate Theorem 1.10.

Theorem 5.2 (“Generic Pieri Rule”). Suppose I = {i1 < · · · < ik} ⊂ [n − 1]. Then∑
(−1)d∂en−k−d(n−1)dj1···jk

∆n = 0,

where the sum is over all subsets J = {j1 < · · · < jk} ⊂ [n − 1] for which
1 ⩽ i1 ⩽ j1 < i2 ⩽ j2 < i3 ⩽ j3 < · · · < ik ⩽ jk < n,

where
d := (j1 − i1) + · · · + (jk − ik).

Proof. We show that for each fixed 0 ⩽ ℓ ⩽ k,

(25)
∑

(−1)d{j1, . . . , jℓ, i♮
ℓ+1, . . . , i♮

k}n−k−d = 0,

where the sum is over j1, . . . , jℓ for which
1 ⩽ i1 ⩽ j1 < · · · < iℓ ⩽ jℓ < iℓ+1.
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Here we define ik+1 := n and
d = (j1 − i1) + · · · + (jℓ − iℓ).

The theorem is the case ℓ = k.
We prove (25) by induction on ℓ. In the base case ℓ = 0, the only term in (25) is

{i♮
1, . . . , i♮

k}n−k. Such a marked staircase has k columns with ×’s but no ◦’s, and n−k
columns with ◦’s, so at least n columns would have marks. Since an n-staircase must
have an empty column, there are no such staircases. Now take ℓ ⩾ 1. Set j0 := 0 for
convenience.

We expand each term in (25) using j♭
ℓ , j♮

ℓ , or j♯
ℓ . Since jℓ−1 < iℓ ⩽ jℓ < iℓ+1, we

have jℓ = iℓ, iℓ + 1, . . . , iℓ+1 − 1. If jℓ−1 < jℓ − 1, we may apply relation (A) to get

(26) {j1, . . . , j♮
ℓ , i♮

ℓ+1, . . . , i♮
k}n−k−d = {j1, . . . , (jℓ − 1)♭, i♮

ℓ+1, . . . , i♮
k}n−k−(d−1).

The parity of (−1)d is opposite for these terms, so they cancel. This observation
applies in particular for jℓ > iℓ. Thus all the terms with j♭

ℓ or j♮
ℓ cancel using (26)

except for i♮
ℓ and (iℓ+1 − 1)♭. In all, the following terms remain.

I. {j1, . . . , jℓ−1, i♮
ℓ, i♮

ℓ+1, . . . , i♮
k}n−k−d. These contributions are 0 by induction.

II. {j1, . . . , jℓ−1, (iℓ+1 − 1)♭, i♮
ℓ+1, . . . , i♮

k}n−k−d. When ℓ = k, we have ik+1 = n,
and (n − 1)♭ would require a column of length n, which is too long. For ℓ < k,
we may apply relation (C) to the columns with iℓ+1 − 1 and iℓ+1 ×’s, which
is a sign-reversing involution.

III. {j1, . . . , jℓ−1, j♯
ℓ , i♮

ℓ+1, . . . , i♮
k}n−k−d. We will show that each of these terms is

zero. Let m denote the minimum height of the columns with jℓ, iℓ+1, . . . , ik

×’s. Since jℓ < iℓ+1 < · · · < ik, we have m ⩾ jℓ.
Let R denote the set of columns of height m, m+1, . . . , n−1 which contain

an ◦. By assumption, the columns with jℓ, iℓ+1, . . . , ik ×’s do not contain ◦’s,
but they would otherwise belong to R, so |R| ⩽ n − m − (k − ℓ + 1) =
n − k − m + ℓ − 1. Since there are n − k − d ◦’s,

#◦’s − #R ⩾ (n − k − (j1 − i1) − · · · − (jℓ − iℓ)) − (n − k − m + ℓ − 1)
= (m − jℓ) + (iℓ − jℓ−1) + · · · + (i2 − j1) + i1 − ℓ + 1
⩾ 0 + 1 + · · · + 1 − ℓ + 1
= ℓ − ℓ + 1
> 0.

Consequently, there is at least one ◦ outside of R.
Let v denote the height of the shortest column with an ◦. We have just

shown v < m. By minimality, the column of height v − 1 (which may be zero)
has no ◦. Since we have j♯

ℓ and there is a unique grey column, the grey column
has height at least jℓ ⩾ m > v, so the columns of height v and v − 1 are not
grey. Thus we may apply relation (B) to swap the ◦ between the column of
height v and the column of height v − 1, which is a sign-reversing involution.

□

As an application of the Generic Pieri Rule, we restate and prove (17) for 1-forms
(Corollary 1.13). The relevant case of (14) is originally due to Alfano [1].

Corollary 5.3. The order {n−1} < {n−2} < · · · < {1} gives a filtration of SH1
n by

SH{i}’s where the composition factors are annihilated precisely by the Tanisaki ideal
I(2,1n−2). In particular,

GrFrob
(
SH1

n; q
)

= [n − 1]qωQ′
(2,1n−2)(x; q).
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Proof. The weakly decreasing rearrangement of Φn({i}) is (2, 1n−2). The only essen-
tial Tanisaki generator for I(2,1n−2) is en−1(n − 1). We have(

n

2

)
− i − b(2, 1n−2) =

(
n

2

)
− i −

(
n − 1

2

)
= n − 1 − i.

Hence the right-hand side of (17) is
n−1∑
i=1

qn−1−iωQ′
(2,1n−2)(x; q) = [n − 1]qωQ′

(2,1n−2)(x; q).

The minimal term J included in the Generic Pieri Rule is at J = I = {i} and
is ∂en−1(n−1)di∆n. Since all remaining terms have appeared earlier in the filtration,
the essential Tanisaki generator annihilates the composition factor. Equality holds in
(14) by Alfano’s main result in [1], which is equivalent to the y-degree 1 case of the
Operator Conjecture/Operator Theorem of Haiman ([12, Conj. 5.1.1], [11, Thm. 4.2])
as well as the θ-degree 1 case of the super operator theorem of Rhoades–Wilson [16].
Hence the left-hand side of (20) is coefficient-wise ⩽ the right-hand side, as a power
series over q in the Schur basis. Alfano in fact showed dim SH1

n = (n − 1)n!/2. Since
dim Rµ =

(
n
µ

)
and

(
n

2,1n−2

)
= n!/2, equality must hold in (20), and the annihilators

are tight. □

6. Some symmetric group actions and a shifted Vandermonde
identity

Our proof of the more specific family of extreme hook relations, Theorem 1.14, is
broadly similar to our proof of the Generic Pieri Rule, though it involves grouping
certain terms in significantly more intricate ways using certain Ss-actions and families
of involutions. We develop these additional tools now.

6.1. A shifted Vandermonde identity. Our upcoming argument will replace a
portion of the sets J ⊂ [n − 1] with ordered multisets Γ = (γ1, . . . , γs) ⊂ Zs. We now
introduce a family of symmetric group actions on ordered multisets and develop a
corresponding shifted Vandermonde evaluation identity, Corollary 6.4.

Definition 6.1. Suppose Γ = (γ1, . . . , γs), α = (α1, . . . , αs) ∈ Zs and σ ∈ Ss. Define
σ · (γ1, . . . , γs) := (γσ−1(1), . . . , γσ−1(s))

and
σ ·α Γ := σ · (Γ + α) − α,(27)

or explicitly
σ ·α Γ = (γσ−1(1) + ασ−1(1) − α1, . . . , γσ−1(s) + ασ−1(s) − αs).

One may check τ ·α (σ ·α Γ) = (τσ) ·α Γ, and clearly id ·αΓ = Γ, so this is a genuine
Ss-action for each fixed α. The action σ ·α Γ is reminiscent of certain actions on
weights from Lie theory, e.g. [13, Cor. 23.2, p.129].

Example 6.2. The ·α-orbit of Γ = (2, 2, 3) when α = (1, −1, 0) is given by
{(2, 2, 3), (2, 4, 1), (0, 4, 3)}. Here the stabilizers have order 2.

Lemma 6.3. Suppose Γ = (γ1, . . . , γs), α = (α1, . . . , αs) ∈ Zs, and u ∈ Z⩾0. For any
fixed Π ⊂ [s] with |Π| > u,

(28)
∑

σ∈Ss
M⊂Π

(−1)|M | sgn(σ)∆s(σ ·α Γ − 1M )|M |u = 0,
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where ∆s(Γ) :=
∏

1⩽v<w⩽s(γw − γv) is a Vandermonde determinant and 1M =
(δ1∈M , . . . , δs∈M ) is the indicator vector for M .

Proof. Define auxiliary variables y = (y1, . . . , ys) where yi := γi + αi. Conse-
quently, σ ·α Γ = σ · y − α. Now consider the left-hand side of (28) as an element
of C[y1, . . . , ys, α1, . . . , αs]. The Ss-actions on the y and α variables given by
τ ◦yi := yσ(i) and ρ◦αi := αρ(i) induce an Ss ×Ss-action on C[y1, . . . , ys, α1, . . . , αs].

For (τ, ρ) ∈ Ss × Ss, we have
(τ, ρ) ◦ ∆s(σ ·α Γ − 1M ) = (τ, ρ) ◦ ∆s(σ · y − α − 1M )

= ∆s(σ · (τ−1 · y) − ρ−1 · α − 1M )
= ∆s(ρ−1 · (ρστ−1 · y − α − ρ · 1M ))
= sgn(ρ)∆s(ρστ−1 ·α Γ − 1ρ(M)),

where in the last line we have used the facts
∆s(ρ · Γ) = sgn(ρ)∆s(Γ),

ρ · 1M = (δρ−1(1)∈M , . . . , δρ−1(k)∈M )
= (δ1∈ρ(M), . . . , δk∈ρ(M))
= 1ρ(M).

Consequently,

(τ, ρ) ◦
∑

σ∈Ss
M⊂Π

(−1)|M | sgn(σ)∆s(σ ·α Γ − 1M )|M |u

=
∑

σ∈Ss
M⊂Π

(−1)|M | sgn(ρ) sgn(σ)∆s(ρστ−1 ·α Γ − 1ρ(M))|M |u

=
∑

σ∈Ss

M⊂ρ(Π)

(−1)|M | sgn(ρ) sgn(ρ−1στ)∆s(σ ·α Γ − 1M )|M |u

= sgn(τ)
∑

σ∈Ss

M⊂ρ(Π)

(−1)|M | sgn(σ)∆s(σ ·α Γ − 1M )|M |u

where in the second step we have reindexed according to M 7→ ρ−1(M) and σ 7→
ρ−1στ .

Letting ρ = id and specializing the α variables to integer constants, this last ex-
pression says the left-hand side of (28) as an inhomogeneous element of C[y1, . . . , ys] is
an alternating polynomial. Thus all components of y-degree below deg ∆s(y1, . . . , ys)
vanish. The only possible remaining component is∑

σ∈Ss
M⊂Π

(−1)|M | sgn(σ)∆s(σ · y)|M |u =
∑

σ∈Ss
M⊂Π

(−1)|M |∆s(y)|M |u

= s!∆s(y)
∑

M⊂Π
(−1)|M ||M |u.

It is well-known that
∑

M⊂Π(−1)|M ||M |u = 0 for |Π| > u. Indeed, it is equal to
(−1)pp! Stir(u, p) where Stir denotes a Stirling number of the second kind and p := |Π|.
More directly, it follows from differentiating the binomial theorem

(1 + x)p =
p∑

k=0

(
p

k

)
xk
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up to u times and setting x = −1. □

Corollary 6.4. For any Π ⊂ [s] with |Π| > u ⩾ 0, v ∈ Z, and Γ, α ∈ Zs,∑
σ∈Ss
M⊂Π

(−1)|M | sgn(σ)∆s(σ ·α Γ − 1M )
(

v − |M | + u

u

)
= 0.

Proof. The factor
(

v−|M |+u
u

)
= 1

u!
∏u

i=1(v − |M | + i) is a polynomial in |M | of degree
u < |Π|. The result follows by taking linear combinations of Lemma 6.3. □

6.2. An action on marked staircases. Our upcoming argument will group to-
gether certain marked staircases using another Ss-action. We introduce this action
with the following technical lemma. See Example 6.7 and Figure 1.

Lemma 6.5. Suppose I = {i1 < · · · < ik} ⊂ [n − 1] where α = Φn(I) satisfies
α = (s, 1k−s) for some 1 ⩽ s ⩽ k.

Let MI denote the set of all marked staircases where the multiset J = {{j1 ⩽ · · · ⩽
jk}} of the number of ×’s in each column satisfies

j1 = i1, . . . , jk−s = ik−s,

where

d :=
k∑

ℓ=k−s+1
(jℓ − iℓ) ⩾ 0.

Then:
(i) Every realizable multiset {{j1 ⩽ · · · ⩽ jk}} is lexicographically greater than or

equal to the set {ik−s+1 < · · · < ik}. More precisely, if d > 0, then jk−s+1 >
ik−s+1, and if d = 0, then I = J .

(ii) The unique set of columns with jk−s+1, . . . , jk ×’s all have some × at the
same, common height.

(iii) Relation (D) gives an Ss-action on MI by acting on the columns with
jk−s+1, . . . , jk ×’s.

(iv) Moreover, d < m where m is the minimum height of a column with
jk−s+1, . . . , jk ×’s.

Proof. We may a priori have jk−s+1 = jk−s, in which case the set of columns from
(ii) and (iii) is not unique. For now, choose some set of columns with jk−s+1, . . . , jk

×’s and let the set of heights of these columns be {h1 < · · · < hs}.
First consider s = 1. Here d ⩾ 0 gives jk−s+1 ⩾ ik−s+1, so (i) holds. Since ik−s+1 >

ik−s, uniqueness holds in (ii) and the remaining conclusions in (ii), (iii), and (iv) are
trivial or obvious. Now suppose s ⩾ 2.

Since the marks fit in an n-staircase, we have h1 ⩽ n − s, h2 ⩽ n − s + 1, . . . , hs ⩽
n−1. Write j′

ℓ for the number of ×’s in the column of height hℓ, so j′
ℓ ⩽ hℓ ⩽ n−s+ℓ−1.

Hence we have δ2, . . . , δs ⩾ 0 and some ϵ1 ∈ Z for which

(j′
1, j′

2, . . . , j′
s) = (ik−s+1 + ϵ1, n − s + 1 − δ2, . . . , n − 1 − δs).

Recall from Remark 1.15 that the condition on I forces ik−s+2 = n−s+1, . . . , ik =
n − 1, so ik−s+ℓ = n − s + ℓ − 1 for 2 ⩽ ℓ ⩽ s. Hence we have

δℓ = ik−s+ℓ − j′
ℓ (2 ⩽ ℓ ⩽ s)

ϵ1 = j′
1 − ik−s+1.

Thus
d = ϵ1 − δ2 − · · · − δs ⩾ 0,
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so ϵ1 ⩾ δ2 + · · · + δs ⩾ 0. In particular, ϵ1 ⩾ δℓ for all 2 ⩽ ℓ ⩽ s and j′
1 ⩾ ik−s+1.

Consequently,
d ⩽ ϵ1 = j′

1 − ik−s+1 < j′
1 ⩽ h1 = m,

giving (iv), assuming uniqueness for the moment.
For a fixed 2 ⩽ ℓ ⩽ s, consider the height of the lowest × in the column with height

hℓ and j′
ℓ ×’s. This height is

hℓ − j′
ℓ + 1 ⩽ ik−s+ℓ − j′

ℓ + 1
= δℓ + 1 ⩽ ϵ1 + 1
= j′

1 − ik−s+1 + 1
⩽ h1 − ik−s+1 + 1.(29)

On the other hand, the highest × in this column is at the top at height hℓ ⩾ h1.
Hence we must at least have ×’s in this column at heights h1 − ik−s+1 + 1, . . . , h1, or
at least ik−s+1 of them in all. The same is true of the column with height h1 since
j′

1 ⩾ ik−s+1, so all columns of height h1, . . . , hs have ×’s at these ik−s+1 common
heights. This proves proves (ii), except for the uniqueness claim.

The preceding argument gives j′
ℓ ⩾ ik−s+1 for 1 ⩽ ℓ ⩽ s. Indeed, since h1 < · · · <

hℓ, (29) gives the tighter bound
j′

ℓ ⩾ hℓ − h1 + ik−s+1

⩾ ik−s+1 + (ℓ − 1),

which also holds at ℓ = 1. Hence
jk−s+1 = min{jk−s+ℓ : 1 ⩽ ℓ ⩽ s}

= min{j′
ℓ : 1 ⩽ ℓ ⩽ s}

⩾ ik−s+1 > ik−s = jk−s,

so uniqueness follows as well and (ii) holds.
Moreover, since j′

ℓ ⩾ ik−s+1 + (ℓ − 1), we see that {{j′
1, . . . , j′

s}} = {{jk−s+1 ⩽
· · · ⩽ jk}} is lexicographically larger than {ik−s+1 < · · · < ik} except perhaps when
j′

1 = jk−s+1 = ik−s+1. However, in that case ϵ1 = 0, forcing δℓ = 0 for 2 ⩽ ℓ ⩽ s, so
j′

ℓ = ik−s+ℓ. Thus (i) holds.
Finally, by (ii) we may take the s columns of heights h1, . . . , hs and permute them

amongst themselves using relation (D), giving an Ss-action; see Example 6.7 and
Figure 1. We must only show that the resulting marked staircase remains in MI . The
action preserves d and j1, . . . , jn−k, so we must only show that among the permuted
columns, none have fewer than jn−k ×’s. But we showed above that the columns have
a block of in−k+1 > in−k = jn−k ×’s at a common height, which is preserved by
relation (D), giving (iii) and completing the proof. □

Definition 6.6. Suppose S ∈ MI from Lemma 6.5. Define an explicit Ss-action on
MI as follows.

• Call the s columns with at least ik−s+1 ×’s the active columns.
• Let hℓ be the height of the ℓth active column. Let σ · S be the marked staircase

obtained by applying relation (D) to S where the σ(ℓ)th active column has
height hℓ.

Furthermore:
• Let Γ(S) = (γ1, . . . , γs) be the number of ×’s in the active columns of S,

read from left to right. Note that (jk−s+1, . . . , jk) is the weakly increasing
rearrangement of Γ.
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• Let α(S) = (α1, . . . , αs) be the number of cells without ×’s in the active
columns of S, read from left to right. Note that α(σ · S) = α(S).

Example 6.7. Let I = {1, 3, 4, 8, 9} ⊂ [11 − 1], so n = 10 and k = 5. We have
Φn(I) = (1, 4, 2, 1, 2), Φn(I) = (3, 1, 1), and s = 3. The corresponding diagram is:

4 8 9
3

1
See Figure 1 for an S3-orbit of marked staircases in MI from Lemma 6.5.

×
× ×
× ×

× × ×
× × × ×
× × × ×

× × × ×
× × ×

× ×
1 2 3

J = {{1, 3, 4, 8, 9}}
Γ = (4, 8, 9)

×
× ×
× ×

× × ×
× × × ×
× × × ×

× × × ×
× × ×

× ×
1 3 2

J = {{1, 3, 4, 8, 9}}
Γ = (4, 9, 8)

×
× ×
× ×
× × ×
× × × ×
× × × ×

× × × ×
× × ×

× ×
2 1 3

J = {{1, 3, 5, 7, 9}}
Γ = (7, 5, 9)

×
× ×
× ×
× × ×
× × × ×
× × × ×

× × × ×
× × ×

× ×
2 3 1

J = {{1, 3, 5, 7, 9}}
Γ = (7, 9, 5)

×
× ×
× ×
× × ×
× × × ×
× × × ×

× × × ×
× × ×

× ×
3 1 2

J = {{1, 3, 5, 8, 8}}
Γ = (8, 5, 8)

×
× ×
× ×
× × ×
× × × ×
× × × ×

× × × ×
× × ×

× ×
3 2 1

J = {{1, 3, 5, 8, 8}}
Γ = (8, 8, 5)

Figure 1. An S3-orbit in MI for I from Example 6.7 obtained by
applying relation (D) as in Lemma 6.5 to the three active columns
with the most ×’s in each marked staircase. The relative order of
the three active columns forms a permutation σ−1 which has been
written below the marked staircases. The staircases are of the form
σ · S where S is the upper-left diagram. The multiset of the number
of ×’s in all columns is J and the number of ×’s in the three active
columns from left to right is Γ. In each case, the number of cells
without ×’s in the active columns is α = (1, 0, 0).

The actions from Definition 6.1 and Lemma 6.5 are related as follow. See Example
6.9.

Lemma 6.8. Let S ∈ MI from Lemma 6.5 and σ ∈ Sn with α = α(S) = α(σ · S).
Then

Γ(σ · S) = σ ·α Γ(S)
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and

sgn ∆s(Γ(S)) wgt(σ · S) = sgn(σ) sgn ∆s(σ ·α Γ(S)) wgt(S).

Proof. Let Γ(S) = (γ1, . . . , γs) and Γ(σ ·S) = (λ1, . . . , λs). We have αℓ+γℓ = hℓ where
hℓ is the height of the ℓth active column of S. Similarly, we have ασ(ℓ) + λσ(ℓ) = hℓ.
Hence

λℓ = hσ−1(ℓ) − αℓ

= γσ−1(ℓ) + ασ−1(ℓ) − αℓ

= (σ · (Γ(S) + α))ℓ − αℓ

= (σ ·α Γ(S))ℓ,

giving the first claim.
For the second statement, let N be the order of S and σ · S and let c1 < · · · < ck

be the indexes of the columns with ×’s. Let jℓ be the number of ×’s in column cℓ of
S and let j′

ℓ be the number of ×’s in column cℓ of σ · S. Then we have c and β where

wgt(S) = (−1)cNxβ sgn ∆k(j1, . . . , jk)θc1 · · · θck

wgt(σ · S) = (−1)c sgn(σ)Nxβ sgn ∆k(j′
1, . . . , j′

k)θc1 · · · θck
.

If ℓ is not an active column, then j′
ℓ = jℓ < ik−s+1. If ℓ is an active column,

then jℓ, j′
ℓ ⩾ ik−s+1. It follows that the sign difference between ∆k(j1, . . . , jk) and

∆k(j′
1, . . . , j′

k) is precisely the same as the sign difference between ∆s(γ1, . . . , γs) and
∆s(λ1, . . . , λs). The result follows by combining these observations. □

Example 6.9. Let S be the upper left diagram in Figure 1 and σ = 312 = 231−1, so
σ · S is the lower left diagram. We have

(7, 9, 5) = 231 ·(1,0,0) (4, 8, 9),

in agreement with Lemma 6.8.

7. Extreme hook relations proof
We may finally prove our second family of Tanisaki witness relations, Theorem 1.14.
The argument will rely on grouping marked staircases using the following more tech-
nical variation on Notation 5.1.

Notation 7.1. Fix I = {i1 < · · · < ik} ⊂ [n − 1] with Φn(I) = (s, 1k−s) for some
1 ⩽ s ⩽ k as in Lemma 6.5 and Definition 6.6. Each marked staircase S ∈ MI has
the following data attached to it.

• The multiset J = {{j1 ⩽ · · · ⩽ jk}} ⊂ [n − 1] giving the number of ×’s in
columns with them.

• The number δ of ◦’s.
• The number η of grey columns.
• The set of s active columns, namely those with at least ik−s+1 ×’s.
• The list Γ = (γ1, . . . , γs) of the number of ×’s in the s active columns, read

from left to right.
• The list α = (α1, . . . , αs) of the number of cells in the active columns without

×’s, read from left to right.
• The subset Ω of active columns with ◦’s.
• The subset Π of non-grey active columns without ◦’s.
• The subset Ψ of grey active columns.
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We consider Ω ⊔ Π ⊔ Ψ = [s] by numbering the active columns left to right from 1 to
s. Let

(Γ, Ω, Π)δ,η
α

denote the weight generating function of marked staircases in MI with the above
data.

We restate Theorem 1.14 for convenience.

Theorem 7.2. Suppose I = {i1 < · · · < ik} ⊂ [n − 1] is such that for some 1 ⩽ s ⩽ k
we have

i1, . . . , ik−s+1 ⩽ n − k

ik−s+2 = n − s + 1
ik−s+3 = n − s + 2

...
ik = n − 1.

Pick 0 ⩽ u ⩽ s. Then∑
(−1)d∆s(jk−s+1, . . . , jk)

(
d + u

u

)
∂en−s−d(n−s+u)dJ∆n = 0,

where the sum is over all subsets J = {j1 < · · · < jk} ⊂ [n − 1] for which
j1 = i1, . . . , jk−s = ik−s

d := (jk−s+1 − ik−s+1)+ · · · + (jk − ik) ⩾ 0.

Proof. Since dJ = 0 if terms repeat, we may include multisets J = {{j1 ⩽ · · · ⩽
jk}} ⊂ [n − 1] in (21). By Lemma 4.5 and Lemma 6.5,

(30) ∂eδ(n−η)dJ∆n =
∑

Ω,Π,α
Γ∼Jtop

(Γ, Ω, Π)δ,η
α ,

where Jtop := (jn−k+1, . . . , jk) and Γ ∼ Jtop means the weakly increasing rearrange-
ment of Γ is Jtop.

If Γ ∼ Jtop, then
(31) ∆s(jk−s+1, . . . , jk) = ∆s(Jtop) = sgn ∆s(Γ) · ∆s(Γ).
Using (30) and (31), the left-hand side of (21) becomes∑

J

(−1)d∆s(jk−s+1, . . . , jk)
(

d + u

u

)
∂en−s−d(n−s+u)dJ∆n

=
∑

J

(−1)d∆s(Jtop)
(

d + u

u

) ∑
Ω,Π,α

Γ∼Jtop

(Γ, Ω, Π)n−s−d,s−u
α

=
∑

Γ,Ω,Π,α

(−1)d sgn ∆s(Γ) · ∆s(Γ)
(

d + u

u

)
(Γ, Ω, Π)n−s−d,s−u

α ,(32)

where
d = sum(J) − sum(I) = sum(Γ) − sum(Itop).

We will group the contributions to (32) into terms which individually sum to zero.
As a warm-up, we first show that we may apply relation (B) to cancel all contri-

butions when Ω = ∅ and |Π| = u. In this case, no active columns have ◦’s and every
grey column is active. Let m denote the minimal height of the active columns. Let R
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be the set of columns of height m, m + 1, . . . , n − 1 which contain an ◦. All s active
columns are in this height range but have no ◦’s, so #R ⩽ n − m − s. There are
n − s − d ◦’s, so

# ◦ ’s − #R ⩾ (n − s − d) − (n − m − s)
= m − d

> 0,

where we have used Lemma 6.5(iv). Thus there are columns with ◦’s outside of R.
Let v be the minimum height of a column with an ◦. We have just shown v < m, so
the columns with heights v and v − 1 (the latter may have height 0) are not active,
and hence are not grey. We may now apply relation (B) to cancel these terms. That
is,

(Γ,∅, Π)n−s−d,s−u
α = 0 if |Π| = u.

The Ss-action from Lemma 6.5 preserves Ω, Π, d, α. By Lemma 6.8, the action
replaces Γ with σ ·α Γ. If Γ contains repeated elements, then (Γ, Ω, Π)δ,η

α = 0, so we
assume Γ does not contain repeated elements. Now Lemma 6.8 gives

wgt(σ · S) = sgn(σ) sgn ∆s(Γ) sgn ∆s(σ ·α Γ) wgt(S).

Hence

(33) (σ ·α Γ, Ω, Π)n−s−d,s−u
α = sgn(σ) sgn ∆s(Γ) sgn ∆s(σ ·α Γ)(Γ, Ω, Π)n−s−d,s−u

α .

Now pick some subset M ⊂ Π of the non-grey active columns without ◦’s and
apply relation (A) to each of those active columns, replacing their bottom-most ×’s
with an ◦. The resulting staircase remains in MI so long as d remains non-negative.
In this case, the operation replaces α with α + 1M , Γ with Γ − 1M , Π with Π − M , Ω
with Ω ⊔ M , and d with d − |M |. Hence if we require |M | ⩽ sum(J) − sum(Itop), this
operation is well-defined and indeed invertible. This operation preserves monomial
weight, and we have

(Γ − 1M , Ω ⊔ M,Π − M)n−s−d+|M |,s−u
α+1M

= sgn ∆s(Γ) sgn ∆s(Γ − 1M )(Γ, Ω, Π)n−s−d,s−u
α .(34)

Combining (33) and (34), we have

(σ ·α Γ − 1M , Ω ⊔ M,Π − M)n−s−d+|M |,s−u
α+1M

= sgn(σ) sgn ∆s(Γ) sgn ∆s(σ ·α Γ − 1M )(Γ, Ω, Π)n−s−d,s−u
α .(35)

Suppose now that Ω = ∅ and |Π| > u. Consider the contributions to (32) arising
from the “orbit” obtained by first applying the Ss-action and then applying relation
(A) as above. By (35), these contributions are∑

σ∈Sn
M⊂Π

d−|M |⩾0

(−1)d−|M | sgn ∆s(σ ·α Γ − 1M ) · ∆s(σ ·α Γ − 1M )
(

d − |M | + u

u

)

· (σ ·α Γ, M, Π − M)n−s−d+|M |,s−u
α+1M

=(−1)d sgn ∆s(Γ)
∑

σ∈Sn
M⊂Π

d−|M |⩾0

(−1)|M | sgn(σ)∆s(σ ·α Γ − 1M )
(

d − |M | + u

u

)

· (Γ,∅, Π)n−s−d,s−u
α .
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Here we must interpret the binomial coefficient as the polynomial
(

d−|M |+u
u

)
=

1
u!
∏u

ℓ=1(d − |M | + ℓ), which vanishes when d + 1 ⩽ |M | ⩽ d + u, so we may expand
the condition in the sum to |M | ⩽ d + u. Now there are n − s − d ◦’s and s − u grey
columns, so there are n − (n − s − d) − (s − u) = d + u non-grey columns without ◦’s.
Hence |Π| ⩽ d + u, so M ⊂ Π automatically satisfies |M | ⩽ d + u and we may remove
the constraint on |M | altogether. Since |Π| > u, the sum is thus zero by Corollary
6.4.

We claim that every term in (32) has now been canceled precisely once. The “orbits”
above obtained by applying the Ss-action to terms with Ω = ∅ followed by relation
(A) partition the terms, since starting at an arbitrary term, we may reverse the
application of relation (A), which increases d and therefore remains in MI , to arrive
at a term with Ω = ∅. Terms in the orbit of Ω = ∅ with |Π| > u, or equivalently
terms with |Ω ⊔ Π| > u, are thus entirely accounted for. For terms with |Ω ⊔ Π| = u,
we may first apply relation (A) to replace Ω with ∅ and Π with Ω ⊔ Π, then relation
(B) as noted above applies to the shortest column with an ◦, so the same is true
without needing to apply relation (A), resulting in a sign-reversing involution in the
case |Ω ⊔ Π| = u. Since Ψ is a subset of the s − u grey columns, we have |Ω ⊔ Π| =
s−|Ψ| ⩾ s−(s−u) = u, so all cases have been handled. This completes the proof. □

8. Further directions
The lex-minimal J appearing in either the Generic Pieri Rule, Theorem 1.10, or the
extreme hook relations, Theorem 1.14, is J = I. Hence one may be tempted to use
reverse lexicographic order on 2[n−1] when attempting to answer Question 1.3.

However, computations with n = 8 show that this order together with the bijection
Φn have correct composition factors at only 115 out of 128 cases. One may slightly
tweak the reverse lexicographical order and get the predicted multiset of composition
factors. For example, at n = 8, k = 5, replacing the reverse lex-interval

{1, 2, 4, 5, 7}, {1, 2, 4, 5, 6}, {1, 2, 3, 6, 7}, {1, 2, 3, 5, 7}
with

{1, 2, 3, 6, 7}, {1, 2, 4, 5, 7}, {1, 2, 3, 5, 7}, {1, 2, 4, 5, 6}
gives an affirmative answer to Question 1.3 in this case. In this way, orders verifying
Question 1.3 valid for n ⩽ 8 have been found.

For k ⩾ 2, additional relations beyond those in our two families are required. A
particular relation which is not explained by the results above is

0 = 4∂e6(6)d356∆8 − 8∂e5(6)d357∆8 + 4∂e4(6)d367∆8

− 3∂e5(6)d456∆8 + 6∂e4(6)d457∆8 − 3∂e3(6)d467∆8

From our results and computations, the Q-linear relations between ∂er(m)dI∆n

exhibit rich combinatorial structure. Given the wealth of algebraic and geometric
structure surrounding the various coinvariant algebras, we are led to the following.

Problem 8.1. Completely describe the Q-linear relations between ∂er(m)dI∆n’s.

Problem 8.2. Give a conceptual explanation for the existence of these relations, per-
haps in topological or geometric terms.
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