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Geometry of Peterson Schubert calculus in
type A and left-right diagrams

Hiraku Abe, Tatsuya Horiguchi, Hideya Kuwata & Haozhi
Zeng

Abstract We introduce an additive basis of the integral cohomology ring of the Peterson
variety which reflects the geometry of certain subvarieties of the Peterson variety. We explain
the positivity of the structure constants from a geometric viewpoint, and provide a manifestly
positive combinatorial formula for them. We also prove that our basis coincides with the additive
basis introduced by Harada–Tymoczko.

1. Introduction
Let n be a positive integer and Fln the full-flag variety of Cn. As a set, Fln is the
collection of nested sequences of linear subspaces of Cn given as follows:

Fln = {V• = (V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn) | dimC Vi = i (1 ⩽ i ⩽ n)}.
Let N be an n × n regular nilpotent matrix viewed as a linear map N : Cn → Cn.
The Peterson variety Petn ⊆ Fln is defined by

Petn := {V• ∈ Fln | NVi ⊆ Vi+1 (1 ⩽ i ⩽ n− 1)},
where NVi denotes the image of Vi under the map N : Cn → Cn. It was introduced
by Dale Peterson to study the quantum cohomology ring of Fln, and it has since
appeared in several contexts (e.g. [6, 8, 19, 25, 31]).

For a permutation w ∈ Sn, let Xw ⊆ Fln be the Schubert variety associated
with w, and Ωw ⊆ Fln the dual Schubert variety associated with w. We denote
by [n − 1] the set of integers 1, 2, . . . , n − 1. For a subset J ⊆ [n − 1], let wJ ∈ Sn

be the longest element of the Young subgroup SJ of the permutation group Sn

associated with J (see Section 2.1 for details), and set
XJ := XwJ

∩ Petn and ΩJ := ΩwJ
∩ Petn.

Then XJ and ΩJ in Petn play roles analogous to those of Schubert varieties and dual
Schubert varieties in Fln, and provide important information about the topology
of Petn.

In this paper, we construct an additive basis {ϖJ | J ⊆ [n−1]} of the integral coho-
mology ring H∗(Petn;Z) which reflects the geometry of XJ and ΩJ (Theorem 4.14).
As a consequence, we may consider the structure constants for the multiplication rule:

ϖJ ·ϖK =
∑

L⊆[n−1]

dL
JKϖL, dL

JK ∈ Z.(1.1)
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It turns out that all dL
JK are non-negative integers, and we give a geometric proof of

this positivity by using that of nef line bundles over Petn (Proposition 4.16). We also
provide a manifestly positive combinatorial formula for dL

JK (Theorem 5.6) in terms
of left-right diagrams, which we introduce in this paper.

To find our formula for dL
JK , we prove several properties of the cohomology classes

ϖJ which are inherited from the geometry of XJ and ΩJ . In particular, writing ΩJ

as an intersection of divisors on Petn provides the geometric idea behind our formula
for dL

JK in terms of left-right diagrams.
We also show that our basis {ϖJ | J ⊆ [n − 1]} coincides with the additive ba-

sis of the cohomology ring H∗(Petn;C) with C-coefficients introduced by Harada–
Tymoczko [20]. Their basis is obtained by taking restriction of certain Schubert classes
to Petn, and it is called the Peterson Schubert basis. It has been studied by Bayegan–
Harada [9], Drellich [14] and Goldin–Gorbutt [18]. In [18], Goldin and Gorbutt gave
combinatorial formulas for the structure constants of Harada–Tymoczko’s basis (in
a certain equivariant setting) which are manifestly positive and integral. Thus, af-
ter taking the non-equivariant limit, their formulas and ours both describe the same
structure constants, but these formulas have different perspectives; their approach is
mostly combinatorial whereas our approach is based on the geometry of XJ and ΩJ .
We include a short comparison of their formulas and ours in Section 6.

Interestingly, our computations match with those of Berget–Spink–Tseng [10,
Sect. 7] on a certain subring of the cohomology ring of a toric variety which is called
the permutohedral variety. One of their results can be interpreted as a formula
describing the structure constants dL

JK as products of mixed Eulerian numbers which
were introduced and studied by Postnikov [30]. With this connection in mind, our
formula (Theorem 5.6) for dL

JK can also be thought as computing some products of
mixed Eulerian numbers by using the geometry of Petn. We explain this connection
in Section 6 including the relations with the works of Nadeau–Tewari [28] and the
second author [21].

Acknowledgements. We are grateful to Mikiya Masuda for his support and encour-
agement. We also thank the anonymous referees for reading this paper very carefully.
This research is supported in part by Osaka City University Advanced Mathemati-
cal Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical
Physics): the topology and combinatorics of Hessenberg varieties. The first author
is supported in part by JSPS Grant-in-Aid for Early-Career Scientists: 18K13413.
The second author is supported in part by JSPS Grant-in-Aid for Young Scientists:
19K14508. The fourth author is supported in part by NSFC: 11901218.

2. Basic notations
In this section, we recall some terminology which will be used in this paper.

2.1. Combinatorics on the Dynkin diagram of type A. Let n(⩾ 2) be a pos-
itive integer. We use the notation [n− 1] := {1, 2, . . . , n− 1}, and we regard it as the
set of vertices of the Dynkin diagram of type An−1 for the rest of the paper. Namely,
two vertices i, j ∈ [n − 1] are connected by an edge if and only if |i − j| = 1. See
Figure 1.

Figure 1. The Dynkin diagram of type An−1.
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We regard each subset J ⊆ [n − 1] as a full-subgraph of the Dynkin diagram
appearing above. We may decompose it into the connected components:

J = J1 ⊔ J2 ⊔ · · · ⊔ Jm,(2.1)

where each Jk (1 ⩽ k ⩽ m) is the set of vertices of a maximal connected subgraph
of J . To determine each Jk uniquely, we require that the maximal element of Jk is
less than the minimal element of Jk′ when k < k′.

Example 2.1. Let n = 10 and J = {1, 2, 4, 5, 6, 9}. Then we have

J = {1, 2} ⊔ {4, 5, 6} ⊔ {9} = J1 ⊔ J2 ⊔ J3.

For J ⊆ [n− 1], one has the Young subgroup given by

SJ := SJ1 × SJ2 × · · ·SJm
⊆ Sn,

where each SJk
is the subgroup of Sn generated by the simple reflections si for

all i ∈ Jk. Let wJ be the longest element of SJ , i.e.

wJ := w
(J1)
0 w

(J2)
0 · · ·w(Jm)

0 ∈ SJ ,(2.2)

where each w
(Jk)
0 is the longest element of the permutation group SJk

(1 ⩽ k ⩽ m).

Example 2.2. Let n = 10 and J = {1, 2} ⊔ {4, 5, 6} ⊔ {9} as above. By identifying
the permutation wJ with its permutation matrix, we have

wJ = w
(J1)
0 w

(J2)
0 w

(J3)
0 = (s1s2s1)(s4s5s6s4s5s4)(s9) =



1
1

1
1

1
1

1
1

1
1


.

We can identify each permutation w ∈ Sn with its permutation flag V• ∈ Fln
defined by Vi = ⟨ew(1), ew(2), . . . , ew(i)⟩ for 1 ⩽ i ⩽ n, where e1, e2, . . . , en denotes the
standard basis of Cn, and the right hand side is the linear subspace of Cn spanned
by ew(1), ew(2), . . . , ew(i). Using this identification, we explain how the permutations
wJ are related to the Peterson variety. Let GLn(C) be the general linear group of
invertible n× n complex matrices. Let T ⊆ GLn(C) be the maximal torus consisting
of diagonal matrices. Let us identify C× with a subgroup of T as follows:

C× =



g
g2

. . .
gn

 ∈ T

∣∣∣∣∣∣∣∣∣ g ∈ C×

 .(2.3)

The flag variety Fln admits a natural GLn(C)-action by regarding each element g ∈
GLn(C) as an automorphism g : Cn → Cn. Restricting this GLn(C)-action on Fln to
the above subgroup C×, it is well-known that the fixed point set (Fln)C× is the set of
the permutation flags, i.e. (Fln)C× = Sn (e.g. [16, proof of Lemma 2 in Sect. 10.1]).
It is straightforward to see that this C×-action on Fln preserves Petn, and it was
shown in [20] that the fixed point set (Petn)C× is given by

(Petn)C
×

= {wJ ∈ Sn | J ⊆ [n− 1]}.(2.4)

Algebraic Combinatorics, Vol. 7 #2 (2024) 385
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Because of this relation, the combinatorics of wJ will be important to understand the
structure of Petn.

For 1 ⩽ i ⩽ n−1, let si ∈ Sn be the simple reflection which interchanges i and i+1.
We denote by ⩽ the Bruhat order on Sn, that is, we have u ⩽ v (u, v ∈ Sn) if and
only if a reduced expression of u is a subword of a reduced expression of v.

Lemma 2.3. For J ⊆ [n− 1] and 1 ⩽ i ⩽ n− 1, we have si ⩽ wJ if and only if i ∈ J .

Proof. Recall that wJ is the product of longest elements in SJk
for 1 ⩽ k ⩽ m:

wJ = w
(J1)
0 w

(J2)
0 · · ·w(Jm)

0 .

Since each w
(Jk)
0 (1 ⩽ k ⩽ m) preserves the decomposition (2.1), it follows that the

length of wJ is the same as the sum of the lengths of w(Jk)
0 for 1 ⩽ k ⩽ m. Thus,

the products of reduced expressions of w(Jk)
0 for 1 ⩽ k ⩽ m give a reduced expression

of wJ . Here, an arbitrary reduced expression of w(Jk)
0 contains a simple reflection si

if and only if i ∈ Jk. Therefore, it follows that a reduced expression of wJ contains si

if and only if i ∈ J (see Example 2.2). This implies the desired claim. □

The following claim appears in [24, Lemma 6], but we give a proof for the reader.

Lemma 2.4. For J, J ′ ⊆ [n− 1], we have

wJ′ ⩽ wJ if and only if J ′ ⊆ J.(2.5)

Proof. We first prove that J ′ ⊆ J under the assumption wJ′ ⩽ wJ . For this, take an
arbitrary element i ∈ J ′. By the previous lemma, we have si ⩽ wJ′ . Combining this
with the assumption wJ′ ⩽ wJ , we obtain that si ⩽ wJ . Thus, it follows that i ∈ J
by the previous lemma again.

We next prove that wJ′ ⩽ wJ under the assumption J ′ ⊆ J . Take the decomposi-
tion

J ′ = J ′
1 ⊔ J ′

2 ⊔ · · · ⊔ J ′
m′

into the connected components as in (2.1). Since each J ′
ℓ (1 ⩽ ℓ ⩽ m′) is connected,

it is contained in some connected component Jk of J . This leads us to consider a map

φ : {1, 2, . . . ,m′} → {1, 2, . . . ,m}

which we define by the conditions J ′
i ⊆ Jφ(i) for 1 ⩽ i ⩽ m′. Then we have that⊔
φ(i)=k

J ′
i ⊆ Jk

by the definition of the map φ. This implies that∏
φ(i)=k

w
(J′

i)
0 ⩽ w

(Jk)
0 in SJk

since w(Jk)
0 is the longest permutation in SJk

. Recalling that each Jk is a connected
component of J , these inequalities for 1 ⩽ k ⩽ m imply that wJ′ ⩽ wJ . □

Example 2.5. Let n = 8, J ′ = {1, 4, 5, 7} and J = {1, 2, 4, 5, 6, 7} so that we have
J ′ ⊆ J . In this case, we have

J ′ = {1} ⊔ {4, 5} ⊔ {7} = J ′
1 ⊔ J ′

2 ⊔ J ′
3 and J = {1, 2} ⊔ {4, 5, 6, 7} = J1 ⊔ J2,

and hence

wJ′ = (s1)(s4s5s4)(s7) ⩽ (s1s2s1)(s4s5s6s7s4s5s6s4s5s4) = wJ .
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2.2. Hessenberg varieties. In this subsection, we briefly recall the notion of Hes-
senberg varieties in type A. They are (possibly reducible) subvarieties of the flag
variety Fln, and will appear in the next section. A function h : [n] → [n] is a Hessen-
berg function if it satisfies the following two conditions:

(i) h(1) ⩽ h(2) ⩽ · · · ⩽ h(n),
(ii) h(j) ⩾ j for all j ∈ [n].

Note that h(n) = n by definition. We may identify a Hessenberg function h with a
configuration of (shaded) boxes on a square grid of size n×n which consists of boxes
in the i-th row and the j-th column satisfying i ⩽ h(j) for i, j ∈ [n], as we illustrate
in the following example.

Example 2.6. Let n = 5. The Hessenberg function h : [5] → [5] given by

(h(1), h(2), h(3), h(4), h(5)) = (2, 3, 3, 5, 5)

corresponds to the configuration of the shaded boxes drawn in Figure 2.

Figure 2. The configuration of the shaded boxes corresponding to h.

For an n× n matrix X considered as a linear map X : Cn → Cn and a Hessenberg
function h : [n] → [n], the Hessenberg variety associated with X and h ([12, 33]) is
defined as

(2.6) Hess(X,h) = {V• ∈ Fln | XVj ⊆ Vh(j) for all j ∈ [n]}.

We note that Hess(X,h) ∼= Hess(gXg−1, h) for all g ∈ GLn(C) so that we may always
assume that the matrix X is in Jordan canonical form. Let N be the n × n regular
nilpotent matrix in Jordan canonical form, i.e.

N =


0 1

0 1
. . . . . .

0 1
0

 .(2.7)

Then Hess(N,h) is called a regular nilpotent Hessenberg variety. It is known that
Hess(N,h) is an irreducible projective variety of (complex) dimension

∑n
i=1(h(i) − i)

([7, Lemma 7.1] and [33]). When h(i) = i + 1 for all 1 ⩽ i ⩽ n − 1, it is clear that
Hess(N,h) = Petn by definition. In particular, we obtain the well-known formula

dimC Petn = n− 1.

For Hessenberg functions h, h′ : [n] → [n], it is clear that if h(i) ⩽ h′(i) for 1 ⩽ i ⩽ n
then Hess(N,h) ⊆ Hess(N,h′). For example, the Hessenberg function h : [5] → [5]
given in Example 2.6 defines a 3-dimensional regular nilpotent Hessenberg variety
Hess(N,h) which is contained in Pet5(⊆ Fl5).
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3. Geometric constructions
In this section, we introduce two kinds of subvarieties XJ and ΩJ in Petn for each
J ⊆ [n− 1], and we establish geometric properties of them. They will play important
roles in constructing an additive basis of the integral cohomology ring H∗(Petn;Z)
in the next section.

3.1. Analogue of Schubert varieties in the Peterson variety. For w ∈
Sn, let Xw ⊆ Fln be the Schubert variety associated with w and Ωw ⊆ Fln the
dual Schubert variety associated with w ([16, Sect. 10]). We note that dimCXw =
codimC(Ωw, F ln) = ℓ(w) and Xw ∩ Ωw = {w}, where ℓ(w) is the length of w.

Definition 3.1. For J ⊆ [n− 1], we define

XJ := XwJ
∩ Petn and ΩJ := ΩwJ

∩ Petn,(3.1)

where wJ ∈ Sn is the permutation defined in (2.2).

Peterson [29] studied a particular open affine subset of ΩJ to construct the quantum
cohomology ring of Fln (c.f. [25, 31]). Also, Insko [23] and Insko–Tymoczko [24]
studied XJ to show the injectivity of the homomorphism H∗(Petn;Z) → H∗(Fln;Z).
It turns out that XJ and ΩJ in Petn play roles analogous to those of Schubert
varieties and dual Schubert varieties in Fln. As an illustrating property, we begin
with the following claim. Recall that we have Xw ∩ Ωv ̸= ∅ in Fln if and only if
w ⩾ v.

Proposition 3.2. For J, J ′ ⊆ [n− 1], we have

XJ ∩ ΩJ′ ̸= ∅ if and only if J ⊇ J ′.

Moreover, when J = J ′, we have XJ ∩ ΩJ = {wJ}.

Proof. If XJ ∩ ΩJ′ ̸= ∅, then we have (XwJ
∩ ΩwJ′ ) ∩ Petn ̸= ∅ by definition. Note

that (XwJ
∩ ΩwJ′ ) ∩ Petn is complete, and it is preserved by the C×-action on Petn

described in Section 2. Thus, it follows that it contains a C×-fixed point (e.g. [22,
Chap. VIII, Sect. 21.2]). Since we have

((XwJ
∩ ΩwJ′ ) ∩ Petn)C

×
= (XwJ

∩ ΩwJ′ )C
×

∩ (Petn)C
×
,

we see that there exists a C×-fixed point wK ∈ Petn (see (2.4)) such that wK ∈ XwJ

and wK ∈ ΩwJ′ . The former condition implies that wJ ⩾ wK , and the latter condition
implies that wK ⩾ wJ′ ([16, Sect. 10.2 and 10.5]). Thus, we obtain wJ ⩾ wJ′ , and it
follows that J ⊇ J ′ from Lemma 2.4.

If J ⊇ J ′, then we have wJ ⩾ wJ′ by Lemma 2.4. This implies that wJ ∈ XwJ
∩

ΩwJ′ , and hence XJ ∩ ΩJ′ ̸= ∅ follows. □

A distinguished property of XJ is that it is a regular nilpotent Hessenberg variety
for a certain Hessenberg function. Let us explain this in the following. For each J ⊆
[n − 1], there is a natural Hessenberg function which is determined by J as follows.
Let hJ : [n] → [n] be a function given by

hJ(i) =
{
i+ 1 if i ∈ J

i if i /∈ J
(3.2)

for 1 ⩽ i ⩽ n. Then hJ is a Hessenberg function, and we have Hess(N,hJ) ⊆ Petn
since the Hessenberg function for Petn is given by h(i) = i + 1 for 1 ⩽ i ⩽ n − 1 as
we saw in Section 2.2.
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Example 3.3. Let n = 10 and J = {1, 2} ⊔ {4, 5, 6} ⊔ {9} = J1 ⊔ J2 ⊔ J3. Then
the configuration of boxes of hJ is given in Figure 3. Compare the figure with the
permutation matrix of wJ in Example 2.2.

Figure 3. The Hessenberg function hJ .

As we mentioned above, Insko–Tymoczko [24] studied XJ , and they proved most
of the following claim. Recall that XJ is defined to be the intersection XwJ

∩ Petn
where XwJ

is the Schubert variety associated with wJ .

Proposition 3.4. For J ⊆ [n− 1], we have
XJ = X◦

wJ
∩ Petn = Hess(N,hJ)(3.3)

where N is the regular nilpotent matrix given in (2.7), and X◦
wJ

is the Schubert cell
associated with wJ . In particular, we have dimCXJ = |J |.

To prove this, we need the following lemma. Let X◦
w ⊆ Fln be the Schubert cell

associated with w and and Ω◦
w ⊆ Fln the dual Schubert cell associated with w.

Lemma 3.5. The following are equivalent.
(1) X◦

w ∩ Petn ̸= ∅
(2) Ω◦

w ∩ Petn ̸= ∅
(3) w ∈ Petn (i.e. w = wJ for some J ⊆ [n− 1])

Proof. It is clear that (3) implies (1). To see that (1) implies (3), take an element
z ∈ X◦

w ∩Petn ̸= ∅. Since X◦
w ∩Petn ⊆ X◦

w is preserved under the C×-action on X◦
w,

it follows that t · z ∈ X◦
w ∩ Petn for all t ∈ C×. Noticing that X◦

w ∩ Petn ⊆ X◦
w is a

closed subset, we have
lim
t→0

t · z ∈ X◦
w ∩ Petn.(3.4)

Under the standard identification X◦
w = Cℓ(w) (c.f. [16, Sect. 10.2]), the C×-action

on X◦
w is identified with a linear action with positive weights. Thus it follows that

limt→0 t · z = 0, which corresponds to w ∈ X◦
w (c.f. [24, proof of Lemma 5]). Thus it

follows that w ∈ Petn by (3.4). The equivalence of (2) and (3) follows by an argument
similar to that for the equivalence of (1) and (3). □

Proof of Proposition 3.4. Let us first prove that
X◦

wJ
∩ Petn ⊆ Hess(N,hJ) for each J ⊆ [n− 1].(3.5)

For this, take an arbitrary element V• ∈ X◦
wJ

∩ Petn. Then we have
NVi ⊆ Vi+1 (1 ⩽ i ⩽ n− 1).

Algebraic Combinatorics, Vol. 7 #2 (2024) 389



H. Abe, T. Horiguchi, H. Kuwata & H. Zeng

To see that V• ∈ Hess(N,hJ), we need to show that

NVp ⊆ Vp for p /∈ J.(3.6)

Since we are assuming V• ∈ X◦
wJ

∩ Petn, the flag V• lies in the Schubert cell X◦
wJ

.
Here, the permutation wJ is a product of the longest permutations of the symmetric
group of smaller ranks as given in (2.2). Thus it follows (from e.g. [16, Sect. 10.2])
that

Vp = ⟨e1, e2, . . . , ep⟩ for p /∈ J,

where e1, e2, . . . , en is the standard basis of Cn. Since Ne1 = 0 and Nei = ei−1
for 2 ⩽ i ⩽ n, it is clear that (3.6) follows. Thus we obtain (3.5).

Now, we prove the claim (3.3) of this proposition. Since we have XwJ
=
⊔

v⩽wJ
X◦

v ,
it follows that

XJ = XwJ
∩ Petn =

⊔
v⩽wJ

(X◦
v ∩ Petn) =

⊔
J′⊆J

(X◦
wJ′ ∩ Petn),(3.7)

where the last equality follows from Lemmas 2.4 and 3.5. For each intersection X◦
wJ′ ∩

Petn in the right-most side, we have that X◦
wJ′ ∩ Petn ⊆ Hess(N,hJ′) by (3.5). The

condition J ′ ⊆ J implies that hJ′(i) ⩽ hJ(i) for 1 ⩽ i ⩽ n, and hence we have
Hess(N,hJ′) ⊆ Hess(N,hJ). Combining this with the previous inclusion, we see that

X◦
wJ′ ∩ Petn ⊆ Hess(N,hJ)

in (3.7). Thus it follows that

XJ ⊆ Hess(N,hJ).(3.8)

Note that X◦
wJ

∩ Petn ⊆ XJ(= XwJ
∩ Petn) by definition, and hence we have that

X◦
wJ

∩ Petn ⊆ XJ by taking the closure. Combining this with (3.8), we obtain that

X◦
wJ

∩ Petn ⊆ XJ ⊆ Hess(N,hJ).(3.9)

In this sequence, both sides have the same dimension. This is because we have
dimCX◦

wJ
∩ Petn = |J | from [24, Lemma 9] and dimC Hess(N,hJ) = |J | from [7,

Lemma 7.1]. Since Hess(N,hJ) is irreducible, the two inclusions in (3.9) are equali-
ties. This completes the proof. □

Combining Proposition 3.4 and a result of Drellich [13, Theorem 4.5], we may
express XJ as a product of Peterson varieties of smaller ranks as follows. Let J =
J1 ⊔ J2 ⊔ · · · ⊔ Jm be the decomposition into the connected components. Then, by
definition, we have wJ = w

(J1)
0 w

(J2)
0 · · ·w(Jm)

0 , where each w(Jk)
0 is a product of longest

elements in SJk
for 1 ⩽ k ⩽ m. Hence it follows that the Schubert variety XwJ

⊆ Fln
associated with wJ is isomorphic to the product of the flag varieties of smaller ranks:

XwJ
=

m∏
k=1

X
w

(Jk)
0

∼=
m∏

k=1
Flnk

,

where we set

nk := |Jk| + 1 for 1 ⩽ k ⩽ m.

By restricting this isomorphism to XJ = XwJ
∩Petn, it follows from Proposition 3.4

and [13, Theorem 4.5] that XJ is isomorphic to a product of Peterson varieties of
smaller ranks.
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Corollary 3.6. For J ⊆ [n− 1], we have

XJ =
m∏

k=1
XJk

∼=
m∏

k=1
Petnk

,

where J = J1 ⊔ J2 ⊔ · · · ⊔ Jm is the decomposition into the connected components and
nk = |Jk| + 1 (1 ⩽ k ⩽ m).

Example 3.7. Let n = 10 and J = {1, 2} ⊔ {4, 5, 6} ⊔ {9} = J1 ⊔ J2 ⊔ J3. The
representation matrix of wJ is given in Example 2.2, and we have

XwJ
∼= Fl3 × Fl4 × Fl2,

XJ
∼= Pet3 × Pet4 × Pet2.

Compared to Schubert varieties and dual Schubert varieties in Fln, the structures
of XJ and ΩJ in Petn are rather simple as we explain below. To begin with, we make
the following definition.

Definition 3.8. For 1 ⩽ i ⩽ n− 1, let

Di := X[n−1]∖{i} and Ei := Ω{i}.(3.10)

where X[n−1]∖{i} and Ω{i} are defined in (3.1).

Lemma 3.9. For 1 ⩽ i ⩽ n− 1, the following hold.
(1) Di and Ei have codimension 1 in Petn.
(2) Di ∩ Ei = ∅.

Proof. For (1), we have dimCDi = dimCX[n−1]∖{i} = n − 2 by Proposition 3.4. We
also have

Ei = Ω{i} = Ωw{i} ∩ Petn = Ωsi
∩ Petn.

It is well-known that Ωsi is irreducible and it has complex codimension 1 in Fln ([16,
Sect. 10.2]). Hence Ωsi

in Fln is locally cut out by a single function. We also know
that Ωsi

∩ Petn is a non-empty proper subset of Petn since we have si ∈ Ωsi
∩ Petn

and id = w∅ ∈ Petn ∖ Ωsi
. Thus, it follows that dimCEi = n− 2. For (2), the claim

follows from Proposition 3.2. □

In the next subsection, we will see that Di and Ei are divisors(1) on Petn. The
following claim means that XJ and ΩJ can be described as intersections of divisors
on Petn.

Proposition 3.10. For J ⊆ [n− 1], we have

XJ =
⋂

i/∈J

Di and ΩJ =
⋂

i∈J

Ei.(3.11)

Proof. By (3.7), we have

Xw[n−1]∖{i} ∩ Petn =
⊔

J′⊆[n−1]∖{i}

(X◦
wJ′ ∩ Petn).

This implies from the definition of Di that⋂
i/∈J

Di =
⋂

i/∈J

(Xw[n−1]∖{i} ∩ Petn) =
⊔

J′⊆J

(X◦
wJ′ ∩ Petn).

(1)In this paper, a divisor on a variety Y always means the support of an effective Cartier divisor
on Y , i.e. the zero locus of a section of a line bundle over Y .
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Combining this with (3.7), we obtain the desired claim for XJ . An argument similar
to this proves that⋂

i∈J

Ei =
⋂

i∈J

(Ωw{i} ∩ Petn) =
⊔

J′′⊇J

(Ω◦
wJ′′ ∩ Petn) = ΩwJ

∩ Petn = ΩJ

by Lemmas 2.4 and 3.5. □

Example 3.11. Let n = 9 and J = {2, 3, 4} ⊔ {7, 8} so that [n− 1]∖ J = {1} ⊔ {5, 6}.
Then we have

XJ = D1 ∩D5 ∩D6 and ΩJ = E2 ∩ E3 ∩ E4 ∩ E7 ∩ E8.

3.2. Defining equations of XJ and ΩJ . Let B ⊆ GLn(C) be the Borel subgroup
of upper-triangular matrices in GLn(C). Then we have the standard identification
Fln = GLn(C)/B. For a complex B-representation space V , we have the associated
complex vector bundle(2) over GLn(C)/B:

GLn(C) ×B V → GLn(C)/B ; [g, v] 7→ gB.

For a weight µ : T → C×, we obtain µ : B → C× by composing that with the canonical
projection B ↠ T , which we also denote by the same symbol. We denote by Cµ = C
the corresponding 1-dimensional representation space of B. Set

Lµ = GLn(C) ×B C∗
µ = GLn(C) ×B C−µ,(3.12)

where C∗
µ is the dual representation space of Cµ. We also denote the restriction Lµ|P etn

by the same symbol Lµ when there is no confusion.
Let us introduce two representations of B associated with each J ⊆ [n − 1] as

follows. For 1 ⩽ i ⩽ n− 1, let ϖi : T → C× be the i-th fundamental weight of T given
by diag(t1, t2, . . . , tn) 7→ t1t2 · · · ti. For J ⊆ [n− 1], we obtain a representation space
of T given by a direct sum ⊕

i∈J

C∗
ϖi
.

Through the canonical projection B ↠ T , we regard this as a representation of B. To
introduce the other representation of B associated with J , let αi (1 ⩽ i ⩽ n−1) be the
i-th simple root defined as a weight αi : T → C× given by diag(t1, t2, . . . , tn) 7→ tit

−1
i+1.

Let HJ ⊆ gln(C) be the Hessenberg subspace (c.f. [33, Sect. 2]) corresponding to the
Hessenberg function hJ defined in (3.2), that is,

HJ := b ⊕
⊕
i∈J

g−αi
⊆ gln(C),(3.13)

where b = Lie(B) is the Lie algebra of B and each g−αi is the standard root space
of gln(C) associated with the i-th negative simple root −αi (1 ⩽ i ⩽ n− 1). Since HJ

is preserved by the adjoint action of B on gln(C), the quotient space

H[n−1]/HJ

is a representation space of B. Now, these two representations of B induce the fol-
lowing vector bundles over Fln:

UJ := GLn(C) ×B
(
H[n−1]/HJ

)
,

VJ := GLn(C) ×B

(⊕
i∈J

C∗
ϖi

)
.

(2)We take the B-action on the product GLn(C) × V so that [g, v] = [gb, b−1 · v] in the quotient.
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If there is no confusion, we denote the restrictions of UJ and VJ on Petn by the same
symbol. Note that we have

rankUJ = (n− 1) − |J |,
rank VJ = |J |.

(3.14)

Recall that
Petn = {gB ∈ GLn(C)/B | g−1Ng ∈ H[n−1]}

(c.f. [24, 31] or [33, Sect. 2]). Thus, the following map gives a section of UJ over Petn:
ϕJ : Petn → UJ ; ϕJ(gB) = [g, [g−1Ng]],

where [g−1Ng] ∈ H[n−1]/HJ is the class represented by g−1Ng ∈ H[n−1]. For 1 ⩽ i ⩽
n− 1, let

deti : GLn(C) → Cϖi(= C)
be the function which takes the leading principal minor of order i. This is a B-
equivariant function with respect to the multiplication of B on GLn(C) from the
right. Thus, we have a well-defined section

ψJ : Petn → VJ ; gB 7→
[
g,
∑
i∈J

deti(g)
]
.

The following claim means that XJ and ΩJ in Petn are defined by the equation
ϕJ = 0 and ψJ = 0, respectively.

Proposition 3.12. For J ⊆ [n− 1], we have
XJ = Z(ϕJ) and ΩJ = Z(ψJ),

where Z(ϕJ) and Z(ψJ) denote the zero loci of the sections ϕJ and ψJ , respectively.

Proof. Since the defining condition of Hess(N,hJ) is precisely that g−1Ng ∈ HJ

(e.g. [33, Sect. 2]), it is clear that we have XJ = Z(ϕJ). It is known that
Ωsi = {gB ∈ GLn(C)/B | deti(g) = 0}

as subsets of Fln (c.f. [16, Proposition 9 in Sect. 10.6]). Thus, it follows that
Z(ψ{i}) = Ωsi

∩ Petn = Ei.

Now, we obtain that
Z(ψJ) =

⋂
i∈J

Z(ψ{i}) =
⋂

i∈J

Ei = ΩJ

by Proposition 3.10. □

Corollary 3.13. For 1 ⩽ i ⩽ n− 1, Di and Ei are divisors on Petn.

Proof. By (3.14), it follows that U[n−1]∖{i} is a line bundle, and we have Di =
X[n−1]∖{i} = Z(ϕ[n−1]∖{i}) by the previous proposition. This means that Di is a
divisor on Petn. Similarly, Ei = Ω{i} = Z(ψ{i}) is a divisor on Petn since V{i} is a
line bundle by (3.14). □

Corollary 3.14. For J ⊆ [n− 1], we have codimC ΩJ = |J | in Petn.

Proof. Recall that ΩJ = Z(ψJ) and rank VJ = |J |. This means that ΩJ in Petn is
locally cut out by |J | functions, and it follows that each irreducible component of ΩJ

has codimension at most |J | in Petn ([17, Proposition 14.1]). This implies that
dimC ΩJ ⩾ (n− 1) − |J |(3.15)
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since dimC Petn = n− 1 and ΩJ = ΩwJ
∩Petn ̸= ∅. We show that the equality holds

by induction on (n − 1) − |J |. When J = [n − 1], we have Ω[n−1] = Ωw0 ∩ Petn =
{w0} so that the claim is obvious. Let J ⊊ [n − 1], and assume by induction that
dimC ΩK = (n− 1) − |K| for J ⊊ K ⊆ [n− 1]. We prove that dimC ΩJ = (n− 1) − |J |.
Take an element i ∈ [n− 1] ∖ J , and set K = J ⊔ {i}. Then we have

ΩK = ΩJ ∩ Ei ⊆ ΩJ(3.16)
by Proposition 3.10. This means that ΩK is the zero locus of the section ψ{i} of the
line bundle V{i} restricted over ΩJ . Thus we see that

dimC ΩK ⩾ dimC ΩJ − 1,(3.17)

which follows by applying [17, Proposition 14.1] to each irreducible component of ΩJ .
Namely, the dimension decreases at most by 1 in (3.16). Since we have dimC ΩK =
(n− 1) − |K| by the inductive hypothesis, we can rewrite (3.17) as

dimC ΩJ ⩽ dimC ΩK + 1 = (n− 1) − |K| + 1 = (n− 1) − |J |.

Combining this with (3.15), we obtain the desired equality. □

Remark 3.15. The vector bundles UJ and VJ are decomposed into line bundles as
UJ =

⊕
i/∈J

Lαi and VJ =
⊕
i∈J

Lϖi .

The first equality follows since we have H[n−1]/HJ
∼= ⊕i/∈JC−αi

as representations
of B, where the right hand side is a direct sum representation. These decompositions
can be viewed as the analogue of Proposition 3.10 in the language of vector bundles
over Petn.

4. The cohomology ring of Petn

In this section, we construct an additive basis of the integral cohomology ring
H∗(Petn;Z) by incorporating the geometry established in the previous section. We
also introduce the structure constants of the basis, and provide a geometric proof for
their positivity.

For an algebraic variety X which admits a paving by complex affine spaces ([33,
Definition 2.1]), an irreducible Zariski closed subset Y of X has its fundamental cycle
(as a reduced scheme) in H2d(Y ;Z), where d = dimC Y . By abusing notation, we use
the same symbol for its image in H2d(X;Z) under the induced map i∗ : H2d(Y ;Z) →
H2d(X;Z), where i is the inclusion map i : Z ↪→ X. See [16, Appendix B] or [17,
Chap. 19] for the details.

4.1. The homology group of Petn. Recall that we have a decomposition of Fln
by Schubert cells:

Fln =
⊔

w∈Sn

X◦
w.

This induces a set-theoretic decomposition

Petn =
⊔

J⊆[n−1]

(X◦
wJ

∩ Petn),

by Lemmas 2.4 and 3.5. It is known from [29, 33] that each X◦
wJ

∩Petn is isomorphic
to an affine cell C|J| and that these cells form a paving by affines. Recall also from
Proposition 3.4 that we have

XJ = X◦
wJ

∩ Petn
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and that dimCXJ = |J | for J ⊆ [n − 1]. This implies that the cycles represented
by XJ for J ⊆ [n− 1] form a Z-basis of the homology group H∗(Petn;Z).

Proposition 4.1. ([29, 33]) For each J ⊆ [n − 1], we have [XJ ] ∈ H2|J|(Petn;Z),
and the set {[XJ ] | J ⊆ [n− 1]} is a Z-basis of H∗(Petn;Z);

H∗(Petn;Z) =
⊕

J⊆[n−1]
Z[XJ ].

Example 4.2. Let n = 4 so that [n− 1] = {1, 2, 3}. Then we have

H∗(Petn;Z) = Z[X∅] ⊕ (Z[X{1}] ⊕ Z[X{2}] ⊕ Z[X{3}])
⊕ (Z[X{1,2}] ⊕ Z[X{1,3}] ⊕ Z[X{2,3}]) ⊕ Z[X{1,2,3}].

Remark 4.3. Compared to X◦
wJ

∩ Petn(∼= C|J|), the geometry of Ω◦
wJ

∩ Petn is
known to encode the quantum cohomology ring of a partial flag variety specified by J
(see [29, 31]).

4.2. The cohomology group of Petn. For each weight µ : T → C×, we con-
structed a line bundle Lµ over Fln in Section 3.2. Recall also that αi and ϖi are the
i-th simple root and the i-th fundamental weight of T (1 ⩽ i ⩽ n − 1), respectively.
It is well-known that we have an isomorphism

n−1⊕
i=1

Zϖi

∼=→ H2(Fln;Z) ; µ 7→ e(Lµ),

where we regard each µ = a1ϖ1 + · · · + an−1ϖn−1 (a1, . . . , an−1 ∈ Z) as the
weight µ : T → C× given by diag(t1, . . . , tn) 7→ ta1

1 (t1t2)a2 · · · (t1 · · · tn−1)an−1 .
Let i : Petn ↪→ Fln be the inclusion map. Insko [23] proved that the induced ho-
momorphism i∗ : H∗(Petn;Z) → H∗(Fln;Z) is an injection whose image is a direct
summand of H∗(Fln;Z). This means that the map i∗ : H2(Petn;Z) → H2(Fln;Z) on
degree 2 is an isomorphism since rankH2(Fln;Z) = rankH2(Petn;Z) = n − 1 (see
Proposition 4.1), and hence the restriction map

i∗ : H2(Fln;Z)
∼=→ H2(Petn;Z)

on degree 2 cohomology group is an isomorphism. By combining these isomorphisms,
we obtain that

⊕n−1
i=1 Zϖi

∼= H2(Petn;Z). In the rest of the paper, we identify⊕n−1
i=1 Zϖi with H2(Petn;Z) through this isomorphism, and we use the same symbol

µ ∈ H2(Petn;Z) for the element e(Lµ) by abusing notation. For example, we write

αi = e(Lαi
) and ϖi = e(Lϖi

)

as elements in H2(Petn;Z).
In Section 3.2, we constructed vector bundles UJ and VJ over Petn. Adopting the

above notation, we may express the Euler class e(VJ) as a monomial of ϖi for each
i ∈ J . Namely, for J ⊆ [n− 1], we have

e(VJ) =
∏
i∈J

ϖi(4.1)

since the vector bundle VJ decomposes into line bundles as follows:

VJ = GLn(C) ×B

(⊕
i∈J

C∗
ϖi

)
=
⊕
i∈J

Lϖi .

For J ⊆ [n− 1], take the decomposition J = J1 ⊔ J2 ⊔ · · · ⊔ Jm into the connected
components. We set

mJ := |J1|!|J2|! · · · |Jm|!.(4.2)

Algebraic Combinatorics, Vol. 7 #2 (2024) 395



H. Abe, T. Horiguchi, H. Kuwata & H. Zeng

Definition 4.4. For J ⊆ [n− 1], let

ϖJ := 1
mJ

e(VJ) = 1
mJ

∏
i∈J

ϖi,

where mJ is defined in (4.2).

The cohomology class ϖJ is defined to be an element of H2|J|(Petn;Q), but we
will show that it belongs to the integral cohomology group H2|J|(Petn;Z).

Example 4.5. Let n = 9 and J = {2, 3, 4, 7, 8} so that J = {2, 3, 4} ⊔ {7, 8} is the
decomposition into the connected components. Then we have

ϖJ = 1
3!2! (ϖ2ϖ3ϖ4)(ϖ7ϖ8) = 1

12ϖ2ϖ3ϖ4ϖ7ϖ8.

Compare this with Example 3.11.

Remark 4.6. We also have
e(UJ) =

∏
i/∈J

αi

(c.f. Remark 3.15). These decompositions of e(UJ) and e(VJ) can be viewed as the
cohomological analogue of Proposition 3.10.

The main purpose of this subsection is to prove that the set of cohomology classes
{ϖJ | J ⊆ [n−1]} forms a module basis of the integral cohomology groupH∗(Petn;Z).
We will state this in Theorem 4.14, and we devote the rest of this subsection for its
proof.

Lemma 4.7. For 1 ⩽ i ⩽ n− 1, we have
αiϖi = 0 in H4(Petn,Z).

Proof. Notice that αiϖi is the Euler class of the rank 2 vector bundle U[n−1]∖{i} ⊕
V{i} = Lαi

⊕Lϖi
(c.f. Remark 3.15). From Section 3.2, we have the section ϕ[n−1]∖{i}+

ψ{i} of this bundle whose zero locus is Z(ϕ[n−1]∖{i}) ∩ Z(ψ{i}) = Di ∩ Ei as we
saw in the proof of Corollary 3.13. Now, by Lemma 3.9 (2), this is the empty set.
Thus, ϕ[n−1]∖{i} + ψ{i} on Petn is a nowhere-zero section, and hence the Euler class
αiϖi vanishes (see [27, Property 9.7]). □

Remark 4.8. In [15, Corollary 3.4] and [19, Theorem 4.1], the equations αiϖi = 0
for 1 ⩽ i ⩽ n − 1 appeared as the fundamental relations in the presentation of the
cohomology ring H∗(Petn;C).

For 1 ⩽ i ⩽ n, let Fi be the i-th tautological vector bundle over Fln whose fiber
at V• ∈ Fln is Vi. As a convention, we denote by F0 the trivial sub-bundle of F1 of
rank 0. The quotient line bundle Li := Fi/Fi−1 is called the i-th tautological line
bundle, and we set

xi := c1(L∗
i ) ∈ H2(Fln;Z) (1 ⩽ i ⩽ n),(4.3)

where we note that x1 + · · · + xn = 0. We will also denote by the same symbol the
restriction of xi to H2(Petn;Z). It is well-known that for 1 ⩽ i ⩽ n− 1, we have

αi = xi − xi+1,

ϖi = x1 + x2 + · · · + xi.
(4.4)

For 1 ⩽ i < j ⩽ n, let
αi,j := αi + αi+1 + · · · + αj−1 = xi − xj .
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For a homology cycle Z ∈ Hk(Fln;Z) of degree k, the Poincaré dual of Z is the
(unique) cohomology class γ ∈ H2d−k(Fln;Z) (d = dimC Fln) satisfying γ∩[Fln] = Z.
In the following lemma, we regard Fln−1 as a subvariety of Fln whose flags are
contained in the linear subspace of Cn generated by e1, e2, . . . , en−1. The claim (2) of
the following lemma seems to be well-known, but we provide a proof using Hessenberg
varieties for the completeness of the paper.

Lemma 4.9. The following hold:
(1) The Poincaré dual of [Petn] ∈ H∗(Fln;Z) is

∏
j−i⩾2 αi,j ∈ H∗(Fln;Z).

(2) The Poincaré dual of [Fln−1] ∈ H∗(Fln;Z) is 1
nα1,nα2,n · · ·αn−1,n ∈

H∗(Fln;Z).

Proof. We first prove the claim (1). Recall from (3.2) and (3.13) that HJ ⊆ gln(C)
for J ⊆ [n− 1] is the Hessenberg space corresponding to the Hessenberg function hJ .
Consider the associated vector bundle

N := GLn(C) ×B (gln(C)/H[n−1])

over Fln = GLn(C)/B. By an argument similar to that used in Section 3.2, Petn can
be written as the zero locus of a section of the vector bundle N , and it is shown in [2,
Corollary 3.9] that the Poincaré dual of [Petn] is the Euler class e(N ) ∈ H∗(Fln;Z). It
is straightforward to verify that e(N ) =

∏
j−i⩾2 αi,j by the same inductive argument

as that in [2, Sect. 4] using short exact sequences of vector bundles.
Next we prove the claim (2). Let S be an n × n regular semisimple matrix in

diagonal form (i.e. a diagonal matrix with distinct eigenvalues) and Hess(S, h0) a
regular semisimple Hessenberg variety, where h0 is the Hessenberg function h0 : [n] →
[n] given by

h0(i) :=
{
n− 1 (1 ⩽ i ⩽ n− 1)
n (i = n).

It is shown in [7, Sect, 3 and Sect. 4] that the Poincaré dual of [Hess(S, h0)] is

(x1 − xn)(x2 − xn) · · · (xn−1 − xn) ∈ H∗(Fln;Z),

where the left hand side is equal to α1,nα2,n · · ·αn−1,n by the definition of αi,j . It
is also known that Hess(S, h0) has n connected components and that all the con-
nected components give the same cycle [Fln−1] ([32, Sect. 3]). Thus the Poincaré
dual of n[Fln−1] is α1,nα2,n · · ·αn−1,n, which implies the claim (2). □

Remark 4.10. [7, Corollary 7.2] with the formula for the double Schubert polynomial
associated to a dominant permutation given in [7, p.2613] provides a more general
formula than that of Lemma 4.9 (1) for regular nilpotent Hessenberg schemes, which
were not known to be reduced when it was published. After that, [1] proved that they
are in fact reduced when they contain Petn (c.f. [1, Remark 3.8]), and the formula
are now generalized in [2] for an arbitrary Lie type.

For an (irreducible) projective variety Y , we denote the fundamental cycle of Y as
[Y ] ∈ H2d(Y ;Z), where d = dimC Y . For a cohomology class β ∈ H2d(Y ;Z), we write∫

Y

β := ⟨[Y ], β⟩Y (∈ Z),

where the right hand side is the value of the standard paring

⟨ , ⟩Y : H2d(Y ;Z) ×H2d(Y ;Z) → Z.
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Proposition 4.11. We have∫
P etn

ϖ1ϖ2 · · ·ϖn−1 = (n− 1)!.

Proof. Let us first prove that∫
P etn

ϖ1ϖ2 · · ·ϖn−1 = (n− 1)
∫

P etn−1

ϖ1ϖ2 · · ·ϖn−2.(4.5)

For the ϖn−1 in the left hand side of (4.5), notice that

ϖn−1 = 1
n

n−1∑
i=1

iαi,

which follows from (4.4). Since we have ϖiαi = 0 for 1 ⩽ i ⩽ n− 1 from Lemma 4.7,
we see that ∫

P etn

ϖ1ϖ2 · · ·ϖn−1 = n− 1
n

∫
P etn

ϖ1ϖ2 · · ·ϖn−2αn−1.(4.6)

By Lemma 4.9 (1), the right hand side of (4.6) can be computed as the following
integral over Fln:

n− 1
n

∫
F ln

ϖ1ϖ2 · · ·ϖn−2αn−1
∏

j−i⩾2
αi,j .

Since we have αn−1 = αn−1,n, the last expression can be written as
n− 1
n

∫
F ln

ϖ1ϖ2 · · ·ϖn−2(α1,nα2,n · · ·αn−1,n)
∏

j−i⩾2
j ̸=n

αi,j .

By Lemma 4.9 (2), we can rewrite this as the following integral over Fln−1:

(n− 1)
∫

F ln−1

ϖ1ϖ2 · · ·ϖn−2
∏

j−i⩾2
j ̸=n

αi,j .

Applying Lemma 4.9 (1) to Petn−1 ⊆ Fln−1, this can be written as the following
integral over Petn−1:

(n− 1)
∫

P etn−1

ϖ1ϖ2 · · ·ϖn−2.

Hence we proved (4.5).
Now using (4.5) repeatedly, we obtain that∫

P etn

ϖ1ϖ2 · · ·ϖn−1 = (n− 1)!
∫

P et2

ϖ1.

Noticing that Pet2 = Fl2 = P1, we see that ϖ1(= x1) is the first Chern class of the
dual of the standard tautological line bundle over P1 by (4.3). Thus the integral in
the right hand side is equal to 1, which completes the proof. □

Lemma 4.12. For J ⊆ [n− 1], we have∫
XJ

e(VJ) = mJ ,

where mJ = |J1|!|J2|! · · · |Jm|! is defined in (4.2).
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Proof. The isomorphism given in Corollary 3.6 induces an isomorphism

H∗(XJ ;Z)
∼=→

m⊗
k=1

H∗(Petnk
;Z)

which sends e(VJ)(=
∏

i∈J ϖi) ∈ H2|J|(XJ ;Z) to
⊗m

k=1 ϖ1ϖ2 · · ·ϖ|Jk|. It also in-
duces an isomorphism

H∗(XJ ;Z)
∼=→

m⊗
k=1

H∗(Petnk
;Z)

which sends [XJ ] ∈ H2|J|(XJ ;Z) to
⊗m

k=1[Petnk
]. Now the claim follows from Propo-

sition 4.11. □

Proposition 4.13. For J,K ⊆ [n−1] such that |J | = |K|, the degree of the homology
class [XJ ] is the same as the degree of the Euler class e(VK), and we have

⟨[XJ ], e(VK)⟩P etn
=
{
mJ if J = K,

0 if J ̸= K.

Proof. Note that we have

⟨[XJ ], e(VK)⟩P etn
=
∫

XJ

e(VK).(4.7)

For the case J = K, the claim follows from the previous lemma. Let us consider
the case J ̸= K. This condition and |J | = |K| imply that J ̸⊇ K. We prove that
the right hand side of (4.7) is equal to zero due to the vanishing of the Euler class
e(VK) on XJ . Recall from Proposition 3.12 that we have the section ψK : Petn → VK

satisfying Z(ψK) = ΩK . Thus, the vector bundle VK |XJ
restricted to XJ admits a

nowhere-zero section given by ψK |XJ
since we have XJ ∩ ΩK = ∅ by J ̸⊇ K and

Proposition 3.2. Thus the Euler class e(VK) vanishes on XJ , and hence the right hand
side of (4.7) is equal to 0 in this case. □

For J ⊆ [n− 1], recall from Definition 4.4 that

ϖJ = 1
mJ

e(VJ) = 1
mJ

∏
i∈J

ϖi.

Theorem 4.14. For each J ⊆ [n − 1], the cohomology class ϖJ is an element of the
integral cohomology H2|J|(Petn;Z), and the set

{ϖJ ∈ H∗(Petn;Z) | J ⊆ [n− 1]}

is a Z-basis of H∗(Petn;Z).

Proof. Recall from Proposition 4.1 that {[XJ ] | J ⊆ [n − 1]} forms a Z-basis of
H∗(Petn;Z). Since the paring between H∗(Petn;Z) and H∗(Petn;Z) is perfect, the
previous proposition implies the desired claim. □

Example 4.15. Let n = 4 so that [n − 1] = {1, 2, 3}. The additive basis given in
Theorem 4.14 is

H∗(Petn;Z) = Zϖ∅ ⊕ (Zϖ{1} ⊕ Zϖ{2} ⊕ Zϖ{3})
⊕ (Zϖ{1,2} ⊕ Zϖ{1,3} ⊕ Zϖ{2,3}) ⊕ Zϖ{1,2,3}.

As we saw in Proposition 4.13, this is the dual basis of the basis of the homology
group H∗(Petn;Z) given in Example 4.2.

Algebraic Combinatorics, Vol. 7 #2 (2024) 399



H. Abe, T. Horiguchi, H. Kuwata & H. Zeng

4.3. Structure constants and their positivity. By Theorem 4.14, we can
study the cohomology ring H∗(Petn;Z) in terms of the basis {ϖJ}J⊆[n−1]. Specifi-
cally, we expand the product of two classes ϖJ and ϖK as a linear combination of
the basis:

ϖJ ·ϖK =
∑

L⊆[n−1]

dL
JK ϖL, dL

JK ∈ Z.(4.8)

The coefficients dL
JK are called the structure constant for the basis {ϖJ}J⊆[n−1]. In the

following, we explain a geometric interpretation of dL
JK , and deduce their positivity.

Note that the degree of ϖL in H∗(Petn;Z) is 2|L| and that the degree of ϖJ ·ϖK in
H∗(Petn;Z) is 2(|J | + |K|). Thus we may assume that

|L| = |J | + |K|(4.9)

for each summand of (4.8) since we have dL
JK = 0 otherwise. Then by Proposition 4.13,

we have

dL
JK = ⟨[XL], ϖJ ·ϖK⟩P etn

= 1
mJ

1
mK

∫
XL

∏
j∈J

ϖj

(∏
k∈K

ϖk

)
,(4.10)

where mJ and mK are the positive integers defined in (4.2). Now recall that each
ϖi ∈ H2(XL;Z) is the Euler class of the line bundle V{i} corresponding to the divisor
Ei(= Z(ψ{i})) on Petn. Hence it follows from (4.10) that the structure constant dL

JK

computes an intersection number of (possibly duplicate) divisors Ei ∩ XL’s on XL

up to a constant multiple given by 1
mJ

1
mK

(c.f. [26, Sect. 1.1.C]). This provides a
geometric interpretation of dL

JK in (4.8), and it leads us to the following instance of
positivity.

Proposition 4.16. We have dL
JK ⩾ 0 for all J,K,L ⊆ [n− 1].

Proof. Recall that each line bundle Lϖi
over Fln is nef for 1 ⩽ i ⩽ n − 1 (e.g. [11,

proof of Proposition 1.4.1] or [3, Lemma 3.5]). Hence the restriction of Lϖi
over XL

is nef as well for 1 ⩽ i ⩽ n− 1. Thus the claim dL
JK ⩾ 0 follows from (4.10) and the

positivity of intersection numbers of nef divisors [26, Example 1.4.16]. □

5. Structure constants and Left-right diagrams
Recall from the previous section that the structure constants dL

JK are defined to be the
coefficients of the expansion formula (4.8) for the product ϖJ ·ϖK for J,K ⊆ [n− 1]:

ϖJ ·ϖK =
∑

L⊆[n−1]

dL
JK ϖL, dL

JK ∈ Z.

In this section, we provide a manifestly positive combinatorial formula which computes
the structure constant dL

JK for all J,K,L ⊆ [n−1]. We start with the following lemma
which tells us how to expand a monomial of ϖ1, . . . , ϖn−1 containing a square in the
simplest case.

Lemma 5.1. For 1 ⩽ a ⩽ i ⩽ b ⩽ n− 1, we have

ϖi · (ϖaϖa+1 · · ·ϖb) = b− i+ 1
b− a+ 2ϖa−1ϖa · · ·ϖb + i− a+ 1

b− a+ 2ϖa · · ·ϖbϖb+1

in H∗(Petn;Z), where we take the convention ϖ0 = ϖn = 0.
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Proof. We prove the claim by induction on b − a(⩾ 0). When b − a = 0, we have
a = i = b so that the left hand side is ϖ2

a. Noticing that αa = −ϖa−1 + 2ϖa −ϖa+1
(with the above convention), we have that

ϖa(−ϖa−1 + 2ϖa −ϖa+1) = 0

by Lemma 4.7. Thus the claim in this case follows since this equality can be expressed
as

ϖ2
a = 1

2ϖa−1ϖa + 1
2ϖaϖa+1.

We now prove the claim for the case a < b. Assume by induction that the claim
holds for any a′ ⩽ i′ ⩽ b′ with b′ − a′ < b− a. When i = a, we have

ϖa(ϖaϖa+1 · · ·ϖb) =
(
ϖa(ϖaϖa+1 · · ·ϖb−1)

)
ϖb

=
( b− a

b− a+ 1ϖa−1ϖa · · ·ϖb−1 + 1
b− a+ 1ϖaϖa+1 · · ·ϖb

)
ϖb

(by the inductive hypothesis)

= b− a

b− a+ 1ϖa−1ϖa · · ·ϖb + 1
b− a+ 1ϖa

(
ϖa+1 · · ·ϖb−1ϖ

2
b

)
= b− a

b− a+ 1ϖa−1ϖa · · ·ϖb

+ 1
(b− a+ 1)2ϖa

(
ϖaϖa+1 · · ·ϖb + (b− a)ϖa+1ϖa+2 · · ·ϖb+1

)
(by the inductive hypothesis).

Since the left hand side and the second summand of the right hand side are propor-
tional, this equation can be written as

(b− a+ 1)2 − 1
(b− a+ 1)2 ϖ2

a(ϖa+1 · · ·ϖb) = b− a

b− a+ 1ϖa−1ϖa · · ·ϖb

+ b− a

(b− a+ 1)2ϖaϖa+1 · · ·ϖb+1.

Noticing that (b− a+ 1)2 − 1 = (b− a)(b− a+ 2) for the numerator of the coefficient
of the left hand side, we obtain that

ϖ2
a(ϖa+1 · · ·ϖb) = b− a+ 1

b− a+ 2ϖa−1ϖa · · ·ϖb + 1
b− a+ 2ϖaϖa+1 · · ·ϖb+1(5.1)

which verifies the claim for the case i = a. Now suppose that a < i(⩽ b). We then
have that

ϖi(ϖaϖa+1 · · ·ϖb)

= ϖa

(
ϖi(ϖa+1 · · ·ϖb)

)
= ϖa

( b− i+ 1
b− a+ 1ϖaϖa+1 · · ·ϖb + i− a

b− a+ 1ϖa+1ϖa+2 · · ·ϖb+1

)
(by the induction hypothesis)

= b− i+ 1
b− a+ 1ϖ

2
a(ϖa+1 · · ·ϖb) + i− a

b− a+ 1ϖaϖa+1 · · ·ϖb+1

= b− i+ 1
b− a+ 1

(b− a+ 1
b− a+ 2ϖa−1ϖa · · ·ϖb + 1

b− a+ 2ϖaϖa+1 · · ·ϖb+1

)
+ i− a

b− a+ 1ϖaϖa+1 · · ·ϖb+1 (by (5.1))
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= b− i+ 1
b− a+ 2ϖa−1ϖa · · ·ϖb + i− a+ 1

b− a+ 2ϖaϖa+1 · · ·ϖb+1.

Thus we complete the proof by induction. □

Lemma 5.1 is the simplest case of expansions, but it turns out that it provides an
effective way for computing the expansion of ϖJ ·ϖK for J,K ⊆ [n− 1] as we see in
the following example.

Example 5.2. Let n = 10, and take J = {1, 3, 5, 6, 7} and K = {3, 6, 8}. The product
ϖJ ·ϖK can be computed by using Lemma 5.1 repeatedly as follows. We first extract
ϖi’s which produce squares:

ϖJ ·ϖK =
(

1
1!1!3!ϖ1ϖ3ϖ5ϖ6ϖ7

)
·
(

1
1!1!1!ϖ3ϖ6ϖ8

)
= 1

3!ϖ6 ·ϖ3 · (ϖ1ϖ3ϖ5ϖ6ϖ7ϖ8) .

By applying Lemma 5.1 to ϖ2
3, this can be computed as

1
3!ϖ6 ·ϖ3 · (ϖ1ϖ3ϖ5ϖ6ϖ7ϖ8)

= 1
3!ϖ6 ·

(
ϖ1

(
1
2ϖ2ϖ3 + 1

2ϖ3ϖ4

)
ϖ5ϖ6ϖ7ϖ8

)
= 1

3! · 1
2ϖ6 · (ϖ1ϖ2ϖ3ϖ5ϖ6ϖ7ϖ8) + 1

3! · 1
2ϖ6 · (ϖ1ϖ3ϖ4ϖ5ϖ6ϖ7ϖ8) .

Then, by applying Lemma 5.1 to ϖ5ϖ
2
6ϖ7ϖ8 in the first summand and to

ϖ3ϖ4ϖ5ϖ
2
6ϖ7ϖ8 in the second summand, we can continue our computation as

1
3! · 1

2ϖ6 · (ϖ1ϖ2ϖ3ϖ5ϖ6ϖ7ϖ8) + 1
3! · 1

2ϖ6 · (ϖ1ϖ3ϖ4ϖ5ϖ6ϖ7ϖ8)

= 1
3! · 1

2

(
ϖ1ϖ2ϖ3

(
3
5ϖ4ϖ5ϖ6ϖ7ϖ8 + 2

5ϖ5ϖ6ϖ7ϖ8ϖ9

))
+ 1

3! · 1
2

(
ϖ1

(
3
7ϖ2ϖ3ϖ4ϖ5ϖ6ϖ7ϖ8 + 4

7ϖ3ϖ4ϖ5ϖ6ϖ7ϖ8ϖ9

))
= 1

3! ·
(

1
2 · 3

5 + 1
2 · 3

7

)
· 8!ϖ{1,2,3,4,5,6,7,8}

+ 1
3! · 1

2 · 2
5 · 3! · 5!ϖ{1,2,3,5,6,7,8,9} + 1

3! · 1
2 · 4

7 · 7!ϖ{1,3,4,5,6,7,8,9}

= 3456ϖ{1,2,3,4,5,6,7,8} + 24ϖ{1,2,3,5,6,7,8,9} + 240ϖ{1,3,4,5,6,7,8,9}.

Thus we conclude that
ϖJ ·ϖK = 3456ϖ{1,2,3,4,5,6,7,8} + 24ϖ{1,2,3,5,6,7,8,9} + 240ϖ{1,3,4,5,6,7,8,9}

which gives a particular case of the expansion (4.8). As one can see, the geometric
idea behind this computation is the realization of ΩJ by intersecting the divisors Ei;
see (3.11) and (4.1).

Let J,K,L be subsets of [n−1]. By tracking the computations in the above example,
it is straightforward to see that if ϖL appears in the expansion of the product ϖJ ·ϖK ,
then L must contain J ∪K. Combining this with (4.9), we see that

dL
JK = 0 unless L ⊇ J ∪K and |L| = |J | + |K|.(5.2)

We now introduce a combinatorial object which effectively computes the structure
constants dL

JK . Because of (5.2), we always assume that L ⊇ J∪K and |L| = |J |+ |K|
in what follows. We first prepare the following two steps.
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(1) Write the elements of [n − 1] in increasing order, and draw a square grid of
size (1 + |J ∩ K|) × |L| over the subset L ⊆ [n − 1]. On the left side of the
grid, write the elements of J ∩K in increasing order from the second row to
the bottom row.

For each box in the grid, we define the row number of the box as the number which is
written beside the row containing the box, and define the column number of the box
as the number which is written below the column containing the box.

(2) Shade the boxes in the first row whose column numbers belong to J∪K(⊆ L).
Mark each box with a cross × whose row number is the same as the column
number.

Example 5.3. Let n = 10 and take J = {1, 3, 5, 6, 7} and K = {3, 6, 8} as in the
previous example. We depict the resulting grids after the steps (1) and (2) for the
following two choices of L.

(i) If L = {1, 2, 3, 4, 5, 6, 7, 8}, then the resulting grid is depicted in Figure 4. For
example, the row number of the marked box in the second row is 3.

Figure 4. The resulting grid for L = {1, 2, 3, 4, 5, 6, 7, 8}.

(ii) If L′ = {1, 2, 3, 5, 6, 7, 8, 9}, then the resulting grid is depicted in Figure 5.

Figure 5. The resulting grid for L′ = {1, 2, 3, 5, 6, 7, 8, 9}.

We now play a combinatorial game on the grid prepared above. Let us explain the
rule of the game inductively.
(The game):

Assume that some boxes in the i-th row are shaded (1 ⩽ i ⩽ |J ∩K|).
Then shade the boxes in the (i + 1)-th row whose column numbers
are the same as those of the shaded boxes in the i-th row. If there
is a non-shaded box adjacent to the left (L) or the right (R) of the
consecutive string of the shaded boxes in the (i+1)-th row containing
the marked box, then shade one of them darkly. In this case, continue
to the next row. If there are no such boxes, then we stop the game.

We say that the combinatorial game explained above is successful if we can continue
the game to the bottom row. We define a left-right diagram associated with (J,K,L)
as a configuration of boxes on a square grid of size (1+ |J ∩K|)×|L| over L(⊆ [n−1])
which is obtained as the resulting configuration of the shaded boxes of a successful
game. We denote by ∆L

JK the set of left-right diagrams associated with (J,K,L).
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Example 5.4. We take the triples (J,K,L) and (J,K,L′) given in Example 5.3.
(i) The left-right diagrams associated with (J,K,L) are P1 and P2 in Figure 6.

Figure 6. The games for the (J,K,L).

(ii) The left-right diagram associated with (J,K,L′) is the P ′ in Figure 7.

Figure 7. The (unique) game for the (J,K,L′).

Next, we define the weight of a left-right diagram P ∈ ∆L
JK as follows. For each

row of P (except for the first row), we consider the consecutive string of the shaded
boxes which contains the marked box in the focused row. Then the set of the column
numbers for these boxes must be of the form {a, a+ 1, . . . , b} for some a, b ∈ L, and
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the column number i of the marked box satisfies a ⩽ i ⩽ b. Motivated by Lemma 5.1,
we assign to this row a positive rational number given by

b− i+ 1
b− a+ 2 if the additional box is to the left of the marked box ,

i− a+ 1
b− a+ 2 if the additional box is to the right of the marked box .

Note that the column number of the additional box is a − 1 in the former case and
is b+ 1 in the latter case (c.f. Lemma 5.1). We may pictorially interpret this rational
number as follows.

• The denominator is the number of the shaded boxes counted from the addi-
tional box to the terminal box lying on the opposite side of the string of
shaded boxes across the marked box .

• The numerator is the number of the shaded boxes counted from the marked
box to the same terminal box as above.

We define the weight of P as the product of these positive rational numbers assigned
to the rows of P (except for the first row), and denote it by wt(P ).

Example 5.5. Continuing with Example 5.4, the weights of the left-right diagrams
P1, P2, P

′ can be computed as follows.
(i) The weights of the left-right diagrams P1 and P2 associated with the (J,K,L)

are

wt(P1) = 1
2 · 3

5 and wt(P2) = 1
2 · 3

7
(See Figure 8). By construction, these weights appear in the computation of
the coefficient of the ϖL = ϖ{1,2,3,4,5,6,7,8} in Example 5.2.

Figure 8. The computations of the weights of P1 and P2.

(ii) The weight of the left-right diagram P ′ ∈ ∆L′

JK can be computed as

wt(P ′) = 1
2 · 2

5 .

(See Figure 9). This weight appears in the computation of the coefficient of
the ϖL′ = ϖ{1,2,3,5,6,7,8,9} in Example 5.2 as well.

Figure 9. The computation of the weight of P ′.
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We now summarize our computation of the structure constants. For J ⊆ [n − 1],
recall from Definition 4.4 that

ϖJ = 1
mJ

e(VJ) = 1
mJ

∏
i∈J

ϖi.

Theorem 5.6. Let J,K be subsets of [n− 1]. In H∗(Petn;Z), we have

ϖJ ·ϖK =
∑

K∪J⊆L⊆[n−1]
|L|=|J|+|K|

dL
JK ϖL, dL

JK ∈ Z,(5.3)

and the structure constant dL
JK in this equality is given by

dL
JK = mL

mJmK

∑
P ∈∆L

JK

wt(P ),

where ∆L
JK is the set of left-right diagrams and wt(P ) is the weight of P defined

above. In particular, we have dL
JK = 0 in (5.3) if and only if ∆L

JK = ∅.

Proof. Recall from Definition 4.4 that

ϖJ ·ϖK = 1
mJmK

∏
j∈J

ϖj

 ·

(∏
k∈K

ϖk

)
.(5.4)

If J ∩ K = ∅, then this does not contain a square of ϖ1, . . . , ϖn−1, and it is clearly
equal to

mL

mJmK
ϖL.

Thus we may assume that J ∩K ̸= ∅ which implies that the right hand side of (5.4)
contains some squares. By extracting the terms which produce the squares, we can
express the product in the right hand side of (5.4) as∏

j∈J

ϖj

 ·

(∏
k∈K

ϖk

)
=
( ∏

i∈J∩K

ϖi

)
·

 ∏
q∈J∪K

ϖq

 .(5.5)

We compute the product in the right hand side of this equality. For this purpose, take
the decomposition J ∪ K = M1 ⊔ · · · ⊔ Ms into the connected components. Let i be
the smallest element of J ∩K. Then we have i ∈ Mr for some r (1 ⩽ r ⩽ s). Since Mr

is connected, we can express it as Mr = {a, a + 1, . . . , b} for some a, b ∈ J ∪ K with
a ⩽ i ⩽ b. Then, by Lemma 5.1 the product ϖi ·

(∏
q∈J∪K ϖq

)
can be expanded as

ϖi ·

 ∏
q∈J∪K

ϖq

 = b− i+ 1
b− a+ 2

∏
q∈J∪K∪{a−1}

ϖq + i− a+ 1
b− a+ 2

∏
q∈J∪K∪{b+1}

ϖq,

where we have no squares of ϖq’s in the right hand side since Mr is a connected
component of J ∪K. If |J ∩K| ⩾ 2, then let i′ be the smallest element of J ∩K∖{i}.
Multiplying ϖi′ to the right hand side of this equality, we can expand it by square-free
monomials in ϖ1, . . . , ϖn−1 by Lemma 5.1 again (c.f. Example 5.2). Repeating this
procedure for each element of J ∩K in increasing order, we obtain that( ∏

i∈J∩K

ϖi

)
·

 ∏
q∈J∪K

ϖq

 =
∑

L⊇J∪K
|L|=|J|+|K|

( ∑
P ∈∆L

JK

wt(P )
)∏

q∈L

ϖq


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by the construction of the left-right diagrams and their weights. Combining this
with (5.4) and (5.5), we obtain that

ϖJ ·ϖK =
∑

L⊇J∪K
|L|=|J|+|K|

 mL

mJmK

∑
P ∈∆L

JK

wt(P )

ϖL,

which implies the desired claim. □

Example 5.7. Let n = 10 and take J = {1, 3, 5, 6, 7}, K = {3, 6, 8} as in Example 5.2.
We compute the coefficients in (5.3) for the following two choices of L. Note that we
have mJ = 3! and mK = 1.

(i) For L = {1, 2, 3, 4, 5, 6, 7, 8}, we have mL = 8!, and the weights of left-right
diagrams associated with the (J,K,L) are computed in Example 5.5. Hence
we obtain that

dL
JK = mL

mJmK

∑
P ∈∆L

JK

wt(P ) = 8!
3!

(
1
2 · 3

5 + 1
2 · 3

7

)
= 3456

which coincides with the coefficient of ϖL = ϖ{1,2,3,4,5,6,7,8} in Example 5.2.
(ii) For L′ = {1, 2, 3, 5, 6, 7, 8, 9}, we have mL′ = 3! · 5!, and the weight of the left-

right diagram associated with the (J,K,L′) are computed in Example 5.5.
Hence we obtain that

dL′

JK = mL′

mJmK

∑
P ∈∆L′

JK

wt(P ) = 3! · 5!
3!

(
1
2 · 2

5

)
= 24

which coincides with the coefficient of ϖL′ = ϖ{1,2,3,5,6,7,8,9} in Example 5.2.

Remark 5.8. Theorem 5.6 provides the combinatorial description of the computation
demonstrated in Example 5.2. As we observed there, the geometric idea behind our
computation is the realization of ΩJ by intersecting the divisors Ei.

6. Relations to other works
In this section, we clarify how the results in this paper are related to other
works in existing literature. Especially, we explain the relations to the work of
Goldin–Gorbutt [18] on Peterson Schubert calculus and to the works of Berget–
Spink–Tseng [10], Nadeau–Tewari [28], and the second author [21] on mixed Eulerian
numbers. We emphasize that [10, 18, 28] are announced earlier than this paper.

6.1. Relations to Peterson Schubert calculus. We begin with reviewing the
motivation of Peterson Schubert calculus from [9, 14, 18, 20]. We first note that these
papers studied the equivariant cohomology ring of Petn with respect to the C×-action
explained in Section 2.1, but we focus on the ordinary cohomology ring to compare
with our computation (see [9, 14, 18, 20] for the results in the equivariant cohomology).
Recall that the dual Schubert variety Ωw associated with w ∈ Sn determines the
homology cycle [Ωw] in H∗(Fln;Z). We denote by σw ∈ H2ℓ(w)(Fln;Z) the Poincaré
dual of [Ωw], which is called the Schubert class associated with w. It is well-known
that the set of Schubert classes {σw | w ∈ Sn} forms an additive basis of H∗(Fln;Z).
Thus we may express the product σu · σv as a linear combination of the Schubert
classes:

σu · σv =
∑

w∈Sn

cw
uv σw, cw

uv ∈ Z.
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Computations of the structure constants cw
uv fall under the umbrella of Schubert cal-

culus on the flag variety Fln. Geometrically, cw
uv is the intersection number

∫
F ln

(σu ·
σv · σw0w), and this implies the positivity for the structure constants, i.e. cw

uv ⩾ 0 by
Kleiman’s transversality theorem (see e.g. [11, Sect. 1.3]).

Motivated by this, Harada and Tymoczko considered the following problem in [20].
Let pw ∈ H∗(Petn;C) denote the image of the Schubert class σw ∈ H∗(Fln;C) under
the restriction map H∗(Fln;C) → H∗(Petn;C). They called pw the Peterson Schubert
class corresponding to w. Since the restriction map H∗(Fln;C) → H∗(Petn;C) is
surjective ([20, 23]), it is natural to ask whether there exists a natural subset of
Peterson Schubert classes pw which forms an additive basis of H∗(Petn;C). They
gave an answer to this question as follows. Let J = {j1 < j2 < · · · < jm} be a subset
of [n−1]. They defined the element vJ ∈ Sn to be the product of simple transpositions
whose indices are in J , in increasing order, that is,

vJ := sj1sj2 · · · sjm
.(6.1)

Theorem 6.1 ([20, Theorem 4.12]). The set {pvJ
| J ⊆ [n − 1]} forms a C-basis of

H∗(Petn;C).

By this theorem, we may expand the product pvJ
· pvK

in terms of the Peterson
Schubert classes pvL

:

pvJ
· pvK

=
∑

L⊆[n−1]

cL
JK pvL

, cL
JK ∈ C.(6.2)

The framework of computing the structure constants cL
JK is called Peterson Schubert

calculus in [18]. Harada and Tymoczko also gave Monk’s formula for cL
JK in [20,

Theorem 6.12], which is the case for |J | = 1. Recently, Goldin and Gorbutt gave
combinatorial formulas for the structure constants cL

JK in [18, Theorems 1,4,6,7] which
are manifestly positive and integral. In particular, their formulas imply the positivity
for the structure constants.

Theorem 6.2. ([18, Corollary 8]) The structure constants cL
JK in (6.2) are non-

negative integers for all J,K,L ⊆ [n− 1].

This theorem ensures that all the coefficients cL
JK in (6.2) are (non-negative) in-

tegers, but it is not obvious whether {pvJ
∈ H2|J|(Petn;Z) | J ⊆ [n − 1]} forms a

Z-basis of H∗(Petn;Z). Moreover, it is natural to seek a geometric reason for this
positivity of the structure constants cL

JK (c.f. [9, Remark 3.4] and [20, p.43, ques-
tion (2)]). In what follows, we give an answer to this question. Recall from [9] that
we have Giambelli’s formula for the Peterson Schubert classes.

Theorem 6.3 (Giambelli’s formula for the Peterson variety, [9, Theorem 3.2]). For
J ⊆ [n− 1], we have

pvJ
= 1

|J1|!|J2|! · · · |Jm|!
∏
i∈J

psi
,(6.3)

where Jk (1 ⩽ k ⩽ m) are the the connected components of J .

Remark 6.4. Drellich gave Giambelli’s formula for arbitrary Lie types in [14].

As is well-known, the Schubert class σsi
can be written as σsi

= x1 + · · · +xi = ϖi

in H2(Fln;Z), where x1, . . . , xn are defined in (4.3). This implies that
psi

= ϖi in H2(Petn;Z),
for 1 ⩽ i ⩽ n − 1 by taking the restriction. Thus, the right hand side of (6.3)
is nothing but ϖJ in Definition 4.4. As a consequence of Theorems 4.14 and 6.3,
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we obtain the following result which explains the geometric background of Peterson
Schubert calculus.

Corollary 6.5. For J ⊆ [n− 1], we have pvJ
= ϖJ . In particular, the set

{pvJ
∈ H2|J|(Petn;Z) | J ⊆ [n− 1]}

forms a Z-basis of H∗(Petn;Z). Moreover, the structure constant cL
JK in (6.2) is equal

to the structure constant dL
JK in Theorem 5.6.

Remark 6.6. This implies that Lemma 5.1 is essentially a special case of Monk’s
formula [20, Theorem 6.12].

By Corollary 6.5, the structure constants dL
JK can also be computed by the for-

mulas for cL
JK proved earlier by Goldin–Gorbutt [18] in the C×-equivariant setting

(see Section 2.1). Their approach to the structure constants is mostly combinatorial
whereas our approach is geometric and based on the properties of XJ and ΩJ . We
end this subsection by giving a short observation on the difference of their formulas
and ours.

Suppose that J,K,L ⊆ [n − 1] are all connected subsets such that J ∪ K ⊆ L,
|L| = |J | + |K|. Then, we may write J = [a1, a2], K = [b1, b2], L = [c1, c2], and we
may assume that a1 ⩽ b1 by interchanging the roles of J and K if necessary. In this
case, their formula ([18, Corollary 2]) for cL

JK is quite simple:

cL
JK =

(
a2 − b1 + 1
a1 − c1

)(
b2 − a1 + 1
b1 − c1

)
.

For general J,K,L ⊆ [n − 1], their computation of cL
JK consists of three (ordered)

formulas ([18, Theorems 3, 5, 6]) each of which successively makes a reduction to the
computations in the former case.

In contrast, our formula has several terms even when J,K,L ⊆ [n − 1] are all
connected, however it provides a single formula which covers all the cases of general
J,K,L ⊆ [n− 1].

6.2. Relations to mixed Eulerian numbers. We next explain the relations of
the results in this paper to the works on mixed Eulerian numbers introduced and
studied by Postnikov [30].

We briefly recall the definition of mixed Eulerian numbers. For a1, . . . , an ∈ Rn,
the permutohedron Pn(a1, . . . , an) is defined to be the convex hull of the Sn-orbits
of (a1, . . . , an) in Rn:

Pn(a1, . . . , an) = ConvexHull{(aw(1), . . . , aw(n)) ∈ Rn | w ∈ Sn}.
This is at most (n−1)-dimensional, and it sits inside of an affine hyperplane in Rn. The
(n−1)-dimensional volume (computed by projecting down to Rn−1) of Pn(a1, . . . , an)
in terms of ui = ai − ai+1 for 1 ⩽ i ⩽ n− 1 can be written as

VolPn(a1, . . . , an) =
∑

c1,...,cn−1

Ac1,...,cn−1

uc1
1
c1! · · ·

u
cn−1
n−1
cn−1! ,

where the sum is taken over all non-negative integers c1, . . . , cn−1 with c1+· · ·+cn−1 =
n−1. The coefficients Ac1,...,cn−1 are called mixed Eulerian numbers, which are known
to be non-negative integers (see [30] for details).

In [10], Berget–Spink–Tseng studied log-concavity of matroid h-vectors in relation
to mixed Eulerian numbers. For that purpose, they considered the invariant subring
of the Chow ring of the permutohedral variety with respect to the action of the sym-
metric group (which can be identified with Tymoczko’s dot action on the cohomology
ring). They introduced a basis δS of this invariant subring, and they proved that the
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structure constants of this basis can be written as products of mixed Eulerian numbers
([10, Proposition 7.7 and Corollary 7.9]). This invariant subring is known to be iso-
morphic to H∗(Petn;Z) by [5, Theorem 1.1] (c.f. [4, Theorem B] for Q-coefficients),
and one can see that their basis corresponds to ϖJ in H∗(Petn;Z) (compare [10,
Corollary 7.9] and Lemma 5.1 in this paper). Therefore, our formula (Theorem 5.6)
can also be regarded as computing some products of mixed Eulerian numbers by using
the geometry of Petn.

Nadeau–Tewari [28] also found a relation between mixed Eulerian numbers and
intersection numbers of Schubert varieties and the permutohedral variety for an arbi-
trary Lie type. After [10] and [28], the second author of this paper investigated in [21]
a connection between Peterson Schubert calculus and mixed Eulerian numbers. More
precisely, it was shown that the mixed Eulerian numbers can be written as intersec-
tion numbers of Schubert divisors in Peterson variety for an arbitrary Lie type ([21,
Theorem 1.1]). We remark that, for type A, this formula was proved in [10] and [28]
independently. Including this paper, all of these works are done independently, and
these established connections between Peterson Schubert calculus and mixed Eulerian
numbers.

To end this paper, let us lastly deduce the formula for dL
JK in terms of mixed

Eulerian numbers in the context of Peterson Schubert calculus. For J,K,L ⊆ [n− 1],
recall from (4.10) that we have

dL
JK = ⟨[XL], ϖJ ·ϖK⟩P etn

= 1
mJ

1
mK

∫
XL

∏
j∈J

ϖj

(∏
k∈K

ϖk

)
if |J |+|K| = |L| and that we have dL

JK = 0 if |J |+|K| ≠ |L|. Taking the decomposition
L = L1 ⊔ · · · ⊔ Lq into the connected components of L, we have XL =

∏q
i=1 XLi

by
Corollary 3.6. Hence, the integration over XL above can be written as a product of
integrations over XLi

for 1 ⩽ i ⩽ q ;∫
XL

∏
j∈J

ϖj

(∏
k∈K

ϖk

)
=

q∏
i=1

∫
XLi

 ∏
j∈J∩Li

ϖj

( ∏
k∈K∩Li

ϖk

)
.

Denoting ℓi := |Li| + 1, we have XLi
∼= Petℓi by Corollary 3.6 again. Namely, each

integration in the last equality is an intersection number of divisors on Petℓi
. We

note that under this isomorphism ϖr ∈ H∗(Petℓi
;Q) (1 ⩽ r ⩽ |Li|) corresponds

to ϖr+min Li−1 ∈ H∗(XLi
;Q) since we have Petℓi

⊆ Fl(Cℓi) and XLi
⊆ Petn ⊆

Fl(Cn). As explained above, the second author gave a formula which computes those
intersection numbers as mixed Eulerian numbers ([21, Theorem 1.1]). By applying
it to the integrations above, we obtain the following formula for which we take the
convention that Ac1,...,cp

= 0 unless c1 + · · · + cp = p for positive integers p.

Theorem 6.7. For J,K,L ⊆ [n− 1], we have

dL
JK = 1

mJ

1
mK

q∏
i=1

A
c

(i)
1 ,...,c

(i)
ℓi−1

,

where L = L1 ⊔ · · · ⊔ Lq is the decomposition into the connected components of L
and c

(i)
1 , . . . , c

(i)
ℓi−1 are the multiplicities of the product (

∏
j∈J∩Li

ϖj)(
∏

k∈K∩Li
ϖk)

given by

c(i)
r :=


2 if r + minLi − 1 ∈ J ∩K,

1 if r + minLi − 1 ∈ (J ∪K) − (J ∩K),
0 otherwise
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for 1 ⩽ i ⩽ q and 1 ⩽ r ⩽ |Li| (which means r + minLi − 1 ∈ Li).

Remark 6.8. As we noted above, this formula can also be deduced from [10, Propo-
sition 7.7].

Remark 6.9. The indexes of the mixed Eulerian numbers appearing in Theorem 6.7
are always less than or equal to 2. In [10] and [21], mixed Eulerian numbers with
arbitrary indexes are considered.
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