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Universal Tutte characters
via combinatorial coalgebras

Clément Dupont, Alex Fink & Luca Moci

Abstract This work discusses the extraction of meaningful invariants of combinatorial ob-
jects from coalgebra or bialgebra structures. The Tutte polynomial is an invariant of graphs
well known for the formula which computes it recursively by deleting and contracting edges,
and for its universality with respect to similar recurrence. We generalize this to all classes of
combinatorial objects with deletion and contraction operations, associating to each such class
a universal Tutte character by a functorial procedure. We show that these invariants satisfy a
universal property and convolution formulae similar to the Tutte polynomial. With this ma-
chinery we recover classical invariants for delta-matroids, matroid perspectives, relative and
colored matroids, generalized permutohedra, and arithmetic matroids. We also produce some
new invariants along with new convolution formulae.

1. Introduction
The Tutte polynomial is surely the single most appreciated invariant of matroids
and graphs. For one, its specializations include any function which can be computed
recursively from its evaluations for a deletion and a contraction, as a weighted sum.
Many invariants of independent interest in matroid and graph theory do satisfy such
a recurrence, such as the chromatic and flow polynomials; examples occur also in knot
theory and in statistical physics. Moreover, the Tutte polynomial satisfies interesting
identities like the convolution formula of Kook–Reiner–Stanton [26], which also follows
from work of Etienne–Las Vergnas [18].

The present work is concerned with the many other combinatorial objects which
possess invariants with properties reminiscent of these, such as matroid perspectives
and their Las Vergnas polynomial [31] or delta-matroids and their Bollobás–Riordan
polynomial [5], which are both matroidal frameworks for certain topological embed-
dings of graphs in surfaces. Another example, which served as our initial motivation,
is arithmetic matroids, introduced by D’Adderio and the third author [13], whose
arithmetic Tutte polynomial satisfies a convolution formula (proved by Backman–
Lenz [3] in a special case, and then in the present paper in greater generality). To
formulate a “Tutte-like” deletion-contraction recurrence for a class of combinatorial
objects, we require that each object have an underlying set, and that there are two
ways to create new objects by removing elements of this set, deletion and contraction,
subject to some axioms. Classes with this structure are called minors systems. With
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every minor system is naturally associated a coalgebra; moreover if on the minors
system is defined some sort of direct sum, the coalgebra is endowed with a product
that makes it into a bialgebra. Bialgebras have proven to be a powerful language in
combinatorics: see especially [22].

Our main contribution is to define a universal Tutte character for any minors
system (Definition 3.19). This definition unifies a great number of known Tutte-like
invariants by specializing the minors system in our universal Tutte character; the sec-
ond half of our paper is dedicated to presenting these. Our invariant is universal in
the same sense as the Tutte polynomial of matroids and graphs is: namely, any func-
tion satisfying a deletion-contraction recurrence, suitably understood, is an evaluation
thereof (Proposition 3.20). The universal Tutte character also satisfies a universal con-
volution formula that specializes to every convolution formula in a minors system we
are aware of, including the formula of Kook–Reiner–Stanton, and gives rise to several
new examples. Moreover, our construction is functorial with respect to the minors
system.

Duchamp, Hoang-Nghia, Krajewski and Tanasa [16] have recently provided similar
machinery recovering the Tutte polynomial of a matroid. This was generalized by
Krajewski, Moffatt and Tanasa [27] who associated a polynomial Tutte invariant
with every graded connected Hopf algebra. Our approach builds on the latter, making
several improvements in generality and canonicity.

For one, we lift a restriction on minors systems in [27] by allowing multiple non-
isomorphic structures with empty underlying set. As one example of how this is useful,
our universal Tutte invariant for graphs distinguishes the many different graphs with
empty edge set: it is thus strictly more general than the Tutte polynomial. We obtain
as a specialization Tutte’s dichromatic polynomial [45], which is not an evaluation of
the Tutte polynomial because it requires counting connected components.

As a consequence of that choice, with every minors system is naturally associated
a bialgebra, which is not necessarily Hopf (unlike in [27]). Classes of structures with
multiple empty members cannot be naturally handled as connected (hence Hopf)
bialgebras, as the extra degree-zero elements can frustrate the definition of an antipode
(see Remark 5.15). A Hopf algebra may be obtained as a quotient, but this comes at
the price of losing a consistent amount of information, hence reducing the number of
invariants that can be recovered in this way.

Lacking a Hopf algebra structure is no obstacle to our programme, which needs
only a bialgebra structure. In fact the amount of information we use about multipli-
cation is small. For minors systems with a unique empty member the multiplication
is irrelevant, and we can work with a coalgebra.

Rather than the language of Hopf algebras, we prefer to use the language of linear
species and comonoids therein, which is more convenient and canonical, not requir-
ing us to fix a single chain of ground sets and relabel after every set operation.
This language was already present in Schmitt’s article [40] (preceding the more often
cited [41]).

Our construction employs a universal bialgebra norm taking values in the monoid
ring of what we call the Grothendieck monoid of a minors system. This ring is not
necessarily a polynomial ring, and when it is not, the relations among its generators
automatically encapsulate the relations which [27] had to attach to their polynomial
rings with the somewhat fiddly machinery of “uniform selectors”. In Theorem 3.10 we
give a quadratic presentation for the Grothendieck monoid, making the targets of our
invariants easy to compute in practice. Then we use the machinery that we built to
obtain several convolution formulae for different classes of combinatorial objects. Some
of these formulae are well known, while others are (to the best of our knowledge) new:
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see for instance Propositions 5.12, 5.13 and 5.14 for the classical Tutte polynomial,
Proposition 6.17 for the Las Vergnas polynomial, Proposition 6.20 for the Bollobás–
Riordan polynomial and Theorem 10.9 for the arithmetic Tutte polynomial.

We have chosen to exemplify our results with mostly matroid-like combinatorial
structures, which are arguably simpler to deal with than topological examples. Our
formalism, and in particular the mechanism of twist maps, should help uncover new
invariants in the latter class and produce interesting convolution formulae. This will
be the subject of a subsequent article.

Layout. The structure of this paper is as follows. In Section 2 we give the definitions
of minors systems and comonoids in set species. Section 3 contains the main results,
including the definitions and statements of our universal invariants and formulae.
Section 4 presents a number of further results which are less essential for our main
developments.

The remainder of the paper, Sections 5 through 10, comprises a sequence of applica-
tions of our theory to numerous individual minors systems. We work out Grothendieck
groups, universal Tutte characters, and in many cases universal convolution formulae,
and point out how these specialize to invariants and formulae present in the literature.
Section 5 covers the minors system of matroids, of which all the subsequent sections
are in one way or another generalizations, together with the minors system of graphs.
Of the following sections, Section 6 is on delta-matroids, matroid perspectives, and
their ilk is called on in Section 7 on relative matroids, but there are no (or at most
incidental) dependences between these and Section 8 on polymatroids and generalised
permutohedra, Section 9 on colored matroids, or Section 10 on arithmetic matroids,
nor among the latter three, so the reader should have no trouble taking these in any
order. The last four sections are also new by comparison with [27].

Notation.We fix a commutative ring with unit K, which will serve as a coefficient
ring throughout the article. For most applications the case K = Z is enough.

2. Minors systems
2.1. Set species and minors systems. A set species [23] is a structure which
one should think of as associating to each finite set E the set of structures of some
combinatorial type on E, for example the set of matroids with ground set E.

Definition 2.1.A set species is a functor from the category of finite sets and bijec-
tions to the category of sets.

More concretely, a set species S associates to every finite set E a set S[E] and to
every bijection σ : E ∼→ E′ a map S[σ] : S[E]→ S[E′], such that S[σ ◦ τ ] = S[σ] ◦ S[τ ]
and S[id] = id. The set S[n] .= S[{1, . . . , n}] then has an action of the symmetric group
Σn on n letters, and the set species S can be recovered from the symmetric sequence
{S[n] , n > 0}. For S a set species and n > 0 an integer, we set

Sn
.= colim|E|=n S[E] ' S[n]/Σn.

We denote by the same symbol an element X ∈ S[E] and its “isomorphism class”
X ∈ Sn. We let S• =

⊔
n>0 Sn.

Example 2.2.A trivial example is the set species Set for which Set[E] = {E} is a
singleton for every finite set E. Our prototypical examples are:

• the set species Mat, for which Mat[E] is the set of matroids with ground set
E, and Matn is the set of isomorphism classes of matroids on an n-element
set;
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• the set species Gra, for which Gra[E] is the set of graphs with set of edges
E, and Gran is the set of isomorphism classes of graphs with n edges. Here
graphs are allowed to have loops and multiples edges.

For more on these example, see Section 5.

We are interested in set species which carry minor operations like those of our
prototypical examples, to wit, restriction (or equivalently deletion) and contraction.
Many important and naturally occurring species of this form, again including Mat,
also have a direct sum operation. Concretely, for the set species Gra, the deletion is
obtained by removing a given edge from a graph, while the contraction by contracting
that edge (that is, removing it and identifying the vertices incident to it); finally, the
direct sum of two graphs is obtained by taking their disjoint union.

For our theory we need only direct sums for which one object belongs to S[∅], which
justifies the following definition ofminors system. Often the existence of such a limited
direct sum is automatic: see Remark 2.7. Minors systems which have a direct sum of
general pairs of objects we will call multiplicative minors systems (Definition 2.8).

Definition 2.3.A minors system is a set species S with the following extra structure.
(1) For every decomposition E = AtB, a coproduct map ∆A,B : S[E]→ S[A]×

S[B].
(2) For every finite set E, a product map ρE : S[E]× S[∅]→ S[E].

We introduce the notations ∆A,B(X) = (X|A,X/A) and we call the operations X 7→
X|A and X 7→ X/A restriction and contraction respectively. We also set ρE(X,Y ) =
X ⊕ Y , that we call the direct sum operation. These operations must satisfy the
following compatibilities.
(M1) The coproduct maps are functorial: for every decomposition E = AtB, E′ =

A′ tB′, for every bijection σ : E ∼→ E′ such that σ(A) = A′ and σ(B) = B′,
for every X ∈ S[E], we have

(S[σ](X))|A′ = S[σ|A](X|A) and (S[σ](X))/A′ = S[σ|B ](X/A).
(M2) The coproduct maps are coassociative: for every decomposition E = AtBtC

and every X ∈ S[E] we have
(id×∆B,C)(∆A,BtC(X)) = (∆A,B × id)(∆AtB,C(X)).

In other words:
(X|A tB)|A = X|A, (X/A)|B = (X|A tB)/A, (X/A)/B = X/(A tB).

(M3) The coproduct maps are counital: for every finite set E and every X ∈ S[E]
we have

pr1(∆E,∅(X)) = X = pr2(∆∅,E(X)).
In other words:

X|E = X and X/∅ = X.

(M4) The product maps ρE are functorial: for every bijection σ : E ∼→ E′ and every
X ∈ S[E], Y ∈ S[∅] we have

S[σ](X ⊕ Y ) = S[σ](X)⊕ Y.
(M5) The product maps ρE are associative: for every finite set E and every X ∈

S[E], Y,Z ∈ S[∅], we have
X ⊕ (Y ⊕ Z) = (X ⊕ Y )⊕ Z.

(M6) The product maps ρ∅ are commutative: for every X,Y ∈ S[∅] we have
X ⊕ Y = Y ⊕X.
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(M7) The direct sum operation has a neutral element: there exists a (necessarily
unique) element 1S ∈ S[∅] such that for every finite set E and every X ∈ S[E]
we have

X ⊕ 1S = X.

(M8) The direct sum operation is compatible with restriction and contraction: for
every finite set E, every subset A ⊆ E, and every X ∈ S[E], Y ∈ S[∅], we
have

(X ⊕ Y )|A = (X|A)⊕ Y and (X ⊕ Y )/A = (X/A)⊕ Y.

Remark 2.4.A set species with coproduct maps that satisfy axioms (M1), (M2),
(M3) is sometimes called a comonoid in set species.

Remark 2.5.Axioms (M4), (M5), (M6) and (M7) mean that S[∅] is a commutative
monoid which acts functorially on the sets S[E].

Definition 2.6.A minors system S is said to be connected if S[∅] consists only of
the object 1S.

The word “connected” here has the force it has in “connected Hopf algebra”, not
in say “connected graph” or “connected matroid”.

Remark 2.7. In a connected minors system there is no choice of direct sum operation:
it is forced by the axiom X ⊕ 1S = X for every X ∈ S[E], for which axioms (M4),
(M5), (M6), (M7), (M8) are automatically satisfied. In other words, a connected
minors system is a set species S with operations of restriction and contraction that
satisfy axioms(M1), (M2), (M3) and such that there is a unique element in S[∅].

It will be convenient to introduce the deletion in a minors system, defined for
X ∈ S[E] and a subset A ⊆ E by X\A .= X|Ac with Ac .= (E(X)rA). This allows to
rewrite the coassociativity axiom (M2) in a more symmetric way: for disjoint subsets
A,B ⊆ E and for X ∈ S[E] we have

(X\A)\B = X\(A tB), (X\A)/B = (X/B)\A, (X/A)/B = X/(A tB).

Definition 2.8.A multiplicative minors system is a minors system together with the
data, for every decomposition E = A tB, of a map

µA,B : S[A]× S[B]→ S[E],
such that µE,∅ = ρE. We denote X ⊕Y = µA,B(X,Y ). The following compatibilities,
which imply (M4), (M5), (M6), (M7), (M8), must be satisfied.
(M4′) The product maps µA,B are functorial: for every bijection σ : E ∼→ E′, for

every decomposition E = A tB, and for every X ∈ S[A], Y ∈ S[B], we have
S[σ](X ⊕ Y ) = S[σ|A](X)⊕ S[σ|B ](Y ).

(M5′) The product maps µA,B are associative: for every decomposition E = AtBtC
and every X ∈ S[A], Y ∈ S[B], Z ∈ S[C], we have

X ⊕ (Y ⊕ Z) = (X ⊕ Y )⊕ Z.
(M6′) The product maps µA,B are commutative: for every decomposition E = AtB

and every X ∈ S[A], Y ∈ S[B], we have
X ⊕ Y = Y ⊕X.

(M7′) The direct sum operation has a neutral element: there exists a (necessarily
unique) element 1S ∈ S[∅] such that for every finite set E and every X ∈ S[E]
we have

X ⊕ 1S = X.
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(M8′) The direct sum operation is compatible with restriction and contraction: for
every decomposition E = AtBtCtD, for every X ∈ S[AtC], Y ∈ S[BtD],
we have

(X ⊕ Y )|(A tB) = (X|A)⊕ (Y |B) and (X ⊕ Y )/(A tB) = (X/A)⊕ (Y/B).

Remark 2.9.A multiplicative minors system is sometimes called a bimonoid in set
species, and a connected multiplicative minors system is called a connected Hopf
monoid in set species in [1].

Remark 2.10. There are two differences between our definition of a minors system
and the definition of [27]. The first and most important difference is that in [27] all
minors systems are assumed to be connected; our setting discloses a wider range of
applications. The second difference is that we use the language of set species whereas
in [27] only isomorphism classes of combinatorial structures are considered. This allows
us to retain more information and to have well-defined operations of restriction and
contraction without having to choose representatives for isomorphism classes. All
minors systems in [27] can be upgraded to minors systems in our sense.

2.2. Comonoids in linear species and coalgebras. We fix a commutative ring
with unit K.

Definition 2.11.A linear species is a functor from the category of finite sets and
bijections to the category of K-modules.

More concretely, a linear species V associates to every finite set E a K-module
V[E] and to every bijection σ : E ∼→ E′ a K-linear map V[σ] : V[E] → V[E′], such
that V[σ ◦ τ ] = V[σ] ◦ V[τ ] and V[id] = id. Recall from [2] that the category of linear
species has the structure of a symmetric monoidal category with respect to the Cauchy
product, defined by

(V ·W)[E] =
⊕

E=AtB
V[A]⊗W[B].

The unit 1 for this monoidal structure satisfies 1[∅] = K and 1[E] = 0 for E 6= ∅.
For a linear species V and an integer n > 0 we set

Vn
.= colim|E|=n V[E] ' V[n]/Σn.

This defines a functor from the category of linear species to the category of (non-
negatively) graded K-modules, called the Fock functor [2, Chapter 15]. This functor
is monoidal. In most of what follows, the reader may work after applying the Fock
functor, and mentally replace “monoid in linear species” by “graded algebra” and
“comonoid in linear species” by “graded coalgebra”.

We let S 7→ KS denote the linearization functor from sets to K-modules. Applying
this functor to a set species S gives rise to a linear species that we simply denote KS.
For S a minors system, the coproduct maps gives rise to linear maps that we still
denote by

∆A,B : KS[E]→ KS[A]⊗KS[B].
These maps assemble to a morphism ∆ : KS → KS · KS in the category of linear
species. The map S[∅]→ {∗} gives rise to a morphism ε : KS→ 1.

Proposition 2.12. If S is a minors system then (KS,∆, ε) is a comonoid in linear
species.

Proof. The coassociativity of ∆ is a consequence of axiom (M2). The compatibility
between ∆ and ε is a consequence of axiom (M3). �
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The Fock functor sends KS to the graded K-module with degree n component

colim|E|=nKS[E] ' KSn.

The collection of the maps ∆A,B give rise to linear maps

∆m,n : KSm+n → KSm ⊗KSn.

These maps, together with the map ε : KS0 → K, endow the graded K-module KS•
with the structure of a graded coalgebra, where the coproduct is given by the familiar
formula

∆(X) =
∑
A⊆E

X|A⊗X/A.

The direct sum operation gives rise to maps ρE : KS[E] ⊗ KS[∅] → KS[E], and
the unit element 1S gives rise to a map η : 1 → KS. Because of axioms (M4), (M5),
(M6), (M7), this gives KS[∅] the structure of a commutative algebra and every KS[E]
the structure of a module over KS[∅], which is functorial in E. These structures are
compatible with the comonoid structure in a sense that we only make explicit in the
context of a multiplicative minors system. In this case one gets maps

µA,B : KS[A]⊗KS[B]→ KS[E]

which assemble to a morphism µ : KS ·KS→ KS in the category of linear species.

Proposition 2.13. If S is a multiplicative minors system then (KS,∆, ε, µ, η) is a
commutative bimonoid in linear species.

Proof. The associativity of µ is a consequence of axiom (M5′) and its commutativ-
ity is a consequence of axiom (M6′). The compatibility between µ and η is a con-
sequence of axiom (M7′). The compatibility between ∆ and µ is a consequence of
axiom (M8′). The compatibility between ∆ and η follows from axiom (M3) since
∆∅,∅(1S) = (1S|∅)⊗ (1S/∅) = 1S ⊗ 1S. The compatibility between ε and µ is trivial,
as is the compatibility between ε and η. �

One can determine exactly when KS is a Hopf monoid in linear species, or in more
classical terms when the graded bialgebra KS• is a Hopf algebra.

Proposition 2.14. For a multiplicative minors system S, the bimonoid in linear
species KS is a Hopf monoid in linear species if and only if the commutative monoid
S[∅] is an abelian group. This is the case in particular if S is connected.

Proof. By [2, Proposition 8.10], KS is a Hopf monoid in linear species if and only if
KS[∅] is a Hopf algebra. Since KS[∅] is the monoid algebra of the monoid KS, the
claim follows. �

Remark 2.15. For S a minors system and E a finite set, one can perform the quotient
of KS[E] by the sub-K-module spanned by elements (U ⊕ S − S) for U ∈ S[∅] and
S ∈ S[E]. The collection of these quotients inherits the structure of a connected
comonoid in linear species. In the context of a multiplicative minors system, this
quotient becomes a connected bimonoid in linear species, and thus a Hopf monoid in
linear species. As will appear clearly when we introduce Tutte characters, it is more
convenient not to lose the information contained in S[∅] and work with the whole
bimonoid KS. See Remark 10.3 for an informal examination of the combinatorial
meaning of this quotient in one example.
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3. Norms and universal Tutte characters
3.1. Norms. For U a set, we overload the notation U to refer also to the constant set
species defined by U [E] = U for every finite set E, and U [σ] = id for every bijection
σ : E ∼→ E′. For S a set species, a morphism of set species f : S→ U is the datum, for
every finite set E, of a map f [E] : S[E]→ U , such that for every bijection σ : E ∼→ F
we have f [F ] ◦ S[σ] = f [E]. In other words, a morphism of set species f : S → U is
the same thing as a collection of maps fn : Sn → U for n > 0. The same holds for
linear species.

In all (commutative) monoids the law is written multiplicatively, unless otherwise
specified. For example, we write the free monoid on one generator as uN, where u is
the generator, rather than simply N as we could if we worked additively.
Definition 3.1. Let S be a minors system. A norm for S is the data of a commutative
monoid U and a morphism of set species N : S → U , that satisfies the following
axioms.
(N1) N(X) = N(X|A)N(X/A) for every X ∈ S[E] and A ⊆ E.
(N2) N(X ⊕ Y ) = N(X) for every X ∈ S[E] and Y ∈ S[∅].
(N3) N(1S) = 1.
We note that relations (N2) and (N3) imply that we have N(X) = 1 for every

X ∈ S[∅].
A case that will be of special interest for us is when U is the multiplicative monoid

R× of a commutative K-algebra R. In this case we will denote the K-linear extension
of N again by N : KS→ R, and will still call the extension a norm.
Remark 3.2. In [27, Theorem 1] one considers morphisms of set species r : S → N
that satisfy r(X) = r(X|A) + r(X/A), r(X ⊕ Y ) = r(X) + r(Y ) and r(1S) = 0:
these appear as the parameters rj(S) in the exponents of [27, Theorem 1]. Since
our convention for monoids is multiplicative, we view such a morphism as a norm
with values in the monoid U = uN defined by N(X) = ur(X). More generally, a tuple
(r1, . . . , rd) of such morphisms give rise to a norm with values in U = uN1 · · ·uNd defined
by N(X) = u

r1(X)
1 · · ·urd(X)

d . One can extend this linearly to get a norm with values
in the polynomial ring K[u1, . . . , ud].
Remark 3.3. If S is a multiplicative minors system then any norm N automatically
satisfies N(X ⊕ Y ) = N(X)N(Y ) for every X ∈ S[E], Y ∈ S[F ]. To see this use
axiom (N1) for A = E to get

N(X ⊕ Y ) = N(X ⊕ Y |∅)N(X/E ⊕ Y )
and use axiom (N2) to get N(X ⊕ Y |∅) = N(X) and N(X/E ⊕ Y ) = N(Y ).
Remark 3.4. In place of the constant set species U one might wish to use any commu-
tative monoid in set species. This more general framework is well suited for treating
combinatorial invariants whose set of variables depends on the ground set, such as
the multivariate Tutte polynomial for matroids. Since the general theory is essentially
the same, we choose to stick to the constant case here and refer the interested reader
to Section 4.3 for more details on the general case and Remark 5.9 for the matroid
example.
Definition 3.5. Let S be a minors system, R be a commutative K-algebra and N :
KS → R be a norm. The inverse norm of N is the norm N : KS → R defined for
X ∈ S[E] by N(X) .= (−1)|E|N(X).

The terminology is justified by the following proposition. Let us recall from [2, 1.2.4]
that for (C,∆, ε) a comonoid in linear species, (A, µ, η) a monoid in linear species,
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and two morphisms of linear species f, g : C → A, the convolution of f and g is the
morphism of linear species f ∗ g : C→ A defined as

f ∗ g .= µ ◦ (f · g) ◦∆.

This gives the space of morphisms of linear species from C to A the structure of an
associative algebra whose unit element is the composition υ .= η ◦ ε. After applying
the Fock functor, this is nothing but the usual convolution.

Proposition 3.6. The norm N is the inverse of N for the convolution: we have
N ∗N = N ∗N = υ.

Proof. For X ∈ S[∅] we have ∆∅,∅(X) = X ⊗ X and thus (N ∗ N)(X) =
N(X)N(X) = 1. For X ∈ S[E] with E 6= ∅ one computes

(N ∗N)(X) =
∑
A⊆E

(−1)|A|N(X|A)N(X/A) =

∑
A⊆E

(−1)|A|
N(X) = 0,

which completes the proof of N ∗ N = υ. The proof of N ∗ N = υ is similar, and
indeed follows by exchanging the roles of N and N . �

3.2. The Grothendieck monoid.

Definition 3.7. For a minors system S, we define its Grothendieck monoid U(S) to
be the commutative monoid having generators [X] for all isomorphism classes X ∈ S•,
subject to the relations:

(1) [X] = [X|A][X/A] for every X ∈ S[E] and A ⊆ E.
(2) [X ⊕ Y ] = [X] for every X ∈ S[E] and Y ∈ S[∅].
(3) [1S] = 1.

Definition 3.8. The morphism S→ U(S) , X 7→ [X] is called the universal norm for
the minors system S.

The universal norm is universal in the sense that any norm factors uniquely through
it. In other words, the datum of a norm for S with values in U is equivalent to that
of a morphism of monoids U(S)→ U .

In the next proposition we start simplifying the presentation of the Grothendieck
monoid. For X ∈ S[E] and σ : {1, . . . , n} ∼→ E a linear order on E, we denote by
Xσ
i ∈ S[{σ(i)}] the object obtained from X by contracting σ(1), . . . , σ(i − 1) and

deleting σ(i+ 1), . . . , σ(n).

Proposition 3.9. The Grothendieck monoid U(S) is generated by the elements [X]
for X ∈ S1, with relations:

(1) for X ∈ S[E] and two linear orders σ, σ′ : {1, . . . , n} ∼→ E,
n∏
i=1

[Xσ
i ] =

n∏
i=1

[Xσ′

i ].

(2) [X ⊕ Y ] = [X] for every X ∈ S1 and Y ∈ S0.

Proof. Let us denote by V (S) the monoid defined by these generators and relations
and show that it is isomorphic to U(S).

• Let ϕ : U(S)→ V (S) be the morphism of monoids defined on the generators
by ϕ([X]) =

∏n
i=1[Xσ

i ] for X ∈ S[E] and any choice of a linear order σ :
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{1, . . . , n} ∼→ E. For X ∈ S[E] and A ⊆ E of cardinality r, let us choose a
linear order σ : {1, . . . , n} ∼→ E such that σ({1, . . . , r}) = A. Then one has

r∏
i=1

[Xσ
i ] = ϕ([X|A]) and

n∏
i=r+1

[Xσ
i ] = ϕ([X/A]).

Thus, we have ϕ([X]) = ϕ([X|A])ϕ([X/A]) and ϕ is compatible with rela-
tion (1) defining U(S). For X ∈ S[E] and Y ∈ S[∅], for σ : {1, . . . , n} ∼→ E,
and for every i = 1, . . . , n, we have (X ⊕ Y )σi = Xσ

i ⊕ Y . This shows that ϕ
is compatible with relation (2) defining U(S). It is obviously compatible with
relation (3) as well, and thus well-defined.

• Let ψ : V (S)→ U(S) be the morphism of monoids defined on the generators
by ψ([X]) = [X] for X ∈ S1. Let X ∈ S[E] and choose a linear order σ :
{1, . . . , n} ∼→ E. By using relation (1) defining U(S), an easy induction on n
shows that we have an equality in U(S):

∏n
i=1[Xσ

i ] = [X]. This proves that ψ
is compatible with relation (1) defining V (S). Since ψ is obiously compatible
with relation (2) as well, it is well-defined. We also proved that we have
ψ(
∏n
i=1[Xσ

i ]) = [X].
• It is now clear that ψ ◦ϕ is the identity of U(S) and that ϕ ◦ψ is the identity
of V (S), which completes the proof. �

We refine Proposition 3.9 further and show that the relations (1) in degree 2 are
enough.

Theorem 3.10. The Grothendieck monoid U(S) is generated by the classes [X] for
X ∈ S1, with relations:

(1) [X|e][X/e] = [X|f ][X/f ] for X ∈ S[{e, f}].
(2) [X ⊕ Y ] = [X] for every X ∈ S1 and Y ∈ S0.

Proof. Let us show that the relations (1) from Proposition 3.9 are consequences of
the case n = 2. Since the group of permutations of {1, . . . , n} is generated by the
transpositions τr = (r , r + 1) for r = 1, . . . , n − 1, it is enough to prove that for
X ∈ S[E] and for any linear order σ : {1, . . . , n} ∼→ E and any r = 1, . . . , n − 1 we
have

n∏
i=1

[Xσ
i ] =

n∏
i=1

[Xστr
i ].

Since Xσ
i = Xστr

i for i /∈ {r, r + 1}, it is enough to prove that
[Xσ

r ][Xσ
r+1] = [Xστr

r ][Xστr
r+1].

Let X ′ ∈ S[{σ(r), σ(r + 1)}] be obtained from X by contracting σ(1), . . . , σ(r − 1)
and deleting σ(r + 2), . . . , σ(n). The above equality reads

[X ′|σ(r)][X ′/σ(r)] = [X ′|σ(r + 1)][X ′/σ(r + 1)].
This is a special case of relation (1) from the statement of the theorem, and the proof
is complete. �

Theorem 3.10 shows that the Grothendieck monoid is a rather crude invariant
of a minors system, in the sense that it only sees structures with ground sets of
cardinality 6 2. However, it is the main ingredient in our imminent definition of the
universal Tutte character, in which it serves as our replacement for the technology of
“uniform selectors” of [27]. Indeed, the definition of “uniform” in [27] says, in light of
Proposition 3.9(1), that a uniform selector is exactly the restriction of a norm (valued
in their target ring K[{xj}j∈J ]) to structures with singleton ground sets.
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Example 3.11. The Grothendieck monoid of the minors system Set is the free monoid
on one generator corresponding to a set with one element, i.e. we have an isomorphism
U(Set) ' uN which maps a finite set E to the monomial u|E|. As we will see in
Section 5, the minors systems Mat and Gra have the same Grothendieck monoid,
which is the free commutative monoid on two generators, namely the classes of a loop
and a coloop.

3.3. Tutte characters. So far our constructions haven’t taken advantage of the
fact that our minors systems are not necessarily connected. The next ingredient is the
key.

Definition 3.12. Let S be a minors system. A twist map for S with values in a
commutative monoid U is a morphism of monoids τ : S[∅]→ U .

Example 3.13.A graph with an empty set of edges consists of a finite number of
isolated vertices. A natural twist map for the minors system Gra is thus the morphism
of monoids τ : Gra[∅] → aN which maps the graph with k isolated vertices to the
monomial ak. This example will be developed in more detail in Section 5.4.

If U is the multiplicative monoid of a K-algebra R, then we still denote by τ :
KS→ R the morphism of linear species extending τ linearly to KS[∅] and satisfying
τ(X) = 0 for X ∈ S[E], E 6= ∅, and still call this extension a twist map.

Definition 3.14. Let R be a commutative K-algebra, N1, N2 : KS → R be two
norms, and τ : KS → R be a twist map. The Tutte character associated to the
triple (N1, τ,N2) is the convolution product

TN1,τ,N2
.= N1 ∗ τ ∗N2 : KS→ R.

In other words, it is defined, for X ∈ S[E], by the formula

TN1,τ,N2(X) =
∑
A⊆E

N1(X|A) τ(X|A/A)N2(X/A).

Remark 3.15. For X ∈ S[∅] we have TN1,τ,N2(X) = τ(X). For X ∈ S[E] and Y ∈
S[∅] one easily shows that we have TN1,τ,N2(X ⊕ Y ) = TN1,τ,N2(X)τ(Y ).

Remark 3.16. If S is a multiplicative minors system then by Remark 3.3 the norms
N1 and N2 are compatible with the direct sum operation. Since τ is compatible with
the direct sum operation, it follows that the convolution TN1,τ,N2 is a morphism of
monoids in linear species: TN1,τ,N2(X ⊕ Y ) = TN1,τ,N2(X)TN1,τ,N2(Y ). This justifies
our choice of the terminology “character”.

Remark 3.17. If the minors system S is connected then we necessarily have τ = υ
and the Tutte character is simply the convolution product N1 ∗N2. When N1 and N2
are defined as in Remark 3.2, these are the characters that appear in [27, Theorem 1].

The Tutte character can be computed recursively thanks to the following deletion-
contraction formula, with the base case TN1,τ,N2(X) = τ(X) for X ∈ S[∅].

Proposition 3.18. For every object X ∈ S[E] and every e ∈ E we have the deletion-
contraction recurrence formula:

TN1,τ,N2(X) = N1(X\ec)TN1,τ,N2(X/e) +N2(X/ec)TN1,τ,N2(X\e).

Proof. We compute

TN1,τ,N2(X) =
∑
A⊆E
e∈A

N1(X|A)τ(X|A/A)N2(X/A) +
∑
A⊆E
e/∈A

N1(X|A)τ(X|A/A)N2(X/A).
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Using the fact that N1 is a norm we can rewrite the first sum as a sum over A′ =
Ar e ⊆ E r e, of terms

N1(X|A′ ∪ e) τ(X|A′ ∪ e/A′ ∪ e)N2(X/A′ ∪ e)
= N1(X|A′ ∪ e|e)N1(X|A′ ∪ e/e) τ(X/e|A′/A′)N2(X/e/A′)
= N1(X|e)N1(X/e|A′) τ(X/e|A′/A′)N2(X/e/A′).

Thus, the first sum equals N1(X\ec)TN1,τ,N2(X/e). The second sum is treated in the
same way. �

3.4. The universal Tutte character.

Definition 3.19. The universal Tutte character of the minors system S is the Tutte
character with values in the monoid ring K[U(S) × S[∅] × U(S)] associated to N1
(resp. N2) the universal norm on the first (resp. last) factor of U(S) × S[∅] × U(S),
and τ the twist map corresponding to the embedding of S[∅] as the middle factor. It
is denoted by

T S : KS→ K [U(S)× S[∅]× U(S)].

It is universal in the following sense.

Proposition 3.20. Let R be a commutative K-algebra and Φ : KS→ R be a morphism
of linear species. Assume that Φ : KS[∅] → R is a morphism of K-algebras and that
Φ satisfies a deletion-contraction recurrence formula

Φ(X) = N1(X\ec) Φ(X/e) +N2(X/ec) Φ(X\e)

for every X ∈ S[E] and e ∈ E, where N1, N2 : KS → R are two norms. There then
exists a morphism of K-algebras Φ : K [U(S)× S[∅]× U(S)]→ R such that Φ = Φ◦T S.

Proof. Let us define Φ by the formula

Φ([X1], Y, [X2]) = N1(X1) Φ(Y )N2(X2).

By applying Φ to the deletion-contraction formula for T S one gets the deletion-
contraction formula

(Φ ◦ T S)(X) = N1(X\ec) (Φ ◦ T S)(X/e) +N2(X/ec) (Φ ◦ T S)(X\e).

Besides, for Y ∈ S[∅] we have Φ ◦ T S(Y ) = Φ(Y ), thus an easy induction on the
cardinality of E proves that Φ ◦ T S(X) = Φ(X) for every X ∈ S[E]. �

Example 3.21. The universal Tutte character for the minors system Set has values
in the ring K[u1, u2] and is defined, for a finite set E, by

T Set(E) =
∑
A⊆E

u
|A|
1 u

|ErA|
2 = (u1 + u2)|E|.

The deletion-contraction recurrence formula reads:

(u1 + u2)|E| = u1(u1 + u2)|Er{e}| + u2(u1 + u2)|Er{e}|.

As we will see in Section 5, the universal Tutte character for the minors systems
Mat and Gra is a polynomial which specializes to the classical Tutte polynomial.
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3.5. The convolution formula. An important feature of Tutte characters is the
following general convolution formula.

Theorem 3.22. Let R be a commutative K-algebra, N0, N1, N2 : KS → R be three
norms and τ1, τ2 : KS→ R be two twist maps. Then we have the convolution formula
between Tutte characters:

TN0,τ1τ2,N2
= TN0,τ1,N1

∗ TN1,τ2,N2
.

In other words, for any X ∈ S[E] we have

TN0,τ1τ2,N2
(X) =

∑
A⊆E

TN0,τ1,N1
(X|A)TN1,τ2,N2

(X/A).

Proof. One simply computes, using Proposition 3.6:

TN0,τ1,N1
∗ TN1,τ2,N2

= N0 ∗ τ1 ∗ (N1 ∗N1) ∗ τ2 ∗N2

= N0 ∗ (τ1 ∗ τ2) ∗N2.

Now τ1 ∗ τ2 is simply the twist map corresponding to the pointwise product of τ1 and
τ2, hence the result. �

If N0, N1, N2 are three copies of the universal norm S → U(S) and τ1, τ2 are two
copies of the universal twist map S[∅] id→ S[∅] then we get a universal convolution
formula with values in the algebra

K[U(S)× S[∅]× U(S)× S[∅]× U(S)].

Every convolution formula in the sense of Theorem 3.22 appears as a specialization
of the universal convolution formula.

Remark 3.23. The inversion N 7→ N manifests itself as the automorphism of K[U(S)]
that sends a generator [X], for X ∈ S[E], to (−1)|E|[X], or equivalently that sends a
generator [X], for X ∈ S1, to −[X].

Remark 3.24.One can iterate the convolution formula from Theorem 3.22 and get
the following iterated convolution formulae, for a choice of norms N0, . . . , Nn and twist
maps τ1, . . . , τn:

TN0,τ1···τn,Nn
= TN0,τ1,N1

∗ TN1,τ2,N2
∗ · · · ∗ TNn−1,τn,Nn

.

More explicitly, for X ∈ S[E]:

TN0,τ1···τn,Nn
(X) =

∑
∅=A0⊆A1⊆···⊆An=E

(
n∏
i=1

TNi−1,τi,Ni
(X|Ai/Ai−1)

)
.

Example 3.25. The universal convolution formula for the minors system Set lives in
the ring K[u0, u1, u2] and reads:

(−u0 + u2)|E| =
∑
A⊆E

(−u0 + u1)|A|(−u1 + u2)|ErA|.

4. More on norms and Tutte characters
In this section we gather some longer remarks on and extensions of the foregoing
theory. It can be skipped on a first reading.
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4.1. Reduced Tutte characters. One notices in the example of Set that the
universal Tutte invariant T Set(E) ∈ K[u1, u2] is a homogeneous polynomial of degree
|E|. This is a general phenomenon that is easily stated in terms of rings graded by a
monoid.

Let U be a commutative monoid. A U -graded commutative ring is a commutative
ring R with a direct sum decomposition R =

⊕
x∈U Rx (called a U -grading) such

that RxRy ⊆ Rxy for any elements x, y ∈ U . If U = uN then a U -graded commutative
ring is nothing but a non-negatively graded commutative ring R =

⊕
n∈NRn, and

if U = uN1 · · ·uNd then a U -graded commutative ring is nothing but a non-negatively
d-graded commutative ring R =

⊕
(n1,...,nd)∈Nd Rn1,...,nd

.
We give the ring K[U(S) × S[∅] × U(S)] the U(S)-grading where the degree of a

basis element ([X1], Y, [X2]) is the product [X1][X2] ∈ U(S).

Proposition 4.1. For S a minors system and X ∈ S[E], the universal Tutte character
T S(X) ∈ K[U(S)× S[∅]× U(S)] is U(S)-homogeneous of degree [X].

Proof. Every monomial ([X|A], [X|A/A], [X/A]) has degree [X|A][X/A] = [X] by
definition of the Grothendieck ring. �

This result says, roughly speaking, that there are twice as many variables coming
from U(S) in the universal Tutte character T S as there “should” be, and that the
information in T S can be wholly recovered from an invariant where half of these
variables are specialized away. As we will now explain, the “unnecessary” twins of
the variables exist to allow for prefactors, which are ubiquitous when working with
deletion-contraction recurrences.

For concreteness, to make the explanation easier, let us work after applying a norm
U(S)→ uN1 · · ·uNd . To choose such a norm amounts to choosing maps r1, . . . , rd : S→ N
as in Remark 3.2. We also assume for simplicity that we are applying the trivial twist
map S[∅] → {∗}. Then the image of the universal Tutte invariant is an element
T (X) ∈ K[ui,1, ui,2 , i = 1, . . . , d]. This polynomial ring is d-graded, where the degree
of ui,1 and ui,2 is the ith standard basis vector ei. What the above proposition is
saying is that T (X) is d-homogeneous of degree (r1(X), . . . , rd(X)).

For a choice ε = (ε1, . . . , εd) ∈ {1, 2}n, one can define a reduced Tutte character

Tε : KS→ K[u1, . . . , ud]

by setting ui,εi
to ui and ui,3−εi

to 1. The homogeneity property means that one can
reconstruct T (X) from Tε(X) up to a prefactor:

T (X)(u1,1, . . . , ud,2) = u
r1(X)
1,3−ε1 . . . u

rd(X)
d,3−εd

· Tε(X)
(

u1,ε1
u1,3−ε1

, . . . ,
ud,εd

ud,3−εd

)
.

Among these 2d natural choices of reduced Tutte characters, there does not seem
to be a reason to declare any one of them canonical in general, though in certain
special cases some choices are more relevant than others. For instance, in the case of
matroids, where d = 2 (see Section 5 for more details), the classical corank-nullity
polynomial is a preferred choice; this is because after a translation of the variables
it becomes the Tutte polynomial, whose coefficients remain non-negative and gain a
new combinatorial interpretation in terms of basis activities.

The disadvantage to working with reduced Tutte characters is that it leads to
formulae which still contain many prefactors, and the source of these becomes more
obscure. For instance, it is easier to write the convolution formulae in the unreduced
version before specializing to the reduced version.
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4.2. Functoriality and duality. As already observed in [27, Theorems 2 and 17],
one can explain certain identities between Tutte characters by morphisms between
minors systems and considerations of duality.

Definition 4.2. Let S and S′ be two minors systems (resp. multiplicative minors
systems). A morphism of minors systems (resp. a morphism of multiplicative minors
systems) from S to S′ is a morphism of set species f : S→ S′ that is compatible with
the maps ∆A,B and ρE (resp. with the maps ∆A,B and µA,B) and sends 1S to 1S′ .

This makes minors systems into a category whose final object is the minors system
Set.

A morphism f : S → S′ between two minors systems induces a morphism of
comonoids in linear species KS → KS′, which is a morphism of bimonoids in linear
species in the multiplicative context. Every norm N ′ for S′ induces a norm N = N ′◦f
for S and this is reflected in a morphism of monoids between the Grothendieck monoids
U(S)→ U(S′). We then have an induced map f : K[U(S)×S[∅]×U(S)]→ K[U(S′)×
S′[∅]× U(S′)] and the universal Tutte characters satisfy the functoriality identity:

T S′ ◦ f = f ◦ T S.

For N ′1, N ′2 two norms for S′ and τ ′ a twist map, this gives an equality of Tutte
characters

TN ′1,τ ′,N ′2 ◦ f = TN ′1◦f,τ ′◦f,N ′2◦f .

Definition 4.3. For a minors system S, the opposite minors system Sop has the same
underlying set species and has structural maps defined in the following way.

(1) The coproduct map ∆op
A,B is the composition of ∆B,A and the exchange of the

factors S[A] and S[B].
(2) The map ρop

E equals the map ρE.

The comonoid in linear species KSop has the same underlying linear species as
that of S, with the opposite comonoid structure (i.e., exchange the two sides of the
tensor product). The Grothendieck monoid of Sop is naturally isomorphic to that of
S. The universal Tutte character of Sop is obtained from that of S by exchanging the
two factors U(S) in K[U(S)×S[∅]×U(S)]. This explains duality properties for Tutte
characters when there is an isomorphism S ∼→ Sop, e.g. in the case of S = Mat (see
Section 5 for more details).

4.3. Multivariate Tutte characters. In our formalism, norms and Tutte char-
acters have values in K-algebras, i.e. constant monoids in linear species. It is natural to
extend this to general (commutative) monoids in linear species. In the present work,
rather than developing a general theory, we explain only how one can build multi-
variate Tutte characters from norms. For simplicity we only treat the case of trivial
twist maps. The motivating example is that of the multivariate Tutte polynomial for
matroids: see Remark 5.9 below.

For V1 and V2 two K-modules, viewed as constant linear species, the Cauchy tensor
product V1 · V2 is no longer constant and is given, for a finite set E, by

(V1 · V2)[E] =
⊕

E=AtB
V1 ⊗ V2.

In particular, a vector in (V1 · V2)[E] remembers the datum of a decomposition E =
AtB. For notational purposes, we artificially keep track of this datum by introducing
dummy variables αe,1 and αe,2, for e ∈ E, and define a linear species (V1 ·V2)′ given by

(V1 · V2)′[E] = (V1 ⊗ V2)[{αe,1, αe,2 : e ∈ E}].
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There is an embedding (V1 · V2) ↪→ (V1 · V2)′ defined on the summand indexed by a
decomposition E = A tB by

v1 ⊗ v2 7→ (v1 ⊗ v2)
(∏
e∈A

αe,1

)(∏
e∈B

αe,2

)
.

Let S be a minors system, R1 and R2 be two commutative K-algebras, and N1 :
KS → R1, N2 : KS → R2 be two norms. We let Ñ1 : KS → R1 · R2 and Ñ2 :
KS → R1 · R2 denote the norms that they induce. The multivariate Tutte character
associated to N1 and N2 is then the convolution product

T̃N1,N2
.= Ñ1 ∗ Ñ2 : KS→ R1 ·R2.

If we view it as a morphism of linear species KS → (R1 · R2)′ then it is simply
given, for X ∈ S[E], by the formula

T̃N1,N2(X) =
∑
A⊆E

(N1(X|A)⊗N2(X/A))
(∏
e∈A

αe,1

)(∏
e/∈A

αe,2

)
.

These multivariate Tutte characters satisfy a deletion-contraction formula and con-
volution formulae similar to the constant case, for which the proofs are exactly the
same as those above.

The observations of Section 4.1 apply here just as in the constant case. That is,
half of the variables αe,i are redundant and one does not lose information by setting
αe,1 = αe and αe,2 = 1.

4.4. More general deletion-contraction recurrences. Let S be a minors
system. In Theorem 3.22 we proved that the universal Tutte character T S is universal
with respect to morphisms Φ : KS → R which are multiplicative on S[∅] and satisfy
a deletion-contraction recurrence formula of the form

(1) Φ(X) = N1(X\ec) Φ(X/e) +N2(X/ec) Φ(X\e),

where N1, N2 : KS→ R are norms.
If one wishes to make a general study of deletion-contraction recurrence formulae,

one might not wish to adopt a priori the assumption that one’s families of coefficients
are norms, or indeed have any particular predefined structure. In Sections 8.3 and 9.3
we will see two examples of previous research which started with such an expansive
notion of the formulae of interest, but wound up discovering that, under some non-
zero-divisor assumptions, the coefficients had to satisfy exactly the restrictions that
our norms impose on them. We regard this as a strong argument that restricting to
norms in investigating formula (1) is a natural thing to do.

To treat the general case, let N1, N2 : KS1 → R and τ : KS0 → R be any linear
maps, i.e. linear extensions of arbitrary set functions S1 → R and S0 → R respec-
tively. Suppose that we want to define a morphism Φ : KS → R which satisfies the
recurrence formula (1) with the base case Φ(X) = τ(X) if X ∈ S[∅]. Such a Φ may
be ill-defined because applying the recurrence formula in different orders may lead to
different results. We say that Φ is well-defined up to cardinality n if the recurrence
formula unambiguously defines Φ(X) for X ∈ S[E] whenever |E| 6 n. Note that Φ is
automatically well-defined up to cardinality 1.

For X ∈ S[E] and {e, f} ⊆ E, we use the abbreviations Xe,f = X\{e, f}c and
Xe,f = X/{e, f}c, which are both elements of S[{e, f}].

Proposition 4.4.Assume that Φ is well-defined up to cardinality n − 1. Then it is
well-defined up to cardinality n if and only if for every choice of a finite set E of
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cardinality n, two elements e, f ∈ E and an element X ∈ S[E] we have

(2)
(
N1(Xe,f |e)N1(Xe,f/e)−N1(Xe,f |f)N1(Xe,f/f)

)
Φ(X/e, f)

=
(
N2(Xe,f |e)N2(Xe,f/e)−N2(Xe,f |f)N2(Xe,f/f)

)
Φ(X\e, f).

Proof. Since Φ is well-defined up to cardinality n−1, it is well-defined up to cardinality
n if and only if for every finite set E of cardinality n and every e, f ∈ E we have

N1(X\ec) Φ(X/e) +N2(X/ec) Φ(X\e) = N1(X\f c) Φ(X/f) +N2(X/f c) Φ(X\f).

Using the recurrence formula, one may compute Φ(X/e), Φ(X\e), Φ(X/f) and
Φ(X\f) as

Φ(X/e) = N1(X/e|f) Φ(X/e, f) +N2(X/f c) Φ(X/e\f),
Φ(X\e) = N1(X|f) Φ(X\e/f) +N2(X\e/f c) Φ(X\e, f),
Φ(X/f) = N1(X/f |e) Φ(X/e, f) +N2(X/ec) Φ(X/f\e),
Φ(X\f) = N1(X|e) Φ(X\f/e) +N2(X\f/ec) Φ(X\e, f).

By replacing in our first equation one sees that the terms involving X/e\f = X\f/e
and X\e/f = X/f\e cancel. The conclusion follows by rearranging the remaining
terms. �

Of course, we recover the fact that if N1 and N2 are norms then Φ is well-defined.

4.5. Norms as exponentials. Following [27] we show that norms arise as exponen-
tials of certain linear maps. We will not use this fact in the rest of the article.

Assume that our coefficient ring K contains Q. For (C,∆, ε) a comonoid in linear
species, (A, µ, η) a monoid in linear species and f : C→ A a linear map, we define the
exponential of f by the sum

exp∗(f) =
∑
n>0

1
n!f

∗n,

where f∗n is the iterated convolution product of f with itself n times and f∗0 = υ =
η ◦ ε. To make sense of this infinite sum we assume that f vanishes on C[∅]. Then
exp∗(f) : C → A is a well-defined morphism of linear species. If we further assume
that C has the structure of a bimonoid in linear species and that f is an infinitesimal
character (i.e. satisfies f ◦µ = µ◦(ε ·f+f ·ε)) then exp∗(f) is a morphism of monoids
in linear species.

Proposition 4.5.Assume that K contains Q. For a norm N : KS → R with values
in a commutative K-algebra R, we denote by ν : KS → R the linear map defined for
X ∈ S[E] by

ν(X) =
{
N(X) if |E| = 1;
0 otherwise.

Then we have
exp∗(ν) = N.

Proof. Since ν vanishes on KS[∅], its exponential makes sense. For X ∈ S[∅] we have
exp∗(ν)(X) = υ(X) = 1 = N(X). Let X ∈ S[E] with |E| = n > 0. For degree reasons
the only term that survives in exp∗(ν)(X) is

exp∗(ν)(X) = 1
n!ν
∗n(X) = 1

n! µ
(n−1) ◦ ν·(n) ◦∆(n−1)(X).
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The iterated coproduct ∆(n−1)(X) is a sum of tensors, some of which contain one
element of S[∅]; since ν vanishes on KS[∅], these terms do not contribute. An easy
induction on n shows that the remaining terms are

∆(n−1)(X) =
∑

σ:{1,...,n}∼→E

(
n⊗
i=1

Xσ
i

)
.

By using axiom (N1) we get, for every σ,

N(X) =
n∏
i=1

N(Xσ
i ) =

n∏
i=1

ν(Xσ
i ).

This implies that we have

exp∗(ν)(X) = 1
n!

∑
σ:{1,...,n}∼→E

N(X) = N(X),

which concludes the proof. �

We note that if S is a multiplicative minors system then ν is an infinitesimal
character.

5. Matroids and graphs
5.1. The minors system of matroids. We start by recalling basic definitions on
matroids in order to set some notation. For background on matroid theory we refer,
e.g., to Oxley’s textbook [36].

Definition 5.1.A matroid is a pair M = (E, rk), where E is a finite set (the ground
set) and rk : 2E → N is a function (the rank function) such that, for all X,Y ⊆ E,
(R1) rk(X) 6 |X|,
(R2) X ⊆ Y implies rk(X) 6 rk(Y ),
(R3) rk(X ∪ Y ) + rk(X ∩ Y ) 6 rk(X) + rk(Y ).

We write (E, rk) = (E(M), rkM ) when the context is not clear. Matroids form a
set species Mat for which Mat[E] is the set of matroids with ground set E.

Given A ⊆ E, the restriction of M to A is the matroid M |A on the set A whose
rank function is the restriction of the rank function of M . Equivalently, the deletion
of M by A is defined as the restriction to Ac = E r A. The contraction of M by a
subset A ⊆ E is the matroid M/A on the set E r A, with rank function rk given by
rk(B) .= rk(B ∪A)− rk(A) for B ⊆ E rA.

Recall that the direct sum of two matroids M = (E, rk) and M ′ = (E′, rk′) is the
matroid M ⊕M ′ .= (E t E′, rk⊕ rk′), where for A ⊆ E and A′ ⊆ E′,

(rk⊕ rk′)(A tA′) = rk(A) + rk′(A′).
These notions of restriction, contraction and direct sum endow the set species Mat

with the structure of a multiplicative minors system. It is connected since there is
only one matroid with empty ground set, given by rk(∅) = 0.

Remark 5.2. The linearization KMat is a connected Hopf monoid in linear species
whose image by the Fock functor is the classical Hopf algebra of matroids introduced
by Schmitt [41].

The rank (resp. corank) of a matroid M is defined as rk(M) = rk(E(M)) (resp.
cork(M) = |E(M)| − rk(E(M))). The coloop (resp. loop) is the only matroid on a set
of cardinality 1 and rank 1 (resp. rank 0) and is denoted by the letter c (resp. l). We
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say that an element e ∈ E(M) is a coloop in M (resp. a loop in M) if rk(M\{e}) =
rk(M)− 1 (resp. rk(M/{e}) = rk(M)).

Remark 5.3. For every integer n > 1, the set species of matroids M such that
|E(M)| 6 n and the set species of matroids M such that rk(M) 6 n are examples of
minors systems that are not multiplicative. Further examples may be generated by
performing similar “truncations” on other minors systems we treat below.

5.2. The universal Tutte character and the Tutte polynomial. The com-
putation of the Grothendieck monoid of Mat is easy. The computations in later sections
will not be as easy, so we work out the present example slowly and painstakingly in
order that it can serve as a template for the examples to come.

Proposition 5.4. Let us denote by u and v the classes in U(Mat) of a coloop and a
loop, respectively. We have an isomorphism of monoids

U(Mat) ' uNvN

which maps the class of a matroid M to the monomial

urk(M)vcork(M).

Proof. We use the presentation of U(Mat) given by Theorem 3.10. The classes u and
v generate U(Mat) and the relations that they satisfy come from matroids on two-
element sets. There are four such matroids: the direct sums c ⊕ c, c ⊕ l, l ⊕ l, and
the uniform matroid U1,2, which give rise to the relations u2 = u2, uv = vu, v2 = v2,
uv = uv, respectively. These relations are all trivial, which implies that we have
an isomorphism ϕ : uNvN ∼→ U(Mat). For a matroid M and a subset A ⊆ E(M) one
easily checks the identities rk(M) = rk(M |A)+rk(M/A) and cork(M) = cork(M |A)+
cork(M/A), which imply that the morphism of monoids ψ : U(Mat)→ uNvN defined
by ψ([M ]) = urk(M)vcork(M) is well-defined. Since ψ ◦ ϕ(u) = u and ψ ◦ ϕ(v) = v, the
composite ψ ◦ ϕ is the identity of uNvN and ψ is the inverse of ϕ. �

Proposition 5.5. The universal Tutte character of the minors system Mat is the
character

TMat : KMat→ K[u1, v1, u2, v2]
defined, for a matroid M , by

TMat(M) =
∑

A⊆E(M)

u
rk(M |A)
1 v

cork(M |A)
1 u

rk(M/A)
2 v

cork(M/A)
2

=
∑

A⊆E(M)

u
rk(A)
1 v

|A|−rk(A)
1 u

rk(M)−rk(A)
2 v

|E(M)|−|A|−rk(M)+rk(A)
2 .

Proof. This follows directly from the definition of the universal Tutte character and
Proposition 5.4. �

Let us view K[u1, v1, u2, v2] as a bigraded ring, where u1, u2 have degree (1, 0) and
v1, v2 have degree (0, 1). We remark, as a special case of the discussion of Section 4.1,
that TMat(M) is a bihomogeneous polynomial of degree (rk(M), cork(M)). Out of the
possible reduced Tutte characters, the most popular is the corank-nullity polynomial,
obtained by setting u1 and v2 to 1. It is customary to shift the remaining two variables
by 1 to obtain the following classical invariant.

Definition 5.6. The Tutte polynomial of a matroid M is the bivariate polynomial

TM (x, y) =
∑

A⊆E(M)

(x− 1)rk(M)−rk(A)(y − 1)|A|−rk(A).
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The Tutte polynomial TM (x, y) is obtained from TMat(M) by specializing the vari-
ables to

(u1, v1, u2, v2) = (1, y − 1, x− 1, 1).
In other words, it is the Tutte character with values in the polynomial ring K[x, y]
associated to the norms N1(M) = (y − 1)cork(M) and N2(M) = (x − 1)rk(M). Con-
versely, the universal Tutte character can be recovered from the Tutte polynomial up
to a pre-factor:

(3) TMat(M) = u
rk(M)
1 v

cork(M)
2 TM (1 + u2

u1
, 1 + v1

v2
).

Since rk(M) is the degree in x of the polynomial TM (x, 1) and cork(M) is the
degree in y of the polynomial TM (1, y), even the pre-factor can be recovered from
TM (x, y) and there really is no loss of information in this specialization.

Proposition 5.7. The universal Tutte character for Mat satisfies the following
deletion-contraction recurrence formula:

TMat(M) = u
rk(M\ec)
1 v

cork(M\ec)
1 TMat(M/e) + u

rk(M/ec)
2 v

cork(M/ec)
2 TMat(M\e).

In other words, we have

TMat(M) =


(u1 + u2)TMat(M/e) if e is a coloop in M ;
(v1 + v2)TMat(M\e) if e is a loop in M ;
u1 T

Mat(M/e) + v2 T
Mat(M\e) otherwise.

Proof. The first formula is a direct application of Proposition 3.18. The pair
(M\ec,M/ec) is (c, c) if e is a coloop in M , (l, l) if e is a loop in M , and (c, l)
otherwise. This implies the second formula. �

After specialization we recover the classical deletion-contraction recurrence formula
for the Tutte polynomial:

TM (x, y) = (y − 1)cork(M\ec)TM/e(x, y) + (x− 1)rk(M/ec)TM\e(x, y),
or equivalently:

TM (x, y) =


xTM/e(x, y) if e is a coloop in M ;
y TM\e(x, y) if e is a loop in M ;
TM/e(x, y) + TM\e(x, y) otherwise.

Remark 5.8. ForM a matroid with ground set E, the dual matroid M∨ is the matroid
on E whose rank function is defined by rkM∨(A) = rkM (Ac) + |A| − rkM (E). It is a
standard fact that we have (M∨)∨ = M and for every A ⊆ E, (M\A)∨ = M∨/Ac

and (M/A)∨ = M∨\Ac. Thus, the assignmentM 7→M∨ is an isomorphism of minors
systems Mat ∼→ Matop. The corresponding involution of the Grothendieck monoid
U(Mat) is given by u↔ v. In view of the remarks of Section 4.2, this implies that we
have a duality property:

TMat(M∨)(u1,v1,u2,v2) = TMat(M)(v2,u2,v1,u1),

or more classically:
TM∨(x, y) = TM (y, x).

Remark 5.9. By applying the recipe given in Section 4.3 one can recover the multi-
variate version of the Tutte polynomial a.k.a. the Potts model partition function [20,
42, 44, 47], whose preferred specialization is

(4) T̃M (x, y) =
∑

A⊆E(M)

(∏
e∈A

αe

)
(x− 1)rk(M)−rk(A)(y − 1)|A|−rk(A).
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5.3. Convolution formulae. We apply our general convolution formula from The-
orem 3.22 to the case of matroids.

Proposition 5.10. The universal Tutte character for Mat satisfies a universal con-
volution formula in the polynomial algebra K[u0, v0, u1, v1, u2, v2]:

TMat(M)(−u0,−v0,u2,v2) =
∑

A⊆E(M)

TMat(M |A)(−u0,−v0,u1,v1) T
Mat(M/A)(−u1,−v1,u2,v2),

where the subscripts indicate the specialization of the variables.

Proof. This is a direct application of Theorem 3.22, by noting as in Remark 3.23 that
the inverse N of the universal norm N : KMat→ K[u, v] is obtained by composing N
with the automorphism of K[u, v] that sends (u, v) to (−u,−v). �

This six-variable convolution formula specializes to a four-variable convolution for-
mula for the Tutte polynomial that was proved by Kung [30, Identity 1] in the context
of multivariate Tutte polynomials (see also Wang [46, Theorem 5.3]).

Proposition 5.11. The Tutte polynomial satisfies the following convolution formula
in the polynomial algebra K[a, b, c, d]:

(5) TM (1− ab, 1− cd)

=
∑

A⊆E(M)

ark(M)−rk(A)d|A|−rk(A) TM |A(1− a, 1− c)TM/A(1− b, 1− d).

Proof. This is obtained from Proposition 5.10 by setting (u0, v0, u1, v1, u2, v2) =
(−1, cd,−a, d,−ab, 1) and using (3). �

One can further specialize to (a, b, c, d) = (1, 1−x, 1−y, 1) and get the classical con-
volution formula proved by Kook–Reiner–Stanton [26] and Etienne–Las Vergnas [18]:

TM (x, y) =
∑

A⊆E(M)

TM |A(0, y)TM/A(x, 0).

One can also specialize to less classical convolution formulae, e.g. with (a, b, c, d) =
(1− x, 1, 1, 1− y):

TM (x, y) =
∑

A⊆E(M)

(1− x)rk(M)−rk(A)(1− y)|A|−rk(A)TM |A(x, 0)TM/A(0, y),

or with (a, b, c, d) = (x− 1,−1,−1, y − 1):

TM (x, y) =
∑

A⊆E(M)

(x− 1)rk(M)−rk(A)(y − 1)|A|−rk(A)TM |A(2− x, 2)TM/A(2, 2− y).

Some other specializations of Proposition 5.10 appear as sums over flats rather than
over all subsets of the ground set(1), for example the following.

Proposition 5.12. The Tutte polynomial satifies the following identity in K[x, y]:

TM (x, y) =
∑

F flat of M
(x− 1)rk(M)−rk(F ) TM |F (1, y).

Proof. Specializing Proposition 5.10 at (u0, v0, u1, v1, u2, v2) = (−1, 1−y, 0, 1, x−1, 1)
gives the formula:

TM (x, y) =
∑

F⊆E(M)

TM |F (1, y)TMat(M/F )(0,−1,x−1,1).

(1)This was suggested by Spencer Backman.
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Now notice that
TMat(M)(0,−1,x−1,1) = (x− 1)rk(M)

∑
A⊆E(M)
rk(A)=0

(−1)|A|,

which equals 0 if M has at least one loop, and (x− 1)rk(M) otherwise. Thus, the only
terms that survive in the sum are those such that M/F has no loop, i.e. such that F
is a flat of M . �

We note the following iterated convolution formula for the Tutte polynomial, in
the spirit of Remark 3.24.
Proposition 5.13. The Tutte polynomial satisfies the following iterated convolution
formula in the polynomial algebra K[a1, . . . , an, b1, . . . , bn]:

TM (1− a1 · · · an, 1− b1 · · · bn)

=
∑

∅=A0⊆A1⊆···⊆An=E(M)

(
n∏
i=1

a
rk(M/Ai)
i b

cork(M |Ai−1)
i TM |Ai/Ai−1(1− ai, 1− bi)

)
.

Proof. For i = 0, . . . , n, let Ni be the norm for the minors system Mat with values in
K[a1, . . . , an, b1, . . . , bn] defined by

Ni(M) = (bi+1 · · · bn)rk(M)(−a1 · · · ai)cork(M).

We note that we have (N0 ∗Nn)(M) = TM (1−a1 · · · an, 1−b1 · · · bn). For i = 1, . . . , n
we have

Ni−1(M) = (−bi · · · bn)rk(M)(a1 · · · ai−1)cork(M)

and thus
(Ni−1 ∗Ni)(M) = (ai+1 · · · an)rk(M) (b1 · · · bi−1)cork(M) TM (1− ai, 1− bi).

According to Proposition 3.6 every Ni ∗Ni is the identity for convolution and we have
the formula:

N0 ∗Nn = (N0 ∗N1) ∗ (N1 ∗N2) ∗ · · · ∗ (Nn−1 ∗Nn)
The result then follows after collecting the powers of ai and bi. �

The case n = 2 of the above formula is Proposition 5.11. A 3-variable specialization
of the case n = 3 already appeared in the work of Reiner [39, Theorem 3], where
(a1, a2, a3, b1, b2, b3) are set to (1,−ab , 1 − u, 1 − v,−

b
a , 1), with a + b = 1. Another

notable specialization is the following.
Proposition 5.14.Assume that K contains a primitive n-th root of unity ξ. Then the
Tutte polynomial satisfies the following iterated convolution formula in the polynomial
algebra K[x, y]:

TM (xn,yn) =
∑

∅=A0⊆A1⊆···⊆An=E(M)(
n∏
i=1

(1−ξi−1x)rk(M/Ai) (1−ξi−1y)cork(M |Ai−1) TM |Ai/Ai−1(ξi−1x, ξi−1y)
)
.

Proof. This follows from applying Proposition 5.13 to ai = 1 − ξi−1x and bi = 1 −
ξi−1y. �

The case n = 2 of Proposition 5.14 is simply:

TM (x2, y2) =
∑

A⊆E(M)

(1− x)rk(M)−rk(A)(1 + y)|A|−rk(A)TM |A(x, y)TM/A(−x,−y).
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5.4. The minors systems of graphs and its universal Tutte character.
For a finite set E, let Gra[E] denote the set of graphs G with edge set E(G) = E.
This forms a multiplicative minors system Gra for which restriction and contraction
of edges are defined in the usual way and the direct sum of two graphs is their disjoint
union. Since a graph with zero edge is nothing but a finite number of isolated vertices,
one has an isomorphism of monoids Gra[∅] ' aN which maps the graph with k isolated
vertices to the monomial ak. This means that the multiplicative minors system Gra
is not connected, and is thus different from the one appearing in [27, 3.2].

Remark 5.15. In view of Proposition 2.14, the linearization KGra is a bimonoid in
linear species but not a Hopf monoid; in other words its image by the Fock functor
is a bialgebra but not a Hopf algebra. This is because its degree 0 component KGra0
is the polynomial algebra K[a] equipped with the coproduct ∆(a) = a ⊗ a and the
counit ε(a) = 1. This is a sub-bialgebra of K[a, a−1] ' K[Z], the group (Hopf) algebra
of the group Z, whose antipode map is induced by a 7→ a−1. Hence KGra0 does not
have an antipode.

For G a graph we denote by V (G) the set of its vertices and by k(G) the number
of its connected components, and set rk(G) = |V (G)| − k(G). For a subset A ⊆ E(G)
we set k(A) .= k(G|A) and rk(A) .= rk(G|A). This notion of rank defines a morphism
of minors system Gra→ Mat , G 7→M(G) = (E(G), rk).

Proposition 5.16. The morphism of minors systems Gra→ Mat induces an isomor-
phism of monoids

U(Gra) ∼→ U(Mat) ' uNvN

which maps the class of a graph G to the monomial

u|V (G)|−k(G)v|E(G)|−|V (G)|+k(G).

Proof. One can prove this proposition by working through the presentation of U(Gra)
from Theorem 3.10. Alternatively, let us denote by γ : U(Gra) → U(Mat) ' uNvN

the morphism induced on the level of Grothendieck monoids. Let δ : uNvN → U(Gra)
be the morphism of monoids that sends u to the class of a coloop (bridge) and v to
the class of a loop. Then clearly the composite γ ◦ δ is the identity of uNvN. Since
a graph with one edge is either a coloop or a loop together with additional isolated
vertices, the composite δ ◦γ is the identity on the generators of U(Gra) and the result
follows. �

This implies that the universal Tutte character for the minors system Gra is the
character

TGra : KGra→ K[u1, v1, a, u2, v2]
defined, for a graph G, by

TGra(G) =
∑

A⊆E(G)

u
rk(G|A)
1 v

cork(G|A)
1 ak(G|A/A) u

rk(G/A)
2 v

cork(G/A)
2

=
∑

A⊆E(G)

u
|V (G)|−k(A)
1 v

|A|−|V (G)|+k(A)
1 ak(A)u

k(A)−k(G)
2 v

|E(G)|−|A|+k(G)−k(A)
2 .

We mention two notable specializations of this universal invariant.
• After specialization to (u1, v1, a, u2, v2) = (1, y − 1, 1, x − 1, 1), one recovers
the classical Tutte polynomial

TG(x, y) = TM(G)(x, y).
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• After specialization to (u1, v1, a, u2, v2) = (1, b, a, 1, 1), one recovers Tutte’s
dichromatic polynomial

QG(a, b) =
∑

A⊆E(G)

ak(A)b|A|−|V (G)|+k(A),

which is not an invariant of the matroid M(G) [45]. This can be computed
recursively with the base case QG(a, b) = ak if G consists of k isolated vertices
and the deletion-contraction recurrence formula:

QG(a, b) = bcork(G\ec)QG/e(a, b) +QG\e(a, b),

or equivalently:

QG(a, b) =
{

(b+ 1)QG\e(a, b) if e is a loop in G;
QG/e(a, b) +QG\e(a, b) otherwise.

One can apply the general convolution formula of Theorem 3.22 and get a four-
variable convolution formula for the dichromatic polynomial. A specialization
of that formula is particularly simple: by applying Theorem 3.22 with the
norms N0(G) = 1, N1(G) = bcork(G), N2(G) = 1 and twist maps τ1 and τ2
corresponding to variables a1 and a2 we get a convolution formula in the
polynomial algebra K[a1, a2, b]:

QG(a1a2, b) =
∑

A⊆E(G)

QG|A(a1, b)χG/A(a2),

where χ denotes the chromatic polynomial.

6. Delta-matroids and perspectives
The examples of minors systems which [27] focus on are various notions of embedded
graphs in surfaces and the matroid-like objects which correspond to them. Recently,
Moffatt and Smith [35] proposed the framework of delta-matroid perspectives to unify
these structures. Delta-matroid perspectives themselves yield as their Tutte invariant
the Krushkal polynomial of an embedded graph, whereas forgetting various pieces
of the structure yields the other embedded graph invariants and matroidal objects
of [27]. We add to the examples appearing in these works the saturated delta-matroids
of Tardos and Bouchet, which fit cozily in between. The reader lost among the ob-
jects being introduced in this section may want to keep at hand diagram (6), which
summarizes their relationships.

The examples of delta-matroids and of their perspectives are of note because our
universal Tutte character arrives directly at the correct target ring, which unlike our
previous examples is not a polynomial ring. This is a significant feature which tends
to be glossed over in the “graph polynomials” literature, where monoid rings are
implicitly frequent but are handled as the subrings of polynomial rings spanned by
monomials whose exponents satisfy certain, often unstated, congruences.

6.1. Delta-matroids and matroid perspectives. Delta-matroids, defined by
Bouchet [6], are a generalization of matroids whose most familiar axiom system, the
feasible set axioms, takes off from not the rank axioms of Section 5 but the matroid
basis axioms. A basis of a matroid M is a maximal set X ⊆ E(M) with rk(X) = |X|,
and it is a standard fact that in this case |X| = rk(M). Let 4 denote symmetric
difference of sets.
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Definition 6.1.A delta-matroid is a pair D = (E,B) where E is a finite set and
B ⊆ 2E is such that
(∆1) B 6= ∅,
(∆2) For any X,Y ∈ B and x ∈ X 4 Y , there exists y ∈ X 4 Y , possibly equal

to x, such that X 4 {x, y} ∈ B.

If the feasible sets of a delta-matroid all have equal cardinality, then they form the
set of bases of some matroid on the same ground set, and conversely. The unfamiliar
reader may take this as a statement of the basis axiom system for matroids (though
one stated with the slight obfuscation of the use of 4). Given an arbitrary delta-
matroid D, its feasible sets of minimum, resp. maximum, cardinality are the sets of
bases of matroids on E(D), which are called the lower matroid Dmin of D, resp. the
upper matroid Dmax of D.

The deletion ofM = (E,B) by a singleton {a} such that a 6∈ B for some B ∈ B (i.e.
a is not a coloop) is M\{a} = (E r {a}, {B : B ∈ B, a 6∈ B}). The contraction of M
by {a}, if a ∈ B for some B ∈ B (i.e. a is not a loop) is M/{a} = (Er {a}, {Br {a} :
B ∈ B, a ∈ B}). If a is a coloop or a loop, then we set M\{a} and M/{a} equal.
(It cannot be both a coloop and a loop.) For A ⊆ E arbitrary, M\A and M/A are
defined as they must be according to the coassociativity axiom (M2) of Definition 2.3.
These operations make delta-matroids into a connected minors system ∆Mat. It is
multiplicative with the direct sum (E,B) ⊕ (E′,B′) = (E t E′, {B t B′ : B ∈ B,
B′ ∈ B′}).

Matroid perspectives, due to Las Vergnas in [31], are also known as strong maps
of matroids whose underlying ground set map is id : E → E.

Definition 6.2.A matroid perspective is a pair (M,M ′) of matroids on the same
ground set E = E(M) = E(M ′) such that for subsets A ⊆ B ⊆ E we have the
inequality

rkM (B)− rkM (A) > rkM ′(B)− rkM ′(A).

By defining restriction, contraction and direct sum componentwise, one makes ma-
troid perspectives into a connected multiplicative minors system MatPer. It is natu-
rally a minors subsystem of the product Mat×Mat.

We now explain how MatPer also forms a minors subsystem of the minors system
∆Mat of delta-matroids.

Definition 6.3.A delta-matroid D with ground set E is said to be saturated if for
subsets X ⊆ Y ⊆ Z of E, if X and Z are feasible then Y is feasible.

Saturated delta-matroids were introduced by Tardos [43] under the name general-
ized matroids or g-matroids, see also [6, 7]. They form a minors subsystem Sat∆Mat ⊆
∆Mat of the minors system of delta-matroids.

All delta-matroids on a one-element set are saturated. There are three non-
saturated delta-matroids on a two-element set {e, f}, whose collections of feasible
sets are {∅, {e, f}}, {∅, {e}, {e, f}} and {∅, {f}, {e, f}}.

Saturated delta-matroids arise naturally from matroid perspectives. The next
proposition is due to Tardos [43].

Proposition 6.4. Let (M,M ′) be a matroid perspective with ground set E. Let us say
that a subset X ⊆ E is feasible if it is an independent subset for M and a spanning
subset for M ′. Then this defines a saturated delta-matroid on E.

Proof. Let us first remark that an independent set for M ′ is independent for M and
that a spanning set for M is spanning for M ′. This implies that a basis B of M (resp.
a basis B′ of M ′) is feasible and that the set of feasible sets is not empty.
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Next we have to prove the symmetric basis exchange axiom. There are two (dual)
cases to consider.

(i) Let X,Y be feasible sets and choose an element x ∈ X r Y . If X r {x} is
a spanning set for M ′ then X r {x} = X 4 {x, x} is feasible and we are
done. Assume now that X r {x} is not a spanning set for M ′. Then since
Y is a spanning set for M ′ there exists an element y ∈ Y r X such that
X 4 {x, y} = X r {x} ∪ {y} is a spanning set for M ′. This implies that we
have rkM ′(X r {x} ∪ {y})− rkM ′(X r {x}) = 1. Since (M,M ′) is a matroid
perspective we get that rkM (X r {x} ∪ {y}) − rkM (X r {x}) = 1. Since
X r {x} is an independent set of M , this implies that X r {x} ∪ {y} is also
an independent set of M , and is thus a feasible set.

(ii) Let X,Y be feasible sets and choose an element y ∈ Y r X. If X ∪ {y}
is an independent set of M then X ∪ {y} = X 4 {y, y} is feasible and we
are done. Assume now that X ∪ {y} is not an independent set of M . Then
since X is an independent set of M there exists an element x ∈ X r Y such
that X 4 {y, x} = X ∪ {y} r {x} is an independent set of M . This implies
that rkM (X ∪ {y}) − rkM (X ∪ {y} r {x}) = 0. Since (M,M ′) is a matroid
perspective we get that rkM ′(X ∪ {y}) − rkM ′(X ∪ {y} r {x}) = 0. Since
X ∪ {y} is a spanning set of M ′ this implies that X ∪ {y} r {x} is also a
spanning set of M ′, and is thus a feasible set.

Finally, for X ⊆ Y ⊆ Z subsets of E, if X is spanning for M ′ and Z is independent
for M , then Y is spanning for M ′ and independent for M , i.e. is a feasible set. We
have thus proved that the delta-matroid that we have just defined is saturated. �

Let us denote byD(M,M ′) the saturated delta-matroid defined in the above propo-
sition.

Proposition 6.5. The assignments (M,M ′) 7→ D(M,M ′) and D 7→ (Dmax, Dmin)
induce an isomorphism of minors systems:

MatPer ' Sat∆Mat.

Proof. The fact that we get functorial isomorphisms MatPer[E] ' Sat∆Mat[E] is
clear and one simply has to prove that they are compatible with restriction and
contraction. Let us prove that D(M,M ′)\{a} = D(M\{a},M ′\{a}) for a matroid
perspective (M,M ′) with ground set E and a ∈ E. If a is a coloop in M ′ (and thus
also inM) then a is a coloop in D(M,M ′) and the feasible sets of D(M\{a},M ′\{a})
are exactly the sets Xr{a} for X feasible in D(M,M ′). Otherwise the feasible sets of
D(M\{a},M\{a}) are those sets X ⊆ Er{a} that are spanning sets forM ′\{a} and
independent sets for M\{a}, i.e. the feasible sets in D(M,M ′) that do not contain
a. Let us now prove that D(M,M ′)/{a} = D(M/{a},M ′/{a}). If a is a loop in
M (and thus also in M ′) then a is a loop in D(M,M ′) and the feasible sets of
D(M/{a},M ′/{a}) are exactly the feasible sets in D(M,M ′). Otherwise the feasible
sets of D(M/{a},M ′/{a}) are those sets X ⊆ E r {a} that are spanning sets for
M ′/{a} and independent sets for M/{a}, i.e. the sets X = Y r {a} for Y a feasible
set of D(M,M ′) containing a. �

Remark 6.6. The assigment D 7→ (Dmax, Dmin) does not induce a morphism of mi-
nors systems from the full minors system of delta-matroids ∆Mat to MatPer. For
example, if E(D) = {e, f} and D has feasible sets {∅, {e}, {e, f}}, then the feasible
sets of Dmin/f are {∅} while those of (D/f)min are {{e}}.
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Remark 6.7. By examining the proof of Proposition 6.4 one sees that saturated delta-
matroids are those delta-matroids that satisfy the following strong form of the sym-
metric exchange axiom [43]. For feasible sets X,Y one has:

(i) for every x ∈ XrY , either Xr{x} is feasible or there exists y ∈ Y rX such
that X r {x} ∪ {y} is feasible;

(ii) for every y ∈ Y rX, either X ∪{y} is feasible or there exists x ∈ X rY such
that X ∪ {y}r {x} is feasible.

6.2. Delta-matroid perpectives. For delta-matroid perspectives our definitions
follow [35].

Definition 6.8.A delta-matroid perspective is a triple (M,D,M ′) of two matroids
M and M ′ and a delta-matroid D, all on the same ground set E, such that (M,Dmax)
and (Dmin,M

′) are matroid perspectives.

By Proposition 32 of [35], delta-matroid perspectives become a connected multi-
plicative minors systems ∆MatPer with restriction, contraction, and direct sum oper-
ations defined componentwise. It is naturally a minors subsystem of ∆Mat×MatPer ⊆
Mat×∆Mat×Mat.

In what follows, we will compute our universal Tutte polynomial for ∆MatPer, and
then specialize it to MatPer and ∆Mat. The specialization is based on parts (2), (3)
and (4) of the following proposition, part (1) of which similarly recovers the results
of Section 5.

Proposition 6.9.
(1) M is a matroid if and only if (M,M,M) is a delta-matroid perspective.
(2) The following are equivalent: (M,M ′) is a matroid perspective; (M,M,M ′)

is a delta-matroid perspective; (M,M ′,M ′) is a delta-matroid perspective;
(M,D(M,M ′),M ′) is a delta-matroid perspective.

(3) If (M,D,M ′) is a delta-matroid perspective then (M,M ′) is a matroid per-
spective.

(4) D is a delta-matroid if and only if (Dmax, D,Dmin) is a delta-matroid per-
spective.

Proof. With the exception of the last equivalent condition of (2), this is proved as
Proposition 4 of [35]. Sufficiency of this equivalent condition is assured by (3). Neces-
sity follows from the definition of delta-matroid perspective in view of Proposition 6.5,
which says that D(M,M ′)max = M and D(M,M ′)min = M ′. �

Remark 6.10. The only nontrivial fact called on in the proof in [35] is that if D is
a delta-matroid then (Dmax, Dmin) is a matroid perspective [7]. This, together with
transitivity of the relation of being a matroid perspective, for instance proves (3).

The following diagram, where all arrows are morphisms of minors systems, sum-
marizes the links between the minors systems Mat, MatPer, Sat∆Mat, ∆Mat and
∆MatPer explained in Proposition 6.9.

(6)
Mat �

� // MatPer ' Sat∆Mat� _

��

ww
gg

� � // ∆MatPer
vv

oo∆Mat
The inclusion Mat ↪→ MatPer is M 7→ (M,M) and it has two sections (pic-

tured as dashed arrows) given by (M,M ′) 7→ M and (M,M ′) 7→ M ′. The inclu-
sion MatPer ↪→ ∆MatPer is (M,M ′) 7→ (M,D(M,M ′),M), and it corresponds via
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the isomorphism MatPer ' Sat∆Mat to the inclusion Sat∆Mat ↪→ ∆MatPer given
by D 7→ (Dmax, D,Dmin). It has a section (pictured as a dashed arrow) given by
(M,D,M ′) 7→ (M,M ′). Finally, the map ∆MatPer → ∆Mat pictured as a dashed
arrow is given by (M,D,M ′) 7→ D.

Remark 6.11.We emphasize (see Remark 6.6) the fact that the natural morphisms
of set species ∆Mat → Mat given by D 7→ Dmax or Dmin are not morphisms of
minors systems. The same applies to the morphisms of set species ∆Mat → MatPer
and ∆Mat → ∆MatPer given by D 7→ (Dmax, Dmin) and D 7→ (Dmax, D,Dmin),
respectively.

Remark 6.12.Other natural morphisms of minors systems are not on this dia-
gram. For instance, there are two natural embeddings Mat ↪→ MatPer given by
M 7→ (M,Z(E(M))) and M 7→ (F (E(M)),M), where Z(E) (resp. F (E)) denotes
the zero matroid (resp. the free matroid) on a finite set E. There are also the two em-
beddings MatPer ↪→ ∆MatPer of Proposition 6.9(2), given by (M,M ′) 7→ (M,M,M ′)
and (M,M ′) 7→ (M,M ′,M ′).

6.3. The universal Tutte character for delta-matroid perspectives and
the Krushkal polynomial. We now turn to the description of the Grothendieck
monoid of ∆MatPer. The matroids on a one-element set are a coloop c and a loop l.
There is one delta-matroid on a single element which is not a matroid, the remaining
set system n = ({e}, {∅, {e}}). From these, five delta-matroid perspectives can be
assembled: (c, c, l), (c, l, l), (c, c, c), (l, l, l) and (c, n, l).

Proposition 6.13. Let us denote by s, t, u, v and w the classes in U(∆MatPer) of
the delta-matroid perspectives (c, c, l), (c, l, l), (c, c, c), (l, l, l) and (c, n, l) respectively.
Then we have an isomorphism of monoids
(7) U(∆MatPer) ' (sNtNuNvNwN)/〈w2 = st〉.

Proof. By Theorem 3.10, the classes s, t, u, v and w generate U(∆MatPer) and the
relations that they satisfy come from delta-matroid perspectives on two-element sets,
of which there are 38 in all. Only two of these yield nontrivial relations: these are the
perspective (M,D,M ′) on ground set {e, f} where D has feasible sets {∅, {e}, {e, f}},
M = Dmax, and M ′ = Dmin, together with its isomorphic image under exchanging e
and f . They give the relation w2 = st, hence the claim. �

In order to give a useful description of the isomorphism (7) we will need a central
fact about delta-matroids.

Lemma 6.14. For a delta-matroid D and a subset A ⊆ E(D) we have an equality
between non-negative integers:
rk(Dmax)−rk((D|A)max)−rk((D/A)max) = rk((D|A)min)+rk((D/A)min)−rk(Dmin).

Proof. If A has cardinality 1 then this is proved in [27, Lemma 10]. The general case
follows by an easy induction on the cardinality of A. �

We note that in general both sides of the above equality are non-zero, even though
they are if D is a saturated delta-matroid. This is related to the fact, already noted
in Remark 6.6, that D 7→ Dmax and D 7→ Dmin are not compatible with deletion and
restriction, e.g. (D|A)max differs from Dmax|A in general.

Proposition 6.15. The isomorphism (7) maps the class of a delta-matroid perspective
(M,D,M ′) to the monomial

(8) srk(Dmin)−rk(M ′) trk(M)−rk(Dmax) urk(M ′) vcork(M) wrk(Dmax)−rk(Dmin).
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Proof. Let ψ : U(MatPer) → (sNtNuNvNwN)/〈w2 = st〉 denote the morphism of
monoids mapping the class of a delta-matroid perspective (M,D,M ′) to the mono-
mial (8). If we prove that ψ is well-defined then we are done since on one-element
delta-matroid perspectives we have ψ(c, c, l) = s, ψ(c, l, l) = t, ψ(c, c, c) = u,
ψ(l, l, l) = v and ψ(c, n, l) = w. Let us fix a delta-matroid perspective (M,D,M ′)
on a set E and a subset A ⊆ E. We need to prove that we have the equality
ψ(M |A,D|A,M ′|A)ψ(M/A,D/A,M ′/A) = ψ(M,D,M ′). The fact that the powers
of u and v agree simply follows from the equalities rk(M ′|A) + rk(M ′/A) = rk(M ′)
and cork(M |A) + cork(M/A) = cork(M), so we only need to care about the powers
of s, t and w. We denote by δ the non-negative quantity of Lemma 6.14. Up to the
powers of u and v, the product ψ(M |A,D|A,M ′|A)ψ(M/A,D/A,M ′/A) equals

sδ+rk(Dmin)−rk(M ′|A)+rk(M ′/A)tδ+rk(M |A)+rk(M/A)−rk(Dmax)wrk(Dmax)−rk(Dmin)−2δ.

By using the relations rk(M ′|A)+rk(M ′/A) = rk(M ′), rk(M |A)+rk(M/A) = rk(M)
and sδtδ = w2δ we see that this equals

srk(Dmin)−rk(M ′)trk(M)−rk(Dmax)wrk(Dmax)−rk(Dmin),

which is ψ(M,D,M ′) up to the powers of u and v, and we are done. �

The universal Tutte character

T∆MatPer : K∆MatPer→ K[s1, t1, u1, v1, w1, s2, t2, u2, v2, w2]

is thus given by

T∆MatPer(M,D,M ′) =
∑
A⊆E

s
rk((D|A)min)−rkM′ (A)
1 t

rkM (A)−rk((D|A)max)
1

· urkM′ (A)
1 v

|A|−rkM (A)
1 w

rk((D|A)max)−rk((D|A)min)
1

· srk((D/A)min)−corkM′ (A)
2 t

corkM (A)−rk((D/A)max)
2

· urk(M ′)−rkM′ (A)
2 v

|ErA|−corkM (A)
2 w

rk((D/A)max)−rk((D/A)min)
2 ,

where ifM is a matroid and A ⊆ E(M), then by corkM (A) we mean rk(M)−rkM (A).
We compare this to the Krushkal polynomial, an invariant of graphs in surfaces

introduced by [28] for orientable surfaces and Butler [10] in general, and framed as an
invariant of delta-matroid perspectives by [35]. The name “polynomial” is arguably in-
apt: the invariant is naturally an element of an algebra isomorphic to K[U(∆MatPer)].
The usual practice is to write its values after embedding in a polynomial algebra by

(9) K[U(∆MatPer)] ' K[s, t, u, v, w]/〈w2 − st〉 ↪→ K[s 1
2 , t

1
2 , u, v],

where w maps to s 1
2 t

1
2 and the other variables map to identically named variables.

To relate our universal Tutte character to the Krushkal invariant we will use this
embedding and write w as s 1

2 t
1
2 , and similarly for subscripted variables. Then the

monomial of (8) can be written

sσ(D)−rk(M ′) trk(M)−σ(D) urk(M ′) vcork(M),

where σ(D) denotes the mean 1
2 (rk(Dmax) + rk(Dmin)). We note that Lemma 6.14

means that we have σ(D) = σ(D|A) + σ(D/A) for every delta-matroid D and every
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A ⊆ E(D). We can rewrite

T∆MatPer(M,D,M ′)

=
∑
A⊆E

s
σ(D|A)−rkM′ (A)
1 t

rkM (A)−σ(D|A)
1 u

rkM′ (A)
1 v

|A|−rkM (A)
1

· sσ(D/A)−corkM′ (A)
2 t

corkM (A)−σ(D/A)
2 u

rk(M ′)−rkM′ (A)
2 v

|ErA|−corkM (A)
2 .

Specialization to
(s1, t1, u1, v1, s2, t2, u2, v2) = (a, b, 1, y, 1, 1, x, 1)

recovers the Krushkal invariant in Moffatt and Smith’s convenient presentation,

K(M,D,M ′)(x, y, a, b)

=
∑
A⊆E

xrk(M ′)−rkM′ (A) y|A|−rkM (A) aσ(D|A)−rkM′ (A) brkM (A)−σ(D|A).

Again this is a reduced Tutte polynomial in the sense of Section 4.1, so nothing
was really lost in the specialization. The universal Tutte character is an evaluation of
the Krushkal invariant up to a prefactor which bears no further information itself:

T∆MatPer(M,D,M ′)

= s
σ(D)−rk(M ′)
2 t

rk(M)−σ(D)
2 u

rk(M ′)
1 v

cork(M)
2 K(M,D,M ′)(u2

u1
, v1
v2
, s1s2 ,

t1
t2

).

We leave the general eight-variable convolution formula for the Krushkal polyno-
mial to the assiduous reader to write down, though in the two subsections to follow,
we will present its specializations to the Las Vergnas and bivariate Bollobás–Riordan
polynomials. Note that the complications we discuss in the latter case (Section 6.5)
brought about by the embedding (9), and the consequent need for square roots of −1,
will occur for the Krushkal polynomial as well.

6.4. Matroid perspectives and the Las Vergnas polynomial. We use the
natural morphism of minors systems ∆MatPer → MatPer , (M,D,M ′) 7→ (M,M ′)
to compute the Grothendieck monoid of MatPer. We note that this morphism has a
natural section MatPer → ∆MatPer , (M,M ′) 7→ (M,D(M,M ′),M ′), which implies
that the morphism U(∆MatPer)→ U(MatPer) is a split surjection of monoids.

Proposition 6.16. The morphism of minors systems ∆MatPer→ MatPer induces an
isomorphism of monoids

U(MatPer) ' U(∆MatPer)/〈s = t = w〉 ' uNvNwN

which maps the class of a matroid perspective (M,M ′) to the monomial

urk(M ′) vcork(M) wrk(M)−rk(M ′).

Proof. We use the notations f : ∆MatPer → MatPer and i : MatPer → ∆MatPer. On
structures on a one-element set, they act as follows:

f(c, c, c) = (c, c), f(l, l, l) = (l, l), f(c, c, l) = f(c, l, l) = f(c, n, l) = (c, l),
i(c, c) = (c, c, c), i(l, l) = (l, l, l), i(c, l) = (c, n, l).

This implies that the maps induced by f and i satisfy f(u) = u, f(v) = v, f(s) =
f(t) = f(w) = w and i(u) = u, i(v) = v, i(w) = w where we denote by u, v, w the
classes in U(MatPer) of the matroid perspectives (c, c), (l, l) and (c, l) respectively.
The first claim follows. The second claim follows by considering the monomial (8) for
(M,D(M,M ′),M ′) and setting s = t = w. �
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The universal Tutte character

TMatPer : KMatPer→ K[u1, v1, w1, u2, v2, w2]

is thus given by

TMatPer(M,M ′) =
∑
A⊆E

u
rkM′ (A)
1 v

|A|−rkM (A)
1 w

rkM (A)−rkM′ (A)
1 u

rk(M ′)−rkM′ (A)
2

· v|E|−|A|−(rk(M)−rkM (A))
2 w

(rk(M)−rkM (A))−(rk(M ′)−rkM′ (A))
2 .

The classical comparandum is the Tutte polynomial of a matroid perspective, a
3-variable polynomial defined by Las Vergnas [31]:

TM,M ′(x, y, z)

=
∑
A⊆E

(x− 1)rk(M ′)−rkM′ (A)(y − 1)|A|−rkM (A)z(rk(M)−rkM (A))−(rk(M ′)−rkM′ (A)).

Up to the shifting of the variables x and y, it is a reduced Tutte character in the sense
of Section 4.1 obtained by specializing the variables to

(u1, v1, w1, u2, v2, w2) = (1, y − 1, 1, x− 1, 1, z).

One can thus recover the universal Tutte character from the Las Vergnas polynomial
up to a prefactor:

(10) TMatPer(M,M ′) = u
rk(M ′)
1 v

cork(M)
2 w

rk(M)−rk(M ′)
1 TM,M ′(1 + u2

u1
, 1 + v1

v2
, w2
w1

).

One easily derives from our formalism a 6-variable convolution formula for the Las
Vergnas polynomial that we couldn’t find in the literature.

Proposition 6.17. The Las Vergnas polynomial satisfies the following convolution
formula in the polynomial algebra K[a, b, c, d, e, f ]:

TM,M ′(1− ab, 1− cd,−ef)

=
∑
A⊆E

ark(M ′)−rkM′ (A) d|A|−rkM (A) e(rk(M)−rkM (A))−(rk(M ′)−rkM′ (A))

· TM |A,M ′|A(1− a, 1− c,−e)TM/A,M ′/A(1− b, 1− d,−f).

Proof. Theorem 3.22 implies that the universal Tutte character satisfies a universal
convolution formula in the polynomial algebra K[u0, v0, w0, u1, v1, w1, u2, v2, w2]. One
concludes by specializing the variables to

(u0, v0, w0, u1, v1, w1, u2, v2, w2) = (1,−cd, 1,−a, d,−e,−ab, 1,−ef)

and using (10). �

By further specializing to (a, b, c, d, e, f) = (1, 1 − x, 1 − y, 1, 1,−z) one gets a
3-variable convolution formula that already appeared in [24, 25, 27]:

TM,M ′(x, y, z) =
∑
A⊆E

TM |A,M ′|A(0, y,−1)TM/A,M ′/A(x, 0, z).

Remark 6.18.As was noted in [27], the classical relations between the Tutte polyno-
mial of matroid perspectives and the Tutte polynomial of matroids can be explained
in a fashion parallel to this subsection, by morphisms between the minors systems
MatPer and Mat.
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6.5. Delta-matroids and the bivariate Bollobás–Riordan polynomial. We
use the morphism of minors systems ∆MatPer → ∆Mat , (M,D,M ′) 7→ D to
compute the Grothendieck monoid of ∆Mat. The assignment D 7→ (Dmax, D,Dmin)
gives a section of this morphism in the category of set species (but not in the cat-
egory of minors systems: see Remark 6.6). This implies that the induced morphism
U(∆MatPer)→ U(∆Mat) is surjective.
Proposition 6.19. The morphism of minors systems ∆MatPer → ∆Mat induces an
isomorphism of monoids

U(∆Mat) ' U(∆MatPer)/〈s = u, t = v〉 ' (uNvNwN)/〈w2 = uv〉
which maps the class of a delta-matroid D to the monomial
(11) urk(Dmin) v|E(D)|−rk(Dmax) wrk(Dmax)−rk(Dmin).

Proof. We use the notation g : ∆MatPer→ ∆Mat. On delta-matroid perspectives on
a one-element set, it acts as follows:

g(c, c, c) = g(c, c, l) = c, g(l, l, l) = g(c, l, l) = l, g(c, n, l) = n

This implies that the map induced by g satisfies g(s) = g(u) = u, g(t) = g(v) = v,
g(w) = w where we denote by u, v, w the classes in U(∆Mat) of the delta-matroids
c, l, n respectively. We note that the relation w2 = uv in U(∆Mat) is induced by
the delta-matroids on {e, f} with feasible sets {∅, {e}, {e, f}} and {∅, {f}, {e, f}}.
By direct inspection, one checks that the remaining 13 delta-matroids on {e, f} yield
trivial relations in U(∆Mat) and the first claim follows. The second claim follows by
considering the monomial (8) for (Dmax, D,Dmin) and setting s = u, t = v. �

The universal Tutte character
T∆Mat : K∆Mat→ K[u1, v1, w1, u2, v2, w2]/〈w2

1 − u1v1, w
2
2 − u2v2〉

is thus given by

T∆Mat(D) =
∑

A⊆E(D)

u
rk((D|A)min)
1 v

|A|−rk((D|A)max)
1 w

rk((D|A)max)−rk((D|A)min)
1

· urk((D/A)min)
2 v

|E(D)|−rk((D/A)max)
2 w

rk((D/A)max)−rk((D/A)min)
2 .

It is customary to write its values after embedding in a polynomial algebra by
(12) K[U(∆Mat)] ' K[u, v, w]/〈w2 − uv〉 ↪→ K[u 1

2 , v
1
2 ],

where w maps to u 1
2 v

1
2 and the other variables map to identically named variables.

Then the monomial (11) equals uσ(D) v|E(D)|−σ(D). In what follows we use the notation
σ(A) .= σ(D|A). The universal Tutte character, written in K[u

1
2
1 , v

1
2
1 , u

1
2
2 , v

1
2
2 ], then

becomes
T∆Mat(D) =

∑
A⊆E(D)

u
σ(A)
1 v

|A|−σ(A)
1 u

σ(D)−σ(A)
2 v

|E(D)|−|A|−σ(D)+σ(A)
2 .

Specialization to (u1, v1, u2, v2) = (1, y−1, x−1, 1) recovers the bivariate Bollobás–
Riordan polynomial, which lives in K[(x− 1) 1

2 , (y − 1) 1
2 ]:

R̃D(x, y) =
∑

A⊆E(D)

(x− 1)σ(D)−σ(A)(y − 1)|A|−σ(A).

Up to the shifting of the variables, it is a reduced Tutte character in the sense of
Section 4.1. One can thus recover the universal Tutte character from the bivariate
Bollobás–Riordan polynomial up to a prefactor:

(13) T∆Mat(D) = u
σ(D)
1 v

|E(D)|−σ(D)
2 R̃D(1 + u2

u1
, 1 + v1

v2
).

Algebraic Combinatorics, Vol. 1 #5 (2018) 634



Universal Tutte characters via combinatorial coalgebras

When dealing with convolution formulae, the embedding w 7→ u
1
2 v

1
2 turns out to

be inconvenient. Indeed, the natural involution of K[U(∆Mat)] which maps (u, v, w)
to (−u,−v,−w) does not extend to K[u 1

2 , v
1
2 ] unless K contains a square root of −1

(compare with the discussion before Theorem 16 in [27]). Rather, our formalism pro-
duces a universal convolution formula that lives in the quotient ring K[ui, vi, wi , i =
0, 1, 2]/〈w2

i − uivi〉. At the cost of introducing a square root of −1, we can produce
a 4-variable convolution formula for the bivariate Bollobás–Riordan polynomial that
we couldn’t find in the literature.

Proposition 6.20. The bivariate Bollobás–Riordan polynomial satisfies the following
convolution formula in the algebra K[(−1) 1

2 , a
1
2 , b

1
2 , c

1
2 , d

1
2 ]:

R̃D(1− ab, 1− cd)

=
∑

A⊆E(D)

aσ(D)−σ(A) d|A|−σ(A) R̃D|A(1− a, 1− c) R̃D/A(1− b, 1− d).

Proof. This follows from Theorem 3.22 after specializing the variables to
(u0, v0, u1, v1, u2, v2) = (1,−cd,−a, d,−ab, 1)

and using (13). �

By further specializing to (a, b, c, d) = (1, 1 − x, 1 − y, 1) one gets a two-variable
convolution formula in the algebra K[(−1) 1

2 , (x− 1) 1
2 , (y − 1) 1

2 ]:

R̃D(x, y) =
∑

A⊆E(D)

R̃D|A(0, y) R̃D/A(x, 0).

This formula was proved in [27] for even delta-matroids, in which case it lives in the
algebra K[(x− 1) 1

2 , (y − 1) 1
2 ].

We conclude this section with the diagram obtained from diagram (6) after applying
the Grothendieck monoid functor. The dashed arrows are surjections and we indicate
the additional relations that are imposed on the generators of their domains.

uNvN
� � // uNvNwN

����

(w=u)

vvvv

(w=v)

gggg
� � // sNtNuNvNwN/〈w2 = st〉

(s=t=w)

tttt

(s=u,t=v)qqqquNvNwN/〈w2 = uv〉

All these morphisms account for identities relating the different Tutte characters
of the minors systems appearing in the diagram.

7. Relative matroids and relative Tutte polynomials
7.1. The minors system of relative matroids. Starting with a minors system S
one can construct a new minors system RelS, where objects have the same structure as
in S but where a subset of the ground set, the zero set, is excluded from the argument
of RelS and is therefore not available to the minor operations.

Definition 7.1. Let S be a set species. For a finite set E, a relative structure of type
S on E is an element of S[E t E0] for some finite set E0, called the zero set. We
always consider relative structures “up to isomorphism on the zero set”: we identify
X ∈ S[EtE0] and X ′ ∈ S[EtE′0] if there is a bijection σ : EtE0

∼→ EtE′0 extending
the identity of E such that S[σ](X) = X ′.
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This definition allows us to talk about the sets RelS[E] of relative structures of type
S on E, which form a set species RelS. It contains S as the subspecies consisting of
the structures with empty zero set. If S has the structure of a (multiplicative) minors
system, then this structures extends in the obvious way to RelS. We focus here on the
case S = Mat. The multiplicative minors system RelMat of relative matroids has been
studied under different names by many authors [9, 11, 15, 31, 32]. It is not connected
since RelMat[∅] is the set of isomorphism classes of all matroids; as a monoid, it is
the free monoid on the set of isomorphism classes of connected matroids.

Remark 7.2.We could avoid talking about isomorphism classes on the complement
of E by switching from the framework of set species to the more convenient framework
of set species in two sorts, i.e. functors from the square of the category of finite sets
and bijections to the category of sets. In other words, a set species in two sorts is the
datum, for every pair (E,E0) of finite sets, of a set T[E,E0] and, for every bijections
σ : E ∼→ F and σ0 : E0

∼→ F0, of a map T[σ, σ0] : T[E,E0] → T[F, F0], which satisfy
T[σ ◦ τ, σ0 ◦ τ0] = T[σ, σ0] ◦ T[τ, τ0]. From a set species S one defines a set species in
two sorts T by T[E,E0] .= S[E t E0]. If S has the structure of a minors system then
this structure is transferred to T, where restriction and contraction are only taken
with respect to subsets of the first factor E.

7.2. The universal Tutte character for relative matroids and the rel-
ative Tutte polynomial. It is natural to relate relative matroids and matroid
perspectives as in the next proposition.

Proposition 7.3. Let M be a relative matroid on E represented by a matroid on
E t E0. Then the following holds.

(1) The pair (M\E0,M/E0) is a matroid perspective.
(2) If we declare that a subset A ⊆ E is feasible if there exists a subset A0 ⊆ E0

such that AtA0 is a basis of M , then this defines a saturated delta-matroid.
(3) These assignments define morphisms of minors systems RelMat → MatPer

and RelMat→ Sat∆Mat that are compatible with the isomorphism MatPer '
Sat∆Mat from Proposition 6.5.

Proof. It is clear that (M\E0,M/E0) is a matroid perspective and that M 7→
(M\E0,M/E0) induces a morphism of minors systems RelMat → MatPer. Let D be
the saturated delta-matroid corresponding to (M\E0,M/E0) through the bijection
MatPer[E] ' Sat∆Mat[E]. Let A ⊆ E be a feasible subset in D, i.e. A is an indepen-
dent set of M\E0 and a spanning set of M/E0. Then A t E0 is a spanning set in M
and there exists A0 ⊆ E0 such that AtA0 is a basis of M . Conversely, if A ⊆ E and
A0 ⊆ E0 are such that AtA0 is a basis of M , then A is an independent set of M\E0
and a spanning set of M/E0. This completes the proof. �

Remark 7.4. By a result of Edmonds and Higgs [21], the morphism RelMat[E] →
MatPer[E] is surjective for any finite set E. There is a natural section MatPer[E] →
RelMat[E] given by Higgs, called the Higgs major operation by Crapo [12]. It defines
a morphism of set species MatPer → RelMat which is not a morphism of minors
systems. To see this, note that the Higgs major of the matroid perspective (c, l) on a
one-element set {e} is the relative matroid represented by the uniform matroid U1,2 on
a two-element set {e, e0}. Contracting e in this relative matroid leads to the relative
matroid on the empty set represented by a loop on {e0}, while the Higgs major of
(c, l)/{e} = (U0,0, U0,0) is the relative matroid on the empty set represented by the
empty matroid.

A setting in which the corresponding section is a morphism of minors systems is
provided by the elementary factorizations and majors of Kung’s Exercise 8.14 in [29].
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Here, in place of RelMat, one uses a minors system of relative matroids whose zero
set is totally ordered, considered up to order-preserving isomorphism on the zero set.

The Grothendieck monoid U(RelMat) is enormous, being generated by the infinite
set of all relative matroids on a ground set of cardinality 1. In order to work with a
tractable invariant, is natural to work with norms which factor through the morphism
RelMat→ MatPer ' Sat∆Mat, i.e. replace the universal norm with the norm

N : RelMat→ uNvNwN.

For a relative matroid M on E represented by a matroid on E t E0, its image by N
is the monomial

urk(M/E0)vcork(M\E0)wrk(M\E0)−rk(M/E0)

= urk(EtE0)−rk(E0)v|E|−rk(E)wrk(E)+rk(E0)−rk(EtE0)

Let us denote by R0
.= K[RelMat[∅]] the free commutative K-algebra on the set

of isomorphism classes of connected matroids and work with the universal twist map
τ : KRelMat→ R0.

By a slight abuse of notation, we still denote by TRelMat the Tutte character asso-
ciated to two copies of the norm N and the twist map τ :

TRelMat : KRelMat→ R0[u1, v1, w1, u2, v2, w2].

For a relative matroid M on E represented by a matroid on E t E0 it is computed
by the formula:

TRelMat(M)

=
∑
A⊆E

τ(M/A|E0) urk(AtE0)−rk(E0)
1 v

|A|−rk(A)
1 w

rk(A)+rk(E0)−rk(AtE0)
1

· urk(EtE0)−rk(AtE0)
2 v

|E|−|A|−rk(E)+rk(A)
2 w

rk(E)+rk(AtE0)−rk(A)−rk(EtE0)
2 .

Specialization of the variables to (u1, v1, w1, u2, v2, w2) = (1, y − 1, 1, x − 1, 1, z)
yields a reduced Tutte character in K[x, y, z] that deserves the name relative Tutte
polynomial:

Trel
M (x, y, z) =

∑
A⊆E

τ(M/A|E0)(x− 1)rkM (EtE0)−rkM (AtE0)(y − 1)|A|−rkM (A)

· zrkM (E)+rkM (AtE0)−rkM (A)−rkM (EtE0).

If we apply the morphism R0 → K which maps every matroid on E0 to 1, and
multiply by zrkM (EtE0)−rkM (E), then we find the “Tutte polynomial of M pointed by
E0” defined by Las Vergnas [31, 32].

The relative Tutte polynomial satisfies a convolution formula similar to that of the
Las Vergnas polynomial (Proposition 6.17) that we leave to the assiduous reader to
write down.

Remark 7.5. For a general minors system S and the corresponding relative minors
system RelS, it would be natural to only look at norms that factor through the image
of the morphism RelS→ S× S , X 7→ (X\E0, X/E0). In the case S = Mat, the image
of this morphism is indeed the minors system MatPer ⊆ Mat×Mat by Remark 7.4.
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8. Generalised permutohedra, a.k.a. submodular functions
Submodular functions are a natural weakening of matroid rank functions. Having
been introduced to combinatorics along multiple channels, they go by many names:
there are no essential differences (though there are minor ones) between submodular
functions, generalised permutohedra, and polymatroids.

8.1. The minors system of submodular functions.

Definition 8.1.A submodular function is a pair M = (E, rk), where E is a finite
set and rk : 2E → Z is a function such that, for all X,Y ⊆ E,
(Sub1) rk(∅) = 0,
(Sub2) rk(X ∪ Y ) + rk(X ∩ Y ) 6 rk(X) + rk(Y ).

Again we will write (E, rk) as (E(M), rkM ) when helpful for clarity. Taking the
codomain of rk to be some other totally ordered group than Z would require no
unexpected adjustments to the theory.

Submodular functions form a connected multiplicative minors system, that we
denote SF, with operations formally identical to those for matroids. We reprise the
definitions quickly. Given a submodular function M = (E, rk) and a set A ⊆ E, the
restriction M |A has ground set A and rank function the restriction of rk, whereas the
contraction M/A has ground set E(M) r A and rank function rk given by rk(B) .=
rk(B ∪ A) − rk(A) for B ⊆ E(M) r A. The direct sum of submodular functions
M = (E, rk) and M ′ = (E′, rk′) is defined to be M ⊕M ′ .= (E t E′, rk⊕ rk′), where
for A ⊆ E and A′ ⊆ E′,

(rk⊕ rk′)(A tA′) = rk(A) + rk′(A′).
A polymatroid is a nondecreasing submodular function, i.e. is such that X ⊆ Y

implies rk(X) 6 rk(Y ). We let PMat ⊂ SF denote the minors system of polymatroids.
Polymatroids were introduced by Edmonds [17], who construed them as polytopes,
to provide a context in which a greedy algorithm would correctly optimise any linear
functional with nonnegative coefficients.

Later, Postnikov introduced generalised permutohedra [38], a class of polytopes
which form a minors system GP isomorphic to SF, if we insist as we will here that
their vertices have integer coordinates (or more generally, coordinates in the ordered
group that we use as the codomain of rk). A generalised permutohedron is a polytope
of the form

P (M) .=
{
x ∈ RE :

∑
e∈A

xe 6 rk(A) for all A ⊆ E,
∑
e∈E

xe = rk(E)
}

for some submodular functionM = (E, rk). Generalised permutohedra subsume many
well-appreciated combinatorial families of polyhedra; we refer the reader to [38] for
details. The name of the class reflects the inclusion of the permutohedra among them.
For instance, if rkM (A) = −

(|A|
2
)
, then P (M) is the convex hull of the orbit of

the symmetric group ΣE consisting of points whose coordinates in some order are
0,−1, . . . ,−|E| + 1. Generalised permutohedra are the polytopes whose normal fan
coarsen the normal fan of this permutohedron. That is, informally, the permutohedron
is being generalised by allowing its facets to be translated around and even pinched
down to lower-dimensional faces, so long as no faces in new directions are created.

We state the minor operations on GP. If P ⊆ RE is a generalised permutohedron
and A ⊆ E, then the face of P on which the linear functional

∑
e∈A xe is maximised

can be written as the Cartesian product of a polytope in RA and a polytope in RErA.
These factors are respectively P |A and P/A. Direct sum of generalised permutohedra
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is Cartesian product. Aguiar and Ardila prove that GP is the largest connected mul-
tiplicative minors system whose elements are polytopes (with integer vertices) and
whose operations are as just prescribed [1, Theorem 6.1].

8.2. The universal Tutte character for submodular functions.

Proposition 8.2. There is an embedding of monoids

ι : U(SF) ↪→ xNyZ, [(E, rk)] 7→ x|E|yrk(E),

whose image is {1} ∪ {xayb : a > 0}.

Proof. That ι is well-defined is easily checked from the presentation of U(SF).
If M = (E, rk) is a submodular function such that ι([M ]) = yb for some b ∈ Z,

then |E| = 0 so rk(E) = 0 and thus b = 0. Since all factorizations of yb within the
codomain of ι are into other elements of form yb

′ , this shows that yb 6∈ im ι when
b 6= 0. Conversely, for each b ∈ Z, the submodular function sb = (E, rkb) where E
is a singleton and rkb(E) = b satisfies ι(sb) = xyb, and these elements generate the
remainder of the claimed image.

It remains to be shown that ι is injective, for which it’s enough to show that the
generators xyb of its image have unique preimages which generate X(SF) (indeed
ι−1(xyb) = {sb} is clear, and the generation is assured by Theorem 3.10) and that
the relations between these in the codomain hold also in the domain. These relations
are generated by the relations

xya · xyb = xyc · xyd

for integers a, b, c, d with a+b = c+d. We may assume without loss of generality that a
is the greatest of these integers, so that a > d. This makes the function rk : 2{e,f} → Z
given by

rk(∅) = 0, rk({e}) = a, rk({f}) = c, rk({e, f}) = c+ d = a+ b

submodular. Restricting and contracting this function on {e} and on {f} provides
the needed relation

[({e, f}, rk)] = [sa][sb] = [sc][sd]
in U(SF). �

Mutatis mutandis, the above proof shows that for polymatroids the Grothendieck
monoid U(PMat) injects in the same way into xNyN. The Grothendieck monoid functor
takes the inclusion PMat ⊂ SF to the obvious inclusion xayb 7→ xayb between these
monoids.

Moreover, every matroid is a polymatroid (and therefore a submodular function),
and there is a natural inclusion of minors systems j : Mat ↪→ PMat. The resulting
morphism U(j) : U(Mat) ↪→ U(PMat) is given on generators by u 7→ xy, v 7→ x.

The next proposition follows in the familiar way:

Proposition 8.3. The universal Tutte character for submodular functions is

T SF : KSF→ K[x1y
i
1, x2y

i
2 : i ∈ Z] ↪→ K[x1, y

±1
1 , x2, y

±1
2 ]

defined for a submodular function M by

T SF(M) =
∑

A⊆E(M)

x
|E(M |A)|
1 y

rk(M |A)
1 x

|E(M/A)|
2 y

rk(M/A)
2

= x
|E(M)|
2 y

rk(M)
2

∑
A⊆E(M)

(
x1

x2

)|A| (
y1

y2

)rkM (A)
.(14)
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The universal Tutte character for polymatroids is formally identical, except that
in the codomain we take i ∈ N.

As expected by Section 4.1, the invariant T SF(M) is “essentially” bivariate, with
a bivariate prefactor. Also, by applying the inverse of the above morphism U(j) and
recollecting like variables, we could make the exponents in formula (14) identical
to those in the universal Tutte character for matroids, the corank-nullity generating
function (3). However, this rearrangement is not especially motivated for submodular
functions and polymatroids, since |A| − rk(A) is not guaranteed to be nonnegative.
Indeed, we are not aware of any previous interest in T SF(M) in the literature, and
thus we have no authorities to follow in selecting a preferred reduced Tutte character.

Again, we leave to the reader the easy task of using Theorem 3.22 to write down
a convolution formula for T SF(M).

8.3. Comparison to Oxley–Whittle. An r-polymatroid is a polymatroidM such
that rkM ({e}) 6 r for all e ∈ E(M). These form a sub-minors system of PMat which
we’ll denote PMatr. For example, matroids are exactly 1-polymatroids. We continue
the notation si for single-element polymatroids from the proof of Proposition 8.2.

In [37], Oxley and Whittle answer the question of finding a universal deletion-
contraction invariant for 2-polymatroids. They adopt a more general framing of this
question than ours, allowing as a deletion-contraction invariant any function Φ :
PMatr → R to a commutative K-algebra R satisfying

(15) Φ(M) = C1(M\ec,M/ec) Φ(M/e) + C2(M\ec,M/ec) Φ(M\e)

where C1 and C2 are two unrestricted families of coefficients indexed by pairs of
single-element r-polymatroids. More exactly, since M/e = M\e when M\ec = M/ec,
[37] only writes one coefficient in this case, C(si, si)

.= C1(si, si)+C2(si, si); and since
rk(M\ec) > rk(M/ec) always, it omits from consideration the coefficients with indices
contrary to this. This leaves (r+1)2 parameters in all. Recalling Proposition 3.20, our
own notion of deletion-contraction invariant demands in (15) that C1 be independent
of M/ec and C2 of M\ec, and that both be evaluations of norms in the remaining
index, N1 and N2 respectively. Note that equation (15) is a more general setup than
the one considered in Proposition 4.4, because although that proposition drops the
requirement of normhood, it still assumes that C1 is independent of M/ec and C2 of
M\ec.

For matroids, the extra generality of formulation (15) is benign. The condition that
N : KMat → R be a norm imposes no relation on its values N(s0) and N(s1) at a
loop and a coloop, so the equations

N1(s1) +N2(s1) = C(s1, s1), N1(s0) +N2(s0) = C(s0, s0),
N1(s1) = C1(s1, s0), N2(s0) = C2(s1, s0)

can be solved for Ni(sj) whatever their right hand sides, and a deletion-contraction
invariant in the sense of Oxley and Whittle is also a deletion-contraction invariant in
our sense.

For 2-polymatroids, by contrast, (15) is strictly more general than our formulation.
The nine equations in Oxley and Whittle’s parameters to be solved for our norm
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evaluations Ni(sj) are

N1(s2) +N2(s2) = C(s2, s2) .= x,

N1(s1) +N2(s1) = C(s1, s1) .= z,

N1(s0) +N2(s0) = C(s0, s0) .= y,

N1(s2) = C1(s2, s1) .= d, N2(s1) = C2(s2, s1) .= c,

N1(s1) = C1(s1, s0) .= b, N2(s0) = C2(s1, s0) .= a,

N1(s2) = C1(s2, s0) .= n, N2(s0) = C2(s2, s0) .= m,

where for ease of comparison we have inserted the single-letter notation of [37] for the
parameters. (The x and y here are unrelated to our x and y in Proposition 8.2.)

The above equations are consistent only if a = m, d = n, and z = b+ c. Moreover,
if N : KPMat2 → R is a norm, its evaluations at single-element polymatroids satisfy
the relation N(s0)N(s2) = N(s1)2, both of these evaluating to u2v2 under the map ι
of Proposition 8.2. This imposes for consistency the further conditions m(x−n) = c2

and (y −m)n = b2.
The main theorem of [37], Corollary 3.15, classifies the 2-polymatroid invariants

satisfying (15) with codomain K into five families, each with a universal invariant,
and each imposing some equations on the nine parameters. However, directly after
stating the theorem, the authors dismiss four of the families as uninteresting. The one
which retains their approbation is exactly the invariant TPMat2 , and the equations it
imposes are just those derived above: a = m, d = n, m(x − n) = c2, (y −m)n = b2,
z = b+ c. (They also list some inequations for this family, but these are an artificial
expedient to make the five families disjoint.)

Remark 8.4.One can check that of the five families of [37], the only ones satisfying
the assumptions of Proposition 4.4 are TPMat2 and the scalar multiples of the counit
of PMat2.

Remark 8.5. In [24, Section 1] Kayibi observed a relationship between the Las
Vergnas polynomial (Section 6.4) and Oxley and Whittle’s invariant, our TPMat2 .
In our language, this relationship arises functorially from the injection of minors
systems MatPer → PMat2 which sends the matroid perspective (M,M ′) to the
2-polymatroid N on the same ground set such that rkN = rkM + rkM ′ . The induced
map of Grothendieck monoids is (u, v, w) 7→ (xy2, x, xy).

9. Colored matroids
9.1. The minors system of colored matroids. Let Λ be a fixed set. For S a set
species, one can form the set species SΛ of Λ-colored structures of type S, defined by

SΛ[E] = S[E]× ΛE .

It is naturally a (multiplicative) minors system if S is. We will only treat the case
S = Mat in detail. The elements of MatΛ[E] are then pairs (M,λ) with M a matroid
on the ground set E and λ : E → Λ a coloring function. The case where Λ = {+,−}
is relevant to knot theory because a {+,−}-colored planar graph is essentially the
same as a planar link diagram.

9.2. The universal Tutte character for colored matroids and the col-
ored Tutte polynomial. The computation of the Grothendieck monoid of MatΛ
is straightforward.
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Proposition 9.1. For every color λ ∈ Λ, let us denote by uλ (resp. vλ) the class
in U(MatΛ) of a coloop (resp. a loop) with the color λ. We have an isomorphism of
monoids

U(MatΛ) ' 〈uλ, vλ , λ ∈ Λ〉 / 〈uλvµ = uµvλ , λ, µ ∈ Λ〉.

Proof. By Theorem 3.10, the elements uλ and vλ generate U(MatΛ) and the relations
that they satisfy come from colored matroid on two-element sets. The uniform matroid
U1,2 whose elements are colored with two colors λ and µ gives rise to the relation
uλvµ = uµvλ, and one readily checks that these are the only non-trivial relations. �

It is natural to embed U(MatΛ) in the monoid

U ′(MatΛ) = 〈u, v ; aλ , λ ∈ Λ〉 = U(Mat)× 〈aλ , λ ∈ Λ〉

by uλ 7→ uaλ and vλ 7→ vaλ. With this presentation, the class of a colored matroid
(M,λ) in U(MatΛ) is the monomial

urk(M)vcork(M)
∏

e∈E(M)

aλ(e).

The universal Tutte character

TMatΛ : KMatΛ → K[uλ,i, vλ,i , λ ∈ Λ , i = 1, 2] / 〈uλ,ivµ,i = uµ,ivλ,i〉
↪→ K[u1, v1, u2, v2 ; aλ,1, aλ,2 , λ ∈ Λ]

is thus given by

TMatΛ(M,λ)

=
∑

A⊆E(M)

(∏
e∈A

aλ(e),1

)(∏
e/∈A

aλ(e),2

)
u

rk(M |A)
1 v

cork(M |A)
1 u

rk(M/A)
2 v

cork(M/A)
2 .

By specializing to (u1, v1, u2, v2) = (1, y − 1, x− 1, 1) and (aλ,1, aλ,2) = (aλ, 1), we
obtain an invariant known as the colored Tutte polynomial:

T(M,λ)(x, y) =
∑

A⊆E(M)

(∏
e∈A

aλ(e)

)
(x− 1)rk(M)−rk(A)(y − 1)|A|−rk(A),

We note that this is formally the same thing as the multivariate Tutte polynomial (4),
although in a slightly different setting.

9.3. Comparison with Bollobás–Riordan. In [4] Bollobás and Riordan consider
morphisms Φ : MatΛ → R, with R a ring, which take value 1 on the empty matroid
and satisfy a deletion-contraction recurrence formula of the form

(16) Φ(M) = N1(M\ec) Φ(M/e) +N2(M/ec) Φ(M\e),

where N1, N2 : MatΛ[{∗}] → R are any two functions. For λ ∈ Λ let us denote by cλ
(resp. lλ) a coloop (resp. a loop) with color λ. For i = 1, 2 we set uλ,i

.= Ni(cλ) and
vλ,i

.= Ni(lλ). Bollobás and Riordan use a different set of variables

(xλ, yλ, Xλ, Yλ) = (uλ,1, vλ,2, uλ,1 + uλ,2, vλ,1 + vλ,2).

The main result of [4], Theorem 2, gives necessary and sufficient conditions on these
variables so that the deletion-contraction recurrence formula gives a well-defined mor-
phism Φ. Here we give a different proof of this result that does not require a basis
activities expansion and only uses our result on general deletion-contraction recur-
rences (Proposition 4.4).
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Theorem 9.2. The deletion-contraction recurrence (16) gives a well-defined morphism
Φ : MatΛ → R if and only if the following equalities hold in R for all λ, µ, ν ∈ Λ:

uλ,1vµ,1 − uµ,1vλ,1 = uλ,2vµ,2 − uµ,2vλ,2.(17)
(uλ,1vµ,1 − uµ,1vλ,1)(vν,1 + vν,2) = 0.(18)
(uλ,2vµ,2 − uµ,2vλ,2)(uν,1 + uν,2) = 0.(19)

Proof. We use the general criterion given in Proposition 4.4. The morphism Φ is
obviously well-defined in cardinality 1 and satisfies Φ(cλ) = uλ,1 + uλ,2 and Φ(lλ) =
vλ,1 + vλ,2. In cardinality 2 the only colored matroid that gives a non-trivial relation
is U1,2 with colors λ and µ, and relation (2) is exactly (17). In cardinality 3, applying
relation (2) to the matroid U1,3 with colors λ, µ, ν gives rise to relation (18), and
applying it to the matroid U2,3 with colors λ, µ, ν gives rise to relation (19).

We now need to prove that these three relations ensure that Φ is well-defined in any
cardinality. Let M be any colored matroid on a ground set E of cardinality > 2, let
us fix e, f ∈ E and let λ and µ denote the colors of e and f respectively. Relation (2)
is trivial if Me,f and Me,f have an underlying matroid different from U1,2. We then
have three cases to consider.

(1) If Me,f and Me,f have U1,2 as their underlying matroid, then Me,f = Me,f

and M is necessarily a direct sum M = M ′ ⊕ M ′′ with E(M ′) = {e, f}
and E(M ′′) = {e, f}c. This implies that M/{e, f} = M\{e, f} = M ′′ and
relation (2) reads

(uλ,1vµ,1 − uµ,1vλ,1)Φ(M ′′) = (uλ,2vµ,2 − uµ,2vλ,2)Φ(M ′′),
which is a consequence of (17).

(2) IfMe,f has U1,2 as its underlying matroid andMe,f does not, then relation (2)
reads

(uλ,1vµ,1 − uµ,1vλ,1)Φ(M/{e, f}) = 0.
NowM/{e, f} cannot be the empty matroid, so by construction, Φ(M/{e, f})
is in the ideal of R generated by the elements uν,1 + uν,2 and vν,1 + vν,2
for ν ∈ Λ. Then the above relation is a consequence of relations (17), (18)
and (19).

(3) If Me,f has U1,2 as its underlying matroid and Me,f does not then a dual
argument applies.

In all three cases, the relation given by Proposition 4.4 is a consequence of rela-
tions (17), (18) and (19), and we are done. �

In the variables used by Bollobás and Riordan, the relations from the theorem read
(compare with [4, Theorem 2]):

xλYµ − xµYλ = Xλyµ −Xµyλ,

(xλYµ − xµYλ − xλyµ + xµyλ)Yν = 0,
(Xλyµ −Xµyλ − xλyµ + xµyλ)Xν = 0.

The condition that uλ,1 +uλ,2 = Xλ and vλ,1 +vλ,2 = Yλ are not zero divisors in R
for all λ is natural, since they are the values taken by Φ on cλ and lλ, respectively. If
R is a domain then this means that these two quantities are non-zero. If this condition
is satisfied then equations (17), (18) and (19) are equivalent to
(20) uλ,1vµ,1 − uµ,1vλ,1 = uλ,2vµ,2 − uµ,2vλ,2 = 0,
or in the variables used by Bollobás and Riordan (compare with [4, Corollary 3]):

xλYµ − xµYλ = Xλyµ −Xµyλ = xλyµ − xµyλ.

Algebraic Combinatorics, Vol. 1 #5 (2018) 643



C. Dupont, A. Fink & L. Moci

We note that equation (20) amounts to saying that N1 and N2 are norms. This is
another argument for the naturality of our use of norms in our deletion-contraction
recurrence formula.

10. Arithmetic matroids
Arithmetic matroids [8, 13] are one of several recently introduced kinds of decorated
matroid. Matroids encode information about the topology of hyperplane arrange-
ments: notably the graded dimension of the cohomology of a complex hyperplane
arrangement complement is an evaluation of the Tutte polynomial. Arithmetic ma-
troids were introduced in pursuit of a generalization of this theory to arrangements
of codimension 1 subtori in a torus, with an arithmetic Tutte polynomial answering
to the Tutte polynomial. Thus where matroids only record linear dependence among
vectors (hyperplane normals), arithmetic matroids furthermore record multiplicities
encoding the arithmetic relations of elements in a Z-module (torus characters). Be-
yond toric arrangements, the arithmetic Tutte polynomial finds application to vector
partition functions, lattice points in zonotopes, graphs and CW-complexes.

As special cases of our universal convolution formula, we will recover a recent
convolution formula of Backman and Lenz [3] for arithmetic matroids, from which
the Kook–Reiner–Stanton–Etienne–Las Vergnas formula for matroids is obtained by
a forgetful morphism of minors systems. Furthermore, from a slight modification
of this bialgebra we obtain a more general formula, which expresses the arithmetic
Tutte polynomial of the product of two arithmetic matroids (as defined in [14]) as the
convolution of the arithmetic Tutte polynomials of its factors (see Theorem 10.9).

10.1. The minors system of arithmetic matroids. Our presentation of arith-
metic matroids follows mostly [8], though our notation deviates in that we name
arithmetic matroids as pairs (M,m) rather than giving them simple names like M .

Definition 10.1.A molecule in a matroid M = (E, rk) is a triple α := (R,F, T ) of
disjoint subsets of E such that, for every A ⊆ E with R ⊆ A ⊆ R ∪ F ∪ T ,

rk(A) = rk(R) + |A ∩ F |.

For those familiar with matroid theory, a molecule of M is the data indexing a
minor (M |R ∪ F ∪ T )/R of M consisting only of coloops and loops, together with its
partition F t T into the coloops and loops respectively. Notice that if α = (R,F, T )
is a molecule, then so is the triple (R′, F ′, T ′) for every F ′ ⊆ F , every T ′ ⊆ T and
every R′ with R ⊆ R′ ⊆ (R ∪ F ∪ T ) r (F ′ ∪ T ′).

Definition 10.2.An arithmetic matroid is a pair (M,m) where M = (E, rk) is a
matroid, and m : 2E → Z>0 is a function (the multiplicity function) satisfying the
following axioms.
(A1) For all A ⊆ E and all e ∈ E, if rk(A∪e) > rk(A), then m(A) divides m(A∪e);

if rk(A ∪ e) = rk(A), then m(A ∪ e) divides m(A).
(A2) For every molecule α = (R,F, T ) of (E, rk)

m(R)m(R ∪ F ∪ T ) = m(R ∪ F )m(R ∪ T ).
(P) For every molecule α = (R,F, T ) of (E, rk),

(−1)T
∑

R⊆A⊆R∪F∪T

(−1)|(R∪F∪T )rA|m(A) > 0

The restriction of (M,m) to A ⊆ E, denoted (M,m)|A, has underlying matroid
the restriction M |A and multiplicity function the restriction of m. The contraction of
(M,m) by a subset A ⊆ E, denoted (M,m)/A, has underlying matroid the contraction
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M/A and multiplicity function m given by m(B) .= m(B∪A) for B ⊆ E(M)rA. The
direct sum of two arithmetic matroids (M,m) and (M ′,m′) is the arithmetic matroid
(M ⊕M ′,m⊕m′), where M ⊕M ′ is the direct sum of matroids and the multiplicity
function is defined by

(m⊕m′)(A tA′) = m(A)m′(A′).

Remark 10.3.Matroid axiom (R1) implies that rk(∅) = 0 in any matroid. This can
be viewed as a “normalization” condition which must be taken into account in the
definition of operations like contractions: it is the reason for the − rk(A) summand in
the definition of matroid contraction. A naïve inventor of matroid theory might have
chosen to omit this normalization, producing a disconnected (multiplicative) minors
system. Had this been done, the familiar matroid Hopf algebra would be recovered
from the resulting bialgebra by Remark 2.15.

It is notable that the definition of arithmetic matroids lacks a similar normalization
for multiplicities. Had one been included, say by dividing multiplicities through by
a scalar to force m(∅) = 1, a connected minors system and Hopf algebra would be
produced, rather than the disconnected minors system and bialgebra below. But, as
we will see, the gain of connectedness would incur the great cost of no longer being
able to recover the arithmetic Tutte polynomial from the universal one.

Equipped with these notions of restriction, contraction and direct sum, arithmetic
matroids form a multiplicative minors system that we denote AMat. An object in
AMat[∅] is the datum of an integer m = m(∅) ∈ Z>0. Thus, the minors system of
arithmetic matroids is not connected and we have an isomorphism of monoids

AMat[∅] ' (Z>0,×) '
∏

p prime
aNp .

We denote by [m] =
∏
p a

vp(m)
p the class of an integer m ∈ Z>0 in the monoid ring

K[Z>0] ' K[{ap}].
There is a natural inclusion Mat ↪→ AMat whose image consists of the arithmetic

matroids with constant multiplicity 1. It has a section AMat � Mat which forgets
about the multiplicity function.

10.2. The universal Tutte character for arithmetic matroids. The
Grothendieck monoid of AMat is easy to compute.

Proposition 10.4. There is an embedding of monoids

U(AMat) ↪→ Q>0 × uNvN , [M,m] 7→ m(E(M))
m(∅) urk(M)vcork(M),

whose image is
{1} ∪ {aui : a ∈ Z>1, i > 0} ∪ { 1

av
j : a ∈ Z>1, j > 0} ∪ {quivj : q ∈ Q>0, i, j > 0}.

Proof. The morphism, that we denote by α, is easily seen to be well-defined, and we
want to prove that it is injective. We note that U(AMat) is generated by the classes of
the arithmetic matroids ca, the coloop with empty multiplicity 1 and total multiplicity
a, and la, the loop with empty multiplicity a and total multiplicity 1, for a ∈ Z>1.
We introduce the notation

γa = α([ca]) = au, λa = α([la]) = 1
av.

So the image of α is generated by such classes. If quivj is an element of imα such that
q 6∈ Z, then any expression for it as a product of generators must contain a factor λa,
implying j > 0; dually, if q−1 6∈ Z, we conclude i > 0. Conversely, for a, b ∈ Z>1 and
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i, j > 0 we see that aui = γa(γ1)i−1 and 1/b · vj = λb(λ1)j−1 are in imα, as is their
product, which proves the proposition’s claim about the image.

One readily verifies that the relations satisfied by the elements γa and λa in the
monoid Q>0 × uNvN are generated by the following relations:

(1) γaλa = γ1λ1;
(2) λaλb = λabλ1;
(3) γaγb = γabγ1.

What we have to do is to prove that the corresponding relations are satisfied by [ca]
and [la] in U(AMat).

(1) Let (M,m) be the arithmetic matroid induced by the list of vectors e = 1, f =
a in the abelian group Z. ThenM |e = c1,M/e = l1,M |f = ca andM/f = la.
We thus get [ca][la] = [(M,m)] = [c1][l1].

(2) Let (M,m) be the arithmetic matroid induced by the list of vectors e = 1, f =
a in the abelian group Z/abZ. Then M |e = lab, M/e = l1, M |f = (∅, a)⊕ lb
and M/f = la. We thus get [la][lb] = [(M,m)] = [lab][l1].

(3) This is dual to the previous case. �

The corresponding universal Tutte character

TAMat : KAMat→ K[U(AMat)× AMat[∅]× U(AMat)]
↪→ K[Q>0 × Z>0 ×Q>0][u1, v1, u2, v2]

is thus given by:

TAMat(M,m)

=
∑

A⊆E(M)

[
m(A)
m(∅) ,m(A) , m(E(M))

m(A)

]
u

rk(M |A)
1 v

cork(M |A)
1 u

rk(M/A)
2 v

cork(M/A)
2 .

The coefficient inside the square brackets contains the information of the multiplicity
m(A) along with the empty multiplicity m(∅) and the total multiplicity m(E(M)). It
is natural to forget about these two last pieces of information which are independent
of A and only retain the information of m(A) ∈ Z>0. Regarding the variables u1, v1,
u2, v2, the story is the same as in the case of matroids and to be consistent with that
case we work with the same conventional specialization. In other words, we work after
the specialization:

K[Q>0 × Z>0 ×Q>0][u1, v1, u2, v2] −→ K[Z>0][x, y]
induced by the projection Q>0 × Z>0 × Q>0 → Z>0 and by (u1, v1, u2, v2) =
(1, y − 1, x− 1, 1). To sum things up, we are looking at the Tutte character with val-
ues in the algebra K[Z>0][x, y] corresponding to the norms N1(M,m) = (y−1)cork(M)

and N2(M,m) = (x − 1)rk(M), and to the twist map τ(∅,m) = [m]. The following
definition gives the explicit formula for it.

Definition 10.5. The universal arithmetic Tutte polynomial of an arithmetic matroid
(M,m) is the polynomial in K[Z>0][x, y] defined as

M uni
(M,m)(x, y) =

∑
A⊆E(M)

[m(A)] (x− 1)rk(M)−rk(A)(y − 1)|A|−rk(A).

Strictly speaking, this is not a reduced Tutte character in the sense of Section 4.1
since we used the twist map to forget more information on the norms side. However,
the universal Tutte character TAMat(M,m) can be recovered from the universal arith-
metic Tutte polynomial M uni

(M,m)(x, y) by a change of variables and multiplication by
a pre-factor. We leave the task of writing a precise formula to the interested reader.
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The universal arithmetic Tutte polynomial can be computed recursively using the
same deletion-contraction recurrence formula as the Tutte polynomial, with the base
case M uni

(∅,m)(x, y) = [m].

10.3. Specializations. Fix K = Z for simplicity. We describe notable specializations
of the universal arithmetic Tutte polynomial.

10.3.1. The Tutte polynomial. The morphism of rings Z[Z>0] → Z induced by the
morphism of monoids Z>0 → 1 ↪→ Z sends ap to 1 for every prime p. By applying it to
the coefficients of M uni

(M,m)(x, y) one recovers the classical Tutte polynomial TM (x, y)
of the underlying matroid.

10.3.2. The arithmetic Tutte polynomial. The morphism of rings Z[Z>0]→ Z induced
by the morphism of monoids Z>0 ↪→ Z sends ap to p for every prime p. By applying
it to the coefficients of M uni

(M,m)(x, y) one recovers the arithmetic Tutte polynomial in
Z[x, y] defined in [34] and [13]:

M(M,m)(x, y) =
∑

A⊆E(M)

m(A) (x− 1)rk(M)−rk(A)(y − 1)|A|−rk(A).

10.3.3. The p-local arithmetic Tutte polynomial and the Tutte quasi-polynomial. Let
us write m =

∏
p primemp for the decomposition of an integer m ∈ Z>0 into its p-

local parts. For a fixed prime p, the assignment [m] 7→ mp induces a morphism of
rings Z[Z>0] → Z, which sends ap to p and aq to 1 for q 6= p. By applying it to the
coefficients of M uni

(M,m)(x, y) one gets a p-local arithmetic Tutte polynomial

M
(p)
(M,m)(x, y) =

∑
A⊆E(M)

mp(A) (x− 1)rk(M)−rk(A)(y − 1)|A|−rk(A).

A Tutte quasi-polynomial Q(x, y) associated to a list α of elements in a finitely
generated Z-module was introduced in [8] (our notation is that of [19]) with connec-
tions to toric arrangements, Dahmen–Micchelli spaces, and zonotopes, among other
topics. It is quasi-polynomial in the quantity q = (x − 1)(y − 1), that is, there exist
an integer mα and for each i ∈ Z/mαZ a constituent polynomial Qi(x, y) such that
for any x, y ∈ Z we have

Q(x, y) = Q[q](x, y).
If (M,m) is the arithmetic matroid of the same list α, then mα may be chosen to be
lcm{m(A) : A ⊆ E(M)}, and [8, Theorem 6.4] asserts that Q[0](x, y) = M(M,m)(x, y),
while Qi(x, y) = TM (x, y) if i is a unit in Z/mαZ.

A generalization of these facts follows from [19, Section 7.1]. Let mα = (mα)p · r.
Then if i ∈ Z/mαZ maps under the Chinese remainder isomorphism

Z/mαZ ' Z/(mα)pZ× Z/rZ

to (0, i′) where i′ is a unit, we have that Qi(x, y) = M
(p)
(M,m)(x, y). More generally, one

can use the specialization of M uni
(M,m)(x, y) arising from the product of several of the

morphisms [m] 7→ mp to compute any of the constituents Qi(x, y) where i is either
zero or invertible in each of the indecomposible direct factors of Z/mαZ.

The constituents Qi(x, y) where i is not of the above form are not invariants of
an arithmetic matroid at all. To capture them requires a richer combinatorial object,
such as the matroids over Z of [19]. The requisite data also appear in the G-Tutte
polynomial of [33], and Theorem 5.5 of that work explains how to recover from the
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G-Tutte polynomial every constituent of the characteristic quasi-polynomial, which is
up to a sign the evaluation Q(1− t, 0) of the Tutte quasi-polynomial.

10.4. The convolution formula.

10.4.1. Product of arithmetic matroids. Consider a fixed matroid M , two possibly
different functions m1,m2 : 2E(M) → Z and their pointwise product m1m2 defined
for A ⊆ E(M) by (m1m2)(A) .= m1(A)m2(A). The following theorem was proved
in [14].

Theorem 10.6. If both (M,m1) and (M,m2) are arithmetic matroids, then
(M,m1m2) is also an arithmetic matroid.

We remark that there the key point was to prove that (M,m1m2) satisfies ax-
iom (P), since (A1) and (A2) hold trivially.

Definition 10.7.We call (M,m1m2) the product of (M,m1) and (M,m2).

This operation makes the set of arithmetic matroids over a fixed underlying matroid
into a commutative monoid, with unit given by the trivial multiplicity m(A) = 1 for
all A ⊆ E.

10.4.2. Bi-arithmetic matroids and the convolution formula.

Definition 10.8.A bi-arithmetic matroid is a triple (M,m1,m2) where M is a ma-
troid and m1,m2 : 2E(M) → Z>0 are two functions such that (M,m1) and (M,m2)
are arithmetic matroids.

Bi-arithmetic matroids form a multiplicative minors system denoted by A2Mat, for
which the notions of restriction, contraction and direct sum are the obvious ones. In
categorical terms this can be interpreted as the fiber product

A2Mat = AMat×Mat AMat.
The product of arithmetic matroids should then be viewed as a morphism

AMat×Mat AMat→ AMat , ((M,m1), (M,m2)) 7→ (M,m1m2),
which gives AMat the structure of a monoid in the category of minors systems over
Mat.

We now prove a convolution formula for the universal arithmetic Tutte polynomial.

Theorem 10.9. The universal arithmetic Tutte polynomial satisfies the following ana-
logue of Kung’s formula (5) in the algebra K[Z>0][a, b, c, d]:
M uni

(M,m1m2)(1− ab, 1− cd)

=
∑

A⊆E(M)

ark(M)−rk(A)d|A|−rk(A) M uni
(M,m1)|A(1− a, 1− c)M uni

(M,m2)/A(1− b, 1− d).

Proof. The proof is the same as in the case of matroids (Proposition 5.11) by taking
care of the twist maps. For the sake of completeness, we show how it follows from
the general convolution formula given in Theorem 3.22. Let’s prove the latter formula
first. We consider the norms N0, N1, N2 : KA2Mat → K[Z>0][a, b, c, d] which map a
bi-arithmetic matroid (M,m1,m2) to

(−cd)cork(M), (−a)rk(M)dcork(M), (−ab)rk(M),

respectively. We consider the twist maps τ1, τ2 : KA2Mat → K[Z>0][a, b, c, d] defined
by

τ1(∅,m1,m2) = [m1] , τ2(∅,m1,m2) = [m2].
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We have the Tutte characters

TN0,τ1τ2,N2(M,m1,m2) = M uni
(M,m1m2)(1− ab, 1− cd);

TN0,τ1,N1(M,m1,m2) = dcork(M)M uni
(M,m1)(1− a, 1− c);

TN1,τ2,N2
(M,m1,m2) = ark(M)M uni

(M,m2)(1− b, 1− d).

The claim is thus a consequence of Theorem 3.22. �

As a specialization we obtain the following convolution formula in the spirit of the
formula of Kook–Reiner–Stanton and Etienne–Las Vergnas.

Corollary 10.10. The universal arithmetic Tutte polynomial satisfies the following
convolution formula in the algebra K[Z>0][x, y]:

(21) M uni
(M,m1m2)(x, y) =

∑
A⊆E(M)

M uni
(M,m1)|A(0, y)M uni

(M,m2)/A(x, 0).

Proof. This follows from Theorem 10.9 by specializing (a, b, c, d) to (1, 1 − y,
1− x, 1). �

All the specializations and variants of the convolution formula that we discussed
in the case of matroids are also available here. We only mention one that was proved
by Backman and Lenz [3]. For an arithmetic matroid (M,m) we have the following
convolution formula for the arithmetic Tutte polynomial in the ring Z[x, y]:

M(M,m)(x, y) =
∑

A⊆E(M)

M(M,m)|A(0, y)TM/A(x, 0)

=
∑

A⊆E(M)

TM |A(0, y)M(M,m)/A(x, 0).

This follows from formula (21) in the case (m1,m2) = (m, 1) or (1,m) by the projec-
tion Z>0 → 1.
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