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Tropical symplectic flag varieties: a Lie
theoretic approach

George Balla & Xin Fang

Abstract We study the tropicalization of symplectic flag varieties with respect to the Plücker
embedding. We identify a particular maximal prime cone in this tropicalization by explicitly
giving its facets. For every interior point of this maximal cone, the corresponding Gröbner
degeneration is the toric variety associated to the Feigin-Fourier-Littelmann-Vinberg (FFLV)
polytope. Our main tool is the notion of birational sequences introduced by Fourier, Littelmann
and the second author, which bridges between weighted PBW filtrations of representations of
symplectic Lie algebras and degree functions on defining ideals of symplectic flag varieties.

1. Introduction
1.1. Motivation. In the past two decades tropical geometry has received great at-
tention in enumerative geometry, mirror symmetry, Diophantine geometry, optimiza-
tion, to name but a few. The tropical variety associated to an embedded projective
variety is a pure sub-fan of the Gröbner fan of the defining ideal of the projective va-
riety. The study of tropical varieties associated to geometric objects arising from Lie
theory, such as Grassmannians and flag varieties, is initiated in the work of Speyer
and Sturmfels [27]. In this work, the tropical variety associated to the Grassman-
nian Gr(2, n) of 2-planes in an n-space, with the Plücker embedding, gets a complete
description by explicitly writing down defining inequalities of the maximal cones in
the tropical variety using labelled trivalent trees. Such a complete description is not
known for other families of Grassmannians. Mohammadi and Shaw [26] describe max-
imal cones of the Grassmannian Gr(3, n) corresponding to matching fields.

The study of tropical varieties associated to flag varieties of type A, called tropical
flag varieties, started from the work of Bossinger, Lamboglia, Mincheva and Moham-
madi [6]. In this work, tropical flag varieties of small rank were computed, and the
authors showed existence of certain maximal cones related to certain string polytopes
and FFLV polytopes using the method of toric degenerations. An explicit description
of these cones by their facets or rays was not known in general.

Motivated by the work of Feigin, Fourier and Littelmann [18, 19] on PBW filtrations
for simple Lie algebras and the work of Fourier, Reineke and the second author [13] on
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quantum PBW filtrations, weighted PBW filtrations for Lie algebras of type An are
studied in [11]: the cone consisting of such filtrations is shown to be sent bijectively
to a maximal prime cone in the tropical flag variety of type An. As a consequence,
explicit facet description of this maximal prime cone was obtained. This result stands
at the carrefour of certain directions in representation theory as follows.

(a) The Gröbner degenerations of the type An flag variety arising:
- from points in the relative interior of this maximal prime cone yield the

toric variety associated to the FFLV polytope [11];
- from certain faces of this maximal prime cone are linear degenerate flag

varieties introduced in [8, 9].
(b) The cone consisting of weighted PBW filtrations of type An is closely related

to the Auslander-Reiten theory for quiver representations:
- the facets of this cone correspond to Auslander-Reiten sequences in the

category of representations of an equioriented type An quiver [14];
- the faces of this cone parametrize exact structures on the additive cat-

egory consisting of finite dimensional representations of an equioriented
type An quiver [15].

We would like to note that Makhlin has provided in [25], a full facet description of
another maximal cone of the type An tropical flag variety using similar methods. This
maximal cone also parametrizes Gröbner degenerations of the type An flag varieties,
and in particular, every point in its relative interior corresponds to the toric variety
associated with the Gelfand-Tsetlin polytope.

1.2. Symplectic case. In this paper, we generalize results in [11] to the symplec-
tic setting: we study weighted PBW degenerations of symplectic Lie algebras, their
representations and corresponding geometry. This allows us to provide an explicit
description of a maximal prime cone in the tropical symplectic flag variety. Since
the notation has already been heavy, we will work with full symplectic flag varieties
to avoid introducing further indices. Similar results hold for partial symplectic flag
varieties, mutatis mutandis.

We define and treat the full symplectic flag variety SpF2n necessarily as the clo-
sure of a highest weight orbit for the action of the symplectic Lie group on its ir-
reducible representations (see Definition 2.1). Consider the 2n-dimensional complex
vector space C2n with a fixed symplectic form ω. Then SpF2n coincides with the vari-
ety parametrizing length-n flags of isotropic subspaces of C2n. The tropical symplectic
flag variety Trop(SpF2n) is, up to a lineality space, a sub-fan of the Gröbner fan of
the defining ideal of SpF2n with respect to the Plücker embedding; it is a pure poly-
hedral fan of dimension n2 in RP , where P is the index set of all Plücker coordinates
on SpF2n (see Definition 3.1). A cone of Trop(SpF2n) is said to be a prime cone if
the corresponding initial ideal is prime. The following is one of our main results.
Theorem 1.1 (Theorem 3.2). There is a maximal prime cone C2n in the tropical
symplectic flag variety Trop(SpF2n), with explicit facet description given in Lemma
6.1, such that every point in its relative interior provides a Gröbner degeneration of
SpF2n to the toric variety associated with the symplectic FFLV polytope (see Section
4.1 for the definition). In particular, this toric variety is normal.

The proof of Theorem 1.1 above uses the bridge between weighted PBW degener-
ation of the symplectic Lie algebra and degenerations of the symplectic flag variety
coming from certain degree functions on its defining ideal with respect to the Plücker
embedding.

Let g = sp2n(C) be the symplectic Lie algebra over C, g = n+ ⊕h⊕n− a triangular
decomposition of g, and Φ+ the corresponding set of positive roots. We introduce a
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full-dimensional simplicial cone K2n ⊆ RΦ+ . An element d ∈ K2n induces a Lie algebra
filtration on n− by assigning for each β ∈ Φ+, degree d(β) to a chosen basis element
fβ of weight −β. We denote the associated graded Lie algebra by nd

−. Let λ denote a
dominant integral weight for g. For a finite dimensional irreducible representation Vλ

of g with a highest weight vector νλ, the filtration on the enveloping algebra U(n−)
obtained from that on n− induces a filtration on Vλ (see Section 4.3). We denote by
Vd

λ , the associated graded space; it is a cyclic U(nd
−)-module with cyclic vector νd

λ .
The space Vd

λ is said to be a weighted PBW degeneration of Vλ.
For each d ∈ K2n, we define the weighted degenerate symplectic flag variety SpFd

2n

as the closure of the highest weight orbit exp(nd
−) · [νd

λ ] in the projective space P(Vd
λ).

We show in Theorem 5.2, that the defining ideal of SpFd
2n with respect to the Plücker

embedding is the initial ideal of the defining ideal of the symplectic flag variety with
respect to a degree function wd on the Plücker coordinates. The degree function wd
induces an injective linear map w : RΦ+ → RP (See Section 5.1). Using this construc-
tion, we prove Theorem 1.1 by showing that the image of K2n under w is exactly the
maximal prime cone C2n in the tropical symplectic flag variety Trop(SpF2n) ⊆ RP .

By setting all entries of the point d ∈ K2n to 1, our degenerate varieties SpFd
2n

coincide with the symplectic degenerate flag varieties SpFa
2n studied by Feigin, Finkel-

berg and Littelmann in [17]. This way, one also recovers the usual (non-weighted)
PBW filtration on the symplectic Lie algebra and corresponding irreducible repre-
sentations studied by Fourier, Feigin and Littelmann in [19]. Just like the degenerate
varieties in loc.cit., our degenerate varieties are flat degenerations (Theorem 5.2 and
Corollary 5.10). Furthermore, we formulate and prove Borel-Weil type theorems in
this setting as well (Theorems 5.11 and 5.12).

Although the overall strategy of this paper is similar to that in [11], to deal with
the symplectic case, we need to develop certain techniques to get control over the
representation theory, geometry and related combinatorics.

(a) In the symplectic case, the fundamental representations are no longer minus-
cule, and they are only sub-representations of the exterior powers of the vector
representation. We used a different argument in Section 4.4 to overcome the
non-minuscule problem.

(b) Birational sequences introduced in [12] and the associated valuations are used
to determine the defining ideal of the weighted degenerate symplectic flag
varieties (Theorem 5.2).

(c) We make use of the symplectic PBW-semistandard tableaux introduced in [2]
and prove that they form a linear basis of the homogeneous coordinate ring
of weighted degenerate symplectic flag variety with respect to the Plücker
embedding.

The point of view of [11] and this work is different from that of [7, 3]: we treat
flag varieties as homogeneous spaces associated to algebraic groups and make use of
extra structures inherited from the group, while in loc.cit., the authors adopt and
work with the linear algebra description of flag varieties, as flags of subspaces of the
underlying vector spaces.

1.3. Organisation of the paper. Section 2 contains preliminaries on symplectic
flag varieties. The main object of study, the tropical symplectic flag variety, is recalled
in Section 3. In Section 4, we treat weighted PBW degenerations of symplectic Lie al-
gebras and their compatibility with FFLV bases. We deal with geometry of weighted
PBW degenerations in Section 5 and obtain compatibility with valuations coming

Algebraic Combinatorics, Vol. 7 #3 (2024) 775



G. Balla & X. Fang

from birational sequences. Lastly, in Section 6, we describe the facets of the maxi-
mal prime cone in the tropical symplectic flag variety using tools from the previous
sections.

2. Preliminaries: symplectic flag varieties
For k ∈ N we denote [k] := {1, 2, . . . , k}.

2.1. Symplectic flag varieties. Let C2n be a 2n-dimensional complex vector
space with standard basis {e1, . . . , e2n}. For i = 1, . . . , 2n, we will denote i := 2n+1−i.
This operation · is an involution. The total order on Z induces the following order
1 < 2 < . . . < n < n < . . . < 2 < 1. If not mentioned otherwise, all vector spaces and
Lie algebras are over C. Let gl2n denote the Lie algebra on 2n × 2n matrices with the
commutator of two matrices as Lie bracket. The rows and columns of such a matrix
will be indexed by 1, 2, . . . , n, n, . . . , 1.

Let S be the square matrix of size n with 1 on the anti-diagonal and 0 elsewhere.

We set J =
(

0 S
−S 0

)
to be a square matrix of size 2n. The symplectic Lie algebra

sp2n is defined as a Lie-subalgebra of gl2n:
sp2n = {X ∈ gl2n | XtJ + JX = 0}.

The Lie-subalgebra h consisting of diagonal matrices in sp2n is a Cartan subalgebra.
We fix the following triangular decomposition: sp2n = n+ ⊕ h ⊕ n− where n+ (resp.
n−) consists of strictly upper-triangular (resp. strictly lower-triangular) matrices in
sp2n. The corresponding universal enveloping algebras will be denoted by U(n+) and
U(n−).

Let Φ+ denote the corresponding set of positive roots and α1, . . . , αn be the simple
roots for sp2n. The positive roots can be divided into two sets namely:

αi,j := αi + αi+1 + . . . + αj , 1 ⩽ i ⩽ j ⩽ n;
αi,j := αi + αi+1 + . . . + αn + αn−1 + . . . + αj , 1 ⩽ i ⩽ j < n.

We will formally denote αi,n := αi,n.
For each β ∈ Φ+, we fix a non-zero root vector fβ ∈ (n−)β of weight −β in the

following way, where for 1 ⩽ i ⩽ j ⩽ n we use the abbreviations fi,j := fαi,j
and

fi,j := fα
i,j

:
fi,i := Ei,i, for 1 ⩽ i ⩽ n,

fi,j := Ej+1,i − Ei,j+1, for 1 ⩽ i ⩽ j < n,

fi,j := Ej,i + Ei,j , for 1 ⩽ i < j ⩽ n,

where Ep,q is the matrix with zeros everywhere except for the entry 1 in the p-th row
and q-th column.

Let {ω1, . . . , ωn} be the set of fundamental weights of sp2n and Λ+ := Nω1 + . . . +
Nωn be the monoid generated by them: elements in Λ+ are dominant integral weights.
For λ = m1ω1 + . . . + mnωn ∈ Λ+, let Vλ denote the finite-dimensional irreducible
sp2n-representation with highest weight λ. Fix a highest weight vector νλ ∈ Vλ, we
have: Vλ = U(n−) · νλ.

Let N denote the simply connected Lie group corresponding to n−. Then Vλ is a
representation of N, hence we have an action of N on the projectivization P(Vλ). Let
[νλ] denote the highest weight line through νλ in P(Vλ).

Recall that a weight λ = m1ω1 + . . . + mnωn ∈ Λ+ is said to be regular if
m1, . . . , mn > 0.

Definition 2.1. For a regular weight λ ∈ Λ+, the complete symplectic flag variety is
defined to be the orbit closure N · [νλ] in P(Vλ).
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The isomorphism type of the projective variety N · [νλ] is independent of the choice
of a regular weight λ: we will denote it simply by SpF2n.

2.2. Plücker embedding of symplectic flag varieties. We consider the fun-
damental representation Vωk

of sp2n with highest weight vector νωk
. The represen-

tation Vω1 is the vector representation C2n of sp2n with νω1 = e1. The fundamental
representation Vωk

is a subrepresentation of the k-th exterior power of Vω1 :

(2.1) Vωk
↪→

∧kC2n, νωk
7→ e1 ∧ . . . ∧ ek.

For J = {j1, . . . , jk} ⊂ {1, . . . , n, n, . . . , 1} with j1 < . . . < jk, we denote eJ :=
ej1 ∧ . . . ∧ ejk

.
Let λ = m1ω1+. . .+mnωn ∈ Λ+ be a regular weight. The irreducible representation

Vλ can be realized as the Cartan component of the representation

Uλ = V⊗m1
ω1

⊗ . . . ⊗ V⊗mn
ωn

via
Vλ ↪→ Uλ, νλ 7→ uλ := ν⊗m1

ω1
⊗ . . . ⊗ ν⊗mn

ωn
∈ Uλ.

This implies: SpF2n is isomorphic to N · [uλ] ↪→ P(Uλ).
We consider the following embedding of varieties

Pn := P(Vω1) × . . . × P(Vωn
) ↪−→ P(Vω1)m1 × . . . × P(Vωn

)mn ↪−→ P(Uλ)

where the first embedding is given by the diagonal embedding of P(Vωi
) into P(Vωi

)mi ,
and the second one is the Segre embedding. According to the definition of the Segre
embedding, [uλ] is the image of ([νω1 ], . . . , [νωn

]) under the above embedding. It follows
that for x ∈ N, [x·uλ] is the image of ([x·νω1 ], . . . , [x·νωn ]) under the above embedding.
We have therefore an embedding SpF2n ↪→ Pn.

Composing with the embedding in (2.1), we obtain the Plücker embedding of
SpF2n:

(2.2) SpF2n = N · [νλ] ↪→ Pn ↪→ P
(∧1C2n

)
× . . . × P

(∧nC2n
)

.

2.3. Defining relations. We describe the defining ideal of SpF2n with respect to
the Plücker embedding. As has been shown by de Concini in [10], the defining ideal is
generated by two kinds of relations: the usual quadratic Plücker relations, and certain
linear relations.

Let I = {i1, . . . , id} and J = {j1, . . . , jd} be two subsets of {1, . . . , n} with i1 <
. . . < id and j1 < . . . < jd. The dominance partial order is defined by:

(2.3) I ⩽ J if and only if for any 1 ⩽ k ⩽ d, ik ⩽ jk.

For an ordered tuple J = (j1, . . . , jd) with 1 ⩽ j1 < . . . < jd ⩽ 1, we set XJ =
Xj1,...,jd

:= (eJ)∗ ∈
( ∧d C2n

)∗
to be the corresponding homogeneous coordinate on

P
( ∧d C2n

)
. Let P be the set of all such ordered tuples J of length d for d = 1, . . . , n.

The (multi-)homogeneous coordinate ring of P
(∧1C2n

)
× . . . × P

(∧nC2n
)

is the
polynomial ring S := C[XJ | J ∈ P].

The notation XJ will be extended to all tuples by requiring for all d = 1, . . . , n and
1 ⩽ j1 < . . . < jd ⩽ 1:

Xjσ(1),...,jσ(d) := (−1)ℓ(σ)Xj1,...,jd

where σ ∈ Sd and ℓ(σ) is its inversion number.
We introduce some special elements in S:
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(1) Let L, J ⊂ {1, . . . , n, n, . . . , 1} be two tuples of lengths p and q respectively,
where 1 ⩽ q ⩽ p ⩽ n. Suppose L = (l1, . . . , lp) with l1 < . . . < lp, J =
(j1, . . . , jq) with j1 < . . . < jq and 1 ⩽ s ⩽ q, we define the quadratic Plücker
polynomial

Rs
L,J := XLXJ −

∑
1⩽r1<...<rs⩽p

XL′XJ′ ,(2.4)

where

L′ = (l1, . . . , lr1−1, j1, lr1+1, . . . , lrs−1, js, lrs+1, . . . , lp)

and
J′ = (lr1 , . . . , lrs , js+1, . . . , jq).

(2) We fix 1 ⩽ k ⩽ n and let I1 = {x1, . . . , xℓ}, I2 = {y1, . . . , yk−ℓ} be subsets
of {1, . . . , n} with x1 < . . . < xℓ and y1 < . . . < yk−ℓ. Let Γ := I1 ∩ I2,
Γ = {γ1, . . . , γt} with γ1 < . . . < γt (note that Γ could be the empty set). We
define the tuple

(I1, I2) := (γ1, γ1, . . . , γt, γt, a1, . . . , aℓ−t, bk−ℓ−t, . . . , b1)

where

I1 ∖ Γ = {a1, . . . , aℓ−t} =: Ĩ1 with a1 < . . . < aℓ−t,

I2 ∖ Γ = {b1, . . . , bk−ℓ−t} =: Ĩ2 with b1 < . . . < bk−ℓ−t.

Such a tuple (I1, I2) is said to be reverse-admissible if there exists a subset
T ⊂ {1, . . . , n} ∖ (I1 ∪ I2) with |T| = |I1 ∩ I2| and T < (I1 ∩ I2) (see (2.3) for
the definition of this partial order).

Notice that if I1 ∩ I2 = ∅ then (I1, I2) is reverse-admissible. Now as-
sume that (I1, I2) is not reverse-admissible with I1 ∩ I2 = {γ1, . . . , γt} =:
Γ ̸= ∅. Choose 1 ⩽ h0 ⩽ t to be minimal such that there exists a tuple
T ⊂ {1, . . . , n} ∖ (I1 ∪ I2) of length t − h0 with T < (γh0+1, . . . , γt). Let
Th0+1 = {λh0+1, . . . , λt} be maximal (with respect to the partial order in
(2.3)) among those T. Finally we choose the maximal b ∈ {h0 + 1, . . . , t}
such that (λh0+1, . . . , λb) < (γh0 , . . . , γb−1), or set b = h0 if no such b exists.
Now set Γ̃ := (γh0 , . . . , γb) and F = Γ\Γ̃. We define a linear polynomial for
non-reverse-admissible tuple (I1, I2):

(2.5) S(I1,I2) := X(I1,I2) − (−1)b−h0+1
∑
Γ′

X(̃I1∪F∪Γ′ ,̃I2∪F∪Γ′),

where the sum runs over those Γ′ satisfying |Γ̃| = |Γ′| and Γ′ ∩ (I1 ∪ I2) = ∅.

Example 2.2. When n = 2, the ideal I4 is generated by the following polynomials:

X12X2 + X22X1 − X12X2, X12X1 + X21X1 − X11X2,

X22X1 + X21X2 − X21X2, X12X1 + X21X1 − X11X2,

X12X21 − X12X21 + X11X22, X11 + X22.

Definition 2.3. Let I2n denote the ideal in S generated by the quadratic polynomials
Rs

L,J for all possible L, J, s and linear relations S(I1,I2) with non-reverse-admissible
tuples (I1, I2).

The following theorem is proved in [10] when the linear polynomials S(I1,I2) are
defined for admissible tuples. The above form for reverse-admissible tuples is proved
in [2].
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Theorem 2.4 ([10, 2]). The (prime) defining ideal of SpF2n with respect to the Plücker
embedding (2.2) is precisely I2n.

The polynomial ring S is Λ+-graded by assigning deg(XJ) = ω|J|.
We will denote by C[SpF2n] the (multi)-homogeneous coordinate ring of SpF2n.

According to Theorem 2.4, C[SpF2n] ∼= S/I2n. Since both the ring S and the ideal
I2n are Λ+-graded, so is C[SpF2n]. For a fixed λ ∈ Λ+ we let C[SpF2n]λ denote the
homogeneous component of degree λ. Moreover, in the following decomposition

C[SpF2n] =
⊕

λ∈Λ+
C[SpF2n]λ,

each graded component C[SpF2n]λ is isomorphic to V∗
λ as sp2n-modules [10].

3. Tropical symplectic flag varieties
In this section, we consider the tropicalization of symplectic flag varieties using the
defining ideal I2n ⊆ S (according to Theorem 2.4). The building blocks for tropical
symplectic flag varieties, namely the tropical symplectic Grassmannians, have been
studied by the second author and Olarte in [3], in the spirit of Speyer and Sturmfels’
work on the tropical Grassmannian [27].

In [3], it was shown that there are five equivalent characterizations of symplectic
Grassmannians, that turn out not to be equivalent tropically. This makes tropical-
ization in the symplectic setting subtle, nonetheless, a complete characterization
was given. For the current paper, we choose the most natural construction out of
the five characterizations for the tropical symplectic flag variety case, that is, the
tropicalization with respect to the ideal I2n, and we seek to understand its fan
structure. For a comprehensive introduction to tropical geometry, we refer the reader
to [24].

Consider the Plücker embedding of SpF2n in (2.2):

SpF2n ↪→ P
(∧1C2n

)
× . . . × P

(∧nC2n
)

.

For a polynomial
f =

∑
u∈NP

λuXu ∈ S,

its initial form with respect to v ∈ RP is defined to be

inv(f) :=
∑

u·v minimal
λuXu.

The initial ideal of I2n with respect to v ∈ RP is defined as the ideal generated by
the initial forms of all polynomial in I2n with respect to v:

inv(I2n) := ⟨inv(f) | f ∈ I2n⟩ ⊆ S.

From the above construction, it follows that every point v ∈ RP defines a Gröbner
degeneration of SpF2n. Consider an equivalence relation on RP given by setting v ∼ v′

whenever
inv(I2n) = inv′(I2n).

Each equivalence class corresponds to points in the relative interior of a convex ratio-
nal polyhedral cone in RP . The collection of all such cones defines the Gröbner fan
of SpF2n. We are interested in the following subfan of this Gröbner fan.
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Definition 3.1. The tropical symplectic flag variety with respect to the Plücker em-
bedding is defined by

Trop(SpF2n) :=
{

v ∈ RP
∣∣∣∣ inv(I2n) contains no monomials

and v([d]) = 0 for d = 1, . . . , n

}
.

The normalization v([d]) = 0 is chosen as a special section of the quotient map
according to the multi-homogeneous property of the Plücker embedding.

By the Bieri-Groves theorem ([4]), Trop(SpF2n) is a pure polyhedral fan in RP of
dimension n2. For example, Trop(SpF4) is a pure 4-dimensional fan in R10 with a
2-dimensional lineality space having 10 rays and 15 maximal cones (see [3, Example
9.4]).

The following notion is introduced in [6]: a maximal cone in Trop(SpF2n) is called
prime, if the initial ideal associated to a point (hence any point) in its relative interior
is a prime ideal.

Giving explicit descriptions of all polyhedral cones in Trop(SpF2n) seems to be only
possible when n is very small. One of the goals of this paper is to prove the following
theorem that generalizes results in the same direction for type A flag varieties in [11].
Theorem 3.2. There is a maximal cone C2n in the tropical symplectic flag variety
Trop(SpF2n):

(1) that is a prime cone with explicit facet description given in Lemma 6.1, and
(2) such that every point in its relative interior provides a Gröbner degeneration

of SpF2n to the toric variety associated with the symplectic FFLV polytope
(see Section 4.1 for the definition of this polytope). In particular, this toric
variety is normal.

The proof of Theorem 3.2 (1) will be given in Section 6, using weighted PBW
degenerations of irreducible representations of the symplectic Lie algebra constructed
in Section 4 and their bridge to valuations coming from birational sequences described
in Section 5. Part (2) of this theorem is proved in Section 5.5.
Remark 3.3. For type A flag varieties, such a maximal cone stands at the carrefour
of tropical geometry, Lie theory ([18, 16, 20, 11]), geometry of quiver representations
([8, 9]), and exact categories and Hall algebras ([15]).

Such a cone can be obtained as the tropicalization of a half of the Berenstein-
Kazhdan decoration function on a toric chart of the A-cluster variety on the double
Bruhat cell Gw0,e of the type A complete flag variety. This statement can be deduced
from the work [22].

The connection between the maximal cone described in the current paper and the
work of Boos and Cerulli Irelli [5] is not yet clear.

4. Weighted PBW degenerations and compatible bases
The PBW degenerations of the symplectic Lie algebras and their representations are
studied in [19]. They proved that the symplectic FFLV basis (see Section 4.1 below)
is compatible with the filtration induced to the irreducible representations from the
PBW filtration on the universal enveloping algebra U(n−). The goal of this section is
to show that this basis is also compatible with a generalization of the PBW filtration
that we consider.

4.1. The symplectic FFLV basis. We follow [19] to describe a basis of the irre-
ducible representation Vλ parametrized by points in the FFLV polytope.

We first recall the notion of a symplectic Dyck path.
A symplectic Dyck path is a sequence p = (p(0), . . . , p(k)), k ⩾ 0, of positive roots

in Φ+ satisfying the following conditions:

Algebraic Combinatorics, Vol. 7 #3 (2024) 780



Tropical symplectic flag varieties

(i) the first root p(0) = αi for some 1 ⩽ i ⩽ n, i.e. it is simple;
(ii) the last root p(k) is either a simple root p(k) = αl for some 1 ⩽ l ⩽ n or

p(k) = αj,j for some 1 ⩽ j < n;
(iii) the elements in between satisfy the recursion rule: If p(s) = αp,q ∈ Φ+, then

the next element in the sequence is either p(s+1) = αp,q+1 or p(s+1) = αp+1,q;
where q + 1 denotes the smallest element in {1, . . . , n, n − 1, . . . , 1} which is
bigger than q.

Denote by D the set of all symplectic Dyck paths. For a dominant, integral weight
λ =

∑n
i=1 miωi, the symplectic FFLV polytope FFLV(λ) ⊂ RΦ+ is the polytope

defined by the inequalities xβ ⩾ 0 for β ∈ Φ+ and for all p = (p(0), . . . , p(k)) ∈ D:{
xp(0) + . . . + xp(k) ⩽ mi + . . . + mj , if p(0) = αi, p(k) = αj ,

xp(0) + . . . + xp(k) ⩽ mi + . . . + mn, if p(0) = αi, p(k) = αj,j .
(4.1)

We will denote by S(λ) the set of integral points in FFLV(λ).
Fix an enumeration of positive roots Φ+ = {β1, . . . , βN }. For a multi-exponent

s = (sβ)β∈Φ+ , sβ ∈ N, let f s be the element

f s := f
sβ1
β1

· · · f
sβN

βN
∈ U(n−).

Note that for λ ∈ Λ+, we have fixed a highest weight vector νλ ∈ Vλ.

Theorem 4.1 ([19]). For any dominant integral weights λ, µ ∈ Λ+, the following hold
true:

(1) the Minkowski sum property:

FFLV(λ + µ) = FFLV(λ) + FFLV(µ) and S(λ + µ) = S(λ) + S(µ);

(2) the elements {f s · νλ | s ∈ S(λ)} form a basis of Vλ.

The Minkowski sum property S(λ + µ) = S(λ) + S(µ) does not provide a unique
decomposition of s ∈ S(λ + µ) into a sum of s1 ∈ S(λ) and s2 ∈ S(µ). For λ =
m1ω1 + . . . + mnωn, we define the standard decomposition of s ∈ S(λ) into a sum of
elements in

S(ω1) + . . . + S(ω1) + . . . + S(ωn) + . . . + S(ωn)
where S(ωk) appears mk times. Such a definition is given in an inductive manner on
the height ht(λ) := m1 + . . . + mn of λ. Let k := max{ℓ | mℓ ̸= 0}. We only need to
decide how to decompose s into a sum s1 + s2 with s1 ∈ S(ωk) and s2 ∈ S(λ − ωk).

For s = (sβ) ∈ NΦ+ we denote supp s := {β ∈ Φ+ | sβ ̸= 0} to be the support
of s. The set of positive roots admits a poset structure by defining β1 ≻ β2 if there
exists a symplectic Dyck path from β1 to β2. Let Φ+

k ⊆ Φ+ be the set of positive
roots αi,j satisfying i ⩽ k ⩽ j. We denote by s|Φ+

k
⊆ NΦ+ to be the restriction of s

to Φ+
k and then extended by zero to the entire Φ+. We then define s1 ∈ NΦ+ to be

the characteristic function of the set of maximal elements (with respect to the above
partial order) in supp(s|Φ+

k
).

Lemma 4.2. We have s1 ∈ S(ωk) and s − s1 ∈ S(λ − ωk).

Proof. By [1], the FFLV polytope FFLV(λ) is a marked chain polytope associated to
the poset structure on Φ+ defined above with marking given by λ. When λ = ωk is
a fundamental weight, FFLV(ωk) is supported on Φ+

k ; when considered inside NΦ+
k ,

it is the chain polytope associated to the induced poset Φ+
k . The lattice points in the

chain polytope have a bijection to anti-chains in the poset [28]. The maximal element
of a subset of Φ+

k is an anti-chain, hence s1 ∈ S(ωk).
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Since a Dyck path intersects an anti-chain at at most one element, s − s1 satisfies
all defining inequalities of FFLV(λ − ωk), hence it is contained in S(λ − ωk). □

4.2. Symplectic FFLV degree cone. Keep the notations as in Section 2.1. We
define a polyhedral cone whose points will be used to construct PBW type filtrations
on symplectic Lie algebras and their representations.

The vector space RΦ+ consists of functions from Φ+ to R. For a point d ∈ RΦ+ ,
we will simply write di,j := d(αi,j) for αi,j ∈ Φ+. Notice that in our notation there is
no difference between di,n and di,n.

Definition 4.3. The symplectic FFLV degree cone for sp2n is the polyhedral cone
K2n ⊆ RΦ+ defined by the following inequalities:

(Ai) di,i + di+1,i+1 ⩾ di,i+1, for 1 ⩽ i ⩽ n − 1;
(Bi,j) di,j + di+1,j+1 ⩾ di,j+1 + di+1,j, for 1 ⩽ i < j ⩽ n − 1;
(Ci,j) di,j+1 + di+1,j ⩾ di,j + di+1,j+1, for 1 ⩽ i < j ⩽ n − 1;

(Di) 2di,i+1 ⩾ di,i + di+1,i+1, for 1 ⩽ i ⩽ n − 1.

That is to say, d ∈ RΦ+ is contained in K2n if and only if d satisfies the above
inequalities.

The polyhedral geometric properties of K2n are summarized in the following propo-
sition:

Proposition 4.4.
(1) The cone K2n is full dimensional in RΦ+ .
(2) The defining inequalities of K2n give the complete set of its facets.
(3) The cone K2n has a lineality space L of dimension n.
(4) The cone K2n/L is simplicial.

Proof. We start with showing the full-dimensionality of K2n by constructing a solution
to the strict inequality system in the definition of K2n. First set di,i = 0 for 1 ⩽ i ⩽ n.
By (Ai), the coordinates di,i+1 for 1 ⩽ i ⩽ n − 1 are bounded above: choose a feasible
solution for these coordinates. Then we look at the coordinates

d1,3, d2,4, d1,4, . . . , dn−2,n, . . . , d1,n

in this order. By (Bi,j), a coordinate among the list above is bounded above once a
feasible solution was chosen for all previous ones. Next we move to the coordinates

dn−1,n−1, . . . , d1,n−1, . . . , d2,2, d1,2, d1,1 :

the same argument as above using (Ci,j) and (Di) gives a point satisfying all strict
inequalities. That is to say, we obtain a point in K2n which has a small neighbourhood
contained therein. This shows dim K2n = |Φ+| = n2.

We prove the other statements simultaneously. Let L denote the lineality space of
K2n. First notice that the linear space L′ defined by

di,j − (di,i + . . . + dj,j) = 0, 1 ⩽ i < j ⩽ n,

di,j − (di,i + . . . + dn,n + . . . + dj,j) = 0, 1 ⩽ i ⩽ j ⩽ n − 1
is contained in K2n, hence dim L ⩾ n. We set di,i = 0 for i = 1, . . . , n. From the proof
of the first part, once the values of di,i are fixed, all other coordinates are bounded
above. It follows that K2n/L′ is pointed and hence L = L′. This terminates the
proof of (3). Now the number of inequalities in the definition of K2n is n(n−1), which
coincides with the dimension of the pointed cone K2n/L′. This proves (4) and (2). □

The following inequalities can be deduced from the defining inequalities of K2n.
We summarize them below for later use.
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Proposition 4.5. For d ∈ K2n, the following inequalities hold:
(Ai,j,k) di,j + dj+1,k ⩾ di,k, for 1 ⩽ i ⩽ j < k ⩽ n;

(Bi,j,k,l) di,j + dk,l ⩾ di,l + dk,j, for 1 ⩽ i < k ⩽ j < l ⩽ n;
(Ci,j,k,l) di,l + dk,j ⩾ di,j + dk,l, for 1 ⩽ i < k ⩽ j < l ⩽ n;

(Di,j) 2di,j ⩾ di,i + dj,j, for 1 ⩽ i < j ⩽ n;
(Ei,j,k) di,j + dk,j+1 ⩾ di,k, for 1 ⩽ i ⩽ k ⩽ j + 1 ⩽ n;
(Fi,j,k) di,j + dj+1,k ⩾ di,k, for 1 ⩽ i ⩽ j < k ⩽ n;

(Gi,j,k,l) di,j + dk,l ⩾ di,k + dj,l, for 1 ⩽ i < k ⩽ j < l ⩽ n;
(Hi,j,k,l) di,l + dk,j ⩾ di,k + dj,l, for 1 ⩽ i < k ⩽ j < l ⩽ n.

Proof. The inequalities (Ai,j,k) can be deduced from the defining inequalities (Ai)
and (Bi,j). The inequalities (Bi,j,k,l) and (Ci,j,k,l) follow from the defining inequal-
ities (Bi,j) and (Ci,j). The inequalities (Di,j) are consequences of (Ci,j) and (Di).
The inequalities (Fi,j,k) can be deduced from (Ai), (Bi,j) and (Ci,j). The proofs are
straightforward and are left to the reader. The inequality (Gi,j,k,l) can be obtained
by summing up the inequalities (Ci,k,k,j), (Ck,j,j,l) and (−1)×(Dk,j). The inequality
(Hi,j,k,l) follows from (Ci,j,k,l) and (Gi,j,k,l).

It remains to show the inequality (Ei,j,k). We will prove the harder one (Ei,j,i).
The proof of all other inequalities are similar.

We proceed by descending induction on i. When i = n − 1, the inequality reads
(En−1,n−1,n−1) : dn−1,n−1 + dn−1,n ⩾ dn−1,n−1.

It can be deduced by summing up the following two inequalities
(An−1) : dn−1,n−1 + dn,n ⩾ dn−1,n, (Dn−1) : 2dn−1,n ⩾ dn−1,n−1 + dn,n.

Assume that (Ei,j,i) holds for i = k + 1, . . . , n − 1. We verify (Ek,j,k) for a fixed
j = k, . . . , n − 1.

When j = k, the inequality (Ek,k,k) is the sum of the inequalities (Dk), (Ck,k+1),
. . ., (Ck,n−1), (Bk,k+1), . . ., (Bk,n−1) and (Ak). Now assume that j ̸= k: the inequal-
ity (Ek,j,k) is the sum of the inequalities (Dk), 2×(Ck,k+1), . . ., 2×(Ck,j), (Ck,j+1),
(Ck,n−1), (Bk,j), . . ., (Bk,n−1) and (Ek+1,j,k+1). By induction hypothesis, d ∈ K2n

satisfies (Ek+1,j,k+1), the proof is then complete. □

Remark 4.6. Since in the proof we only sum up inequalities from the defining facets
of K2n, if d is chosen from the interior of K2n, all inequalities in Proposition 4.5 are
strict.

4.3. Filtrations from the FFLV degree cone. Points in K2n give rise to filtra-
tions on the Lie algebra n−, the universal enveloping algebra U(n−) and the irreducible
representation Vλ.

We fix d ∈ K2n. For m ∈ R, we define a subspace of n−:
(n−)d

⩽m = span{fi,j | 1 ⩽ i ⩽ n, i ⩽ j ⩽ i, di,j ⩽ m}
and the following subspace of U(n−):

U(n−)d
⩽m = span{fi1,j1 . . . fil,jl

| di1,j1 + . . . + dil,jl
⩽ m}.

Proposition 4.7. For d ∈ K2n, the subspaces {(n−)d
⩽m | m ∈ R} define an R-

filtration of Lie algebra on n−; the subspaces {U(n−)d
⩽m | m ∈ R} define an R-

filtration of algebra on U(n−).

Proof. We need to verify that [(n−)d
⩽k, (n−)d

⩽l] ⊆ (n−)d
⩽k+l. For α, β ∈ Φ+, the Lie

bracket [fα, fβ ] is non-zero if and only if α + β ∈ Φ+. Written using the fixed basis
for the weight spaces, the non-zero Lie brackets are precisely:
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(1) for 1 ⩽ i ⩽ j ⩽ n − 1 and j + 1 ⩽ k ⩽ i, [fi,j , fj+1,k] is a non-zero scalar
multiple of fi,k;

(2) for 1 ⩽ i ⩽ k ⩽ j + 1 ⩽ n with i ̸= j + 1, [fi,j , fk,j+1] is a non-zero scalar
multiple of fi,k.

Since d ∈ K2n, the inequalities (Ai,j,k), (Ei,j,k) and (Fi,j,k) in Proposition 4.5 imply
the desired inclusion.

The statement on U(n−) follows from the above argument. □

Similarly one defines the subspaces (n−)d
<m ⊆ (n−)d

⩽m and U(n−)d
<m ⊆ U(n−)d

⩽m

by replacing the inequalities in the definitions of (n−)d
⩽m and U(n−)d

⩽m with the strict
ones. We define the associated graded Lie algebra and the associated graded algebra
as follows:

nd
− :=

⊕
m∈R

(nd
−)m, where (nd

−)m := (n−)d
⩽m/(n−)d

<m;

U(n−)d :=
⊕

m∈R
U(n−)d

m, where U(n−)d
m := U(n−)d

⩽m/U(n−)d
<m.

For a root vector fi,j with 1 ⩽ i ⩽ n and i ⩽ j ⩽ i, we denote fd
i,j its class in nd

−.
The following proposition can be looked at as a kind of functoriality of the degen-

eration from U(n−) to U(nd
−).

Proposition 4.8. The linear map nd
− → U(n−)d, sending fd

i,j to the class of fi,j in
U(n−)d, induces an isomorphism of algebras, U(nd

−) ∼= U(n−)d.

Proof. From the inequalities (A), (E) and (F) in Proposition 4.5, there exists a mor-
phism of Lie algebras, nd

− → U(n−)d. From the universal property, there exists a
morphism of algebras, U(nd

−) → U(n−)d. It is an isomorphism by PBW theorem for
U(n−). □

From now on we will not distinguish U(nd
−) and U(n−)d.

For a polyhedral cone C, let relint(C) denote its relative interior.

Lemma 4.9. Let d, e ∈ K2n be contained in the relative interior of the same face.
(1) The linear map

nd
− → ne

−, (fβ)d 7→ (fβ)e for β ∈ Φ+

is an isomorphism of Lie algebras.
(2) The associated graded algebras U(n−)d and U(n−)e are isomorphic.

Proof. The part (2) is a direct consequence of (1) and Proposition 4.8. We prove (1).
Recall that whether the Lie bracket [fα, fβ ] for α, β ∈ Φ+ in n− is zero depends on
whether α+β is a positive root. Given d ∈ K2n, the Lie brackets in nd

− are determined
by whether inequalities (Ai,j,k), (Ei,j,k) and (Fi,j,k) in Proposition 4.5 are strict or not.
Notice that in the proof of the proposition, the above inequalities are obtained from
summing up certain defining inequalities of K2n in Definition 4.3. From Proposition
4.4, they are facets of K2n. Therefore the Lie brackets in nd

− will remain the same
when d varies in the relative interior of a face. □

As a consequence, the isomorphism type of the Lie algebra nd
− is constant on the

relative interior of each face of K2n.
We have a closer look at U(n−)d and Vd

λ for d ∈ relint(K2n).

Lemma 4.10. If d ∈ relint(K2n), U(n−)d is isomorphic to the symmetric algebra
S(n−) as an algebra.
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Proof. The same argument as in the proof of Lemma 4.9 shows that if all inequalities
in Definition 4.3 are strict, then for any α, β ∈ Φ+, [fα, fβ ] = 0 in nd

−, hence nd
− is an

abelian Lie algebra. □

Such a filtration on U(n−) induces a filtration on cyclic modules. For any dominant
integral weight λ, the simple sp2n-module Vλ = U(n−) · νλ is cyclic. For a fixed
d ∈ K2n, we consider the induced R-filtration

(Vλ)d
⩽m = U(n−)d

⩽m · νλ

and similarly its subspace (Vλ)d
<m. Let us denote the associated graded space by Vd

λ ,
i.e.

Vd
λ =

⊕
m⩾0

(Vd
λ)m, where (Vd

λ)m = (Vλ)d
⩽m/(Vλ)d

<m.

The vector space Vd
λ carries naturally a graded U(nd

−)-module structure. Indeed,
for any k, l ∈ R, we have by definition

U(n−)⩽k(Vλ)⩽l ⊆ (Vλ)⩽k+l.

The U(nd
−)-module Vd

λ will be termed a weighted PBW degeneration of Vλ.
Let νd

λ denote the image of νλ in Vd
λ . The U(nd

−)-module Vd
λ is cyclic, having νd

λ

as a cyclic vector.
We fix d ∈ relint(K2n). For λ ∈ Λ+, since Vd

λ is a cyclic U(n−)d-module, we obtain
a surjective U(n−)d-module map

φd
λ : S(n−) → Vd

λ , x 7→ x · νd
λ .

We set Id
λ := ker φd

λ. It is an ideal in S(n−).
Recall that in Section 4.1 we have fixed an enumeration of positive roots Φ+ =

{β1, . . . , βN }. For a multi-exponent s = (sβ)β∈Φ+ , we will denote by f s
d the class of

f s in U(n−)d.
The first main result of the paper is the following compatibility of the FFLV basis

and the weighted PBW degenerations.

Theorem 4.11. For every point d ∈ K2n, the set {f s
d · νd

λ | s ∈ S(λ)} forms a basis
of Vd

λ.

The rest of this section will be devoted to the proof of the theorem.

4.4. Compatibility of FFLV basis: fundamental representations. In this
section we start from proving Theorem 4.11 for d ∈ relint(K2n) and λ = ωk, then we
will explain how to adapt the proof to deal with those d in a proper face of K2n.

4.4.1. Vector representation. Assume that d ∈ relint(K2n). We study the vector rep-
resentation Vω1 . The actions of root vectors on el ∈ Vω1 with 1 ⩽ l ⩽ 1 are given
by:

(1) for 1 ⩽ i ⩽ j < n, fi,j · el = δi,l ej+1 − δj+1,l ei ;
(2) for 1 ⩽ i ⩽ n, fi,i · el = δi,l ei ;
(3) for 1 ⩽ i < j ⩽ n, fi,j · el = δi,l ej + δj,l ei.

For 1 ⩽ i < j ⩽ 1, set

M j
i := {s ∈ NΦ+

| f s · ei = ±ej}

and consider the following function

dd : NΦ+
→ R, s 7→ d · s.
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The set M j
i is non-empty: from the action of the root vectors, the element si,j such

that

f si,j =


fi,j−1, if i, j ⩽ n;
fi,j , if i ⩽ n, n ⩽ j ⩽ i;
fj,i if i ⩽ n, j > i;
fj,i−1, if i, j ⩾ n;

is contained in M j
i .

Lemma 4.12. The function dd has a unique minimum on M j
i attained at si,j.

Proof. We proceed by induction on j − i. When j = i + 1, the set M j
i contains only

the element si,j , and there is nothing to prove.
In general, take s = (sβ)β∈Φ+ ∈ M j

i and denote |s| :=
∑

β∈Φ+ sβ .
Assume furthermore that dd attains minimum at s. If |s| ⩾ 2, there must be a

root vector in the monomial f s sending ei to a non-zero multiple of some ek with
i < k < j. The remaining part of this monomial has the form f t with t ∈ M j

k . Since
j − k < j − i, by induction, in order to minimize dd, t must be sk,j . This implies
|s| = 2 and it has the following form

(4.2) f s =



fi,k−1fk,j−1, if j ⩽ n;
fi,k−1fk,j , if k ⩽ n, n ⩽ j ⩽ k;
fi,k−1fj,k, if k ⩽ n, j > k;
fi,kfj,k−1, if i ⩽ n, n ⩽ k ⩽ i;
fk,ifj,k−1, if i ⩽ n, k > i;
fk,i−1fj,k−1, if i ⩾ n.

Since d is chosen from the relative interior of K2n, by Remark 4.6, the inequalities
in Proposition 4.5 are strict. According to the inequalities (Ai,k−1,j−1), (Fi,k−1,j),
(Ei,k−1,j), (Ei,k,j), (Fj,k−1,i) and (Aj,k−1,i−1) respectively, the monomials in (4.2)
can not minimize dd.

We have shown that any |s| ⩾ 2 can not minimize dd, therefore |s| = 1 and f s has
to be f si,j . □

Proposition 4.13. For d ∈ relint(K2n), the set {f s
d · νd

ω1
| s ∈ S(ω1)} forms a basis

for Vd
ω1

.
Proof. By [19, Lemma 4.1], non-zero elements in S(ω1) are precisely {s1,j | 2 ⩽ j ⩽ 1}.
Now Lemma 4.12 implies that {f s

d · νd
ω1

| s ∈ S(ω1)} spans Vd
ω1

. By Theorem 4.1,
|S(ω1)| = dim Vd

ω1
, hence the above generating set forms indeed a basis of Vd

ω1
. □

4.4.2. General case. We prove Theorem 4.11 for d ∈ relint(K2n) and an arbitrary
fundamental representation Vωk

. The representation Vωk
is a subrepresentation of∧kC2n generated by the highest weight vector νωk

:= e1 ∧ . . . ∧ ek.
For a subset I = {i1, . . . , ik} of {1, . . . , n, n, . . . , 1} with i1 < . . . < ik, we denote

eI := ei1 ∧ . . . ∧ eik
∈

∧kC2n and e∗
I its dual basis element. For another subset

J = {j1, . . . , jk} of {1, . . . , n, n, . . . , 1} with j1 < . . . < jk, we define

MJ
I := {s ∈ NΦ+

| e∗
J(f s · eI) ̸= 0}.

We describe an element in MJ
I to show that it is non-empty. We set K = I ∩ J ,

P = {p1, . . . , ps} = I ∖ K with p1 < . . . < ps and Q = {q1, . . . , qs} = J ∖ K with
q1 < . . . < qs. The element
(4.3) sI,J := sp1,qs

+ . . . + sps,q1
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is contained in MJ
I . In fact we have sI,J ∈ MQ

P .

Lemma 4.14. The function dd has a unique minimum on MJ
I attained at sI,J .

Proof. We proceed by induction on k, the index of the fundamental representation.
The starting point k = 1 is Lemma 4.12.

We first show that it suffices to prove the lemma under the assumption I ∩ J = ∅.
If this intersection is not empty, there exists r and m such that ir = jm. Let m

be a minimum of dd on MJ
I . We show that the monomial fm does not contain root

vectors of the form f sir,t for t > ir nor root vectors of the form f st,jm for t < jm. If
it contains for example f sir,t , it would also contain f sp,jm for some p < jm because
ir = jm. But by Lemma 4.12, dd would take smaller value at f sp,t . Now the element

m′ := m − sir,t − sp,jm
+ sp,t

is still in MJ
I with dd(m′) < dd(m). This contradicts to the choice of m. Similar

argument shows the statement on f st,jm . As a consequence, such an element m is in
fact contained in MQ

P with P = I ∖ (I ∩ J) and Q = J ∖ (I ∩ J). Since |P | < k, we
can proceed by induction.

From now on we assume that I ∩J = ∅. From the action on the tensor product, for
t ∈ MJ

I , f t·eI is a linear combination of f t1 ·ei1∧. . .∧f tk ·eik
with t1+. . .+tk = t. Since

t ∈ MJ
I , there exists at least one collection {t1, . . . , tk} such that f t1 ·ei1 ∧. . .∧f tk ·eik

is proportional to eJ . By Lemma 4.12, in order to minimize dd, we have to choose
those t1, . . . , tk with |tr| ⩽ 1 for r = 1, . . . , k. The assumption I ∩ J = ∅ implies
|t1| = . . . = |tk| = 1. Again, to minimize dd, it is necessary that tr has the form sir,j

where the index j is uniquely determined by: f tr · eir = ±ej .
We reformulate the above observation using symmetric group. For any σ ∈ Sk we

associate to it an element
sσ := si1,jσ(1) + . . . + sik,jσ(k) ∈ NΦ+

.

From definition, sσ ∈ MJ
I . The above argument shows that a minimum of dd can not

be attained outside of the set {sσ | σ ∈ Sk}.
We claim that if σ > σ′ in the Bruhat order of Sk, then dd(sσ) < dd(sσ′). This

will terminate the proof since sI,J = sw0 where w0 is the unique maximal element in
Sk sending i to k + 1 − i.

It remains to prove the claim. Keeping d in mind, we will simply write si,j :=
dd(si,j) and

sσ :=
k∑

r=1
sir,jσ(r) .

It suffices to consider the case when σ > σ′ is a covering relation in the Bruhat poset.
There exists therefore a permutation σp,q, 1 ⩽ p < q ⩽ k, swapping p and q, such
that σ = σ′σp,q. In this case,

sσ − sσ′ = sip,jσ′(q) + siq,jσ′(p) − sip,jσ′(p) − siq,jσ′(q) .

Notice that from σ > σ′, p < q and I ∩ J = ∅ it follows ip < iq < jσ′(p) < jσ′(q).
There are several cases to consider:

(i) jσ′(q) ⩽ n. In this case, the strict inequality (Bip,iq,jσ′(p)−1,jσ′(q)−1) in Propo-
sition 4.5 gives sσ − sσ′ < 0.

(ii) ip ⩾ n. Let α := jσ′(q), β := jσ′(p), γ := iq − 1 and δ := ip − 1. Then
α < β ⩽ γ < δ and the strict inequality (Bα,γ,β,δ) in Proposition 4.5 gives
sσ − sσ′ < 0.

(iii) iq ⩽ n and jσ′(p) ⩾ n. We execute a case-by-case analysis:
(iii.1) We consider the case when jσ′(q) > ip.
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• If iq < jσ′(p) ⩽ ip, it follows from the strict inequality
(Hjσ′(q),jσ′(p),ip,iq

) in Proposition 4.5 that sσ − sσ′ < 0.
• If jσ′(p) ⩽ iq, it follows from the strict inequality (Gjσ′(q),iq,ip,jσ′(p)

)
in Proposition 4.5 that sσ − sσ′ < 0.

• If jσ′(q) > ip, it follows from the strict inequality (Cjσ′(q),ip,jσ′(p),iq
)

in Proposition 4.5 that sσ − sσ′ < 0.
(iii.2) We consider the case when jσ′(q) ⩽ ip.

• If jσ′(p) > iq, it follows from the strict inequality (Gip,jσ′(p),jσ′(q),iq
)

in Proposition 4.5 that sσ − sσ′ < 0.
• If jσ′(p) ⩽ iq and jσ′(q) > iq, it follows from the strict inequality

(Hip,iq,jσ′(q),jσ′(p)
) in Proposition 4.5 that sσ − sσ′ < 0.

• If jσ′(q) < iq, it follows from the strict inequality (Cip,jσ′(q),iq,jσ′(p)
)

in Proposition 4.5 that sσ − sσ′ < 0.
(iv) jσ′(p) ⩽ n and jσ′(q) ⩾ n. This and the next cases are similar but simpler

than (iii), the verifications are left to the reader.
(v) ip ⩽ n and iq ⩾ n. See (iv).

The proof is then complete. □

Proposition 4.15. For d ∈ relint(K2n), the set {f s
d · νd

ωk
| s ∈ S(ωk)} forms a basis

for Vd
ωk

.

Proof. The set of lattice points S(ωk) in the FFLV polytope for a fundamental weight
ωk is described in [19, Lemma 4.1]. It follows that for any J ⊆ {1, . . . , n, n, . . . , 1} of
cardinality k, the element s[k],J is contained in S(ωk). Since Vωk

is a subrepresentation
of

∧kC2n, it follows
S(ωk) = {s[k],J | J ⊆ {1, . . . , n, n, . . . , 1} with |J | = k}.

Let s ∈ NΦ+ with f s · νωk
̸= 0. We choose J ⊆ {1, . . . , n, n, . . . , 1} such that

e∗
J(f s ·νωk

) ̸= 0 when considered as an element of
∧kC2n. If s ̸= s[k],J , by Lemma 4.14,

dd : MJ
[k] → R does not attain its minimum at s. This implies f s

d·νd
ωk

= 0, and therefore
the set {f s

d · νd
ωk

| s ∈ S(ωk)} spans Vd
ωk

. By Theorem 4.1 (2), |S(ωk)| = dim Vωk
,

hence the above set forms a basis of Vd
ωk

. □

4.4.3. From interior to boundary. We now prove Theorem 4.11 for d ∈ K2n and
λ = ωk.

Proposition 4.16. For any d ∈ K2n, the set {f s
d · νd

ωk
| s ∈ S(ωk)} forms a basis for

Vd
ωk

.

Proof. When d is chosen from the boundary of the cone K2n, in the proofs of Lemma
4.12 and Lemma 4.14 above, the strict inequalities used therein from Proposition 4.5
are not necessarily strict, and therefore the proofs imply that the function dd attains
one of its minimum at sI,J (such a minimum is not necessarily unique). The set
{f s

d · νd
ωk

| s ∈ S(ωk)} still spans Vd
ωk

, hence they form a basis by Theorem 4.1(2). □

4.5. Proof of Theorem 4.11. Let d ∈ K2n. We proceed the proof by induction on
the height ht(λ) =

∑n
k=1 mk of the weight λ =

∑n
k=1 mkωk. When ht(λ) = 1, λ is a

fundamental weight: such cases are settled in Section 4.4. For the inductive step we
need to describe the Cartan component of the U(nd

−)-module Vd
λ ⊗Vd

µ. We start from
the following lemma:

Lemma 4.17. The set {f s
d ·(νd

λ ⊗νd
µ ) | s ∈ S(λ+µ)} is linearly independent in Vd

λ ⊗Vd
µ.
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Proof. The proof is the same as [13, Proposition 4], we sketch it for the convenience
of the reader.

Assume that there exists a non-trivial linear combination

(4.4)
∑

s∈S(λ+µ)

csf s
d · (νd

λ ⊗ νd
µ ) = 0.

Let ≻d be the partial order on NΦ+ defined by: s ≻d t if and only if dd(s) > dd(t).
We fix a linearization of this partial order, which is also denoted by ≻d.

Let s := max{t ∈ S(λ + µ) | ct ̸= 0} where the maximum is taken with respect to
≻d. By induction hypothesis we can write

(4.5) f s
d · (νd

λ ⊗ νd
µ ) =

∑
t∈S(µ),s−t∈S(λ)

γtf s−t
d · νd

λ ⊗ f t
d · νd

µ

with γt ∈ C. We set t0 := min{t ∈ S(µ) | γt ̸= 0} where the minimum is taken with
respect to ≻d. In (4.5) there exists a term γt0f s−t0

d · νd
λ ⊗ f t0

d · νd
µ with γt0 ̸= 0. By

the maximality of s and minimality of t0, such a term appears only once in the linear
combination (4.4), contradicting to the assumption that γt0 ̸= 0.

As a consequence of this contradiction, there exists no such a maximal s, implying
that all the coefficients in (4.4) are zero. □

Proposition 4.18. For d ∈ K2n and λ, µ ∈ Λ+, the Cartan component U(nd
−) · (νd

λ ⊗
νd

µ ) of Vd
λ ⊗ Vd

µ is isomorphic to Vd
λ+µ as U(nd

−)-modules.

Proof. We denote by W to be the Cartan component and consider the U(nd
−)-module

morphism Vd
λ+µ → W determined by νd

λ+µ 7→ νd
λ ⊗ νd

µ .
We first show that this morphism is surjective, hence dim W ⩽ dim Vλ+µ. It suffices

to prove that if f ∈ U(nd
−) such that f · νd

λ+µ = 0, then f · (νd
λ ⊗ νd

µ ) = 0. Assume
that f ∈ U(n−)d

k , from f · νd
λ+µ = 0, there exists F ∈ U(n−) such that F · vλ+µ = 0,

and F admits a decomposition F = F1 + F2 such that the class of F1 in U(nd
−) is f ,

and F2 ∈ U(n−)d
<k. As Vλ+µ is the Cartan component of Vλ ⊗Vµ as U(n−)-modules,

it follows F · (νλ ⊗ νµ) = 0. Note that Vd
λ ⊗ Vd

µ is the associated graded space of the
canonical filtration on Vλ ⊗ Vµ whose component of degree ⩽ m is⊕

s+t=m
(Vλ)d

⩽s ⊗ (Vµ)d
⩽t.

It then follows that the class of F · (νλ ⊗ νµ) in Vd
λ ⊗ Vd

µ is f · (νd
λ ⊗ νd

µ ), which is
therefore zero.

By Theorem 4.1 (2), it remains to apply Lemma 4.4 to conclude. □

Now we can complete the proof of Theorem 4.11. By Proposition 4.18, the set
{f s

d · νd
λ+µ | s ∈ S(λ + µ)} is sent to a linearly independent set in Vd

λ ⊗ Vd
µ. The

theorem thus follows from Theorem 4.1 (2).

4.6. Monomial ideal. When d is taken from the interior of K2n, we have the fol-
lowing

Corollary 4.19. For d in the interior of K2n and λ ∈ Λ+, if s /∈ S(λ), then f s
d ·νd

λ =
0. In particular, the ideal Id

λ is monomial.

Proof. We again proceed by induction on the height ht(λ). When ht(λ) = 1, the
corollary is a consequence of Lemma 4.14.

We consider the weight λ + µ for λ, µ ∈ Λ+. If s /∈ S(λ + µ), for any decomposition
s = s1 + s2 where s1, s2 ∈ NΦ+ , either s1 /∈ S(λ) or s2 /∈ S(µ). It follows by induction
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that f s
d ·(νd

λ ⊗νd
µ ) = 0 in Vd

λ ⊗Vd
µ. By Proposition 4.18, Vd

λ+µ is the Cartan component
in Vd

λ ⊗ Vd
µ, hence f s

d · νd
λ+µ = 0. □

5. Geometry of weighted PBW degenerations
5.1. Weighted degenerate symplectic flag varieties. In this section we fix
d ∈ K2n. We first introduce a geometric object associated to weighted PBW degen-
erate module Vd

λ for λ = m1ω1 + . . . + mnωn ∈ Λ+.
Since the Lie algebra nd

− is nilpotent, the exponential map is well-defined, and
Nd := exp(nd

−) is a connected simply connected Lie group with Lie algebra nd
−.

Definition 5.1. For d ∈ K2n we define the weighted degenerate symplectic flag
variety by

SpFd
2n := Nd · [νd

λ ] ⊆ P(Vd
λ).

By Proposition 4.18, as U(nd
−)-modules,

Vd
λ ↪→ Ud

λ := (Vd
ω1

)⊗m1 ⊗ . . . ⊗ (Vd
ωn

)⊗mn

is the Cartan component. Then the same argument as in the construction of the
embedding in (2.2) can be applied here to show that the image of the following
embedding

SpFd
2n ↪→ P(Vd

λ) ↪→ P(Ud
λ)

is in fact contained in Pd
n := P(Vd

ω1
) × . . . × P(Vd

ωn
), embedded in P(Ud

λ) via diagonal
and Segre embeddings:

Pd
n ↪→ P(Vd

ω1
)m1 × . . . × P(Vd

ωn
)mn ↪→ P(Ud

λ).

As a summary, we fix the following Plücker embedding of SpFd
2n:

SpFd
2n ↪→ Pd

n ↪→ P
(∧1C2n

)
× . . . × P

(∧nC2n
)

.

To distinguish this degenerate setup for different d, we denote Sd := C[Xd
J | J ∈ P]

(see Section 2.3 for the definition of P): the defining ideal of SpFd
2n with respect to

the above Plücker embedding will be denoted by Id
2n ⊆ Sd. Notice that giving Xd

J
degree ω|J|, the ideal Id

2n is Λ+-graded. The goal of this section is to show that the
ideal Id

2n is in fact an initial ideal of I2n with respect to a weight vector.
We define a weight map

w : K2n → RP , d 7→ wd,

where wd is the function on P sending J to −dd(s[k],J) (see (4.3) for the definition
of s[k],J). The function wd induces gradings on S and Sd by assigning degree wd(J)
to XJ and Xd

J .
When the element d ∈ K2n is clear from context, we will drop it from wd and

simply write w.

Theorem 5.2. The ideal Id
2n coincides with the initial ideal inw(I2n).

Remark 5.3. When d ∈ RΦ+ is the constant function with d(β) = 1, the variety
SpFd

2n is the symplectic degenerate flag variety introduced by Feigin, Finkelberg and
Littelmann in [17].
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5.2. Symplectic PBW-semistandard tableaux. We recall a set of tableaux from
[2] which is compatible with weighted degenerations (Corollary 5.10), and which will
be useful in our constructions henceforth.

To a dominant integral weight λ =
∑n

k=1 mkωk ∈ Λ+, we assign a partition λ =
(λ1 ⩾ λ2 ⩾ . . . ⩾ λn ⩾ 0) in the usual way, that is, by setting λi = mi + . . . + mn.
To such a partition, one attaches a Young diagram (we make use of the English
convention), denoted by Yλ. A symplectic PBW tableau, Tλ of shape λ is a filling of
the corresponding Young diagram Yλ with numbers Ti,j ∈ {1, . . . , n, n, . . . , 1} such
that for µj , the length of the j-th column, we have:

(i) if Ti,j ⩽ µj , then Ti,j = i;
(ii) if Ti1,j ̸= i1, and i1 < i2, then Ti1,j > Ti2,j ;
(iii) if Ti,j = i, and there exists i′ such that Ti′,j = i, then i′ < i.
A symplectic PBW tableau is said to be PBW-semistandard if in addition, the

following condition is satisfied:
(iv) for every j > 1 and every i, there exists i′ ⩾ i such that Ti′,j−1 ⩾ Ti,j .
Let SySTλ denote the set of all symplectic PBW-semistandard tableaux of shape

λ. To each T ∈ SySTλ, we associate the monomial XT =
∏λ1

j=1 XT1,j ,...,Tµj ,j
∈ V∗

λ.

Theorem 5.4 ([2]). The elements XT, T ∈ SySTλ, form a basis of C[SpF2n]λ.

We will need the following construction in Section 6.
For J = (j1, . . . , jd) ∈ P with 1 ⩽ j1 < . . . < jk ⩽ d. We consider the strip tableau

T := T (J) obtained as follows: first fill the j1, . . . , jk-th box from top by j1, . . . , jk;
then fill the rest of the diagram from bottom to top by jk+1, . . . , jd. Such a tableau
T is not necessarily a symplectic PBW tableau: from construction the conditions (i)
and (ii) are fulfilled, but the condition (iii) does not always hold. We will construct
another tableau st(T ) called the standardization of T .

Assume that the condition (iii) is violated in T , then there exists 1 ⩽ i ⩽ d such
that i appears at the p-th box from top (notice that by (i), i appears at the i-th box
from top). The assumption ensures i < p. We define a new tableau T1 of the same
shape as T , which differs to T at the i-th and the p-th boxes, where the i-th (resp.
p-th) box of T1 is filled by p (resp. p). From construction, this tableau T1 satisfies the
conditions (i) and (ii), and the number of i, such that 1 ⩽ i ⩽ d and the condition
(iii) is violated at i, decreases by one. Repeating the above procedure to T1 until the
condition (iii) is violated nowhere, the result is a symplectic PBW tableau st(T ).

5.3. Birational sequences and affine chart. We introduce a chart of SpFd
2n

motivated by birational sequences introduced in [12].
We enumerate the positive roots in Φ+ = {β1, β2, . . . , βN } in such a way that if

βi − βj is a sum of positive roots, then i < j. Such a sequence of positive roots
(β1, β2, . . . , βN ) is called a good sequence in loc.cit. This fixed enumeration gives an
isomorphism of affine varieties

CN ∼−→ N, (t1, . . . , tN ) 7→ exp(t1fβ1) · · · exp(tN fβN
).

In view of the Plücker embedding

SpF2n = N · ([νω1 ], . . . , [νωn
]) ↪→ P

(∧1C2n
)

× . . . × P
(∧nC2n

)
,

for a fixed x = exp(t1fβ1) · · · exp(tN fβN
) ∈ N and J ∈ P with k := |J |, the value

XJ(x · ([νω1 ], . . . , [νωn ])) = XJ(x · [νωk
]). When t1, . . . , tN vary in C, we obtain a

polynomial
pJ := XJ(x · [νωk

]) ∈ C[t1, . . . , tN ].
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We define an algebra morphism

φ : S → C[t1, . . . , tN , z1, . . . , zn], XJ 7→ pJz|J|,

where the variables z1, . . . , zn are used to reflect the multi-homogeneity of the Plücker
embedding. We consider the Λ+-grading on C[t1, . . . , tN , z1, . . . , zn] by assigning de-
gree ωk to zk, 1 ⩽ k ⩽ n and degree 0 to ti, 1 ⩽ i ⩽ N . With the natural Λ+-grading
on S, φ is Λ+-graded. The following lemma follows from definition.

Lemma 5.5. We have: ker φ = I2n.

In the degenerate setting, we consider the following isomorphism of affine varieties

CN ∼−→ Nd, (t1, . . . , tN ) 7→ exp(t1fd
β1

) · · · exp(tN fd
βN

).

We have fixed the Plücker embedding

SpFd
2n = Nd · ([νd

ω1
], . . . , [νd

ωn
]) ↪→ P

(∧1C2n
)

× . . . × P
(∧nC2n

)
.

We define a grading on C[t1, . . . , tN ] by assigning degree −dβi to the variable ti.
Then for x = exp(t1fd

β1
) · · · exp(tN fd

βN
) ∈ Nd, Xd

J (x · ([νd
ω1

], . . . , [νd
ωn

])) = ind(pJ) ∈
C[t1, . . . , tN ], where ind is the initial term with respect to the above grading
on C[t1, . . . , tN ]. We set pd

J := ind(pJ). This notation ind can be extended to
C[t1, . . . , tN , z1, . . . , zn] by requiring the variables z1, . . . , zn to have degree 0. We will
denote this degree of a polynomial p ∈ C[t1, . . . , tN , z1, . . . , zn] by degd(p).

Similarly we define an algebra morphism

φd : Sd → C[t1, . . . , tN , z1, . . . , zn], Xd
J 7→ pd

Jz|J|.

With the same Λ+-grading as above, φd is Λ+-graded.

Lemma 5.6. We have: ker φd = Id
2n.

Proof. This lemma follows from the following rephrasing of the definition: for a Λ+-
homogeneous element f ∈ Sd of degree µ = µ1ω1 + . . . + µnωn, then

φd(f) = f(x · ([νd
ω1

], . . . , [νd
ωn

]))zµ1
1 · · · zµn

n

where x = exp(t1fd
β1

) · · · exp(tN fd
βN

) ∈ Nd is a generic element. □

Example 5.7. We illustrate the construction above in an example. For sp4, we choose
the enumeration (β1, β2, β3, β4) = (α1,1, α1,2, α1,1, α2,2).

For a fixed x = exp(t1f1,1) exp(t2f1,2) exp(t3f1,1) exp(t4f2,2), we have

x · e1 = e1 + t3e2 + t2e2 + (t1 + t2t3)e1

and

x · e1 ∧ e2 = e1 ∧ e2 + t4e1 ∧ e3 + (t2 − t3t4)e1 ∧ e1 + (t3t4 − t2)e2 ∧ e2+

+(−t1 − t2
3t4)e2 ∧ e1 + (t2

2 − t1t4 − 2t2t3t4)e2 ∧ e1.

The map φ sends

X1 7→ z1, X2 7→ t3z1, X2 7→ t2z1, X1 7→ (t1 + t2t3)z1, X12 7→ z2, X12 7→ t4z2,

X11 7→ (t2 − t3t4)z2, X22 7→ (t3t4 − t2)z2, X21 7→ −(t1 + t2
3t4)z2,

X21 7→ (t2
2 − t1t4 − 2t2t3t4)z2,

It is straightforward to verify that the defining relations introduced in Section 2.3 are
in the kernel of φ.
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We choose d ∈ K4 with d1,1 = 3, d2,2 = 1, d1,2 = 2 and d1,1 = 1. Such a point d
is in the interior of K4. The variables t1, t2, t3 and t4 get degree −1, −2, −3 and −1
respectively. The map φd sends

Xd
1 7→ z1, Xd

2 7→ t3z1, Xd
2 7→ t2z1, Xd

1 7→ t1z1, Xd
12 7→ z2, Xd

12 7→ t4z2,

Xd
11 7→ t2z2, Xd

22 7→ −t2z2, Xd
21 7→ −t1z2, Xd

21 7→ −t1t4z2.

The following relations are contained in ker φd:
X12X2 + X22X1, X12X1 + X21X1, X22X1 − X21X2,

X12X1 + X21X1, X12X21 − X12X21, X11 + X22.

We define a monomial order >r on C[t1, . . . , tN , z1, . . . , zn] by requiring: two mono-
mials

ta1
1 · · · taN

N zλ1
1 · · · zλn

n >r tb1
1 · · · tbN

N zµ1
1 · · · zµn

n

if the last non-zero coordinate of
(a1, . . . , aN , λ1, . . . , λn) − (b1, . . . , bN , µ1, . . . , µn)

is positive. We define a valuation
ν>r : C[t1, . . . , tN , z1, . . . , zn] → NN × Nn,

sending a polynomial f to the minimal exponent appearing in f with respect to
>r. Let p1 : NN × Nn → NN and p2 : NN × Nn → Nn be the projections to the
corresponding components.

Recall that a symplectic PBW-semistandard tableau T ∈ SySTωk
is a strip of

length k filled by elements in the set {1, . . . , n, n, . . . , 1}. Such a tableau gives an
element J(T ) ∈ P as the ordered set of numbers appearing in T .

For 1 ⩽ k ⩽ n, we define a map

ρk : SySTωk
→ S(ωk) ⊆ NΦ+

, T 7→ p1(ν>r (φ(XJ(T )))) ∈ NN ,

here we identify NN with NΦ+ by sending the coordinate ei to the coordinate function
eβi

.

Lemma 5.8. The map ρk is a bijection.

Proof. According to Theorem 4.1 and Theorem 5.4, both sets have the same cardi-
nality dim Vωk

. To show the surjectivity, we construct a map from S(ωk) to SySTωk
.

Take s ∈ S(ωk) with support {αi1,j1 , . . . , αir,jr
}, from the proof of Lemma 4.2, such a

support is an anti-chain in Φ+
k . As consequences we have for 1 ⩽ s ⩽ r, is ⩽ k ⩽ js,

and if we assume that i1 < . . . < ir, then j1 > . . . > jr.
We define a strip tableau T of length k as follows: start with the tableau filled with

1, . . . , k from top to bottom, then for 1 ⩽ s ⩽ r, replace is by either js + 1 if js < n,
or js otherwise. It remains to show that T is a symplectic PBW tableau. Indeed, the
condition (i) and (iii) are fulfilled from construction, and the property j1 > . . . > jr

gives the condition (ii).
It remains to show that ρk(T ) = s. First notice that by definition of φ, all monomi-

als appearing in φ(XJ(T )) are of form tr1
1 · · · trN

N zk, and the positive integers r1, . . . , rN

satisfies:
(5.1) r1β1 + . . . + rN βN = ωk − wt(eJ(T )),
where wt(eJ(T )) is the weight of the element eJ(T ) ∈ Vωk

. Consider the set of all
possible tuples (r1, . . . , rN ) ∈ NN satisfying (5.1), the monomial order >r induces a
total order on these tuples. We claim that the minimal element is s[k],J(T ), looked
in NN . Indeed, from the definition of the monomial order, we would prefer to split
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ωk − wt(eJ(T )) into positive roots of higher heights. This gives a greedy procedure:
first check whether ωk − wt(eJ(T )) − β1 is in the monoid NΦ+ generated by positive
roots, if yes then proceed by considering this new weight ωk −wt(eJ(T ))−β1, otherwise
move to β2 and repeat the procedure with the original weight ωk − wt(eJ(T )). The
output of this algorithm is the element s[k],J(T ). Since s[k],J(T ) ∈ M

J(T )
[k] (see Section

4.4.2 for this notation), we proved that ρk(T ) = s[k],J(T ) when looked in NN .
To conclude it suffices to notice that s = s[k],J(T ) (see (4.3)). □

For an arbitrary λ ∈ Λ+ and T ∈ SySTλ, we let T 1, . . . , T m be the columns of T
with T k ∈ SySTωik

. The maps ρ1, . . . , ρn can be merged together to give a map

ρλ : SySTλ → S(λ), T 7→ ρi1(T 1) + . . . + ρim(T m).

By Lemma 5.8 and Theorem 4.1 (1), the map ρλ is well-defined.

Proposition 5.9. The map ρλ is a bijection.

Proof. Again by Theorem 4.1 and Theorem 5.4, it suffices to show the surjectiv-
ity. Given s ∈ S(λ), let s = s1 + . . . + sm be the standard decomposition of s in
Section 4.1 with sk ∈ S(ωik

). We define a tableau T by stacking the strips T 1 :=
ρ−1

i1
(s1), . . . , T m := ρ−1

im
(sm) from left to right. By Lemma 5.8, T is a symplectic

PBW tableau.
We show that T is PBW-semistandard. Let T r

j denote the j-th element in T r from
the top. The condition (iv) involves only two neighbored columns, we look at the
strip tableaux T ℓ and T ℓ+1. If T ℓ+1

j = j, the condition (iv) is fulfilled at this place
by the condition (ii) for T ℓ. Otherwise assume that T ℓ+1

j = p with p ̸= j. If p ⩽ n,
then αj,p−1 is contained in the support of sℓ+1. From the construction of the standard
decomposition, in the support of sℓ there must be a positive root αq,t with q ⩽ k ⩽ t,
j ⩽ q and p − q ⩽ t. From the construction in Lemma 5.8, T ℓ

p ⩾ p. If p ⩾ n, αj,p is
contained in the support of sℓ+1, with the same argument one verifies the condition
(iv). □

5.4. Proof of Theorem 5.2. We are ready to prove Theorem 5.2. The inclusion
inw(I2n) ⊆ Id

2n follows from the following claim: for any f ∈ S, φd(inw(f)) =
ind(φ(f)), where inw(f) is looked in Sd. Assume that the claim is established, we
show that for any f ∈ I2n, inw(f) ∈ Id

2n. According to Lemma 5.6, it suffices to
show that φd(inw(f)) = 0. By Lemma 5.5, φ(f) = 0, applying the claim proves the
inclusion.

To show the claim, first notice that when f = XJ for some J ∈ P, inw(Xd
J ) = Xd

J

and the identity φd(Xd
J ) = ind(φ(XJ)) is the definition of φd. If f is a monomial in

XJ , the identity holds since both φ and φd are algebra morphisms, and ind preserves
products of polynomials. For an arbitrary polynomial f ∈ S, assume that inw(f) =
c1Xa1 + . . . + ckXak where for 1 ⩽ i ⩽ k, ai ∈ NP , Xai :=

∏
J∈P X

ai(J)
J and

ci ∈ C ∖ {0}. Moreover, the degree d := degw(Xai) :=
∑

J∈P w(J)ai(J) is the same
for 1 ⩽ i ⩽ k. From the definition of w and the grading on C[t1, . . . , tN , z1, . . . , zn],
we have: for 1 ⩽ i ⩽ k, degw(Xai) = degd(φ(Xai)). For a monomial Xb in f which
does not appear in inw(f), all monomials in φ(Xb) will have strictly smaller degree
than d, hence they do not contribute to ind(φ(f)). Moreover, since degd(φ(Xai)) are
the same for 1 ⩽ i ⩽ k, it then follows

ind(φ(c1Xa1 + . . . + ckXak )) = ind(φ(c1Xa1)) + . . . + ind(φ(ckXak )).
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As a summary,

φd(inw(f)) = φd(c1Xa1 + . . . + ckXak )
= φd(c1Xa1) + . . . + φd(ckXak )
= ind(φ(c1Xa1)) + . . . + ind(φ(ckXak ))
= ind(φ(c1Xa1 + . . . + ckXak )) = ind(φ(f)).

The proof of the claim is then complete.
To show the other inclusion, first notice that since φd is Λ+-graded, so is Sd/Id

2n;
moreover, the ideal inw(I2n) is an initial ideal of I2n which is Λ+-graded, hence the
algebra Sd/inw(I2n) is also Λ+-graded. We prove the other inclusion by comparing
the dimension of the component of degree λ ∈ Λ+ in both Sd/Id

2n and Sd/inw(I2n).
Being an initial ideal of I2n, the dimension of the degree λ component of Sd/inw(I2n)
coincides with that of S/I2n, which is dim Vλ. We show that the degree λ component
of Sd/Id

2n has the same dimension.
For this we consider the monomial Xd

T := Xd
J(T 1) · · · Xd

J(T m) where T 1, . . . , T m are
the columns of a symplectic PBW-semistandard tableau T ∈ SySTλ. We claim that
the elements {φd(Xd

T ) | T ∈ SySTλ} are linearly independent. This will terminate
the proof as by Theorem 5.4, the cardinality of SySTλ is dim Vλ.

To prove the claim, we observe that for any J ∈ P, ν>r (φ(XJ)) = ν>r (φd(Xd
J )).

Indeed, assume that |J | = k, and denote by (s1, . . . , sN ) the element s[k],J under the
identification between NΦ+ and NN . From the proof of Lemma 5.8, we have shown
that the minimal term in pJ with respect to >r is ts1

1 · · · tsN

N zk. By the argument in the
beginning of Section 4.4.3, this monomial appears in pd

J hence it is also the minimal
term in pd

J with respect to >r. From this observation,

ν>r (φd(Xd
T )) = ν>r (φd(Xd

J(T 1))) + . . . + ν>r (φd(Xd
J(T m)))

= ν>r
(φ(XJ(T 1))) + . . . + ν>r

(φ(XJ(T m)))
= (ρλ(T ), λ1, . . . , λn)

where ρλ(T ) ⊆ NΦ+ is looked in NN . When T runs over SySTλ, by Proposition 5.9,
ρλ(T ) are pairwise different, this proves the claim, and the proof of Theorem 5.2 (1)
is thus complete.

In the last part of the proof we have shown

Corollary 5.10. The set {Xd
T | T ∈ SySTλ} form a basis of the multi-homogeneous

coordinate ring Sd/Id
2n of SpFd

2n.

5.5. Proof of Theorem 3.2 (2). We consider the polynomial map φd. When d
is chosen from the interior of K2n, from Lemma 4.14 and Lemma 5.8 we know that
for any T ∈ SySTωk

, ind(pJ(T )) is the monomial ts1
1 · · · tsN

N zk where (s1, . . . , sN )
is s[k],J(T ) under the identification of NΦ+ to NN . The map SySTωk

→ S(ωk), T 7→
z−1

k ind(pJ(T )) is hence a bijection. By Theorem 4.1, the degree λ component of Sd/Id
2n

can be identified by φd with monomials having lattice points in FFLV(λ) as exponents.
When we only look the homogeneous components of having multiples of λ as de-

grees, they form the homogeneous coordinate ring of SpFd
2n in P(Vd

λ). From the above
argument, such a ring is the homogeneous coordinate ring of the toric variety associ-
ated to the polytope FFLV(λ). The proof is thus complete.

5.6. An analogue of the Borel-Weil theorem. Recall the embedding

ιλ : SpFd
2n ↪→ P(Vd

λ)
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from Subsection 5.1 above. Consider the pull-back of the canonical line bundle
OP(Vd

λ
)(1) with respect to the embedding:

Ld
λ := ι∗

λ(OP(Vd
λ

)(1)).

Recall the degenerate group Nd acting on Vd
λ . By an argument similar to the proof of

[11, Theorem 8.1] and from Corollary 5.10, we deduce the following analogue of the
Borel-Weil theorem in our context.

Theorem 5.11. For every d ∈ K2n, we have H0(SpFd
2n, Ld

λ) ≃ (Vd
λ)∗ as Nd-modules.

Moreover, the following Borel-Weil type vanishing theorem holds true.

Theorem 5.12. Hm(SpFd
2n, Ld

λ) = 0 for all λ ∈ Λ+ and all m > 0.

Proof. By [21, Sec. 3.5], the theorem holds for any d in the relative interior of K2n,
since the line bundle Ld

λ is generated by its sections. By Theorem 3.2 (2), it follows
that for any generic point d′ ∈ K2n, one has a flat family over A1 with the generic
fiber SpFd′

2n and SpFd
2n as special fiber. The claim of the theorem then follows from

[23, Theorem 12.8]. □

6. A maximal cone in Trop(SpF2n)
In this section we describe the image of w : K2n → RP defined in Section 5.1.

First we extend the map w to the entire RΦ+ using the same definition by choosing
d from RΦ+ . The extended map is linear and injective, and will be again denoted by
w : RΦ+ → RP . We shall denote the image w(K2n) by C2n, and set sJ ∈ RP to be
the coordinate function corresponding to J ∈ P. By the linearity of the map w, C2n

is a polyhedral cone, which is termed symplectic FFLV tropical cone. We start from
describing its defining inequalities.

We will use notations introduced in Section 5.2 and Section 5.3.

Lemma 6.1. The following set of equalities and inequalities cuts out the cone C2n in
RP :

(i) s1,...,k = 0 for 1 ⩽ k ⩽ n;
(ii) for any i < j with 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ 1 and any 1 ⩽ k < ℓ ⩽ n such that

i ⩽ k < ℓ < j, we have s1,...,i−1,i+1,...,k,j = s1,...,i−1,i+1,...,ℓ,j;
(iii) for any J = (j1, . . . , jk) ∈ P such that st(T (J)) = T (J), let {αp1,q1 , . . . , αpℓ,qℓ

}
be the support of ρk(T (J)) with p1 < · · · < pℓ and q1 > · · · > qℓ; then
sj1,...,jk

= s1,...,p1−1,q1 + · · · + s1,...,pℓ−1,qℓ
;

(iv) for any J ∈ P such that st(T (J)) ̸= T (J), then one has sJ = sst(T (J));
(v) s1,...,i−1,i+1 + s1,...,i,i+2 ⩽ s1,...,i−1,i+2 for 1 ⩽ i ⩽ n − 1;
(vi) s1,...,i−1,j + s1,...,i,j+1 ⩽ s1,...,i−1,j+1 + s1,...,i,j for 1 ⩽ i < j ⩽ n − 1;
(vii) s1,...,i−1,j+1 + s1,...,i,j ⩽ s1,...,i−1,j + s1,...,i,j+1 for 1 ⩽ i < j ⩽ n − 1;
(viii) 2s1,...,i−1,i+1 ⩽ s1,...,i−1,i + s1,...,i,i+1 for 1 ⩽ i ⩽ n − 1.

Proof. The linear equalities (i), (iii) follow directly from the definition of w. Condition
(ii) follows from the fact that for any i < k < j with k ⩽ n, one has s1,...,i−1,i+1,...,k,j =
ai,j . The equality (iv) holds by the construction of the standardization of a strip
tableau in Section 5.2: for J ∈ P such that st(T (J)) ̸= T (J) with st(T (J)) = T (J ′)
for some J ′ ∈ P, s[k],J = s[k],J′ . The image of w : RΦ+ → RP is cut out in RP by
the linear equalities (i)-(iv). The inequalities (v)-(viii) follow from Definition 4.3. By
Proposition 4.4 (2), the equalities and inequalities (i)-(viii) characterize the image of
K2n under w. □

From Proposition 4.4 (1), C2n is an n2–dimensional cone in RP .
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Example 6.2. When n = 2, the cone C4 ⊆ RP is defined by the following equalities
and inequalities:

s1 = s12 = 0, s2 = s1,1 = s2,2, s1 = s2,1, s2,1 = s1 + s1,2,

s2 + s1,2 ⩾ s2, s2 + s2 ⩾ s1, 2s2 ⩾ s1 + s1,2.

Proof of Theorem 3.2 (1). First notice that any Plücker coordinate XJ for J ∈ P
can not vanish identically on any SpFd

2n for d ∈ K2n. From Theorem 5.2, for any
point in C2n, the initial ideal of I2n associated to this point is a prime ideal, which
contains no monomials, hence C2n is contained in the tropical symplectic flag variety
Trop(SpF2n). It remains to show that this cone is a maximal cone since the primeness
follows from Theorem 5.2. The idea of the proof is the same as [11, Theorem 7.3].

Since the dimension of Trop(SpF2n) is n2, the cone C2n is of maximal dimension.
Assume there is a maximal cone C′

2n ⊂ Trop(SpF2n) that contains C2n, then dim C′
2n =

n2 and C′
2n must be contained in the image of w. Therefore according to the proof of

Lemma 6.1, any point s := (sJ)J∈P ∈ C′
2n must satisfy the linear equalities (i)-(iv) of

Lemma 6.1. We want to show that C′
2n ⊆ C2n, so we are left with showing that the

point s satisfies the inequalities (v)-(viii) of Lemma 6.1. We argue by showing that
no point outside C′

2n lies in Trop(SpF2n). This is accomplished by considering each
of the four types of facets corresponding to the inequalities (v)-(viii) as follows:

(v) We consider for 1 ⩽ i ⩽ n − 1 the Plücker relation:
X1,...,iX1,...,i−1,i+1,i+2 + X1,...,i−1,i+2X1,...,i,i+1 − X1,...,i−1,i+1X1,...,i,i+2.

From Lemma 6.1 (i) and (ii), s1,...,i = s1,...,i,i+1 = 0 for 1 ⩽ i ⩽ n − 1 , and
s1,...,i−1,i+1,i+2 = s1,...,i−1,i+2. If s1,...,i−1,i+2 < s1,...,i−1,i+1 + s1,...,i,i+2,
then the initial form of the above Plücker relation is the monomial
−X1,...,i−1,i+1X1,...,i,i+2. This means s /∈ Trop(SpF2n), so the inequalities in
(v) must be valid.

(vi) For 1 ⩽ i < j ⩽ n − 1, we have the Plücker relation:
X1,...,i−1,j,j+1X1,...,i,i+1 − X1,...,i−1,i+1,j+1X1,...,i,j + X1,...,i−1,i+1,jX1,...,j+1.

From (iii), we have the equality s1,...,i−1,j,j+1 = s1,...,i−1,j+1 + s1,...,i,j . There-
fore, if s1,...,i−1,j + s1,...,i,j+1 > s1,...,i−1,j+1 + s1,...,i,j , the initial form of the
above Plücker relation would be the monomial X1,...,i−1,i+1,jX1,...,j+1. This
would imply again that s /∈ Trop(SpF2n). It thus follows that the inequalities
in (vi) must hold true.

(vii) Further still for 1 ⩽ i < j ⩽ n − 1, we consider the Plücker relation:
X1,...,i−1,i+1,j+1X1,...,i,j + X1,...,i−1,j+1,jX1,...,i,i+1 − X1,...,i−1,i+1,jX1,...,i,j+1.

We again have from (iii) the equality s1,...,i−1,j+1,j = s1,...,i−1,j + s1,...,i,j+1.
Therefore if s1,...,i−1,j+1 + s1,...,i,j > s1,...,i−1,j + s1,...,i,j+1, then the initial
form of the above Plücker relation is the monomial X1,...,i−1,i+1,j+1X1,...,i,j .
This then implies that s /∈ Trop(SpF2n). Inequalities in (vii) must therefore
be valid.

(viii) Finally, for 1 ⩽ i ⩽ n − 1 we consider the Plücker relation:
X1,...,i,iX1,...,i−1,i+1,i+1 − X1,...,i−1,i+1,iX1,...,i,i+1 + X1,...,i,i+1X1,...,i−1,i+1,i.

By (iii) we have the equality s1,...,i−1,i+1,i = s1,...,i−1,i + s1,...,i,i+1 and by (iv)
we have the equality s1,...,i,i = s1,...,i−1,i+1,i+1. Therefore if 2s1,...,i−1,i+1 >
s1,...,i−1,i +s1,...,i,i+1, then the initial form of the above Plücker relation is the
monomial X1,...,i,iX1,...,i−1,i+1,i+1. This means that s /∈ Trop(SpF2n), hence
inequalities in (viii) must hold true.
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The above argument shows that C′
2n ⊆ C2n. The proof is then complete. □
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