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Schur-positivity of short chords in matchings

Avichai Marmor

Abstract
We prove that the set of matchings with a fixed number of unmatched vertices is Schur-

positive with respect to the set of short chords. Two proofs are presented. The first proof
applies a new combinatorial criterion for Schur-positivity, while the second is bijective. The
coefficients in the Schur expansion are derived, and interpreted in terms of Bessel polynomials.
Then, we present a variant of Knuth equivalence for matchings, and show that every equivalence
class corresponds to a Schur function. We proceed to find various refined Schur-positive sets,
including the set of matchings with a prescribed crossing number and the set of matchings with
a given number of pairs of intersecting chords. Finally, we characterize all the matchings m

such that the set of matchings avoiding m is Schur-positive.

1. Introduction
Denote the set of nonnegative integers by N, and the set of positive integers by P.
Given N ∈ N and a set A, together with a set-valued function D : A → 2[N−1] which
is sometimes called a statistic, we define its quasisymmetric generating function

QD(A) =
∑
a∈A

FN,D(a),

where FN,S is the fundamental quasisymmetric function introduced by Gessel [13],
indexed by a subset S ⊆ [N − 1] (see Section 2.1 for more background). We write
Q(A) instead of QD(A) when D is clear from the context. The following long-standing
problem was first addressed in [14].

Problem 1.1 (Gessel and Reutenauer). Find sets A and statistics D for which QD(A)
is symmetric.

When QD(A) is symmetric, we say that A is symmetric with respect to the statistic
D (we omit D when it is clear from the context). If A is symmetric, then there is a
unique expansion

QD(A) =
∑
λ⊢N

cλsλ,
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where cλ ∈ Q and sλ are Schur functions (discussed in Section 2.1). The coefficients
cλ are called the Schur coefficients of A. If cλ ∈ N for all λ ⊢ N , we say that A is
Schur-positive with respect to D.

Gessel and Reutenauer also addressed the following problem:

Problem 1.2. Find Schur-positive sets A.

The study of symmetric functions is partially motivated by the correspondence
between symmetric functions of degree N and class functions on the symmetric group
SN , which is established through the Frobenius characteristic map described in [26,
Chapter 4.7]. A symmetric function is Schur-positive if its corresponding class function
is a proper character (see [3] for a detailed explanation). This perspective provides a
rich algebraic framework for studying symmetric and Schur-positive sets.

During the last few decades, many Schur-positive subsets of the symmetric group
SN were constructed with respect to the standard descent function of SN , where a
permutation π ∈ SN has i ∈ Des(π) if and only if π(i) > π(i + 1). A fundamental
construction is due to Gessel [13], who proved that every set of permutations which
is closed under the Knuth equivalence relations is Schur-positive. Furthermore, he
showed that every Knuth class A ⊂ SN (i.e. equivalence class of the Knuth relations)
satisfies QDes(A) = sλ for some λ ⊢ N . This result has many direct consequences.
For example, for every J ⊆ [N − 1], the set D−1

N,J = {π−1 | Des(π) = J} ⊆ SN is
Schur-positive because it is closed under the Knuth relations.

Other examples of Schur-positive sets of permutations include all conjugacy classes,
as proven by Gessel and Reutenauer [14], and the set of permutations π ∈ SN with
a fixed number of inversions (i.e. i < j such that π(i) > π(j)), a result demonstrated
by Adin and Roichman [3, Prop. 9.5].

Some Schur-positive sets that do not consist of permutations were found as well.
For instance, Gessel [13] proved that for every partition λ ⊢ N , the set SYT(λ) of
standard Young tableaux of shape λ is Schur-positive (see Section 2.2 for details).

In this work, we focus on the set of matchings of a given set of vertices.

Definition 1.3. A matching m on a finite set of vertices S ⊆ P is an unordered
partition of S into blocks, each block of size 1 or 2. If a block of a matching m
contains only the vertex i, we say that i is an unmatched vertex of m and denote
(i) ∈ m. If a block contains both i and j for i < j, we say that (i, j) is a chord of
m and denote (i, j) ∈ m. That is, the notation (i, j) ∈ m implies that i < j. When
(i, j) ∈ m, we also say that i opens this chord and j closes it. If a matching m has no
unmatched vertex, then we say that m is a perfect matching.

We will focus on matchings on the set [N ] := {1, . . . , N} for some N ∈ N. Denote
by MN the set of matchings on [N ], and by MN,f the set of matchings on [N ] with
f unmatched vertices.

For example,

M4,0 =
{

{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}
}

and
M3,1 =

{
{(1, 2), (3)}, {(1, 3), (2)}, {(1), (2, 3)}

}
.

Definition 1.4. Let m be a matching on S. If (i1, i3), (i2, i4) ∈ m for i1 < i2 < i3 < i4
then we say that the chords (i1, i3) and (i2, i4) intersect.

Definition 1.5. Let m ∈ MN be a matching on [N ]. If (i, i+1) ∈ m, then it is called
a short chord. We denote Short(m) := {i ∈ [N − 1] | (i, i + 1) ∈ m}.
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For example, consider the matching m = {(1, 3), (2, 6), (4, 5)} as in Figure 1.
In this matching the chords (1, 3) and (2, 6) intersect, and Short(m) = {4} (since
(4, 5) ∈ m).

1 2 3 4 5 6

Figure 1. The matching m = {(1, 3), (2, 6), (4, 5)}.

Note that N /∈ Short(m) for every m ∈ MN . This holds even where (1, N) ∈ m.
Enumerative properties of short chords in perfect matchings were studied exten-

sively. The distribution of the number of short chords in perfect matchings appears
in entry A079267 of the OEIS [24], and was analyzed for example by Cameron and
Killpatrick [8]. McSorley and Feinsilver [23] discovered that short chords of matchings
are closely related to Bessel polynomials, as will be discussed in Section 4.3.

The study of short chords of matchings is also motivated by the involutive length
and its corresponding poset studied by Adin, Postnikov and Roichman [2]. Related
posets derived from the Bruhat order were studied by Richardson and Springer [25],
Hultman [17], Deodhar and Srinivasan [10] and others, motivated by the topology
of linear algebraic groups (see [17] for details). Further discussion on the algebraic
motivations can be found in Section 6.3.

We prove the following:

Theorem 1.6. Let n, f ∈ N be nonnegative integers, and denote N = 2n+f . Then the
set MN,f is Schur-positive with respect to Short. Furthermore, its Schur expansion is
given by the following formula:

QShort(MN,f ) =
n∑

k=0
|{m ∈ MN−2k,f | Short(m) = ∅}| sN−k,k.

It turns out that the Schur coefficients of QShort(MN,f ) may be explicitly inter-
preted in terms of Bessel polynomials, see Corollary 4.13 below.

We give two proofs of Theorem 1.6. The first proof relies on a new criterion for
Schur-positivity of sparse statistics:

Definition 1.7. We say that a set J ⊆ [N − 1] is sparse if {j, j + 1} ⊈ J for every
1 ⩽ j ⩽ N − 2.

For a set A and a function D : A → 2[N−1], we say that D is sparse if D(a) is
sparse for all a ∈ A.

Theorem 1.8. Let A be a finite set with a statistic D : A → 2[N−1], and denote
n = ⌊ N

2 ⌋. Then the following statements are equivalent:
• D is sparse, and for every sparse J ⊆ [N − 1], the cardinality of the set

{a ∈ A | D(a) ⊇ J} depends on the size of J only.
• A is symmetric with respect to D, with a Schur expansion of the form

QD(A) =
∑n

k=0 cksN−k,k for some ck ∈ Z.
Furthermore, if these statements hold then A is Schur-positive, and its Schur ex-

pansion is

QD(A) =
n∑

k=0
|{a ∈ A | D(a) = {1, 3, 5, . . . , 2k − 1}}| sN−k,k.
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This new criterion implies Theorem 1.6, as shown at the beginning of Section 4,
and can be applied to many other sets as well. It is also applied in a subsequent paper
[1] to prove Schur-positivity of Gallai colorings and transitive colorings of complete
graphs.

The second proof of Theorem 1.6 provides a bijection from the set of matchings
to a multiset of SYTs, and applies the bijective criterion of Adin and Roichman for
Schur-positivity [3, Prop. 9.1], presented in Theorem 2.5.

Following the bijective proof, we present an equivalence relation on matchings,
motivated by Knuth equivalence of permutations [19]:

Definition 1.9. We say that two matchings m1, m2 ∈ MN are Knuth equivalent if
one can be obtained from the other by a sequence of elementary Knuth transforma-
tions:

• Replace the chords (i, i + 1), (i + 2) with the chords (i), (i + 1, i + 2) or vice
versa (i.e. interchange a short chord with an adjacent unmatched vertex).

• Replace the chords (i, i + 1), (i + 2, j) with the chords (i, j), (i + 1, i + 2), or
(i, i + 1), (j, i + 2) with (j, i), (i + 1, i + 2), or vice versa (i.e. interchange a
short chord with an adjacent endpoint of another chord).

We also define the core of a given matching:

Definition 1.10 (Definition 4.3 below). The core of a given matching m ∈ MN ,
denoted core(m), is obtained by repeatedly removing short chords from the matching
until no short chords remain. The remaining vertices are then re-indexed with natural
numbers starting from 1 while preserving their relative order.

A classical result due to Knuth [19] states that two permutations π1, π2 ∈ SN are
Knuth equivalent if and only if P (π1) = P (π2), where P (π) denotes the insertion
tableau of a permutation π defined by the Robinson-Schensted correspondence (see
[26, Section 3] for details). We prove the following analogous result for matchings:

Theorem 1.11 (Theorem 5.1 below). Two matchings m1, m2 ∈ MN are Knuth equiv-
alent if and only if core(m1) = core(m2).

We show that Knuth classes of matchings, similarly to Knuth classes of permuta-
tions, have Schur functions as their generating functions:

Theorem 1.12 (Corollary 5.9 below). Every set M ⊆ MN of matchings that is closed
under Knuth equivalence is Schur-positive with respect to Short. Moreover, if M is a
Knuth equivalence class, then its generating function is QShort(M) = sN−k,k, where
N − 2k is the number of vertices of core(m) for some arbitrary matching m ∈ M.

Furthermore, utilizing Knuth classes, we explore in Section 5 various refined Schur-
positive sets, including:

• The set of k-crossing matchings (i.e. where k is the maximal cardinality of a
set of pairwise intersecting chords).

• The set of matchings with exactly k pairs of intersecting chords.
Lastly, we define MN,f (m) as the set of matchings in MN,f that avoid the pattern

m. In Proposition 5.14, we provide a characterization of the matchings m for which
MN,f (m) is Schur-positive for all N and f .

The remainder of this work is organized as follows: Section 2 provides necessary
background. In Section 3, we prove a necessary and sufficient criterion for sparse
Schur-positivity (Theorem 1.8). In Section 4, we focus on matchings. We first derive
the Schur-positivity of short chords in matchings (Theorem 1.6) from the above cri-
terion. Then, we present an alternative bijective proof, followed by a description of
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the Schur coefficients of matchings in terms of Bessel polynomials. In Section 5, we
utilize the bijection to refine the Schur-positivity property of Theorem 1.6. Finally,
Section 6 concludes with further remarks and open problems.

2. Preliminaries and notation
Definition 2.1. For nonnegative integers i, j, we define the interval

[i, j] :=
{

{i, i + 1, . . . , j} if i ⩽ j,
∅ otherwise.

We also define [i] = [1, i].

Definition 2.2. Given a set A, a function D : A → 2[N−1] and a set J ⊆ [N − 1],
we denote A(D = J) := {a ∈ A | D(a) = J} and A(D ⊇ J) := {a ∈ A | D(a) ⊇ J}.

2.1. Symmetric and quasisymmetric functions.

Definition 2.3. Given N ∈ N, a partition λ of N (denoted λ ⊢ N), is a weakly-
decreasing sequence λ = (λ1 ⩾ λ2 ⩾ · · · ⩾ λℓ) of positive integers, such that λ1 + · · ·+
λℓ = N . The values (λ1, . . . , λℓ) are called the parts of λ.

A composition α of N (denoted α ⊨ N) is a sequence α = (α1, α2, . . . , αℓ) of
positive integers, such that α1 + · · · + αℓ = N . Every partition is a composition.

Compositions of N are in bijection with subsets of [N − 1] := {1, . . . , N − 1} by

[N − 1] ⊇ {i1, i2, . . . , iℓ} 7→ (i1, i2 − i1, . . . , iℓ − iℓ−1, N − iℓ) ⊨ N.

For example, for N = 10, {2, 4, 7, 8} 7→ (2, 2, 3, 1, 2). The composition associated to a
set S is denoted αS , and the set associated to a composition α is denoted Sα.

We say that two compositions α, β ⊨ N are equivalent (denoted α ∼ β), if β is a
rearrangement of the entries of α.

Denote the ring of symmetric functions by Sym and the ring of quasisymmetric
functions by QSym (see, for example, [16, Section 1] for details). The space of ho-
mogeneous symmetric functions of degree N is denoted by SymN , and the space of
homogeneous quasisymmetric functions of degree N is denoted by QSymN .

The space QSymN has several important bases. In this work, we focus on the
fundamental basis, consisting of the functions

FN,S :=
∑

i1⩽i2⩽···⩽iN

∀j∈S:ij<ij+1

xi1xi2 . . . xiN
, S ⊆ [N − 1].

We write FS instead of FN,S when N is clear from the context.
The space SymN has several standard bases as well. In this work, we focus on the

Schur basis, which consists of the Schur functions sλ, where λ is a partition of N . The
definition and properties of Schur functions can be found in [26, Section 4.4]. Here,
we adopt the combinatorial approach to Schur functions, as described in Theorem 2.4
and Theorem 2.5 below.

2.2. Symmetric and Schur-positive sets. As mentioned in Section 1, a set A
is symmetric with respect to a statistic D : A → 2[N−1] if the generating function
QD(A) is a symmetric function. Moreover, it is Schur-positive if all Schur coefficients
are nonnegative integers.

One of the fundamental constructions of Schur-positive sets, regarding sets of stan-
dard Young tableaux (SYT), is due to Gessel [13]. Let SYT(λ) denote the set of
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standard Young tableaux of shape λ. We draw tableaux in English notation, as in
Figure 2. The descent set of T ∈ SYT(λ) is

Des(T ) := {i ∈ [N − 1] | i + 1 appears in a lower row than i in T}.

For example, the descent set of the SYT in Figure 2 is {2, 4, 7, 8}.

1 2 4 7
3 6
5 8
9

Figure 2. A SYT of shape λ = (4, 2, 2, 1).

The entry in row i and column j of a tableau T ∈ SYT(λ) is denoted by Ti,j . In
addition, we define rowi(T ) := {Ti,j | 1 ⩽ j ⩽ λi} as the set of entries in the i-th
row of T . For example, if we consider the SYT shown in Figure 2, then T3,2 = 8 and
row3(T ) = {5, 8}.

Theorem 2.4 (Gessel [13]). For every λ ⊢ N , the set SYT(λ) is Schur-positive with
respect to Des. Moreover, Q(SYT(λ)) = sλ.

In 2015, Adin and Roichman proved the following criterion.

Theorem 2.5 ([3, Prop. 9.1]). A set A is symmetric with respect to D : A → 2[N−1]

if and only if ∑
a∈A

tD(a) =
∑
λ⊢N

cλ

∑
T ∈SYT(λ)

tDes(T )

for some values cλ, where tJ :=
∏

j∈J tj for J ⊆ [N − 1]. The coefficients cλ are the
Schur-coefficients of A. Moreover, A is Schur-positive if and only if cλ ∈ N for all
λ ⊢ N .

This criterion implies that proving the Schur-positivity of a set is achievable by
establishing a statistic-preserving bijection between the set and SYTs of shapes cor-
responding to a specific multiset.

In this paper, we will also apply a recently formulated criterion for symmetry [21].

Definition 2.6. Let A be a finite set with a statistic D : A → 2[N−1]. The set of
elements that respect a given composition α ⊨ N , denoted AD(α), consists of the
elements a ∈ A such that D(a) ⊆ Sα, where Sα is the set corresponding to the
composition α. When D is clear from the context, we may write A(α) instead.

Lemma 2.7. A set A is symmetric if and only if |A(α)| = |A(β)| for all α ∼ β ⊨ N .

Note that only sets of permutations are considered in [21]. However, Lemma 2.7
applies to other sets as well.

Another useful result about symmetric sets and symmetric functions is due to
Bloom and Sagan:

Lemma 2.8 (Bloom and Sagan [7, Lemma 2.2]). For every set S ⊆ [N −1], the function
FN,S is symmetric if and only if S = [N − 1] or S = ∅.
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3. Proof of Theorem 1.8
Denote odds(k) := {1, 3, 5, . . . , 2k − 1} for a nonnegative integer k. In particular,
odds(0) = ∅.

Recall Definition 1.7 and Definition 2.2. We divide the assertions of Theorem 1.8
into two propositions:

Lemma 3.1. Let A be a symmetric set with respect to a statistic D : A → 2[N−1], and
denote n = ⌊ N

2 ⌋. Assume that the Schur expansion of A is QD(A) =
∑n

k=0 cksN−k,k

for some ck ∈ Z. Then D is a sparse function, and for every sparse set J ⊆ [N − 1],
the cardinality of the set A(D ⊇ J) depends on the size of J only.

Lemma 3.2. Let A be a finite set with a sparse statistic D : A → 2[N−1], and denote
n = ⌊ N

2 ⌋. Assume that for every sparse set J ⊆ [N − 1], the cardinality of the set
A(D ⊇ J) depends on the size of J only. Then A is Schur-positive, and its Schur
expansion is

QD(A) =
n∑

k=0
|A(D = odds(k))| sN−k,k.

We prove Lemma 3.1 in Section 3.1, and then show two proofs for Lemma 3.2.
The first proof (presented in Section 3.2) is inductive. The second proof (presented
in Section 3.3) is more involved, and it demonstrates the power of column super-
standard tableaux, introduced by Hamaker, Pawlowski and Sagan [16], in proving
Schur-positivity properties. We believe this approach can be applied in other cases as
well.

Before proving these lemmas, let us prove a simple folklore lemma that will be
useful for both lemmas:

Lemma 3.3. Let A be a symmetric set with respect to a statistic D : A → 2[N−1].
Then A is also symmetric with respect to the complementary statistic D̄ : A → 2[N−1]

defined by a 7→ [N − 1] ∖ D(a).

Proof. The set A is symmetric with respect to D, so by Theorem 2.5 there exist values
cλ, λ ⊢ N such that ∑

a∈A
tD(a) =

∑
λ⊢N

cλ

∑
T ∈SYT(λ)

tDes(T ),

where tJ :=
∏

j∈J tj for J ⊆ [N − 1], and therefore∑
a∈A

t[N−1]∖D(a) =
∑
λ⊢N

cλ

∑
T ∈SYT(λ)

t[N−1]∖Des(T ) =
∑
λ⊢N

cλ

∑
T ∈SYT(λ′)

tDes(T ),

where λ′ is the partition conjugate to λ. □

3.1. Proof of Lemma 3.1.

The set A is symmetric, and its Schur expansion is QD(A) =
∑n

k=0 cksN−k,k. There-
fore, by Theorem 2.5, we have

(1)
∑
a∈A

tD(a) =
n∑

k=0
ck

∑
T ∈SYT(N−k,k)

tDes(T ).

First of all, notice that the set Des(T ) is sparse for all T ∈ SYT(N − k, k). Therefore,
by Equation (1), the set D(a) is sparse for all a ∈ A.

It remains to show that for every sparse set J ⊆ [N − 1] of size k, we have
|A(D ⊇ J)| = |A(D ⊇ odds(k))|. Denote α = (2k, 1N−2k) ⊨ N . Additionally, let
i1 < · · · < iN−k−1 ∈ [N − 1] ∖ J denote the elements not in J . Since J is sparse, the
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differences it+1 − it for 1 ⩽ t ⩽ N − k − 2, as well as i1 and N − iN−k−1, are either
1 or 2. Those that are equal to 2 correspond to the elements of J . The composition
associated to the set [N − 1] ∖ J is denoted by β := (i1, i2 − i1, i3 − i2, . . . , iN−k−1 −
iN−k−2, N − iN−k−1) ⊨ N . By Lemma 3.3, A is symmetric with respect to the com-
plementary statistic D̄. Notably, the compositions α and β are equivalent, as they
both have k occurrences of 2 and N − 2k occurrences of 1. By Lemma 2.7, we ob-
tain that |AD̄(β)| = |AD̄(α)|. By Definition 2.6, we obtain that AD̄(β) = A(D ⊇ J)
and AD̄(α) = A(D ⊇ odds(k)). Consequently, |A(D ⊇ J)| = |A(D ⊇ odds(k))|, as
required. □

3.2. First proof of Lemma 3.2. We start by introducing an observation, which
will serve as a crucial step in our inductive argument.

Lemma 3.4. Let k1 ⩾ k2 be two nonnegative integers, and let J ⊆ [k1 + k2 − 1] be a
set. Then

|SYT(k1, k2)(Des ⊇ J)| =
∣∣SYT

(
k1 + 1, k2 + 1

)(
Des ⊇ ({1} ∪ (J + 2))

)∣∣ ,

where J + 2 = {j + 2 | j ∈ J}.

Proof. The proof is bijective: We associate a given tableau T ∈ SYT(k1, k2) such that
Des(T ) ⊇ J with the tableau T ′ ∈ SYT(k1 + 1, k2 + 1) defined by T ′

1,1 = 1, T ′
2,1 = 2,

and for all i ∈ {1, 2} and j ∈ [ki], T ′
i,j+1 = Ti,j + 2 (recall that Ti,j is the entry in row

i and column j of T ). Intuitively, we first increase every entry of T by 2. Then, we
insert a new column with the letters 1, 2 on the left of T , shifting the other columns
to the right. Clearly, this process is injective, and T ′ satisfies T ′ ∈ SYT(k1 +1, k2 +1)
and Des(T ) ⊇ {1}∪(J +2). Furthermore, any T ′ ∈ SYT(k1 +1, k2 +1) with Des(T ′) ⊇
{1} ∪ (J + 2) can be obtained through this process. □

Now we are ready to prove Lemma 3.2.

First proof of Lemma 3.2. Let A be a finite set with a sparse statistic D : A → 2[N−1],
and assume that for every sparse set J ⊆ [N − 1], the cardinality of the set A(D ⊇ J)
depends on the size of J only. By Theorem 2.5, it suffices to show that

(2)
∑
a∈A

tD(a) =
n∑

k=0
|A(D = odds(k))|

∑
T ∈SYT(N−k,k)

tDes(T ),

where n = ⌊ N
2 ⌋.

We prove it by induction on N ∈ N:
For N ⩽ 1, the statement holds trivially.
Next, we assume that the statement holds for every value smaller than N and

proceed to prove it for N . Our goal is to establish the equation:

(3) |A(D = J)| =
n∑

k=0
ck |SYT(N − k, k)(Des = J)|

for every set J ⊆ [N − 1], where ck = |A(D = odds(k))|.
We begin by considering the case J = ∅. In this case, the only SYT T with

Des(T ) = ∅ is the unique tableau of one row. Consequently, Equation (3) simplifies
to |A(D = ∅)| = |A(D = odds(0))|, which obviously holds.

It now remains to prove Equation (3) for all J ̸= ∅. By the inclusion–exclusion
principle, it suffices to prove that the following holds for all J ̸= ∅:

(4) |A(D ⊇ J)| =
n∑

k=0
ck |SYT(N − k, k)(Des ⊇ J)| .
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The function D is assumed to be sparse, and the set Des(T ) is sparse for all
T ∈ SYT(N − k, k). Therefore, if J is not sparse then Equation (4) holds.

Next, let J ̸= ∅ be a sparse set, and denote |J | = i. The set odds(i) is sparse
too, and has i elements. Therefore, by the assumptions of the lemma, we obtain that
|A(D ⊇ J)| = |A(D ⊇ odds(i))|. In addition, by Theorem 2.4, the set SYT(N − k, k)
is Schur-positive and has the Schur expansion Q(SYT(N −k, k)) = sN−k,k. Therefore,
we can apply Lemma 3.1 and deduce that

|SYT(N − k, k)(Des ⊇ J)| = |SYT(N − k, k)(Des ⊇ odds(i))| .

Therefore, Equation 4 reduces to

(5) |A(D ⊇ odds(i))| =
n∑

k=0
ck |SYT(N − k, k)(Des ⊇ odds(i))| ,

where i > 0. Thus, the proof will be completed when we establish Equation (5).
Denote A1 = {a ∈ A | 1 ∈ D(a)}. Furthermore, define a new statistic D1 : A1 →

2[N−3] by D1(a) = (D(a) ∖ {1}) − 2. Notice that A1 satisfies the requirements of
Lemma 3.2 with respect to D1, where N is replaced by N − 2. Therefore, we may
assume, by the induction hypothesis, that Lemma 3.2 holds for A1. Thus, we can
apply Equation (4) for A1, while replacing ck with |A1(D1 = odds(k))| = |A(D =
odds(k + 1))| = ck+1, and obtain

(6) |A1(D1 ⊇ J)| =
n−1∑
k=0

ck+1 |SYT(N − 2 − k, k)(Des ⊇ J)| .

If we substitute J = odds(i − 1) into Equation 6, we obtain

|A1(D1 ⊇ odds(i − 1))| =
n−1∑
k=0

ck+1 |SYT(N − 2 − k, k)(Des ⊇ odds(i − 1))| .

Notice that |A1(D1 ⊇ odds(i − 1))| = |A(D ⊇ odds(i))|. Moreover, by Lemma 3.4,
the number of tableaux T of shape (N − k − 1, k − 1) with Des(T ) ⊇ odds(i − 1)
is equal to the number of tableaux T of shape (N − k, k) with Des(T ) ⊇ odds(i).
Therefore, we can reformulate the equation and obtain that

|A(D ⊇ odds(i))| =
n∑

k=1
ck |SYT(N − k, k)(Des ⊇ odds(i))| .

The only difference between this equation and Equation (5) is the omission of the
summand corresponding to k = 0. However, this summand evaluates to zero and does
not affect the overall expression. Indeed, |SYT(N, 0)(Des ⊇ odds(i))| = 0, since the
unique SYT of shape (N) has no descents. □

3.3. Second proof of Lemma 3.2. As a first step of this proof, we prove that a set
satisfying the conditions of Lemma 3.2 is symmetric.

Lemma 3.5. Let A be a finite set with a sparse statistic D : A → 2[N−1], and denote
n = ⌊ N

2 ⌋. Assume that there are constants bk ∈ N for 0 ⩽ k ⩽ n, such that for every
sparse set J ⊆ [N − 1], |A(D ⊇ J)| = b|J|. Then A is symmetric with respect to D.

Proof. Following Lemma 3.3, it suffices to prove that A is symmetric with respect to
the complementary statistic D̄. As we proceed to prove it by Lemma 2.7, let us find
|AD̄(α)| for all α = (α1, . . . , αℓ) ⊨ N .

If a composition α has maxi(αi) > 2, then there exists j ∈ [N − 2] such that
j, j + 1 /∈ Sα, where Sα is the set corresponding to α. By Definition 2.6, for every
element a ∈ AD̄(α) we have D̄(a) ⊆ Sα, so j, j + 1 /∈ D̄(a). Consequently, j, j + 1 ∈
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D(a), and the set D(a) is not sparse. However, D is assumed to be a sparse function,
so AD̄(α) = ∅.

Now assume that maxi(αi) ⩽ 2, and denote by k = |{i | αi = 2}| the number of
occurrences of 2 in α. Thus, we have ℓ = N − k. Consider the set J = [N − 1] ∖ Sα.
Notably, the set J is sparse and consists of k elements. Let a ∈ A be an element.
We have a ∈ AD̄(α) if and only if D̄(a) ⊆ Sα, or equivalently, D(a) ⊇ J . Thus,
|AD̄(α)| = |A(D ⊇ J)| = bk.

To conclude, if α contains an element larger than 2 then AD̄(α) = ∅. Otherwise,
the size of AD̄(α) depends only on the number of occurrences of 2 in α. Therefore,
|AD̄(α)| = |AD̄(β)| for all α ∼ β ⊨ N . By Lemma 2.7, we obtain that A is symmetric.

□

As the next step of the proof, we prove that A is Schur-positive and find its Schur
coefficients. For this, we define a total order on partitions λ ⊢ N :

Definition 3.6. Let λ, µ ⊢ N be partitions of N . Let λ′
i = |{j | λj ⩾ i}| denote the

length of the i-th column in the Young diagram of λ. We say that µ is larger than λ
in the conjugate order, and denote µ′ > λ′, if there exists i such that µ′

j = λ′
j for all

j < i and µ′
i > λ′

i.

Following Hamaker, Pawlowski and Sagan [16, Section 5], we define the column
superstandard Young tableau of shape λ ⊢ N , obtained by filling the columns of the
Young diagram of shape λ one by one. We denote it by Tλ ∈ SYT(λ). Formally,
(Tλ)i,j = λ′

1 + · · · + λ′
j−1 + i. For example, if λ = (4, 2, 2, 1), then Tλ is the SYT in

Figure 3.

1 5 8 9
2 6
3 7
4

Figure 3. The SYT Tλ for λ = (4, 2, 2, 1).

The power of these notions may be reflected by the following statement:

Lemma 3.7. Let λ, µ ⊢ N be two partitions. Then:
(1) Des(Tλ) = [N − 1] ∖ {λ′

1, λ′
1 + λ′

2, . . . }.
(2) If Des(T ) = [N − 1] ∖ {λ′

1, λ′
1 + λ′

2, . . . } for some T ∈ SYT(µ), then µ′ ⩾ λ′.
Furthermore, if µ = λ then T = Tλ.

Proof. The first assertion is obvious, so let us focus on the second assertion.
Let T ∈ SYT(µ) be a tableau, and assume that Des(T ) = Des(Tλ) and T ̸= Tλ.

We aim to show that µ′ > λ′. Let us denote the first column that differs between
T and Tλ by i. The i-th column of Tλ contains the entries s + 1, . . . , s + λ′

i, where
s = λ′

1 + · · · + λ′
i−1. To prove µ′ > λ′, it suffices to show that all these entries also

appear in the i-th column of T .
Assume, by contradiction, that some of these entries appear in other columns of

T . Let x be the minimal such entry, and let j ̸= i be the column of T that contains x.
Since s + 1 appears in the i-th column of T , we may assume that x > s + 1. If j < i,
this contradicts the assumption that T and Tλ agree in the first i − 1 columns. On
the other hand, if j > i, then x appears in the first row of T , since it is the minimal
entry of the j-th column of T . Consequently, we obtain that x − 1 /∈ Des(T ), while
x − 1 ∈ Des(Tλ), which contradicts the assumption that Des(T ) = Des(Tλ). □
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Lemma 3.7 associates the Young diagram of shape λ with the set Des(Tλ). As
we will see later, this association is powerful in analysing the Schur coefficients of
symmetric sets.

Standard Young tableaux with at most 2 rows have a slightly stronger property:

Lemma 3.8. Let λ = (N − k1, k1) and µ = (N − k2, k2) be two partitions of N with at
most two parts each. Then:

(1) Des(Tλ) = odds(k1).
(2) If Des(T ) = odds(k1) for some T ∈ SYT(µ), then k1 = k2 and T = Tλ.

Proof. The first assertion is obvious, so let us focus on the second assertion.
Let T ∈ SYT(µ) be a tableau, and suppose that Des(T ) = Des(Tλ). Given that

both T and Tλ have two rows each, it suffices to show that row2(T ) = row2(Tλ).
Since Des(T ) = {1, 3, . . . , 2k1 − 1}, it follows that {1, 3, . . . , 2k1 − 1} ⊆ row1(T ) and
{2, 4, . . . , 2k1} ⊆ row2(T ). Consequently, we have 2k1 + 1 ∈ row1(T ). As T has no
descents beyond index 2k1 − 1, all entries greater than 2k1 must appear in the first
row. Therefore, we conclude that row2(T ) = {2, 4, . . . , 2k1}. □

Now we are ready to prove that if a set is symmetric with respect to a sparse
statistic then it is Schur-positive:

Lemma 3.9. Let A be a symmetric set with respect to a sparse statistic D : A → 2[N−1],
and denote n = ⌊ N

2 ⌋. Then A is Schur-positive, and its Schur expansion is

QD(A) =
n∑

k=0
|A(D = odds(k))| sN−k,k.

Proof. The set A is assumed to be symmetric, so by Theorem 2.5, we have

(7)
∑
a∈A

tD(a) =
∑
λ⊢N

cλ

∑
T ∈SYT(λ)

tDes(T ),

where cλ are the Schur coefficients of A. It suffices to show that if there exists k such
that λ = (N − k, k) then cλ = |A(D = odds(k))|, and otherwise cλ = 0.

If A = ∅, then QD(A) = 0, and the statement holds. Therefore, we may assume
that A ̸= ∅, and consequently, there exists cλ ̸= 0 for some partition λ ⊢ N . Let
µ ⊢ N be a partition with cµ ̸= 0, maximal in the conjugate order (i.e. such that
cλ = 0 for every λ ⊢ N with λ′ > µ′).

Equation (7) implies that the equation

(8) |A(D = J)| =
∑
λ⊢N

cλ |SYT(λ)(Des = J)|

holds for all J ⊆ [N − 1]. Let us find the right-hand side of Equation (8) when
substituting J = Des(Tµ). Let T ∈ SYT(λ) be a tableau with Des(T ) = Des(Tµ). By
Lemma 3.7, we have T = Tµ or λ′ > µ′. However, if λ′ > µ′ then cλ = 0. Therefore,
if T ∈ SYT(λ) has Des(T ) = Des(Tµ) and cλ ̸= 0, then T = Tµ. Consequently,
substituting J = Des(Tµ) into Equation (8), we find that |A(D = Des(Tµ))| = cµ ̸= 0.

We may conclude that there exists an element a ∈ A with D(a) = Des(Tµ). The set
D(a) is sparse, so {1, 2} ⊈ D(a). Lemma 3.7 implies that {1, 2} ⊆ Des(Tµ) whenever
µ′

1 > 2, so we may deduce that µ′
1 ⩽ 2. Therefore, cλ = 0 for every partition λ with

more than 2 parts.
Thus, we can reformulate Equation (8) as

(9) |A(D = J)| =
n∑

k=0
ck |SYT(N − k, k)(Des = J)| .
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By Lemma 3.8, since only partitions into at most two parts are involved in Equa-
tion (9), substituting J = Des(Tλ) for λ = (N − k, k) yields |A(D = odds(k))| = ck,
as required. □

Second proof of Lemma 3.2. The lemma follows directly from Lemma 3.5 together
with Lemma 3.9. □

4. Short chords of matchings
In this section, we analyze the set of matchings MN,f with respect to short chords
(Recall Definition 1.3 and Definition 1.5). First, we apply Theorem 1.8 to establish
Theorem 1.6, which asserts that MN,f is Schur-positive. Next, we provide a bijective
proof of Theorem 1.6, which will be utilized in Section 5 to refine the Schur-positivity
result. Finally, we demonstrate that the Schur expansion of QShort(MN,f ) may be
explicitly interpreted in terms of Bessel polynomials.

4.1. First proof of Theorem 1.6.

Clearly, the function Short : MN,f → 2[N−1] is sparse (as defined in Definition 1.7).
Let J = {j1, . . . , jk} ⊆ [N − 1] be a sparse set, and let us enumerate the elements of
MN,f (Short ⊇ J). In every matching in MN,f (Short ⊇ J), the vertices ji and ji + 1
are matched for all 1 ⩽ i ⩽ k, and the remaining N−2k vertices can be matched in any
way, subject to the condition that exactly f vertices remain unmatched. Therefore,
we have

|MN,f (Short ⊇ J)| = |MN−2k,f |,
and thus it depends only on the size of J .

By applying Theorem 1.8, we conclude that MN,f is Schur-positive with respect
to Short, with the following Schur expansion:

QShort(MN,f ) =
n∑

k=0
|MN,f (Short = {1, 3, 5, . . . , 2k − 1})| sN−k,k.

(While Theorem 1.8 sums over 0 ⩽ k ⩽ ⌊ N
2 ⌋, this sum only goes up to n = N−f

2 .
However, the extra summands equal 0 and do not affect the expression.) Clearly,

|MN,f (Short = {1, 3, 5, . . . , 2k − 1})| = |MN−2k,f (Short = ∅)|,

and we obtain the required Schur expansion. □

4.2. Bijective proof of Theorem 1.6. Before presenting the bijective proof of
Theorem 1.6, we give some definitions and notations for matchings:

Definition 4.1. Given a matching m ∈ MN , we say that a set S ⊆ [N ] is m-
invariant if for every chord (i, j) ∈ m we have i ∈ S if and only if j ∈ S. Moreover,
for a matching m and an m-invariant set S we define the restriction of m to S,
denoted resS(m), to be a matching on S which is obtained by removing all the vertices
not in S from m.

For example , consider the matching m1 = {(1, 2), (3, 5), (4)} ∈ M5,1 as in
Figure 4A. The set S1 = {1, 2, 4} is m1-invariant, and resS1(m1) = {(1, 2), (4)}. On
the other hand, the set S2 = {1, 2, 3} is not m1-invariant, so resS2(m1) is not defined.

Observation 4.2. Let S ⊆ [N ] be a set of vertices, let m1 be a matching on S, and
let m2 be a matching on [N ]∖S. Then there exists a unique matching m ∈ MN such
that resS(m) = m1 and res[N ]∖S(m) = m2.
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Now let us present a bijection

F : MN,f →
n⋃

k=0
MN−2k,f (Short = ∅) × SYT(N − k, k),

that sends matchings m ∈ MN,f to pairs (m0, T ), where m0 is a short-chord-free
matching on [N − 2k] with f unmatched vertices and T ∈ SYT(N − k, k) for some
0 ⩽ k ⩽ n, such that Des T = Short m for all m. By Theorem 2.5, the existence of
such a bijection implies Theorem 1.6.

4.2.1. Constructing the bijection. First, we define the core of a matching:

Definition 4.3. The reduction process for a given matching m repeatedly removes
any short chords of the matching until there are no short chords left. The remaining
vertices are then re-indexed with natural numbers starting from 1 while keeping their
relative order, resulting in a matching denoted by core(m).

A chord or vertex of m is called stable if it is not removed during the process, and
unstable otherwise. The set of stable vertices of m is denoted Stable(m).

Proposition 4.4 below implies that core(m) and Stable(m) are well-defined and are
independent of the order of the steps.

For a matching m ∈ MN,f , we also define T (m) as the unique SYT consisting of
N cells arranged in two rows, such that

row2(T ) = {j | the chord (i, j) ∈ m is unstable}.

Recall that when writing (i, j) ∈ m we assume that i < j. Therefore, for every unstable
chord (i, j) ∈ m with i < j, we have i ∈ row1(T (m)) and j ∈ row2(T (m)). We define
the bijection by F (m) = (core(m), T (m)).

Next, we turn to provide examples of the bijection. Then, in the remaining of
the subsection, we will prove that the bijection is well-defined and explore some of its
properties. Section 4.2.2 will be devoted to proving that F is bijective by constructing
its inverse function.

As a first example, consider the matching m1 = {(1, 2), (3, 5), (4)} ∈ M5,1 as in
Figure 4A.

1 2 3 4 5

(A) Plot of m1

1 2 3
1 3 4 5
2

(B) Plot of core(m1) and T (m1)

Figure 4. Example of the bijection for the matching m1 =
{(1, 2), (3, 5), (4)} ∈ M5,1

During the reduction process of m1, the short chord (1, 2) is removed. Then, the
vertices 3, 4, 5 remain, so Stable(m1) = {3, 4, 5}. Next, the stable vertices are renum-
bered to {1, 2, 3}, so core(m1) = {(1, 3), (2)}, as in Figure 4B. In addition, the only
unstable chord of m1 is (1, 2), so row2(T (m1)) = {2}. Therefore, T (m1) is the tableau
presented in Figure 4B.
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Next, consider the matching m2 = {(1, 7), (2, 10), (3, 6), (4, 5), (8, 9)} ∈ M10,0
as in Figure 5A.

1 2 3 4 5 6 7 8 9 10

(A) Plot of m2

1 2 3 4
1 2 3 4 7 8 10
5 6 9

(B) Plot of core(m2) and T (m2)

Figure 5. Example of the bijection for the matching m2 =
{(1, 7), (2, 10), (3, 6), (4, 5), (8, 9)} ∈ M10,0

During the reduction process of m2, we first remove the short chords (4, 5) and
(8, 9). Then, the chord (3, 6) becomes short and is subsequently removed as well. The
remaining vertices are 1, 2, 7 and 10, so Stable(m2) = {1, 2, 7, 10}. Next, the stable
vertices are renumbered to [4], so core(m2) = {(1, 3), (2, 4)}, as in Figure 5B. In
addition, the unstable chords of m2 are (3, 6), (4, 5) and (8, 9), so row2(T (m2)) =
{5, 6, 9}. Therefore, T (m2) is the tableau presented in Figure 5B.

Moving on to proving that the bijection F is well-defined, first let us prove that
the core of a matching is well-defined:

Proposition 4.4. Given a matching, its stable vertices and its core are well-defined.

Proof. Let m ∈ MN be a matching. Denote the chords that are removed during a
given reduction process of m by e1, . . . , ek, and denote eℓ = (iℓ, jℓ). Moreover, denote
the chords that are removed during another reduction process by e′

1, . . . , e′
k′ , and

denote e′
ℓ = (i′

ℓ, j′
ℓ). It suffices to prove that eℓ ∈ {e′

1, . . . , e′
k′} for all 1 ⩽ ℓ ⩽ k

(i.e. every chord that is removed during the first reduction process is removed during
the second process as well). Assume by contradiction that eℓ /∈ {e′

1, . . . , e′
k′} for some ℓ,

and denote by ℓ0 the minimal such ℓ. That is, e1, . . . , eℓ0−1 ∈ {e′
1, . . . , e′

k′}. Removing
the chords e1, . . . , ek from m constitutes a valid reduction process, so the chord eℓ0

becomes short before it is removed. That is, i ∈ {i1, j1, . . . , iℓ0−1, jℓ0−1} for all iℓ0 <
i < jℓ0 . Therefore, the chord eℓ0 is a short chord of the core obtained by removing
e′

1, . . . , e′
k′ of m, contradicting the requirement that the reduction process continues

until there are no short chords remaining. Therefore, we may conclude that if a chord
is removed during a reduction process then it is removed during any reduction process,
and core(m) and Stable(m) are well-defined. □

Corollary 4.5. Let N and f be nonnegative integers. Then the function

F : MN,f →
n⋃

k=0
MN−2k,f (Short = ∅) × SYT(N − k, k)

defined by F (m) = (core(m), T (m)) is well-defined.
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Proof. Let m ∈ MN,f be a matching. By Proposition 4.4, we obtain that core(m)
and Stable(m) are well-defined. Therefore, the two-row tableau T := T (m) consisting
of N cells that is defined by

row2(T ) = {j | the chord (i, j) ∈ m is unstable}
is also well-defined. In order to prove that F is well-defined, it remains to show that
T (m) ∈ SYT(N − k, k), where k is the number of unstable chords of m.

Obviously, every letter i ∈ [N ] appears exactly once in T (m), and the rows are
increasing. Notice that for every entry j ∈ row2(T (m)) there exists i < j such that
(i, j) ∈ m is an unstable chord. Therefore, every entry j ∈ row2(T (m)) is associated
to an entry i ∈ row1(T (m)) such that i < j. Moreover, if j ̸= j′ ∈ row2(T (m)) and
(i, j), (i′, j′) ∈ m then i ̸= i′, so the columns of T (m) are increasing and T (m) is a
standard Young tableau. Finally, | row2(T (m))| = k, implying that T (m) ∈ SYT(N −
k, k). □

After establishing that F is a valid function, we turn our attention to exploring
some of its properties.
Lemma 4.6. The reduction process has the following properties:

(1) If a chord intersects another chord then it is stable.
(2) A chord (i, j) is stable if and only if there exists a stable vertex in {i+1, . . . , j−

1}.
(3) Given a matching m and i < j, if the set [i, j] is m-invariant (as defined

in Definition 4.1) and the restricted matching res[i,j](m) is perfect and non-
crossing, then ℓ /∈ Stable(m) for all ℓ ∈ [i, j].

Proof.
(1) Assume that (i1, i3), (i2, i4) ∈ m for i1 < i2 < i3 < i4. As long as the chord

(i2, i4) is not removed, the chord (i1, i3) does not become short and cannot be
removed. On the other hand, as long as the chord (i1, i3) is not removed, the
chord (i2, i4) cannot be removed. Therefore, both chords cannot be removed
during the reduction process.

(2) If the chord (i, j) is unstable, then after removing some unstable vertices it
becomes short, implying that every vertex between i and j is unstable. On
the other hand, if all the vertices between i and j are unstable, then they
will eventually be removed, making the chord (i, j) short, so the chord (i, j)
is unstable too.

(3) Since the set [i, j] is m-invariant and the restricted matching is perfect, Defi-
nition 4.1 implies that for every i ⩽ i1 ⩽ j there exists i ⩽ i2 ⩽ j such that
i1 ̸= i2 and (i1, i2) ∈ m or (i2, i1) ∈ m. Notice that the restricted matching
resS(m) where S = Stable(m)∩[i, j] (i.e. the matching that consists of the sta-
ble chords (i1, i2) ∈ m with i ⩽ i1 < i2 ⩽ j) is short-chord-free, non-crossing
and perfect. The only such a matching is the empty matching ∅ ∈ M0, so
every i ⩽ i1 ⩽ j is unstable. □

As we proceed to apply Theorem 2.5 and establish the Schur-positivity of MN,f

with respect to short chords, let us prove that F sends short chords of matchings to
descents of SYTs, in the following sense:
Proposition 4.7. Let m ∈ MN,f be a matching, and denote T := T (m). Then
Des T = Short m.
Proof. Let i ∈ Short m be an index representing a short chord (i, i+1) ∈ m. The chord
(i, i + 1) is unstable, so we may deduce from the definition of T (m) that i ∈ row1(T )
and i + 1 ∈ row2(T ). Therefore, i ∈ Des T .
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Figure 6. A ballot path p ∈ P10,4

On the other hand, let i ∈ Des T be a descent of T . This implies that i ∈ row1(T )
and i + 1 ∈ row2(T ). Since i + 1 ∈ row2(T ), we obtain that there exists j < i + 1
such that (j, i + 1) ∈ m is an unstable chord. Since the chord (j, i + 1) is unstable and
j ⩽ i ⩽ i + 1, we obtain by Lemma 4.6 (part 2) that i is an endpoint of an unstable
chord of m. Since i ∈ row1(T ), we obtain that i opens an unstable chord (i, j′) of m
for some j′ > i. If (i, i + 1) /∈ m then j < i and j′ > i + 1, and we obtain that the
unstable chord (j, i+1) intersects the chord (i, j′), contradicting Lemma 4.6 (part 1).
Therefore, we may conclude that (i, i + 1) ∈ m and i ∈ Short m. □

4.2.2. Proof of bijection. In this section we will prove that the transformation F
defined in Section 4.2.1 is indeed a bijection, by constructing its inverse function.

In order to construct the inverse function, we will establish a correspondence be-
tween standard Young tableaux of two rows and ballot paths. We define ballot paths
as follows:

Definition 4.8. Let N ∈ N be a nonnegative integer. A ballot path of length N is a
sequence of N steps, where each step is either (1, 1) or (1, −1). The path starts at the
origin (0, 0). Namely, each step either moves one unit up and one unit right, or one
unit down and one unit right. The path is said to be valid if it never goes below the
x-axis, i.e. the y-coordinate of a point on the path is always non-negative.

The set of ballot paths from (0, 0) to (N, t) is denoted PN,t. Given a ballot path
p ∈ PN,t, denote by pi the y-coordinate of p after i steps; in particular, p0 = 0. The
set UP(p) ⊆ [N ] (DOWN(p) ⊆ [N ]) consists of the indices i such that pi > pi−1
(respectively, pi < pi−1). Finally, define the height of the i-th step of a path p to be
the maximum height of its two endpoints, and denote it by heightp(i) := max(pi−1, pi).

The bijection between SYTs of two rows and ballot paths is direct: Associate T ∈
SYT(N − k, k) with the path p(T ) ∈ PN,N−2k such that UP(p(T )) = row1(T ) and
DOWN(p(T )) = row2(T ).

For example, consider the tableau T ∈ SYT(7, 3) described in Figure 5B, with
row2(T ) = {5, 6, 9}. It is associated with the ballot path p := p(T ) ∈ P10,4 presented
in Figure 6. The ballot path p has, for example, 2 ∈ UP(p) because p2 = 2 > p1 = 1.
Conversely, 5 ∈ DOWN(p) because p5 = 3 < p4 = 4. In addition, heightp(3) =
max(p2, p3) = 3 while heightp(5) = max(p4, p5) = 4.

Next, for a given ballot path p ∈ PN,t, we construct a set Stable(p) and a perfect
matching munstable(p) on [N ] ∖ Stable(p) as follows: For every vertex j ∈ DOWN(p),
we match it in munstable(p) to the maximal i < j such that heightp(i) = heightp(j).
Since p is a valid ballot path, it can be deduced that for every j ∈ DOWN(p), there
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exists a unique i < j satisfying heightp(i) = heightp(j) such that i is maximal among
all such elements in [N ]. Additionally, it can be inferred from the discrete continuity
of the path that this i is necessarily a part of UP(p). The set Stable(p) consists of all
i ∈ UP(p) that are not involved in any chord in munstable(p). Notice that i ∈ Stable(p)
if and only if i ∈ UP(p) and heightp(j) > heightp(i) for all j > i, so |Stable(p)| = t.

We are now ready to describe the inverse bijection of F , denoted

F̃ :
n⋃

k=0
MN−2k,f (Short = ∅) × SYT(N − k, k) → MN,f .

Given a short-chord-free matching m0 ∈ MN−2k,f (Short = ∅) and a tableau T ∈
SYT(N −k, k) for some k, denote p = p(T ) ∈ PN,N−2k. We will construct a matching
mstable on Stable(p) and a matching munstable on [N ] ∖ Stable(p), and then apply
Observation 4.2 to obtain F̃ (m0, T ) ∈ MN,f . We construct these sub-matchings as
follows:

• mstable: Since p ∈ PN,N−2k, we infer that |Stable(p)| = N − 2k. Therefore,
we may rename the vertices of m0 ∈ MN−2k,f to Stable(p) as follows: There
exists a unique bijection φ : [N − 2k] → Stable(p) such that i < j if and only
if φ(i) < φ(j) for all i, j. The matching mstable on Stable(p) consists of the
chords (φ(i), φ(j)) for all (i, j) ∈ m0.

• munstable = munstable(p) is the matching described earlier.
For example, consider m0 = {(1, 3), (2, 4)} ∈ M4,0(Short = ∅) and T ∈ SYT(N −

k, k) presented in Figure 5B. As mentioned before, T is associated with the ballot
path p := p(T ) ∈ P10,4 presented in Figure 6. Therefore, we obtain the matching
munstable(p) = {(3, 6), (4, 5), (8, 9)} (with the pairs of steps that correspond to its
chords connected by dotted lines in the figure) and Stable(p) = {1, 2, 7, 10} (with
the steps that correspond to these vertices denoted by bold lines). Applying the
order-preserving bijection φ : [4] → {1, 2, 7, 10} on m0 yields the matching mstable =
{(1, 7), (2, 10)}. Therefore,

F̃ (m0, T ) = {(1, 7), (2, 10), (3, 6), (4, 5), (8, 9)}
is the matching presented in Figure 5A.

It remains to show that F̃ is indeed the inverse function of F . We will do so in two
steps.

Step 1: F̃ ◦ F = Id.

Lemma 4.9. Let m ∈ MN,f be a matching, and denote F (m) = (core(m), T ). Then
F̃ (core(m), T ) = m.

Proof. Denote |Stable(m)| = N − 2k, implying that core(m) ∈ MN−2k,f and T ∈
SYT(N − k, k). Moreover, denote p = p(T ) ∈ PN,N−2k. First, we prove that
(10) res[N ]∖Stable(m)(m) = munstable(p).

We note that the set [N ] ∖ Stable(m) is m-invariant, so the left-hand side of Equa-
tion (10) is well-defined. Notice that |[N ] ∖ Stable(m)| = |[N ] ∖ Stable(p)| = 2k and
that res[N ]∖Stable(m)(m) is a perfect matching. Therefore, in order to prove that Equa-
tion (10) holds, it suffices to prove that any unstable chord of m belongs to munstable(p)
too. Let (i, j) ∈ m be an unstable chord. Thus, we may deduce that i ∈ UP(p) and
j ∈ DOWN(p). Let i′ ∈ UP(p) such that i < i′ < j. By Lemma 4.6 (part 2), i′ is an
endpoint of an unstable chord (i′, j′) ∈ m with i′ < j′. By Lemma 4.6 (part 1), we
obtain that the chord (i, j) does not intersect (i′, j′), implying that i < i′ < j′ < j.
On the other hand, every j′ ∈ DOWN(p) with i < j′ < j is an endpoint of an un-
stable chord (i′, j′) ∈ m with i < i′ < j′ < j. Therefore, we obtain a bijection from
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UP(p) ∩ [i, j] to DOWN(p) ∩ [i, j] (with i matched with j), so heightp(i) = heightp(j).
Moreover, this bijection has the property that if i′ ∈ UP(p) ∩ [i, j] is matched
with j′ ∈ DOWN(p) ∩ [i, j] then i′ < j′ (i.e. the ascending steps of the path ap-
pear before the associated descending steps), so heightp(j) < heightp(i′) for all
i′ ∈ UP(p) ∩ [i + 1, j − 1]. We may conclude that (i, j) ∈ munstable(p) for every
unstable chord (i, j) of m and prove that Equation (10) holds.

Next, we denote m′ = F̃ (core(m), T ) and prove that m = m′. From Equation (10)
we deduce that the supports of the matchings res[N ]∖Stable(m)(m) and munstable(p)
are identical, and therefore Stable(m) = Stable(p). Thus, the set [N ] ∖ Stable(m)
is both m-invariant and m′-invariant, and restricting each of these matchings to
[N ] ∖ Stable(m) results in munstable(p). In addition, it can be easily verified from
the descriptions of F and F̃ that resStable(m)(m) = resStable(m)(m′) is the match-
ing obtained by relabeling the vertices of core(m) with the elements of Stable(m) in
increasing order. By Observation 4.2, we may deduce that m = m′. □

Step 2: F ◦ F̃ = Id.

Lemma 4.10. Let m0 ∈ MN−2k,f with Short(m0) = ∅ and T ∈ SYT(N − k, k) for
some k, and denote m = F̃ (m0, T ). Then core(m) = m0 and T (m) = T .

Proof. Denote p = p(T ) ∈ PN,N−2k and Stable(p) = {i1, . . . , iN−2k} where
i1 < · · · iN−2k. We first prove that Stable(m) = Stable(p). Notice that the match-
ing munstable(p) is non-crossing. This can be viewed visually from Figure 6, where
munstable(p) is denoted by horizontal dotted lines that cross the path only in their end-
points. Indeed, let j1 < j2 < j3 < j4 be four vertices, and assume, by contradiction,
that both (j1, j3) and (j2, j4) belong to munstable(p). By the definition of munstable(p),
the assumption (j1, j3) ∈ munstable(p) implies that heightp(j1) = heightp(j3), and
heightp(j) ̸= heightp(j1) for all j1 < j < j3. Since heightp(j1 + 1) ⩾ heightp(j1) and
due to the discrete continuity of the path, we obtain that heightp(j) > heightp(j1) for
all j1 < j < j3. Consequently, we obtain heightp(j2) > heightp(j1) = heightp(j3). Sim-
ilarly, the assumption (j2, j4) ∈ munstable(p) implies that heightp(j3) > heightp(j2),
in contradiction. Therefore, we may conclude that the matching munstable(p) is
non-crossing.

Next, we may infer that for every 1 ⩽ ℓ < N −2k, the segment [iℓ +1, iℓ+1 −1] is m-
invariant and the restricted matching res[iℓ+1,iℓ+1−1](m) is perfect and non-crossing.
By Lemma 4.6 (part 3), we obtain that j /∈ Stable(m) for all iℓ < j < iℓ+1. Similarly,
we obtain that if j < i1 or j > iN−2k then j /∈ Stable(m), and therefore Stable(m) ⊆
Stable(p). Thus, a valid reduction process of m may begin with removing every vertex
not in Stable(p). We may deduce from the description of F̃ that resStable(p)(m) is the
matching obtained by relabeling the vertices of m0 with the elements of Stable(p)
in increasing order. This matching is short-chord-free, so Stable(m) = Stable(p) and
core(m) = m0.

It remains to prove that T (m) = T , namely that p′ = p, where p′ := p(T (m)).
Since Stable(m) = Stable(p), we may infer from the description of F̃ that

DOWN(p) = {j | the chord (i, j) ∈ m is unstable}.

Thus, DOWN(p) = DOWN(p′) and therefore p = p′. □

Finally, we conclude the bijective proof:

Bijective proof of Theorem 1.6. By Theorem 2.5, it suffices to prove that∑
m∈MN,f

tShort(m) =
N∑

k=0
|MN−2k,f (Short = ∅)|

∑
T ∈SYT(N−k,k)

tDes(T ),
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where tJ :=
∏

j∈J tj for J ⊆ [N − 1]. Equivalently, it suffices to present a bijec-
tion between MN,f and

⋃n
k=0 MN−2k,f (Short = ∅) × SYT(N − k, k), such that if

m 7→ (m0, T ) then Short(m) = Des(T ). The transformation F defined by F (m) =
(core(m), T (m)) is a bijection by Lemma 4.9 combined with Lemma 4.10, and it
satisfies Short(m) = Des(T (m)) by Proposition 4.7. □

4.3. Analysis of the coefficients and relations with Bessel polynomials.
The Bessel polynomials θn(x), sometimes called the reverse Bessel polynomials, are
given by the generating function

1√
1 − 2v

exp
[
x(1 −

√
1 − 2v)

]
=

∞∑
n=0

vn

n! θn(x).

They also have the explicit formula

θn(x) =
n∑

k=0

(2n − k)!
k!(n − k)!2n−k

xk.

For more information about the Bessel polynomials, the reader is referred to [15].
McSorley and Feinsilver [23, Theorem 3.5] discovered the following identity:

Theorem 4.11 (McSorley and Feinsilver). For every n ⩾ 0:

θn(x − 1) =
n∑

i=0
h(P2n, i)xi,

where h(P2n, i) is the number of perfect matchings on 2n vertices with i short chords.

An equivalent formulation of this result states that

θn(x) =
n∑

i=0
h(P2n, i)(x + 1)i,

so the sequence h(P2n, i) can be thought of as the coefficients of the Taylor expansion
of θn(x) around x = −1.

Observation 4.12. For every n ⩾ 0:

h(P2n, i) = |M2n−i,i(Short = ∅)|.

Proof. We give a bijective proof for the statement. The bijection sends a perfect
matching m ∈ M2n,0 with i short chords to a short-chord-free matching on 2n − i
vertices with i unmatched vertices, by replacing every short chord with an unmatched
vertex. For example, the perfect matching {(1, 5), (2, 3), (4, 6)} ∈ M6,0 is sent to
{(1, 4), (2), (3, 5)} ∈ M5,1. Clearly, this gives a bijection between the two desired
sets. □

Therefore, we can reformulate Theorem 1.6 and obtain:

Corollary 4.13. Let n, f ∈ N be nonnegative integers, and denote N = 2n+f . Then
the Schur expansion of the set MN,f with respect to Short is given by the formula

QShort(MN,f ) =
n∑

k=0
h(PN+f−2k, f)sN−k,k,

where h(PN+f−2k, f) is the coefficient of (x+1)f in the Taylor expansion of the Bessel
polynomial θn+f−k(x) around x = −1
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5. Refinements of the bijection
In this section, we will utilize the bijection F discussed in Section 4.2 to refine The-
orem 1.6 and find many Schur-positive sets of matchings with respect to the set of
short chords. Indeed, given non-negative integers N and k, for every short-chord-free
matching m0 ∈ MN−2k(Short = ∅), the set

{m ∈ MN | core(m) = m0}

is Schur-positive (as we will see later in Corollary 5.9).

5.1. Sets closed under Knuth equivalence. As a first refinement of the Schur-
positivity of MN,f , we study the Knuth equivalence of matchings presented in Defi-
nition 1.9. The power of this notion is reflected by the following theorem:

Theorem 5.1. Two matchings m1, m2 ∈ MN are Knuth equivalent if and only if
core(m1) = core(m2).

We will prove Theorem 5.1 in two steps:

Step 1: If two matchings are equivalent then they have the same core.

Lemma 5.2. Let m1, m2 ∈ MN be two Knuth equivalent matchings. Then core(m1) =
core(m2).

Proof. Since m1 and m2 are equivalent, we deduce that m2 can be obtained from
m1 by a sequence of elementary Knuth transformations. Notably, given a matching
m ∈ MN and a matching φ(m) obtained from m by applying an elementary Knuth
transformation, the matchings m and φ(m) differ only in the relative position of a
certain short chord, and therefore core(φ(m)) = core(m). A direct induction shows
that core(m1) = core(m2). □

Step 2: If two matchings have the same core then they are equivalent.

Lemma 5.3. Let m1, m2 ∈ MN be matchings, and assume that core(m1) = core(m2).
Then m1 and m2 are Knuth equivalent.

Before proving Lemma 5.3, we introduce the notion of inserting a short chord into
a matching:

Definition 5.4. Let m ∈ MN be a matching, and let 1 ⩽ i ⩽ N + 1 be an index.
Denote by inserti(m) ∈ MN+2 the matching obtained by inserting a short chord that
matches the vertices i and i + 1, while pushing every vertex j ⩾ i to position j + 2.
Formally, denote by fi : [N ] → [N + 2] ∖ {i, i + 1} the function that is described as
follows:

fi(j) =
{

j if j < i,
j + 2 if j ⩾ i.

Then the matching inserti(m) consists of the chords (fi(j1), fi(j2)) for all (j1, j2) ∈ m
together with (i, i + 1), and consists of the unmatched vertices (fi(j)) for all (j) ∈ m.

For example, if m = {(1, 3), (2, 6), (4, 5)}, then we obtain that insert3(m) =
{(1, 5), (2, 8), (3, 4), (6, 7)}.

The insertion function is closely related to Knuth equivalence, as demonstrated by
the following lemmas:

Lemma 5.5. Let m ∈ MN be a matching and let 1 ⩽ i, j ⩽ N + 1 be indices. Then
inserti(m) is Knuth equivalent to insertj(m).
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Proof. We may assume without loss of generality that i ⩽ j, and prove the statement
by induction on j − i. The statement is obvious for i = j.

Assume that i < j. By Definition 5.4, the matching inserti+1(m) is Knuth equiva-
lent to inserti(m). By the induction hypothesis, inserti+1(m) is Knuth equivalent to
insertj(m) as well. Therefore, inserti(m) is Knuth equivalent to insertj(m). □

Lemma 5.6. Let m1, m2 ∈ MN be Knuth equivalent matchings, and let 1 ⩽ i ⩽ N + 1
be an index. Then inserti(m1) and inserti(m2) are Knuth equivalent.

Proof. By Lemma 5.5, we may assume that i = N + 1. Assume that m2 =
φ1 · · · φℓ(m1) for some elementary Knuth transformations φ1, . . . , φℓ. We prove the
statement by induction on ℓ. The statement is obvious for ℓ = 0.

Next, assume that ℓ > 0. By the induction hypothesis, we may assume that
insertN+1(m2) is equivalent to insertN+1(φℓ(m1)). Therefore, it suffices to show that
insertN+1(m1) is equivalent to insertN+1(φℓ(m1)). Assume that (j, j +1), (j +2, j′) ∈
m1 for some 1 ⩽ j, j′ ⩽ N , and that (j, j′), (j+1, j+2) ∈ φℓ(m1), as other types of ele-
mentary Knuth transformations are handled similarly. Notice that insertN+1(m1) and
insertN+1(φℓ(m1)) have all but four chords in common. Specifically, insertN+1(m1)
contains the chords (j, j + 1) and (j + 2, j′), while insertN+1(φℓ(m1)) contains the
chords (j, j′) and (j + 1, j + 2). Therefore, there exists an elementary Knuth trans-
formation φ, such that φ(insertN+1(m1)) = insertN+1(φℓ(m1)). Thus, the matchings
insertN+1(m1) and insertN+1(φℓ(m1)) are equivalent, as required. □

We can combine Lemma 5.5 with Lemma 5.6 to obtain the following:

Lemma 5.7. Let m ∈ Mn be a matching, and let i1, . . . , ik and j1, . . . , jk be two
sequences. Then the matchings inserti1 · · · insertik

(m) and insertj1 · · · insertjk
(m) are

Knuth equivalent.

Proof. We prove the statement by induction on k. If k = 0 then the statement is
obvious.

Next, we assume that k > 0, and denote mi = inserti2 · · · insertik
(m) and

mj = insertj2 · · · insertjk
(m). We aim to prove that the matchings inserti1(mi) and

insertj1(mj) are Knuth equivalent. By the induction hypothesis, mi and mj are
equivalent. Therefore, by Lemma 5.6, the matchings inserti1(mi) and inserti1(mj)
are equivalent too. In addition, by Lemma 5.5, the matchings inserti1(mj) and
insertj1(mj) are equivalent. Therefore, the matchings inserti1(mi) and insertj1(mj)
are equivalent. □

Lemma 5.8. Let m ∈ MN be a matching with k unstable chords. Then there exist
indices i1, . . . , ik such that

m = inserti1 · · · insertik
(core(m)).

Proof. We prove the statement by induction on k. If k = 0 then core(m) = m and
the statement is obvious.

Assume that a matching m ∈ MN has k > 0 unstable chords. Therefore, m has at
least one short chord, denoted (i1, i1 + 1) ∈ m. Thus, there exists a matching m1 ∈
MN−2 such that m = inserti1(m1). Notice that core(m) = core(m1), so m1 has k − 1
unstable chords. Thus, by the induction hypothesis, there exist indices i2, . . . , ik such
that m1 = inserti2 · · · insertik

(core(m)) and so m = inserti1 · · · insertik
(core(m)). □

Now we are ready to prove Lemma 5.3.

Proof of Lemma 5.3. Let m1, m2 ∈ MN be matchings with m0 := core(m1) =
core(m2). Thus, m1 and m2 have the same number of unstable chords, denoted
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k. Following Lemma 5.8, we can write m1 = inserti1 · · · insertik
(m0) and m2 =

insertj1 · · · insertjk
(m0) for some i1, . . . , ik and j1, . . . , jk. The statement now follows

directly from Lemma 5.7. □

Theorem 5.1 implies the following result:

Corollary 5.9. If a set M ⊆ MN is closed under Knuth equivalence then it is Schur-
positive with respect to Short. Moreover, if M is a Knuth equivalence class then its
generating function is

Q(M) = sN−k,k,

where k is the number of unstable chords of some arbitrary matching m ∈ M.

Proof. Clearly, a disjoint union of Schur-positive sets is Schur-positive. Therefore,
it suffices to establish the statement for equivalence classes. Let M ⊆ MN be an
equivalence class. By Theorem 5.1 there exist 0 ⩽ k ⩽ N

2 , f ⩾ 0 and m0 ∈
MN−2k,f (Short = ∅), such that M = {m ∈ MN,f | core(m) = m0}. Recall the
transformation F : m 7→ (core(m), T (m)) discussed in Section 4.2, and consider its
restriction to M. We obtain that the restricted transformation

F
∣∣
M : M → {m0} × SYT(N − k, k)

is a statistic-preserving bijection. Applying Theorem 2.5 completes the proof. □

5.2. Other constructions of Schur-positive sets. We may apply Corollary 5.9
to obtain other Schur-positive sets of matchings. For example, we can filter MN by
the isomorphism class of the intersection graph:

Definition 5.10. Let m be a matching. Its intersection graph, denoted G(m), is de-
fined to be the undirected simple graph with the chords of m as its vertices, and with
an edge between two vertices if the associated chords of m intersect.

It can be easily seen that applying an elementary Knuth transformation on a
matching preserves its intersection graph up to graph-isomorphism. Therefore, by
Corollary 5.9:

Corollary 5.11. For every N and f , the set of matchings m ∈ MN,f with a fixed
intersection graph up to graph-isomorphism is Schur-positive.

For example, fix N and f . Then for every k, the set of k-crossing matchings in MN,f

(i.e. matchings where k is the maximal cardinality of a set of pairwise intersecting
chords) is Schur-positive. Equivalently, this is the set of matchings whose intersection
graph has a maximal clique with k vertices.

As another example, given a matching m ∈ MN,f , for every 1 ⩽ i ⩽ N denote
by Ii(m) the number of chords of m that intersect the chord that contains i (if i is
an unmatched vertex define Ii(m) = 0). From Corollary 5.11 we obtain that for any
fixed multiset S, the set of matchings m ∈ MN,f such that {Ii(m) | i ∈ [N ]} = S (as
multisets) is Schur-positive. For example, the following sets are Schur-positive:

• The set of matchings m ∈ MN,f with exactly k pairs of intersecting chords,
i.e. such that 1

2
∑

i Ii(m) = k.
• The set of matchings m ∈ MN,f with exactly k intersecting chords, i.e. such

that 1
2 |{i | Ii(m) > 0}| = k.

• The set of matchings m ∈ MN,f with k the maximal number of times that a
chord intersects other chords, i.e. with maxi Ii(m) = k.
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5.3. Pattern avoidance in matchings. Sagan and Woo [27], motivated by
Elizalde and Roichman [11], posed the problem of determining which sets Π of
permutations satisfy the property that for all n, the set of permutations in Sn that
avoid every pattern in Π is Schur-positive. This problem has been extensively studied
since then [16, 7, 21].

An analogous question may be asked about Schur-positivity of pattern-avoiding
matchings as well. Extensive research has been conducted on pattern avoidance in
perfect matchings by Simion and Schmidt [28], Jelínek and Mansour [18], Bloom
and Elizalde [6], and others, leading to multiple definitions in the literature. Fang,
Hamaker, and Troyka [12] explore some of these definitions and provide a compari-
son. Additionally, various conventions exist for generalizing pattern avoidance to non-
perfect matchings [20, 12, 22]. We adopt the definition from McGovern [22], which
directly generalizes the definition for perfect matchings from [18] and [9].

Definition 5.12. Let m1 ∈ MN1 and m2 ∈ MN2 for some positive integers N1 ⩽ N2.
We say that m2 contains the pattern m1, if there exist indices 1 ⩽ i1 < · · · < iN1 ⩽ N2
such that the following holds:

• For all 1 ⩽ j < j′ ⩽ N1,
(j, j′) ∈ m1 ⇐⇒ (ij , ij′) ∈ m2.

• For all 1 ⩽ j ⩽ N1,
(j) ∈ m1 ⇐⇒ (ij) ∈ m2.

Otherwise, we say that m2 avoids m1.
For two sets of matchings M1 ⊆ MN1 and M2 ⊆ MN2 , denote by M2(M1)

the set of matchings in M2 that avoid every matching in M1. In addition, denote
M2(m) := M2({m}) for a matching m.

The following problem is analogous to the problem of Sagan and Woo [27] regarding
pattern-avoiding permutations:

Problem 5.13. Determine which sets M ⊆ MN of matchings satisfy the property
that for all N ′, f ′, the pattern-avoiding set MN ′,f ′(M) is Schur-positive with respect
to Short.

While a complete solution of Problem 5.13 seems challenging, we are able to solve
the problem in the case where |M| = 1.

Proposition 5.14. Let N be a nonnegative integer, and let m ∈ MN be a matching.
Then the pattern-avoiding set MN ′,f ′(m) is Schur-positive with respect to Short for
all N ′, f ′ if and only if one of the following holds:

(1) Short(m) = ∅, or
(2) m = {(1, 2)}, the unique perfect matching on two vertices.

In the proof of Proposition 5.14, we will apply the following result:

Lemma 5.15. Let m ∈ MN be a short-chord-free matching, and let N ′, f ′ be non-
negative integers. Then the pattern-avoiding set MN ′,f ′(m) is closed under Knuth
equivalence.

Proof. Let m′
1 ∈ MN ′,f ′ be a matching, and let m′

2 ∈ MN ′,f ′ be the result of applying
an elementary Knuth transformation on m′

1. Assume that m′
1 contains the pattern m.

It suffices to prove that m2 contains m too. By Definition 5.12, there exist indices 1 ⩽
i1 < · · · < iN ⩽ N ′ such that (j, j′) ∈ m ⇐⇒ (ij , ij′) ∈ m′

1 for all 1 ⩽ j < j′ ⩽ N and
(j) ∈ m ⇐⇒ (ij) ∈ m′

1 for all 1 ⩽ j ⩽ N . Without loss of generality, we may assume
that (i, i + 1) ∈ m′

1 and m′
2 is obtained from m′

1 by interchanging the chord (i, i + 1)
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with the vertex i + 2. The pattern m is short-chord-free, so i, i + 1 /∈ {i1, . . . , iN }.
Therefore, by considering the index set {i1, . . . , iN } if i + 2 /∈ {i1, . . . , iN } and the set
{i} ∪ {i1, . . . , iN }∖ {i + 2} otherwise, we obtain that the matching m′

2 contains m as
well. □

Now, let us prove Proposition 5.14:

Proof of Proposition 5.14. Denote by f the number of unmatched vertices of m, and
assume that MN ′,f ′(m) is Schur-positive for all N ′, f ′. In particular, we may take
N ′ = N and f ′ = f and obtain that the set MN,f (m) is Schur-positive. Since
MN,f (m) = MN,f ∖ {m}, we obtain that the generating function Q(MN,f ∖ {m})
is Schur-positive and, as such, symmetric. Clearly,

Q(MN,f ∖ {m}) = Q(MN,f ) − Q({m}).

By Theorem 1.6, the function Q(MN,f ) is symmetric, so the function Q({m}) =
FShort(m) is symmetric as well. By Lemma 2.8, we may deduce that Short(m) =
∅ or Short(m) = [N − 1]. If Short(m) = ∅ then the statement holds. Otherwise,
Short(m) = [N − 1]. The statistic Short is sparse (recall Definition 1.7), so we may
deduce that N ⩽ 2. If N = 2 then Short(m) = {1}, and therefore m = {(1, 2)}. If
N = 1 then Short(m) = ∅.

On the other hand, we assume that Short(m) = ∅ or m = {(1, 2)} and prove that
MN ′,f ′(m) is Schur-positive for all N ′, f ′.

(1) Assume that Short(m) = ∅, and let N ′, f ′ be nonnegative integers. By
Lemma 5.15, the set MN ′,f ′(m) is closed under Knuth equivalence. Therefore,
by Corollary 5.9, it is Schur-positive.

(2) Assume that m = {(1, 2)}, and let N ′, f ′ be nonnegative integers. Notice
that a matching avoids the pattern m if and only if it is an empty matching
(i.e. with all its vertices unmatched). By Definition 1.9, such a matching is
Knuth equivalent only to itself, so MN ′,f ′(m) is closed under Knuth equiva-
lence. Therefore by Corollary 5.9, MN ′,f ′(m) is Schur-positive. □

6. Further remarks and open problems
6.1. Criteria for special cases of Schur-positivity. There is a simple well-
known criterion for sets under which the generating function QD(A) is non-negatively
spanned by the Schur functions of hook shape sN−k,1k :

Proposition 6.1 (folklore). A set A with a statistic D : A → 2[N−1] has a generating
function of the form

QD(A) =
N−1∑
k=0

cksN−k,1k , ck ∈ N

if and only if for every J ⊆ [N − 1], |{a ∈ A | D(a) = J}| depends only on |J |. In
that case, ck = |{a ∈ A | D(a) = [k]}|.

Proof. On one hand, assume that there exist ck ∈ N such that |A(D = J)| = c|J|
for all J ⊆ [N − 1]. Notice that every tableau of a hook shape T ∈ SYT(N − k, 1k)
has | Des(T )| = k. Conversely, for every set J ⊆ [N − 1] with |J | = k there exists a
unique tableau T ∈ SYT(N − k, 1k) such that Des(T ) = J . Therefore, we obtain the
equation ∑

a∈A
tD(a) =

N−1∑
k=0

ck

∑
T ∈SYT(N−k,1k)

tDes(T ),
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where tJ :=
∏

j∈J tj for J ⊆ [N − 1]. By Theorem 2.5, this equation implies the
statement.

The other direction of the proposition states that if QD(A) =
∑N−1

k=0 cksN−k,1k ,
then |{a ∈ A | D(a) = J}| = c|J|. Adin and Roichman [3, Corollary 8.1] established
that a generating function uniquely determines the descent set distribution, which
implies the statement. □

Similarly to Proposition 6.1, Theorem 1.8 provides a simple criterion under which
QD(A) is non-negatively spanned by the Schur functions of two-row shape {sN−k,k |
0 ⩽ k ⩽ n}. In the spirit of discovering new methods and expanding our under-
standing, we pose the problem of finding other such criteria, hopeful that they will
contribute to further advancements in the study of Schur-positivity and Schur coeffi-
cients.

Problem 6.2. Find other sets of partitions Λ ⊆ {λ ⊢ N} and criteria for a given set
A under which QD(A) is non-negatively spanned by the functions {sλ | λ ∈ Λ}.

6.2. Short chords of matchings. Theorem 1.6 shows that the set MN,f of match-
ings with a given number of unmatched vertices is Schur-positive with respect to the
set of short chords, and describes its Schur expansion. In Section 5, several Schur-
positive subsets of MN,f are presented too. All these sets are shown to be closed
under Knuth equivalence (described in Definition 1.9), so their Schur-positivity can
be derived from Corollary 5.9. It is desired to find Schur-positive sets of other types.

Problem 6.3. Find other Schur-positive subsets of MN,f with respect to Short. In
particular, find Schur-positive subsets that are not closed under Knuth equivalence.

Schur-positive sets of particular interest are pattern-avoiding sets. As discussed
earlier in Section 5.3, Schur-positivity of pattern-avoiding sets was extensively studied
in the context of permutations. Recall the problem stated in Section 5.3:

Problem (Problem 5.13 above). Determine which sets M ⊆ MN of matchings satisfy
the property that for all N ′, f ′, the pattern-avoiding set MN ′,f ′(M) is Schur-positive
with respect to Short.

Proposition 5.14 solves this problem for pattern sets of size 1. We do not know a
general answer for larger pattern sets.

The connection identified between the Schur expansion of MN,f and Bessel poly-
nomials, as revealed in Corollary 4.13, serves as motivation to investigate the Schur
expansion of additional sets:

Problem 6.4 (Sergi Elizalde, personal communication). Find the Schur expansion of
Schur-positive sets of matchings. For instance, find the Schur expansion of the set
of k-crossing matchings in MN,f , or the Schur expansion of Schur-positive pattern-
avoiding sets.

6.3. The involutive length. Here, we discuss one of the primary motivations
behind this research. We denote by I2n the set of fixed-point-free involutions in the
symmetric group S2n. Furthermore, we define the simple reflections si = (i, i + 1) ∈
S2n for 1 ⩽ i < 2n, and denote w0 = (1, 2)(3, 4) · · · (2n − 1, 2n). Adin, Postnikov, and
Roichman [2] defined the involutive length of an involution w ∈ I2n as

ℓ̂(w) := min{k | si1 · · · sik
w(si1 · · · sik

)−1 = w0, 1 ⩽ i1, . . . , ik < 2n}.

They also defined the involutive weak order ⩽I on I2n, as the reflexive and transitive
closure of the relation w ≺I siwsi if ℓ̂(siwsi) = ℓ̂(w) + 1. The involutive order is
motivated by the Bruhat order defined for Coxeter groups [5, Chapter 2].
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Since fixed-point-free involutions in S2n naturally correspond to perfect matchings
on 2n vertices, we will adopt the involutive length and the involutive weak order for
perfect matchings in PM2n := M2n,0 and use the same notation for them.

Consider the natural action of S2n on the set PM2n, and denote m0 =
{(1, 2), (3, 4), . . . , (2n − 1, 2n)}. Notably, the stabilizer of m0 is isomorphic to
the hyperoctahedral group Hn = S2 ≀ Sn. Furthermore, consider the Schreier graph
associated with this action with respect to the simple reflections. For an illustration
of this Schreier graph, see Figure 7 which depicts it when 2n = 4.

12|34

13|24

14|23

2

31

1 3

2

Figure 7. Schreier graph of the natural action of S4 on PM4

We can create a layered graph by partitioning the vertices (matchings) into layers
based on their distance from m0. Specifically, a matching in the ℓ-th layer is at a
distance of ℓ from m0. Furthermore, Avni [4] proved that this graph is bipartite when
ignoring loops. Therefore, a matching in one layer is connected to matchings in the
adjacent layers, but not within its own layer or to matchings in non-adjacent layers.

It turns out that this graph corresponds to the involutive length and the involutive
weak order. First, the index of the layer of a matching m is equal to its involutive
length ℓ̂(m). Moreover, for every m1, m2 ∈ PM2n we have m1 ⩽I m2 if and only if
there exists a geodesic path from m0 to m2 passing through m1.

Based on the structure of the Schreier graph, we define three natural set-valued
functions on perfect matchings, denoted by Asc(m), Loop(m), and Des(m), where m
is a matching in PM2n. Given a matching m ∈ PM2n and an index 1 ⩽ i ⩽ 2n − 1,
we define:

• i ∈ Asc(m) if si · m >I m, where the dot denotes the group action,
• i ∈ Des(m) if si · m <I m, and
• i ∈ Loop(m) if si · m = m.

It is noteworthy that i ∈ Asc(m) if and only if ℓ̂(si · m) > ℓ̂(m), i ∈ Des(m) if and
only if ℓ̂(si · m) < ℓ̂(m), and i ∈ Loop(m) if and only if ℓ̂(si · m) = ℓ̂(m).

The algebraic interest of the graph motivates the analysis of these three statistics,
specifically focusing on the question of the Schur-positivity of PM2n with respect to
each of them. As a first step in this direction, it is noteworthy that the definition
of Asc coincides with the standard ascents of permutations when restricted to I2n.
Consequently, the Schur-positivity of PM2n with respect to Asc can be derived di-
rectly from classical properties of the Robinson-Schensted correspondence, as noted
for example by Gessel and Reutenauer [14, end of Section 7]. Moreover, we have the
observation Loop(m) = Short(m) for a perfect matching m. This observation, when
combined with Theorem 1.6, implies that PM2n is Schur-positive with respect to
Loop.

In contrast, the Schur-positivity of PM2n with respect to Des remains a mystery.
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Question 6.5 (Ron Adin and Yuval Roichman, personal communication). Is PM2n

Schur-positive with respect to Des?

Despite extensive analysis of the Des statistic, we are currently unable to provide
an answer. However, based on experimental results from simulations, we have dis-
covered that PM2n is Schur-positive with respect to Des when 2n ⩽ 14. Moreover,
intriguingly, the statistics Asc and Des are found to be equidistributed for all 2n ⩽ 14.
These findings lead us to propose the following conjecture:

Conjecture 6.6 (Ron Adin and Yuval Roichman, personal communication). For all
n ∈ N, ∑

m∈PM2n

tAsc(m) =
∑

m∈PM2n

tDes(m),

where tJ :=
∏

j∈J tj for J ⊆ [2n − 1].

If this conjecture can be proven, it would establish the Schur-positivity of PM2n

with respect to Des. Furthermore, a bijection on PM2n that maps ascents to descents
may unveil hidden symmetries within the Schreier graph.
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