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On the cardinality of minimal presentations

of numerical semigroups

Ceyhun Elmacioglu, Kieran Hilmer, Christopher O’Neill,
Melin Okandan & Hannah Park-Kaufmann

ABSTRACT In this paper, we consider the following question: “given the multiplicity m and
embedding dimension e of a numerical semigroup S, what can be said about the cardinality n of a
minimal presentation of S?” We approach this question from a combinatorial (poset-theoretic)
perspective, utilizing the recently-introduced notion of a Kunz nilsemigroup. In addition to
making significant headway on this question beyond what was previously known, in the form
of both explicit constructions and general bounds, we provide a self-contained introduction to
Kunz nilsemigroups that avoids the polyhedral geometry necessary for much of their source
material.

1. INTRODUCTION

A numerical semigroup is a cofinite subset S C Zx( containing 0 that is closed under
addition. We often specify a numerical semigroup using generators n; < --- < ng, i.e.,

S=(ny,...,nk) ={zn1+ -+ zpnp : 2 € Lo}
It is known that each numerical semigroup S has a unique minimal generating set,
the elements of which are called atoms; we write e(S) = k for its cardinality and

m(S) = n; for its smallest element, called the embedding dimension and multiplicity
of S, respectively. A factorization of an element n € S is an expression

n=ziny+- -+ 2xnk
of n as a sum of generators of S, which we often encode as a k-tuple (z1,...,2x).
One of the primary ways of studying a numerical semigroup S is via a minimal
presentation p C Z’;O X Z’;O, each element of which is a pair of factorizations that

represents a minimal relation or trade between the generators of S (we save the formal
definition for Section 2). For example, if S = (6,9, 20), then

p= {((37 0, 0)7 (07 2, 0))7 ((47 4, 0)7 (07 0, 3))}
is a minimal presentation of S consisting of 2 trades, the first between the factoriza-
tions 18 = 3-6 = 2-9, and the second between the factorizations 60 = 4-6+4-7 = 3-20.
While a given numerical semigroup S can have numerous minimal presentations, all
have identical cardinality [19]; we denote this value by 7(S5).

QUESTION 1.1. Given the multiplicity m(S) and embedding dimension e(S) of a nu-

merical semigroup S, what are the attainable minimal presentation cardinalities n(S)?
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Given a numerical semigroup S, some bounds are known for n = 7(S) in terms of
m =m(S) and e = ¢(5). It is known that e — 1 < 7, with equality if and only if S is
complete intersection [21]. On the other hand, no upper bound for 7 in terms of e is
possible in general. Indeed, if e = 2, then n = 1, and if e = 3, then n = 2 when S is
complete intersection and 1 = 3 otherwise. However, when e = 4 or larger, the value
of n can be arbitrarily large [3]; see [5, 15] for families achieving these values, as well
as [22] for a survey of such results.

More is known if one considers the value of m. It is well known that n < (Tg), with
equality if and only if e = m, in which case we say S has maz embedding dimension
(see [20, Section 8.4]). Some extensions of this are given in [18]: if e = m — 1, then
nel(5) —1,(5)] and if e = m —2, then n € [(5) — 2, (5)]. Additionally, if 3 < e, then
n = () is attained for every m > e by [17].

In regards to Question 1.1, the authors of [18] note that their aforementioned
results for e € [m — 2,m] fail to extend to e = m — 3, and remark this “makes
one think of alternative ways of study for numerical semigroups with not so high
embedding dimension.” Recent work [8] has done just that, uncovering a new way to
approach Question 1.1 that is poset-theoretic in nature. The idea is to associate to
each numerical semigroup S a finite, partly cancellative nilsemigroup N, called the
Kunz nilsemigroup of S, from whose divisibility poset the value 1(.S) can be recovered.

One of the primary difficulties in classifying n(S) is that, except for a handful
of specific families of numerical semigroups, minimal presentations can vary widely
in structure. Proving that a given set of trades is a minimal presentation usually
involves a highly technical argument, and often requires a strong description of how
one can navigate the factorizations of every element of S using the given trades. That
is what makes Kunz nilsemigroups so advantageous for this task: the value of n(S)
can be obtained without obtaining a full minimal presentation of S. In fact, upon
re-examining [17, 18], one can see the arguments and constructions therein as special
cases of those we develop in Sections 3 and 4, albeit with much lengthier arguments
and in less generality.

The purposes of the present manuscript are twofold.

e In Section 2, we provide a self-contained introduction to the machinery intro-
duced in [8], illustrating how it can be used to approach Question 1.1. Though
the manuscript is third in a sequence of geometry-centric papers [2, 8, 12],
the combinatorial methods for obtaining 7(S) do not rely on the geometry,
and our overview of these methods in Section 2 is careful to avoid it.

e In the remaining sections, we utilize this new machinery to make considerable
headway on Question 1.1. We present several families of numerical semigroups
achieving a large range of values of 7 for each e and m, as well as bounds on
the possible values of 7.

The diagram in Figure 1 lists all values of < 26 achieved for m < 17 and e < 8§,
obtained computationally using algorithms from [4, 8]. Each row corresponds to a
value of m < 17, and each boxed number in that row is the value of 1 achieved by
some numerical semigroup with multiplicity m. Each bold colored edge demarcates
the values of n that are achieved by numerical semigroups with the labeled embedding
dimension e < 8, and the top box of each outlined region is n = (;)

Figure 1 puts the results of this manuscript in context. Shaded boxes indicate
values of 7 attained by families of numerical semigroups constructed in Theorems 4.2,
5.5, and 6.3, colored according to the value of e used therein. For comparison, the
results of [18] characterize the first 3 rows for each embedding dimension. Theorem 3.4
gives a lower bound n > (S) — (m —e), which can be seen as the “staircase” each bold

colored edge makes from 1 = (5) down and to the left to n = (°3') +1. We also prove
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FIGURE 1. The values of n(S) < 26 attained for m(S) < 17, with
those attained for each e(.S) < 8 outlined.

in Theorem 5.2 that if e = m—3, then n < (;) +1, which characterizes the 4th row for
each embedding dimension, and provide a streamlined proof of the upper bound given
in [18] for the first 3 rows. In Proposition 6.2 and Theorem 6.3, we identify additional
families of numerical semigroups with e = 4 that achieve every value of 7 outlined in
the green edges. In fact, we conjecture that these families achieve all possible values
of n for every m when e = 4, which we have verified computationally for m < 42.
We close with Section 7, which contains several open problems, along with a proof
that upon restricting to each e > 4, every column in Figure 1 with 7 > e — 1 has only
finitely many missing boxes.

One additional consequence of our results pertains to the related question “given
a multiplicity m, what are the possible values of 1?” Only a narrow range of values
now remains uncharacterized, namely those attained when

e+3<m<2e and (g)+2<n<(§)+(2e—m).

The only such values in Figure 1 are n = 23 for m = 11 and m = 12; the latter is
achieved when e = 7, while the former is not achieved by any numerical semigroup.
Indeed, n = 23 is achieved for each m > 13 with e = 8 by Theorem 4.2.

2. AN OVERVIEW OF NILSEMIGROUPS AND OUTER BETTI ELEMENTS

In this section, we provide a self-contained introduction to the machinery introduced
in [8], including Kunz nilsemigroups and outer Betti elements, with an emphasis on
illustrating how this machinery can be used to approach Question 1.1. All definitions
appearing here that are not in [8] can be found in the monographs [1, 20].

Fix a numerical semigroup S = (ni,...,nx). The embedding codimension of S is

r(S) = m(S) —e(9).

In particular, max embedding dimension numerical semigroups have embedding codi-
mension 0. Letting m = m(S), the Apery set of S is the set

Ap(S)={neS:n—m¢S}

of minimal elements of S within each equivalence class modulo m. Since S is cofinite,
we are guaranteed |Ap(S)| = m, and that Ap(S) contains exactly one element in each
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equivalence class modulo m. As such, we often write

Ap(S) ={ag,a1,...,am-1}

with each a; = i mod m, and view the subscripts as elements of Z,,, (e.g. a_1 = am—1).
Recall that a factorization of an element n € S is an expression

n=ziny+- -+ 2xni

of n as a sum of atoms of S, which we often encode as a k-tuple z = (21,...,2x) € Z’;O,
and its length is zy + - - - + z. The factorization homomorphism

@SIZ’;OHS
ZH—>z1n1 + -+ ZEng

is the additive semigroup homomorphism that sends each k-tuple z = (z1,...,2x)
to the element of S that z is a factorization of. Under this notation, the preimage
©5'(n) = Zg(n) is the set of factorizations of n € S. The kernel of ¢g, denoted
~ = ker pg, relates z ~ 2z’ whenever ¢gs(z) = pg(z’), in which case we call the pair
(2,2') a trade or relation. The kernel is a congruence, i.e., an equivalence relation
satisfying z + 2" ~ 2’ + 2" whenever z ~ 2’ and 2 € Z’;O. A subset p C ker g is
called a presentation for S if the intersection of all congruences containing p is ker ¢g.
A presentation p of S is minimal if no proper subset of p is a presentation for S. It is
known that any two minimal presentations of .S have the same cardinality, which we
denote n(S) = |p|. The Betti elements of S are those in the set

Betti(S) := {ps(2) : (2,2') € p},

where p is any minimal presentation of S; the set Betti(S) is independent of the
choice of p. The factorization graph V,, of an element n € S has vertex set Zg(n) and
distinct vertices z,z’ € Zg(n) are connected by an edge whenever z; > 0 and z; > 0
for some i. It is known that n € Betti(.S9) if and only if V,, is disconnected, and in fact
the number of relations (z,z’) € p for which n = ¢(z) is one less than the number of
connected components of V,,.

Before seeing an example, we give one more definition that will be needed for
several proofs in later sections. Given a second numerical semigroup S” = (n},...,n})
and non-atoms a € S and o' € §" with ged(a,a’) = 1, the gluing of S and S’ by a and
a’ is

T=dS+aS = {a'ny,...,ang,an},... an}),
for which is it known [7, 21] that e(T) = e(S) + e(S’), m(T) = max(a’'m(S), am(S")),
and n(T) = n(S) +n(S") + 1.

EXAMPLE 2.1. The numerical semigroup S; = (6,7,8,9,10,11) has max embedding
dimension, so every nonzero element in its Apéry set

Ap(S)) = {0,7,8,9,10,11}
is an atom of S7. On the other hand, S = (8,9, 28, 14,15) has Apéry set
Ap(S) = {0,9,18,27,28,29, 14,15},

containing the non-atoms 18 and 27, both multiples of the atom 9, and 29 = 14 + 15.
In general, elements of the Apéry set are precisely those which have no factorizations
involving the multiplicity. Also, S5 = (10, 22,23, 24) has Apéry set

Ap(S;) = {0,71,22,23,24, 45, 46, 47, 48, 69}

and the trade (0,0,2,0) ~ (0,1,0,1) between factorizations of 46 € Ap(Ss). In fact
this trade lies in every minimal presentation of Ss.
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[ J: N

FIGURE 2. The Kunz posets of Sy (left) and Sz (right) from Exam-
ple 2.2, with outer Betti elements depicted as in Example 2.5.

A nilsemigroup is a semigroup with a universally absorbing element oo, called the
nil. Let (N,4) be a nilsemigroup that is finite, has an identity 0 € N, and is partly
cancellative: a + b = a + ¢ # oo implies b = ¢ for all b,¢ € N. Like numerical semi-
groups, any finite partly cancellative nilsemigroup has a unique minimal generating
set. We write m(IN) = |N| — 1 for the number of non-nil elements and e(N) for one
more than the number of minimal generators, which are also called atoms.

The Kunz nilsemigroup N of a numerical semigroup S is obtained from S/~, where
~ is the congruence that relates a ~ b whenever a = b or a,b ¢ Ap(S) (the set
S~ Ap(S) comprises the nil of S/~), by replacing each non-nil element with its
equivalence class in Z,,. This ensures e(N) = e(S) and m(N) = m(S), as the minimal
generators of N are the minimal generators of S distinct from the multiplicity.

A finite partly cancellative nilsemigroup N may be visualized by examining the
divisibility poset P of non-nil elements, wherein b =< ¢ when ¢ = a+ b for some a € N.
Partial cancellativity ensures ¢ covers b when ¢ = a + b for some atom a, so in fact
the additive structure of N can be recovered from the poset structure of P. If N is
the Kunz nilsemigroup of a numerical semigroup S, we call P the Kunz poset of S.

ExXAMPLE 2.2. The Kunz posets of the numerical semigroups S1, .52, and S3 from Ex-
ample 2.1 are depicted in Figures 2 and 3, with one black dot for each non-nil element.
The dashed edges and red dots in each depiction will be addressed in Examples 2.3
and 2.5 once the necessary definitions have been discussed.

Each element covering 0 is a nilsemigroup atom, and the edges throughout each
depiction are colored to reflect the fact that each cover relation results from adding a
nilsemigroup atom. Considering the nilsemigroup N of S5, for instance, the 3 nonzero
non-atoms are 2 and 3, both of which are multiples of 1 € Ny, and 5 =6+ 7 € Ns.
This perfectly encodes the additive structure of the elements of Ap(Sy) discussed in
Example 2.1. Moreover, one can see in the depiction of the Kunz nilsemigroup N3 of
S3 in Figure 3 that ag € Ap(S3) has two distinct factorizations ag = ag + a4 = 2as,
which constitute a trade (0,1,0,1) ~ (0,0,2,0).

Given a finite partly cancellative nilsemigroup N with e(IN) = k, one can analo-
gously define the factorization homomorphism ¢y : Z;Bl — N, with Zy(p) = apx,l (p)
for each p € N. Partial cancellativity ensures |Zy(p)| < oo unless p = co. If N is the
Kunz nilsemigroup of a numerical semigroup S, then for each a; € Ap(S), omitting
the first coordinate of each factorization in Zg(a;) yields Zy (i), and Zy(c0) contains
all remaining elements of Z’;Bl.
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0

FIGURE 3. The Kunz posets of the semigroups S3 = (10, 22,23, 24)
(left) from Example 2.2 and Sy = (6,7,8,9) (right) from Example 2.6.

We say p C kerpy is a minimal presentation if it is obtained from a minimal
generating set of ker oy by omitting any trade z ~ 2z’ with ¢y (z) = co. Likewise,

Betti(N) := {on(2) : (2,2') € p}.

The omission of trades occurring at oo is a slight departure from the “usual” definition
of a minimal presentation from semigroup theory, but is more natural if N is the
Kunz nilsemigroup of a numerical semigroup S. A minimal presentation for IV can be
obtained from a minimal presentation p for S by (i) omitting any trade (z,z’) with
vs(z) ¢ Ap(S) and (ii) omitting the leading 0 entry from both factorizations in all
remaining trades. In fact,

Betti(N) = {i : a; € Ap(S) N Betti(S)}.

There is also a partial converse. Fix a minimal presentation p for S, partitioned as
p = p Up"” where (z,2') € p"” whenever ¢pg(z) € Ap(S). Let p"”’ be a collection of
trades for S obtained from a minimal presentation for N by prepending a 0 entry to
both factorizations in each trade. Then p’ U p’”’ is also minimal presentation for S.

EXAMPLE 2.3. The only numerical semigroup in Example 2.1 whose Kunz nilsemi-
group has nonempty minimal presentation is S3, and {((1,0,1),(0,2,0))} is in fact
the only possible minimal presentation for its Kunz nilsemigroup N3. Note the dis-
tinction between the above trade and the one for S3 given at the end of Example 2.2:
since S3 has one additional generator, namely m(S) = 10, each factorization has one
additional entry. For comparison, 7(S3) = 4 and

Betti(S3) = {44, 46,70, 72},
with Ap(Ss)NBetti(S3) = {46}. One possible minimal presentation p of S3 has trades
(0,2,0,0) ~(2,0,0,1), (0,1,0,1) ~(0,0,2,0),
(07 07 27 1) ~ (77 07070)’ (07 07 073) ~ (5’ 17070)

each occurring at the corresponding Betti element. It is at this point that we can begin
to see the role the red dots and dashed edges play in Figures 2 and 3: these are the
locations of the trades in p that occur at Betti elements outside the Apéry set. Indeed,
each red dot is labeled with the equivalence class of some b € Betti(S3) ~ Ap(Ss)
modulo m(S3) = 10, and the first factorization in each such trade above indicates, as
we will see below, the “factorization” of the corresponding red dot.

We are now ready to define outer Betti elements. First, the support of a factorization
z € Z’;O and a subset Z C Z’;O are given by

supp(z) = {i : z; > 0} and supp(Z) = {i : 2z, > 0 for some 2’ € Z},
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respectively. Let V; denote the graph whose vertex set is Z wherein distinct vertices
z,7" € Z are connected by an edge whenever supp(z) Nsupp(z’) is nonempty, and for
each i € supp(Z), define

Z—ei={2—e:2€ Zwith i € supp(2)},

where e; is the i-th standard basis vector.
Now, an outer Betti element of a finite partly cancellative nilsemigroup N is a
subset B C Zy(00) such that

(i) for every i € supp(B), we have B — e; = Zn(p) for some p € N ~\ {oo}, and
(ii) the graph Vg is connected.

We denote by
b(N) = number of outer Betti elements of N,

and n(N) = b(N) + |p|, where p is any minimal presentation of N.

Before examining outer Betti elements in more detail, we present the following
consolidation of the main results of [8, Section 5] pertaining to outer Betti elements
and minimal presentations.

THEOREM 2.4. If p is a minimal presentation for the Kunz nilsemigroup N of a nu-
merical semigroup S, then p' U p” is a minimal presentation for S, where:

(i) o’ contains one trade (z,2') for each outer Betti element B of N, where z is
obtained from a factorization in B by prepending a 0, and z' is any factoriza-
tion of ps(z) with positive first coordinate; and

(ii) p” is obtained from p by prepending a 0 to both factorization of each trade.

In particular, n(S) = n(N) = b(N) + |p|.

EXAMPLE 2.5. Any numerical semigroup S with an Apéry set of unique expression,
meaning that each Apéry set element has exactly one factorization, has Kunz nilsemi-
group N whose outer Betti elements are singletons, and each contains a factorization
of oo that is minimal with respect to the componentwise partial order. As such,
n(S) = b(N) by Theorem 2.4. This is the case for the numerical semigroups S; and
Sy from Example 2.1, but not Ss.

For the Kunz nilsemigroup N; of Sy,

ZNl(OO):{ZGZ;O221+"‘+2522},

so there are (g) outer Betti elements, each containing a length 2 factorization. This

generalizes to a known result that any max embedding dimension numerical semigroup
S with m(S) = m has n(S) = ('), with one trade for each length 2 factorization not
involving m.

For the Kunz nilsemigroup Ny of Sy, we have that Zy,(co) has 1(S) = 9 factor-
izations that are minimal with respect to the component-wise partial order: the 5
depicted in Figure 2, and one for each factorization of the form ez + e; for i € [1,4].
Note that a finite partly cancellative nilsemigroup with 4 atoms and no other nonzero
non-nil elements would have 10 outer Betti elements:

e oneis {ez+ey4}, which is not an outer Betti element of Ny since 6+7 = 5 € Ny;

e omne is {2e; }, which is not an outer Betti element of Ny, although {4e;} is an
outer Betti element with identical support; and

e the other 8 are identical to those of Ns.

These ideas are utilized in constructing the family of semigroups in Theorem 4.2.
Unlike S7 and S5, the semigroup S3 does not have an Apéry set of unique expres-
sion. Indeed, the Kunz nilsemigroup N3 of S3 has 3 singleton outer Betti elements,
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along with the outer Betti element
B3 = {(07 27 1)7 (la 07 2)}

which is non-singleton since it lies above 6 € N3, which has 2 factorizations. Intuitively,
the factorization graph V7 has an edge between (0,0,2,1) and (0, 1,0,2), the trade
between which occurs at 46. This is the motivation for requirement (ii) in the definition
of outer Betti element: any minimal factorizations of the nil that are connected by
a trade at a non-nil element cannot yield more than one trade under Theorem 2.4.
More generally, although it need not be obvious from definitions, Theorem 2.4 implies
that prepending a 0 to any two factorizations in a given outer Betti element B yields
two factorizations of the same element of S.

EXAMPLE 2.6. The numerical semigroup Sy = (6, 7,8, 9), and its Kunz nilsemigroup N
depicted in Figure 3, illustrate the subtleties of part (i) in the definition of outer Betti
elements. On the one hand, any factorization in an outer Betti element B must be a
minimal element of Z x(c0). However, the converse need not hold: (0,2,1) € Zy(c0) is
minimal, but it does not lie in any outer Betti element, as the trade (0,2,0) ~ (1,0,1)
occurring at 4 € N connects it via an edge to (1,0, 2), which is not minimal in Z(c0).
Indeed, we see 25 = 7+ 9 + 9 is not a Betti element of Sy since its 3 factorizations
form a connected graph V5.

There is also an algorithmic way to compute the outer Betti elements of a given
nilsemigroup from the set of minimal factorizations of the nil. Build a graph G whose
vertex set Z is comprised of the minimal elements of Zy(00), and include an edge
between z,z' € Z whenever z — e;,2' — e; € Zy(p) for some i € supp(z) N supp(z’)
and non-nil p € N. By [8, Lemma 5.6], each outer Betti element will be a connected
component of G, so one simply needs to compute the connected components of this
graph and check which satisfy condition (i). In particular, any connected component B
of G has Vp connected, and for each i € supp(B), B — e; C Zy(p) for some non-nil
p, so B is an outer Betti element of N if and only if equality holds for each i.

ExaMPLE 2.7. Note that each outer Betti element corresponds to an element of p,
not an element of Betti(S). In particular, two outer Betti elements can correspond
to relations under Theorem 2.4 that occur at the same element of S. With S; as an
example, the outer Betti elements

B=1{(0,1,1,0,0)} and B’ ={(1,0,0,1,0)}

each yield a relation at 17 = 8 +9 = 74 10 € S;. More generally, the outer Betti
elements of 57 that yield relations at the same element of Sy are depicted above/below
each other in Figure 2. On the other hand, S = (6, 13,8,9,10,11) has identical Kunz
nilsemigroup to Si, but B and B’ yield relations at 17 = 8 + 9 and 23 = 13 + 10,
respectively, so one cannot determine from the Kunz nilsemigroup alone which outer
Betti elements yield relations at the same numerical semigroup element. This is an
advantage when examining minimal presentation cardinality using Kunz nilsemigroup
machinery, as it eliminates potential casework.

REMARK 2.8. There is a connection between Apéry sets and Grobner bases of poly-
nomial ideals that is relevant here. The kernel Ig of the map Q[z1,...,2x] — Q[f]
given by xz; — t™ is known as the defining toric ideal of S = (nq,...,nk). A minimal
binomial generating set for Is has one binomial for each trade in a minimal presenta-
tion of S, and such a minimal generating set can be computed using Grébner bases
(see [23] for background on Grébner bases of toric ideals). The ideal J = Ig + (z1)
has been utilized to study homological properties of Is and to obtain an algorithm
for computing Ap(S) that utilizes Grobner bases [13, 14]. In this context, one may
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obtain a minimal generating set for J consisting of z; and one binomial for each trade
in a minimal presentation of N. In fact, under certain term orders, the initial ideal
M of Is has one monomial generator for each outer Betti element of N, and each
monomial outside of M corresponds to a factorization of a distinct element of Ap(S).

3. A LOWER BOUND ON MINIMAL PRESENTATION CARDINALITY

NoTATION 3.1.Unless otherwise stated, in the remainder of this manuscript:
m,e,r,m € Lxo are fixed with m > e > 3 and m = e + r; S denotes a numerical
semigroup with m(S) = m, e(S) =e, r(S) =r, and n(S) = n; and N denotes a finite
partly cancellative nilsemigroup with m non-nil elements, e — 1 atoms and n(N) = 7.

e

In this section, we prove n > (2) — r for any numerical semigroup, a lower bound
we will demonstrate is sharp for » < e in Theorem 4.2. This lower bound coincides
with the one for r € [0, 2] given in [18].

DEFINITION 3.2. An element p € N ~ {oo} is called maximal if p 4+ p’ = oo for any
nonzero p’ € N. The quotient of N by a mazimal element p, which we denote by N/p,
is the quotient nilsemigroup N/~ where ~ is the congruence whose only nontrivial
relation is p ~ oo. In particular, Zy/,(00) = Zn(00)UZN(p), while Zy,(p") = Zn(p')
for each p’ € N \ {p, o0}.

LEMMA 3.3. Let p be a maximal element of N. If there are k minimal relations occur-
ring at p, then b(N) +k +1—b(N/p) equals the number of outer Betti elements of N
divisible by p. In particular, b(N/p) — 1 < b(N) + k.

Proof. Fix an outer Betti element B of N. If B is divisible by p (that is, B—e; = Zn(p)
for some j € supp(B)), then no factorization in B can appear in an outer Betti element
of N/p since B —e; C Zny,(00). If, on the other hand, B is not divisible by p, then
B is also an outer Betti element of N/p, as the factorizations in B —e; are unaffected
by the quotient for each j € supp(B). Each outer Betti element of N/p thus either
coincides with an outer Betti element of IV or consists of factorizations in Zy(p).

Let By, ..., B, denote the outer Betti elements of N/p that are contained in Zy (p).
Since outer Betti elements have connected factorization graphs, and since for each
J € supp(B;), B; —e; = Zn(p') for some p’ € N, the connected components of V,, in
N must be precisely Bj, ..., B,. This implies there are n — 1 = k relations occurring
at p in N, so we obtain

b(N/p) —1<bN)+n—-1=b(N)+k
thereby proving our claim. O
THEOREM 3.4. For any numerical semigroup S, we have n > (;) —r.

Proof. Let N denote the Kunz nilsemigroup of S, and let p1,...,p, € N denote the
nonzero non-nil non-atoms of IV, ordered so that each p; is maximal with respect to
divisibility among p;, ..., p,. Define partly cancellative nilsemigroups Ny, ..., N, so
that Ng = N and N; = (N;_1)/p; for each ¢ > 1. Letting k; be the number of relations
occurring at p; in N;_; (which coincides with the number of relations occurring at p;
in N), Lemma 3.3 implies

n(N):b(NO)+Zki>b(N1)_1+Zki2"'21)(]\7,)—7": (;)—T

since INV,. consists of 0, co, and the atoms of N. Theorem 2.4 completes the proof. [
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FICURE 4. The Kunz poset structure of S with n(S) = (5

) — s from
Theorem 4.2 (left) and the case s = 0 from Example 4.1 (right).

REMARK 3.5. Lemma 3.3 illustrates another advantage of reformulating questions
about minimal presentations in terms of partly cancellative nilsemigroups. Certain
operations that can be defined on nilsemigroups—in this case, quotients by maximal
elements—are not possible if one is confined to Kunz posets (or numerical semigroups,
for that matter). We will utilize this generality again in Theorem 5.2 to streamline
the proof of upper bounds on 7 for numerical semigroups with small codimension.
Additionally, as we will see in Sections 4 and 6, shedding unnecessary information
about the original numerical semigroup in favor of its Kunz nilsemigroup can help
streamline arguments that a given numerical semigroup S has a claimed value n(S).

4. AN INTERVAL OF ATTAINABLE MINIMAL PRESENTATION CARDINALITIES

In this section, we construct a family of numerical semigroups attaining each minimal
presentation cardinality in the interval [(3) — min(r,e — 1), (5)]. This family simulta-
neously generalizes those in [17] and [18] using the machinery of Kunz nilsemigroups.

EXAMPLE 4.1. In [17], the family of numerical semigroups
S={mm+1,(r+2)m+(r+2),....,(r+2)m+ (m-—1))

is introduced to exhibit a numerical semigroup S with n(S) = (;) and with any mul-
tiplicity m > e. The Kunz poset of the above numerical semigroup is nearly identical
to the one depicted in Figure 4, except that each label is replaced with its negation
modulo m. Intuitively, this construction ensures that, just as for max embedding di-
mension numerical semigroups, there is one outer Betti element for each support set of
cardinality at most 2. Extending to the family in Theorem 4.2, additional non-atoms
are carefully placed to each eliminate one outer Betti element without creating any
additional ones.

THEOREM 4.2. If e > 4 and 0 < s < min(e — 2,7), then there exists a numerical
semigroup of embedding dimension e and multiplicity m = r + e such that

s = (5) -

In particular, the lower bound in Theorem 3.4 is sharp if r < e — 1.

Proof. if s = e—2,then m =r+¢e > 2¢ — 2. Since T = (e — 1,e,...,2¢ — 3) has
max embedding dimension, n(T) = (651). As such, for any prime ¢ > m, we see
S =qT + mZx is a valid gluing since m € T is not a minimal generator, and

n(S) = (eg1>+1: (;)—(6—2).
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We now turn to the case where s < min(e — 3,r).
Let I denote the interval [2s 4+ 2,e + s — 2], and consider

S=(m,dm—1,(2r—2s+3)m+(s+1), (2r—2s+4)m+1i, (dr—4s+5)m+j: i € [1,s],5 € I).
In what follows, we will prove S has the Kunz poset depicted in Figure 4 and identify
its Apéry set elements a; for i € Z,,. First, let ag = 0 and a; = n,; denote the generator
of S with n;, =4 mod m. Since s < e—3, |I| =e—s—3 > 0, and since s < r, each
n; > 3m. Letting

Gigst1 =N +nsp1 = @r —4s+T)m+ (i +s+1) for each i€l,s],

we see

s {(4r—43+7)m—|— (e+s—2) if |I| =0;

(4r —4s+5)m+ (e+s—2) if [I| >0.
This means that
a_; =Un_1 =L(4m — 1) € Ap(S) foreach  £e€[0,r —s+1],
as each is exceeded by any other sum of two n;’s, but
(r—s+2n_1=MAr—4s+9)m+(e+s—2) > aeys_o.

We claim Ap(S) = {a; : i € Z,,}, and that each a; has a unique factorization. Indeed,
any non-negative integer combination of 2 or more generators of S that does not
exceed ags11 = max Ap(S) cannot involve n; with ¢ € I, and cannot involve more
than one n; with j € [1, s], so one can check n; +n_1 > n;_1 for each i € [1,s+1] and

syp1 = (Ar —4ds+6)m+ (25 +2) > agsy2 = (dr —4s+5)m + (25 + 2).

Having now proven S has the Kunz poset depicted in Figure 4, it remains to
count outer Betti elements, which in this case each consist of a single factorization in
Z N (00) that is minimal with respect to the coordinate-wise partial order. There are
5+ 1 elements of Ap(S) with a factorization of length 2, so the remaining (5) — (s +1)
length 2 factorizations are minimal elements of Z 5 (00). Any other minimal z € Z (00)
has length at least 3, but cannot contain more than one of any generator except n_1
since (i) 2n; ¢ Ap(S) for each n; # n_; and (ii) among any 3 distinct generators,
there are 2 whose sum lies outside of Ap(S). As such, the only minimal z with length
at least 3 is a multiple of n_q, so

ws =1+ (5) ~6+0= () -

by Theorem 2.4. O

5. A PARTIAL UPPER BOUND ON MINIMAL PRESENTATION CARDINALITY

In this section, we present a sharp upper bound on minimal presentation cardinality
of numerical semigroups of embedding codimension at most 3.

REMARK 5.1. For embedding codimension at most 2, the bounds we present here
also appeared in [18], as did a correct conjecture of the upper bound for embedding
codimension 3. Their conjecture was accompanied by a remark about how a proof with
the same techniques would require “a big amount of cases and subcases.” We include
a full proof here of the bounds proved in [18] that avoids such casework, to contrast
the use of Kunz nilsemigroup machinery with that of the original manuscript.

THEOREM 5.2. Suppose N is a partly cancellative nilsemigroup with embedding codi-
mensionr. If r < 2, thenn(N) < (5), and if r = 3, then n(N) < (3) +1. As such, if S
is a numerical semigroup with embedding codimension r, then n(S) < (5) if r < 2,
and n(S) < (5) +1 if r=3.
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Proof. Let nq,...,n. denote the atoms of N. If r = 1, the factorizations of the only
nonzero non-nil non-atom p € N all have coordinate sum 2 and pairwise disjoint
support, meaning an outer Betti element B can only be divisible by p if B = {3e;}
for some . As such, n(N) < n(N/p) = (5) by Lemma 3.3.

Next, suppose r = 2, and let p,q € N denote the nonzero non-nil non-atoms. If ¢
has a factorization with coordinate sum 3, then it is the only non-nil element of N
with this property. As such, the only outer Betti element of N that ¢ can divide is one
of the form {4e;} for some 4, so Lemma 3.3 implies n(N) < n(N/q) < (5). If, on the
other hand, neither p nor ¢ has a factorization with coordinate sum 3, then any outer
Betti element B with a coordinate sum 3 factorization z with |supp(z)| > 2 must
have z —e; € Z(p) or z — e; € Z(q) for each i € supp(z). By the connectivity of Vp,
we must have supp(B) = supp(p) Usupp(q), which in particular means |supp(B)| = 2.
This forces |Zn(p)| = |Zn(q)| = |B] = 1, so we have n(N) = (5) — 1. In all other
cases, p and ¢ each divide at most one outer Betti element, so n(N) < n(N/p) < (;)

Lastly, suppose r = 3, let p,q,t € N denote the nonzero non-nil non-atoms. As a
consequence of partial cancellativity, the support set of any element of N must contain
the support sets of its divisors, so if p has a factorization with coordinate sum at
least 3, then it is the only element of N with this property. This means p can only
divide outer Betti elements of the form {4e;} for some i, and Lemma 3.3 implies
n(N) < n(N/p) < (;) As such, assume all factorizations of p, ¢, and ¢ have coordinate
sum 2. If some outer Betti element B is divisible by p, ¢, and ¢, then the connectivity
of Vg implies | supp(B)| = 3, but this forces Zny(p) = {e; + ¢}, Zn(q) = {ei +ex},
Zy(t) = {e; + ex}, and B = {e; + €; + e, }. This means B is the only outer Betti
element divisible by p, so again by Lemma 3.3 we are done. On the other hand, if an
outer Betti element B is divisible by p and ¢ but not ¢, then by the argument in the
second half of the preceding paragraph, |Zx(p)| = |Zn(¢)| = |B| = 1. This means at
most 2 outer Betti elements are divisible by p, so n(N) < n(N/p) +1< (5) +1. O

REMARK 5.3. Theorem 5.2 illustrates another advantage of reformulating questions
about 7 in terms of finite partly cancellative nilsemigroups. In this case, the quotient
construction introduced in Definition 3.2 consolidates much of the casework seen in
the argument in [18] for r € [0, 2]. One may also notice from the proof of Theorem 5.2
that the value of 7(S) seems to be maximized when every element of Ap(S) has
a unique factorization, which in turn forces all outer Betti elements of the Kunz
nilsemigroup N to be singletons; we revisit this idea in Conjecture 7.3.

EXAMPLE 5.4. The core of the argument in the proof of Theorem 5.2 for r < 2 is that
in almost all cases, outer Betti elements, together with the factorizations appearing in
relations at non-nil elements of NV, must have distinct support sets with cardinality at
most 2. When r = 3, this need no longer be the case. For example, S = (7,15,17, 33),
whose Kunz poset is depicted in Figure 5, has outer Betti elements
By ={(0,2,1,0)} and B; ={(0,1,2,0)}

with identical support.

The following theorem assumes e > 5, as a slightly different argument is needed

for e = 4. The latter case will be handled in Section 6, as part of a much larger family
presented in Theorem 6.3.

THEOREM 5.5.If e > 5 and r > 3, then there exists a numerical semigroup S with
embedding dimension e and multiplicity m = e + r such that n(S) = (g) + 1.

Proof. Consider the numerical semigroup
S={m2m—-1,(r—1)m+2,2r—2)m+i:i€ {3} U[5,¢]),
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FiGURE 5. The Kunz poset structure of the numerical semigroup
from Example 5.4 (left) and that of S with n(S) = (5) + 1 from
Theorem 5.5 (right).

and let a; = n; denote the generator of S with n; =4 mod m. For each j € [0,r — 1],
we have a; = jn_1 = 2jm — j € Ap(S), while

rm_1=2r—1)m+e > ae.
The remaining elements of Ap(S) = {a; : i € Z,,,} are
ar=ns+n_1=(r+1)m+1 and ag =2ns = (2r — 2)m + 4,

as each equivalence class mod m is accounted for, any non-negative integer combina-
tions of 2 or more generators involving ng or n; with i € [5, €] exceeds a, = max Ap(S),
2no+n_1 > agz, and no+2n_1; = 0 mod m. This proves S has the Kunz poset depicted
in Figure 5, whose outer Betti elements are By, ..., B4 along with any coordinate sum
2 factorization involving nz or n; with i € [5,€]. By Theorem 2.4, n(S) = (5) +1. O

6. MINIMAL PRESENTATION CARDINALITIES IN EMBEDDING DIMENSION 4

We now turn our attention to more thoroughly characterizing achievable minimal
presentation cardinalities for e = 4.

REMARK 6.1. In Section 4, we demonstrated a family of numerical semigroups which
achieves any minimal presentation cardinality in the range [(°3') + 1, (5)] = [4,6].
Using methods from [4] and [8], one can verify computationally that there are no
numerical semigroups with m = 7 and n = 3, and Proposition 6.2 ensures there are
achievable such numerical semigroups for any m > 8. This completely characterizes

which values of < 6 are attained by a numerical semigroup for e = 4 and every m.

PROPOSITION 6.2. For any m > 8, there is a numerical semigroup S with m(S) = m,
e(S) =4, and n(S) = 3.

Proof. Note that the numerical semigroup 7" = (4,5,6) has m € T as a non-atom.
Let a be any prime greater than m. Then 4a > m and m does not divide any of 4a,
5a, or 6a. The gluing S = mZxo + aT then has m(S) =m, e(S) =1+ ¢(T) =4 and
n(S) =n(T)+ 1 = 3, as desired. O

Having fully characterized n < 6, we now turn our attention to n > 6.

THEOREM 6.3. For any n > 6 and m € N with 4m > (n—2)?, there exists a numerical
semigroup S with e(S) =4, n(S) =n, and m(S) = m.

Proof. We proceed by cases, based on the parity of 5. First, suppose n = 2k 4 4 for
some k € Z>1, so that m > (k + 1)2. We claim the Kunz nilsemigroup of

S=(m,(k+1)m—1,(m—k*—k)m+k,(m—k*>—k)m+k+1)
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FIGURE 6. The Kunz poset structure for S with n(S) = 2k +4 (left)
and 7(S) = 2k + 3 (right) in the proof of Theorem 6.3.

is the one whose poset P is depicted in Figure 6. More specifically, we claim each
element of Ap(S) has a unique factorization, each lying in the set

A={(0,4,i—4,0),(0,0,i—4,7) : 0 < j <i<k}U{(0,4,0,0): k < j<m—k*—k}.

As there are 2i + 1 elements of A with coordinate sum ¢ < k, it is easy to check that

k
A=) (2i+1)+ (m -k —2k—1) =m.
i=0

Additionally, each (z) lies a distinct equivalence class modulo m for each z € A.
Indeed, if (0, a,0,0),(0,0,b,¢) € A with ¢(0,a,0,0) = ¢(0,0,b,¢) mod m, then
©(0,0,b,¢) = k(b+c¢)+ cmod m and »(0,a,0,0) = —a mod m,

the right hand sides of which lie in [0, k? + k] and [—~m + k2 + k + 1, 0], respectively,
ensuring @ = b = ¢ = 0. Meanwhile, if (0,a,b,0),(0,0,0,c) € A with b > 0 satisfy
©(0,a,b,0) = ©(0,0,0,c) mod m, then
kb —a = ¢(0,a,b,0) = ¢(0,0,0,c¢) = kc + ¢ mod m

necessitates kb — a = kc + ¢, and thus either (i) b = ¢+ 1 and a + ¢ = k, which is
impossible since then a+b=a+c+1=k+1, or (ii) b = c+2 and a = ¢ = k, which
is impossible since then b = k + 2.

It remains to show any z € Z, \ A with first coordinate 0 satisfies (z) ¢ Ap(S).
It suffices to assume z is minimal in Z;O . A under the componentwise partial order,
and thus corresponds to a proposed outer Betti element B; of P depicted in Figure 6.
Comparing equivalence classes modulo m, one can then readily check: if ¢ = 1, then
z=1(0,1,0,1) and

©(0,1,0,1) = (m —k* + )m+k > (m — k* — k)ym + k = ©(0,0,1,0);
if i = 2, then z = (0,m — k% — k,0,0) and
©(0,m —k* —k,0,0) = (m —k*> —k)(k+1) — )m+k* + k
> k(m —k* —k)m +k* +k = (0,0,0,k);

if3<i<k+3, then z=(0,k+1—10,b,0) withb=4i—2¢€[1,k+ 1] and

@(Oak+ 1 _bybvo) = ¢(0707ba0) > 90(070a0ab_ 1)7
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and if k+4 < i < 2k+4, then z = (0,0,k+1—c¢,¢) withc=i—k—3 € [1,k+1] and
©(0,0,k+1—c,e)=(k+1)(m—k* —k)ym+k*+k+c
>((k+1D)m—k—k—c)—1)m+Ek +k+c
=m—-k*—k—c)((k+1)m—1)=¢0,m—k*—k —¢,0,0).

One may now simply count the outer Betti elements of P to obtain n(S) = 2k + 4.
Next, suppose 1 = 2k + 3 for k € Zxo, so that m > k% + k + 1. We claim the Kunz
nilsemigroup of

S=(m,km—1,(m—k*—1)m+k,(m—k*>—1)m+k+1)

is the one whose poset P is depicted in Figure 6. More specifically, we claim each
element of Ap(S) has a unique factorization, each lying in the set

A={(0,4,i—4,00:0<j<i<k}U{(0,0,i —j,j):1<j<i<hk—1}
U{(0,5,0,0):k<j<m—k*—1}.

As there are 27 + 1 elements of A with coordinate sum i < k — 1, we see

k—1

A=Y @i+ +(k+1)+(m-k —k—1)=m.

i=0
Additionally, we see that p(2) lies is a distinct equivalence class modulo m for each
z € A. Indeed, if (0, a,0,0),(0,0,b,c) € A with ¢(0,a,0,0) = ¢(0,0,b,c) mod m, then

©(0,0,b,¢) = k(b+ ¢) + cmod m and »(0,a,0,0) = —a mod m,

the right hand sides of which lie in [0, k2] and [—m + k% + 1, 0], respectively, thereby
ensuring @ = b = ¢ = 0. Meanwhile, if (0,a,b,0),(0,0,0,c) € A with b > 0 satisfy
©(0,a,b,0) = ©(0,0,0,c) mod m, then

kb —a = ¢(0,a,b,0) = ¢(0,0,0,¢) = k¢ + ¢ mod m

necessitates kb — a = kc + ¢, and thus either (i) b = ¢+ 1 and a + ¢ = k, which is
impossible since then a+b=a+c+1=k+1, or (ii) b =c+2 and a = ¢ = k, which
is impossible since then b = k + 2.

Proceeding as before, it remains to show that for each proposed outer Betti element
B; = {z} of P, we have p(z) ¢ Ap(S). If i = 1, then z = (0,1,0,1) and

©(0,1,0,1) = (m —k*+k+1)m+k>(m—k*—1)m+k = ¢(0,0,1,0);
if i = 2, then z = (0,m — k2,0,0) and
©(0,m —k2,0,0) = (km — k% — D)m + k% > k(m — k* — 1)m + k% = ©(0,0,0, k);
if3<i<k+2 then 2= (0,k+1—bb0) withb=i—2¢[1,k+1] and
0(0,k +1—b,b,0) = ©(0,0,b,0) > (0,0,0,b—1);
if i =k+ 3, then z = (0,0,k + 1,0) and
©(0,0,k+1,0) = (k+1)(m — k> —)m+k*>+k
>(km -k —E* = D)m+E* + k= ¢0,m—k*—k,0,0);
and if k+4 <i<2k+ 3, then 2= (0,0,k —¢,¢) withc=14i—k —3 €[1,k] and
©0(0,0,k —c,c) = (m — k> + k)km + k* + ¢
> (km —k* —ck —1)m+k* + ¢
=(m—k*—c)(km —1) = p(m — k* — ¢,0,0).
Counting the outer Betti elements of P yields n(S) = 2k + 3, as desired. O
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7. SOME OPEN QUESTIONS

As noted in the introduction, we have verified computationally that every value of 7
attained by a numerical semigroup S with e = 4 and m < 42 is accounted for by the
families presented in this manuscript. As such, we conjecture the following.

CONJECTURE 7.1. For e = 4, the families of numerical semigroups in Theorems 4.2
and 6.3 and Proposition 6.2 attain all possible values of n for each m > 4.

We suspect that such a complete answer for e > 5 will be much more difficult, as
maximizing the number of outer Betti elements for Kunz nilsemigroups with a given
number of atoms is similar to problems in the field of additive bases, wherein tight
bounds are notoriously difficult to obtain in general [10, 11, 24].

Turning our attention to arbitrary e, in light of the lower bound in Theorem 3.4,
the following is a natural question.

QUESTION 7.2. For fixed e and m, what is the largest n can be?
The following would be a good first step towards Question 7.2.

CONJECTURE 7.3. For fized e and m, the largest possible value of 1 is achieved by a
numerical semigroup S in which every element of Ap(S) has a unique factorization.
In this case, each outer Betti element of the Kunz nilsemigroup N is a singleton, and
n(S) equals the number of outer Betti elements of N.

As identified at the end of the introduction, a consequence of the results in this
paper is that an answer to the following question would yield, for each m, a completely
characterization of the attainable values of 1 across all embedding dimensions.

QUESTION 7.4. If r € [4, €], which values of n are attained with (5)+2 < n < (5)+e—r?

On the other hand, the lower bound in Theorem 3.4 is known to be sharp for
m < 2e by the family in Theorem 4.2, but Figure 1 indicates it can also be sharp for
larger m.

QUESTION 7.5. For which m and e is the lower bound in Theorem 3.4 sharp?

If n(S) = e(S) — 1, then S is complete intersection and can be constructed via
successive gluings (see [21]). The following lower bound for the left-most column of
each outlined region in Figure 1 is a first step in the direction of Question 7.5.

PROPOSITION 7.6. Any complete intersection numerical semigroup S with m(S) = m
and e(S) = e satisfies m > 2°7 1.

Proof. We proceed by induction on e. If e = 1, then S = Z3, so suppose e > 2. If S
is complete intersection with m(S) = m and e(S) = e, then S = T + a'T” for some
complete intersection 7' and T” with e(T) + e(T”) = e. This means

m = min(am(T), a'm(T")) > min(28(T)25(1)—1 2e(T)9e(T)=1) _ ge—1
since @’ > 2m(T') and a > 2m(T") are non-atoms in T and T”, respectively. O

If one fixes m and e, then the set of attainable values of 1 is often an interval, but
need not be in general, as the red outline on the right hand side of Figure 1 indicates
for m = 13 and e = 7. In fact, n = 25 is only attained by such a numerical semigroup
if its Kunz poset is, up to symmetry, one of the two depicted in Figure 7. Notice in
particular there are 3 atoms for which the sum of any two lies in the Apéry set. On
the other hand, n = 24 is not attained by any such numerical semigroup.

QUESTION 7.7. When is the set of attainable n values an interval for fized e and m?
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FI1GURE 7. Kunz posets of numerical semigroups with m = 13, e =7,
and n = 25 (left) and m = 15, e = 5, n = 15 (right).

Likewise, if one fixes e, then the set of values of m for which a fixed 1 can be
attained need not be an interval. Indeed, Figure 1 indicates there exists a numerical
semigroup with e = 5 and n = 15 for m = 15 (a sample Kunz poset is given in
Figure 7), but not for m = 16. Note that if Conjecture 7.1 is true, then for e = 4 the
achievable values when fixing either m or n form an interval.

In this direction, Proposition 7.8 implies that, for any ¢ > 4 and > e — 1, there
exists a numerical semigroup with embedding dimension e and minimal presentation
cardinality n for all but finitely many multiplicities. In particular, there are at most
finitely many such “jumps” in each column of Figure 1.

PROPOSITION 7.8. Ife > 4 andn > e—1, there is an M € Z such that, for allm > M,
there exists a numerical semigroup S with e(S) = e, n(S) =1, and m(S) = m.

Proof. The claim holds for e = 4 by Theorem 6.3. As such, suppose e > 5 and
17 > e — 1. By induction on e, we may suppose S’ is a numerical semigroup with
e(S)=e—Tland n(S") =n—1. Let f = max(Z>o\ S) and let M = m(S’) + f. Then
for any m > M, the numerical semigroup S = mZx¢ + (m + 1)5’ is a gluing of S’
with Z> that has e(S) = e, n(S) =n(S") +1 =17, and m(S) = m. O

The bound M obtained in the proof of Proposition 7.8 is far from optimal. For
example, if e = 5 and 7 = 10 the minimal such bound is M = 5, but when applying
the construction in the proof, one obtains M = 126. This raises the following question.

QUESTION 7.9. In terms of e and n, what is the smallest M can be in Proposition 7.8 ¢
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