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Fitting ideals of Jacobian groups of graphs

Takenori Kataoka

Abstract The Jacobian group of a graph is a finite abelian group through which we can study
the graph in an algebraic way. When the graph is a finite abelian covering of another graph,
the Jacobian group is equipped with the action of the Galois group. In this paper, we study
the Fitting ideal of the Jacobian group as a module over the group ring. We also study the
corresponding question for infinite coverings. Additionally, this paper includes module-theoretic
approach to Iwasawa theory for graphs.

1. Introduction
For a (finite) graph X, let Jac(X) denote its Jacobian group, which is also known as
the sandpile group. It is known that Jac(X) is a finite abelian group. See §2 for basic
notions about graphs and their Jacobian groups.

Let Y/X be an abelian covering of connected graphs and Γ its Galois group. Then
the Jacobian group Jac(Y ) is naturally equipped with a Z[Γ]-module structure, which
is the main theme of the present paper. More concretely, we focus on its Fitting ideal
(see §A.1 for the definition). The main result of this paper gives a complete description
of the Fitting ideal

FittZ[Γ]/(NΓ)(Jac(Y )/NΓJac(Y )).
Here, NΓ denotes the norm element of Γ. See §1.1 for the concrete statement. This
result can be regarded as an analogue of a result of Atsuta and the author [1] in
number theory, as explained in Remark 1.3 below.

We will also study infinite abelian coverings in a sense in §6. In this case, we
obtain a complete description of the Fitting ideal of the associated Jacobian group
itself, without dividing by the Jacobian group of the base graph.

The study of infinite coverings of graphs is morally an analogue of Iwasawa theory
in number theory. Recently such an analogue of Iwasawa theory for graphs is devel-
oped (e.g., Gonet [5] and a series of work of Vallières including [14]). The present
work is directly inspired by this situation surrounding graph theory and Iwasawa
theory. Moreover, in §8, as a digression, we give concise proofs of the analogues of
the Iwasawa class number formula and of Kida’s formula. Those results are already
proved by others, but the author hopes that this makes Iwasawa theory for graphs
more accessible for those who are familiar with techniques in Iwasawa theory.
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1.1. Main result for finite coverings. Now we state the main result. Let Y/X
be an abelian covering of connected graphs and Γ its Galois group. In §2, we will
introduce an element ZY/X ∈ Z[Γ], which is related to the (equivariant) Ihara zeta
function via the three-term determinant formula (see §5.3).

Let us take a decomposition

Γ = ∆1 × · · · ×∆s,

where ∆l is a cyclic group of order nl ⩾ 1 for each 1 ⩽ l ⩽ s. For each l, we fix a
generator σl of ∆l and define τl, νl ∈ Z[∆l] ⊂ Z[Γ] by

τl = σl − 1, νl = 1 + σl + σ2
l + · · ·+ σnl−1

l .

Then νl is the norm element of ∆l. The norm element of Γ, defined by NΓ =
∑

γ∈Γ γ,
satisfies NΓ = ν1 · · · νs. We also define an element Dl ∈ Z[∆l] by

Dl = σl + 2σ2
l + · · ·+ (nl − 1)σnl−1

l .

The main result is the following. The proof will be given in §§3–4.

Theorem 1.1. We have

FittZ[Γ]/(NΓ)(Jac(Y )/NΓJac(Y ))

= ZY/X

s∑
l=1

(
ν1 · · · νl−1 ·

Dl

nl
· νl+1 · · · νs

)
+ ZY/X

(
νe1

1 · · · νes
s τf1

1 · · · τfs
s

∣∣∣∣ 0 ⩽ el ⩽ 1, fl ⩾ 0,
e1 + · · ·+ es + f1 + · · ·+ fs = s− 2

)
.

Here the right hand side, which is literally an ideal of Z[Γ], is regarded as an ideal of
Z[Γ]/(NΓ) via the natural projection.

Remark 1.2. In the theory of Euler systems in number theory, the element Dl is often
called the Kolyvagin derivative operator and plays an important role. It seems to be
interesting that this element is useful in computation that is not directly related to
the theory of Euler systems.

In Proposition 3.5, we will show an isomorphism Jac(X) ≃ NΓJac(Y ). Therefore,
Theorem 1.1 can be viewed as a description of the Fitting ideal of Jac(Y )/Jac(X).
Unfortunately, determining FittZ[Γ](Jac(Y )) itself seems to be out of our reach.

Remark 1.3. Theorem 1.1 can be regarded as an analogue of a result of Atsuta and
the author [1] on the Fitting ideal of class groups in number theory. Let us roughly
review the result. Let L/K be a finite abelian extension of number fields such that
K is totally real and L is a CM-field. We consider the T -ray class group ClTL of L,
where T is an auxiliary finite set of finite primes of K. Then in [1], (assuming the
relevant equivariant Tamagawa number conjecture), we gave a complete description
of the Fitting ideal

FittZ[Gal(L/K)]−(ClT,−
L ),

where the superscript (−)− denotes the minus component with respect to the complex
conjugation. The plus component seems to be out of our reach. This is analogous to
the situation in Theorem 1.1.
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1.2. Idea of proof. In number theory, there are already a number of studies on
the Fitting ideals of arithmetic modules. In particular, in the field of Iwasawa the-
ory, the Fitting ideals of Iwasawa modules have been studied by Greither–Kurihara
(e.g., [7], [8] with Tokio, etc.).

In [11], the author introduced the “shift theory” of Fitting ideals, which we will
review in §A.2. It is a useful technique to compute the Fitting ideals of arithmetic
modules. Roughly speaking, the technique has two steps:

(1) we study the arithmetic module and obtain a description of the Fitting ideal
using an explicit algebraic factor, and

(2) we compute the algebraic factor in a purely algebraic way.
The first applications of this theory in [11] were to Iwasawa theory, i.e., infinite exten-
sions of number fields. Then Atsuta and the author [1] made an application to class
groups of number fields as explained in Remark 1.3.

In this paper, we again employ the shift theory as the basic technique to prove both
Theorem 1.1 and the result for infinite coverings. Therefore, we follow the two steps
explained above. See Theorems 3.4 and 4.1 for the first and second steps, respectively.

The algebraic factor to be computed in Theorem 4.1 seems to be a new one as
discussed in Remark 1.2. Moreover, the proof of the formula is not easy, and it is
the most technical part in this paper. We employ a combinatoric method (using
graph theory), though the problem is purely algebraic. Note that Greither–Kurihara–
Tokio [8] also applied graph theory to compute Fitting ideals.

On the other hand, the algebraic factor to be computed for the infinite covering
case does not seem to be very new. Indeed, it can be computed by using a formula
that has been obtained in [1]. However, a relatively minor issue is that in this paper
we deal with commutative rings that are not necessarily noetherian. Therefore, we
have to generalize the shift theory, which was developed only over noetherian rings
in [11]. This is explained in §A.2.

1.3. Organization of this paper. In §2, we introduce basic notions about graphs.
Then in §3, we reduce the proof of Theorem 1.1 to an algebraic problem. The algebraic
problem is solved in §4.

After preliminaries in §5 on voltage graphs and their derived graphs, in §6 we state
and prove the result for infinite coverings.

In §7, we observe the self-duality of the Jacobian groups, which is a contrast to
the analogue in number theory. In §8, we explain the module-theoretic approach to
Iwasawa theory for graphs. Both §§7 and 8 can be read independently. Finally in §A,
we review the definition of the Fitting ideals and the shift theory.

2. Graphs and their Jacobian groups
In this section, we introduce basic notions about graphs and their Jacobian groups.
References are Corry–Perkinson [4, Chapters 1 and 2] and Baker–Norine [2, §1.3].
One can also consult recent papers of Vallières such as Hammer–Mattman–Sands–
Vallières [9, §2] and Ray–Vallières [17, §2].

In this paper, graphs are always assumed to be finite. We allow graphs to have
multi-edges and loops (so one may call them multigraphs). More precisely, we define
graphs as follows, using Serre’s formalism [18, Chapter I, §2.1].

Definition 2.1. A graph X consists of a finite set VX of vertices, a finite set EX of
edges, an automorphism of EX denoted by e 7→ e, and two maps sX , tX from EX to
VX (often abbreviated to s = sX and t = tX), satisfying the following:
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• For any e ∈ EX , we have e ̸= e and e = e, that is, the automorphism e 7→ e
is an involution of EX without fixed points.

• For any e ∈ EX , we have s(e) = t(e) and t(e) = s(e).
Each element e ∈ EX is regarded as an edge from s(e) to t(e), and e is regarded as

the inverse of e. Let us write EX for the quotient set of EX obtained by identifying e
and e. Then we have a canonical two-to-one map from EX to EX , so their cardinalities
satisfy #EX = 1

2 ·#EX .
For each v ∈ VX , we define

EX,v = {e ∈ EX | s(e) = v},
which is the set of edges that start from v.

This formalism involving EX and the involution will be useful for introducing volt-
age graphs in §5. On the other hand, we can regard X as an undirected (multi-)graph
through the quotient set EX . The notions that we will introduce in this section are
essentially defined for the associated undirected graph structure.

In this paper, for simplicity, we usually deal with connected graphs. Being con-
nected is not an essential assumption since the general case can be easily deduced.

In the rest of this section, let X be a connected graph.

Definition 2.2. We define the divisor group Div(X) as the free Z-module on the
set VX , namely,

Div(X) =
⊕

v∈VX

Z[v].

Let us write
degX : Div(X)→ Z

for the Z-homomorphism that sends [v] to 1 for any v ∈ VX . We define Div0(X) as
the kernel of degX .

We obviously have an exact sequence

(1) 0→ Div0(X)→ Div(X) degX→ Z→ 0.

Definition 2.3. We define Z-homomorphisms
LX , AX , DX : Div(X)→ Div(X)

by
AX([v]) =

∑
e∈EX,v

[t(e)], DX([v]) = (#EX,v)[v]

for v ∈ VX , and LX = DX − AX . The presentation matrices of LX , AX , and DX

(with respect to the basis {[v]}v∈VX
) are called the Laplacian matrix, the adjacency

matrix, and the degree matrix, respectively.

It is easy to see degX ◦LX = 0, that is, the image of LX is contained in Div0(X).
Therefore, we can make the following definition.

Definition 2.4. We define the Jacobian group Jac(X) and the Picard group Pic(X)
as the cokernels

Jac(X) = Cok(LX : Div(X)→ Div0(X))
and

Pic(X) = Cok(LX : Div(X)→ Div(X)).

Therefore, by (1), we have an exact sequence

(2) 0→ Jac(X)→ Pic(X) degX→ Z→ 0.

A fundamental property of the Jacobian group is the following.
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Theorem 2.5 (Kirchhoff’s matrix tree theorem). The Jacobian group Jac(X) is a
finite Z-module. In fact, the cardinality of Jac(X) is equal to the number of spanning
trees of X.

Let us observe the following homological description of the Jacobian group.

Lemma 2.6. Let ιX : Z→ Div(X) be the Z-homomorphism that sends 1 to
∑

v∈VX
[v].

Then the sequence

0→ Z ιX→ Div(X) LX→ Div(X) degX→ Z→ 0
is a complex that is acyclic except for the right Div(X), at which the homology group
is isomorphic to Jac(X).

Proof. We only have to check Im(ιX) = Ker(LX); the other assertions are clear. It is
easy to see that LX ◦ ιX = 0, that is, Im(ιX) ⊂ Ker(LX). Thanks to Theorem 2.5,
the Z-ranks of Im(ιX) and Ker(LX) are the same. Moreover, the definition of ιX

implies that Im(ιX) is a saturated submodule of Div(X) (i.e., the cokernel of ιX is
Z-torsion-free). These observations imply Im(ιX) = Ker(LX). □

Now we quickly recall the notion of Galois coverings of connected graphs (see
Terras [19, Chapter 13] or [17, §2.1] for the details). A covering Y/X of connected
graphs means that we are given a covering map π : Y → X, which is surjective
and locally isomorphic. The degree of Y/X is defined as #(π−1(v)) for any choice of
v ∈ VX . The Galois group Γ of Y/X is defined as the automorphism group of Y that
respects the covering map. We say that a covering Y/X is Galois (or normal) if the
order #Γ of Γ is equal to the degree of Y/X. We say Y/X is abelian if Γ is abelian.

Definition 2.7. Let Y/X be a Galois covering of connected graphs with Galois
group Γ. It is easy to see that Div(Y ) is a free Z[Γ]-module and the endomorphism
LY on Div(Y ) is a Z[Γ]-homomorphism. In case Γ is abelian, we define

ZY/X = det
Z[Γ]

(LY | Div(Y )) ∈ Z[Γ].

By the definitions of Pic(Y ) and of Fitting ideals, we have
(3) FittZ[Γ](Pic(Y )) = (ZY/X)
when Γ is abelian. In §5.3, we will see a relation between ZY/X and the Ihara zeta
function.

3. Reduction to an algebraic problem
In this section, we describe the Fitting ideal that is concerned in Theorem 1.1 by
using a shifted Fitting ideal of an explicit module.

We begin with an elementary lemma. Let Γ be a finite group and write
R = Z[Γ], R = R/(NΓ),

where we set NΓ =
∑

γ∈Γ γ ∈ Z[Γ].

Lemma 3.1. We have
TorR

1 (R,Z) = 0, R⊗R Z ≃ Z/(#Γ)Z.

Proof. We have an exact sequence of R-modules
0→ Z ι→ R→ R→ 0,

where ι sends 1 to NΓ. Then the associated long exact sequence of TorR
∗ (−,Z) reads

0→ TorR
1 (R,Z)→ Z⊗R Z ι∗→ R⊗R Z→ R⊗R Z→ 0.
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We have natural isomorphisms
Z⊗R Z ≃ Z, R⊗R Z ≃ Z,

through which ι∗ is identified with the multiplication by #Γ on Z. Therefore, we
obtain the lemma. □

In the rest of this section, let Y/X be a Galois covering of connected graphs. We
write Γ for its Galois group and use the same notation R and R as above.

The following is the key ingredient to prove Theorem 1.1.

Proposition 3.2. We have an exact sequence of finite R-modules
0→ R⊗R Jac(Y )→ R⊗R Pic(Y )→ Z/(#Γ)Z→ 0.

Proof. Let us consider the exact sequence (2) for Y instead of X. By taking
TorR

∗ (R,−), we obtain an exact sequence

TorR
1 (R,Z)→ R⊗R Jac(Y )→ R⊗R Pic(Y )→ R⊗R Z→ 0.

By applying Lemma 3.1, we obtain the proposition. □

Let us study R⊗R Pic(Y ).

Lemma 3.3. We have a short exact sequence

0→ R⊗R Div(Y ) LY→ R⊗R Div(Y )→ R⊗R Pic(Y )→ 0,

where LY denotes the homomorphism induced by LY .

Proof. By the definition of Pic(Y ), the cokernel of LY is isomorphic to R⊗R Pic(Y ),
which is finite by Theorem 2.5 and Proposition 3.2. Then the injectivity of LY follows
since it is an endomorphism of a free Z-module of finite rank. □

We write ZY/X ∈ R for the image of ZY/X ∈ R. By applying the shift theory
(see §A.2), we obtain the following.

Theorem 3.4. Suppose that Y/X is an abelian covering. Then we have

FittR(R⊗R Jac(Y )) = ZY/XFitt[1]
R

(Z/(#Γ)Z)

as ideals of R.

Proof. As in §A.2, let PR be the category of finite R-modules whose projective di-
mensions are ⩽ 1. By Lemma 3.3, we see that R ⊗R Pic(Y ) is in PR. Moreover, (3)
implies

FittR(R⊗R Pic(Y )) = (ZY/X).

Therefore, the theorem follows from the definition of Fitt[1]
R

(−) and Proposition 3.2.
□

We will determine Fitt[1]
R

(Z/(#Γ)Z) in §4, which would complete the proof of
Theorem 1.1.

Before closing this section, we show a proposition that provides an interpretation
of R ⊗R Jac(Y ). In the course of the proof, we reproduce the exact sequence in
Proposition 3.2.

Proposition 3.5. We have a natural isomorphism
Jac(X) ≃ NΓJac(Y ),

so
R⊗R Jac(Y ) ≃ Jac(Y )/Jac(X).
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Proof. We make use of Lemma 2.6 for both X and Y . Let us consider the following
diagram involving those complexes.

0 // Z ιX // Div(X) LX //
� _

��

Div(X)
degX //

� _

��

Z //� _

×(#Γ)
��

0

0 // Z
ιY

//

��

Div(Y )
LY

//

����

Div(Y )
degY

//

����

Z //

����

0

0 // R⊗R Div(Y )
LY

// R⊗R Div(Y ) // Z/(#Γ)Z // 0.

Here, the injective homomorphism Div(X) ↪→ Div(Y ) is defined by sending [v] to∑
w∈π−1(v)[w], where π : Y → X is the covering map. Then the image of this homo-

morphism is NΓDiv(Y ). The vertical sequences are all exact and the lower horizontal
sequence is the induced complex.

We regard this large diagram as a short exact sequence of complexes. Recall that
the kernel and the cokernel of LY are determined in Lemma 3.3. Then, taking the
homology groups, we obtain an exact sequence

0→ Jac(X)→ Jac(Y )→ R⊗R Pic(Y )→ Z/(#Γ)Z→ 0.

The construction of the embedding of Jac(X) into Jac(Y ) shows that the image
coincides with NΓJac(Y ), as claimed. Moreover, this reproduces the exact sequence
in Proposition 3.2. □

4. Algebraic result
Let Γ be any finite abelian group. Set R = Z[Γ] and R = Z[Γ]/(NΓ). The goal of this
section is to determine the factor Fitt[1]

R
(Z/(#Γ)Z) that appeared in Theorem 3.4.

4.1. Statement. First we state the result. As in §1.1, we fix a decomposition Γ =
∆1 × · · · ×∆s into cyclic groups. For each 1 ⩽ l ⩽ s, we choose a generator σl of ∆l

and define nl = #∆l and elements τl, νl, Dl ∈ Z[∆l] by the same formulas. Clearly
we have τlνl = 0. A key property of Dl is
(4) τlDl = nl − νl,

which can be proved by a direct computation. This property is also important in the
theory of Euler systems.

The result is the following.

Theorem 4.1. We have

Fitt[1]
R

(Z/(#Γ)Z) =
s∑

l=1

(
ν1 · · · νl−1 ·

Dl

nl
· νl+1 · · · νs

)
+
(

νe1
1 · · · νes

s τf1
1 · · · τfs

s

∣∣∣∣ 0 ⩽ el ⩽ 1, fl ⩾ 0,
e1 + · · ·+ es + f1 + · · ·+ fs = s− 2

)
.

Then clearly Theorem 1.1 follows from Theorems 3.4 and 4.1. The rest of this
section is devoted to the proof of Theorem 4.1.

First we describe Fitt[1]
R

(Z/(#Γ)Z) by using an (unshifted) Fitting ideal. Let

I = Ker(Z[Γ]→ Z) ⊂ R

be the augmentation ideal, which we can regard as an R-module.
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Lemma 4.2. We have
Fitt[1]

R
(Z/(#Γ)Z) = (#Γ)−1FittR(I/R(#Γ−NΓ)).

Proof. By the tautological exact sequence 0 → I → R → Z → 0, we have an exact
sequence 0 → I → R → Z/(#Γ)Z → 0. Since #Γ−NΓ is in I and its image to R is
#Γ, we then obtain an exact sequence

0→ I/R(#Γ−NΓ)→ R/(#Γ)R→ Z/(#Γ)Z→ 0.

By the definition of Fitt[1]
R

(−), this implies the lemma. □

By Lemma 4.2, the proof of Theorem 4.1 is reduced to the following.

Proposition 4.3. We have
FittR(I/R(#Γ−NΓ))

= (NΓ) + (#Γ) ·
s∑

l=1

(
ν1 · · · νl−1 ·

Dl

nl
· νl+1 · · · νs

)
+ (#Γ) ·

(
νe1

1 · · · νes
s τf1

1 · · · τfs
s

∣∣∣∣ 0 ⩽ el ⩽ 1, fl ⩾ 0,
e1 + · · ·+ es + f1 + · · ·+ fs = s− 2

)
.

The proof of this proposition will be given in §4.3. Before that, we establish a key
technical proposition in §4.2.

4.2. Key proposition. Let s ⩾ 0 be an integer and let Rs = Z[T1, . . . , Ts] be the
polynomial ring in s indeterminates. Let us construct a free resolution of Z over Rs by
using tensor products of complexes. This, or rather the more complicated construction
in §4.3 below, is inspired by [7] and is also used in [11], [1], etc.

For each 1 ⩽ l ⩽ s, we have an exact sequence

0→ Z[Tl]xl
Tl→ Z[Tl]→ Z→ 0.

Here, xl denotes an indeterminate, so Z[Tl]xl is a free Z[Tl]-module of rank one, and
the map labeled Tl sends xl to Tl. The map Z[Tl]→ Z sends Tl to 0.

Observe that Rs is the tensor product of Z[Tl] over Z for 1 ⩽ l ⩽ s. Then by taking
the tensor product over Z of the complexes [Z[Tl]xl

Tl→ Z[Tl]] for 1 ⩽ l ⩽ s, we obtain
an exact sequence ⊕

1⩽l<l′⩽s

Rsxlxl′
d2→

⊕
1⩽l⩽s

Rsxl
d1→ Rs

d0→ Z→ 0,

where d0 sends Tl to 0 for any l, d1 is determined by
d1(xl) = Tl

for 1 ⩽ l ⩽ s, and d2 is determined by
d2(xlxl′) = −Tl′xl + Tlxl′

for 1 ⩽ l < l′ ⩽ s (there are other choices of signs, but that does not matter).
We write Ns(T1, . . . , Ts) for the presentation matrix of d2 with respect to the basis

{xlxl′ | 1 ⩽ l < l′ ⩽ s} and x1, . . . , xs. Note that we do not determine the order of
the rows because it does not matter at all. Indeed, in the following we will sometimes
choose various orders of bases that are suitable for computation.

Example 4.4. When s = 0 (resp. s = 1), by definition the source of d2 is the zero
module, so d2 = 0 and N0() (resp. N1(T1)) is the empty matrix. When s = 2, we have

N2(T1, T2) =
(
−T2 T1

)
.

Algebraic Combinatorics, Vol. 7 #3 (2024) 604



Jacobian groups of graphs

When s = 3, we have

N3(T1, T2, T3) =

 −T3 T2
−T3 T1
−T2 T1

 .

Here, we use the order x2x3, x1x3, x1x2 for the basis. When s = 4, we have

N4(T1, T2, T3, T4) =


−T2 T1
−T3 T1
−T4 T1

−T3 T2
−T4 T2

−T4 T3

 .

Here, we use the order x1x2, x1x3, x1x4, x2x3, x2x4, x3x4 for the basis.

For a matrix H, which is identified with a homomorphism between free modules,
we have the associated ideal Fitt(H) defined as in Definition A.1.

The following formula plays a key role in the proof of Proposition 4.3. It is the
most technical result in this paper.

Proposition 4.5. We have

Fitt(
(

Ns(T1, . . . , Ts)
B1 · · · Bs

)
) =


(1) if s = 0,
(B1) if s = 1,
(
∑s

l=1 BlTl) (T1, . . . , Ts)s−2 otherwise.

Here, B1, . . . , Bs are indeterminates that have no relation with T1, . . . , Ts, i.e., we
work over the polynomial ring Z[T1, . . . , Ts, B1, . . . , Bs].

The rest of this subsection is devoted to the proof of this proposition. The cases
s = 0, s = 1 are clear. Let us suppose s ⩾ 2.

Recall that the rows of Ns(T1, . . . , Ts) are labeled xlxl′ (1 ⩽ l < l′ ⩽ s). We also
attach a label y to the last row

(
B1 · · · Bs

)
. For any subset

A ⊂ {xlxl′ | 1 ⩽ l < l′ ⩽ s} ⨿ {y}

with #A = s, let NA be the s × s submatrix that is constructed by picking up the
rows whose labels are in A. Then the left hand side in Proposition 4.5 is generated
by det(NA) for all such A.

For such an A, let us construct an undirected simple graph GA that has s vertices
x1, . . . , xs so that xlxl′ ∈ A if and only if xl and xl′ are adjacent. Then the number
of the edges of GA is either s − 1 or s; indeed, it is s − 1 if and only if y ∈ A. This
construction gives a one-to-one correspondence between the set

{A ⊂ {xlxl′ | 1 ⩽ l < l′ ⩽ s} ⨿ {y} | #A = s}

and the set

{ simple graph structures on the set of vertices {x1, . . . , xs} with s− 1 or s edges }.

We shall describe det(NA) by using information about the associated graph GA.

Claim 4.6. We have det(NA) = 0 unless GA is a tree.

Proof. Suppose that GA is not a tree. Since the number of the edges of GA is at
least s− 1, this assumption is equivalent to that GA has a cycle. In other words, by
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permutation of the indices, we may assume that {x1x2, x2x3, . . . , xr−1xr, xrx1} ⊂ A
for some 3 ⩽ r ⩽ s. In this case, the matrix NA is of the form

−T2 T1
−T3 T2

. . . . . .
−Tr Tr−1

−Tr T1

0

∗ ∗


if we use the order

x1, x2, . . . , xr, ∗, . . . , ∗
of the vertices and the order

x1x2, x2x3, . . . , xr−1xr, xrx1, ∗, . . . , ∗

of the rows in A (∗ denotes unspecified things). It is easy to see that the r× r matrix
in the upper left has determinant 0. Therefore, the claim follows. □

By Claim 4.6, we only have to deal with the case where GA is a tree. Note that
then the number of the edges of GA is s − 1, i.e., y ∈ A. For each 1 ⩽ l ⩽ s, let
degA(xl) ⩾ 1 be the degree of xl in the graph GA. By definition, degA(xl) is the
number of vertices that are adjacent to xl in GA.

Claim 4.7. If GA is a tree, then we have

det(NA) = ±
(

s∑
l=1

BlTl

)
· T degA(x1)−1

1 · · ·T degA(xs)−1
s .

Proof. Let us write simply deg(−) instead of degA(−). First we show that the claim
follows from the following weaker claim: there exist signs ϵ1, . . . , ϵs ∈ {±1} such that
we have

det(NA) =
(

s∑
l=1

ϵlBlTl

)
· T deg(x1)−1

1 · · ·T deg(xs)−1
s .

Suppose that such a family {ϵl}l exists. By Claim 4.6, for any l ̸= l′, we know that
det(NA) vanishes if we set Bl = Tl′ , Bl′ = −Tl, and the other B’s to be zero. Therefore,
ϵlTl′Tl + ϵl′(−Tl)Tl′ = 0, which shows ϵl = ϵl′ . Thus we obtain ϵ1 = · · · = ϵs, so the
full claim follows.

Let us show the weaker claim. By the cofactor expansion of det(NA) with respect
to the final row (labeled y), we have

det(NA) =
s∑

l=1
Blδl,

where δl denotes the cofactor of Bl (i.e., the determinant of the submatrix obtained
by eliminating the last row y and the l-th column). Here and henceforth, we ignore
the sign of δl, which does not matter for the weaker claim. Then it is enough to show
that, for any fixed l, the cofactor δl coincides with Tl · T deg(x1)−1

1 · · ·T deg(xs)−1
s up to

sign.
Fix l. Let us reorder the vertices x1, . . . , xs as follows. We regard xl as the root of

the tree GA. Recall that then the depth of each vertex xk, denoted by depth(xk), is
defined as the length of the unique path from the root xl to xk. (We set depth(xl) = 0.)
Now we reorder the vertices of the rooted graph GA as

xσ(1), xσ(2), . . . , xσ(s),
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where σ is a permutation of the set {1, 2, . . . , s} such that

depth(xσ(k)) ⩽ depth(xσ(k+1))

for every 1 ⩽ k ⩽ s − 1. We necessarily have σ(1) = l, but this σ is not unique in
general.

For each 2 ⩽ k ⩽ s, let 1 ⩽ k ⩽ s be the index such that xσ(k) is the parent of
xσ(k). It is the unique vertex that is adjacent to xσ(k) and whose depth is less than
that of xσ(k). Note that we have 1 ⩽ k < k.

Now, to compute the cofactor δl, we use the order

xσ(2), xσ(3), . . . , xσ(s)

of the vertices and the order

xσ(2)xσ(2), xσ(3)xσ(3), . . . , xσ(s)xσ(s)

of the edges. Then, thanks to k < k, the matrix whose determinant is δl is lower
triangular and we obtain

δl = ±Tσ(2)Tσ(3) · · ·Tσ(s).

Since xσ(k) is the parent of xσ(k), for each 1 ⩽ l′ ⩽ s, the exponent of the indeterminate
Tl′ in this product is equal to the number of the children of the vertex xl′ . If the vertex
xl′ is the root, i.e., if l′ = l, then the number of children is equal to deg(xl). Otherwise,
i.e., if l′ ̸= l, the number of children is equal to deg(xl′)− 1. This completes the proof
of the claim. □

Example 4.8. We illustrate the above proof by an example. Let s = 5 and consider
A = {x1x2, x1x3, x1x4, x2x5, y}, so

NA =


−T2 T1
−T3 T1
−T4 T1

−T5 T2
B1 B2 B3 B4 B5

 .

In this case we have degA(x1) = 3, degA(x2) = 2, and degA(x3) = degA(x4) =
degA(x5) = 1.

To consider the cofactor δ1 of B1, we regard x1 as the root. Then depth(x2) =
depth(x3) = depth(x4) = 1 and depth(x5) = 2, so we use the order x2, x3, x4, x5 for
the vertices. We have 2 = 1, 3 = 1, 4 = 1, 5 = 2, so we use the order x1x2, x1x3,
x1x4, x2x5 for the edges. Then we obtain

δ1 = ±det


T1

T1
T1

T5 T2

 = ±T 3
1 T2.

Here and in the following examples, we omit writing ± before the indeterminates since
we may ignore the signs.

Similarly, to consider δ2, we use x1, x5, x3, x4 for the vertices and x1x2, x2x5,
x1x3, x1x4 for the edges, and obtain

δ2 = ±det


T2

T2
T3 T1
T4 T1

 = ±T 2
1 T 2

2 .

Algebraic Combinatorics, Vol. 7 #3 (2024) 607



T. Kataoka

To consider δ3, we use the orders x1, x2, x4, x5 and x1x3, x1x2, x1x4, x2x5 and
obtain

δ3 = ±det


T3
T2 T1
T4 T1

T5 T2

 = ±T 2
1 T2T3.

Now we return to the general case. By Claims 4.6 and 4.7, the Fitting ideal to be
computed in Proposition 4.5 is generated by(

s∑
l=1

BlTl

)
· T degA(x1)−1

1 · · ·T degA(xs)−1
s ,

where GA varies all tree structures on the set of vertices {x1, . . . , xs}. Note that we
have

s∑
l=1

(degA(xl)− 1) =
s∑

l=1
degA(xl)− s = 2(s− 1)− s = s− 2.

It remains only to show that, conversely, the tuple (degA(x1)− 1, . . . , degA(xs)− 1)
can be any tuple whose sum is s− 2. This assertion follows from the following.

Claim 4.9. Let s ⩾ 2 and let f1, . . . , fs be integers such that fl ⩾ 0 and f1 + · · ·+fs =
s− 2. Then there exists a tree structure on the set of vertices x1, . . . , xs such that the
degree of xl equals fl + 1 for all 1 ⩽ l ⩽ s.

Proof. We argue by the induction on s. When s = 2, we must have f1 = f2 = 0, and
the unique tree structure satisfies the property. Suppose s ⩾ 3. By f1 +· · ·+fs = s−2,
we have fl = 0 and fl′ ⩾ 1 for some l and l′, so we may assume that fs = 0 and
f1 ⩾ 1. By the induction hypothesis, there exists a tree structure on x1, . . . , xs−1 such
that the degree of x1 is f1 and the degree of xl is fl + 1 for 2 ⩽ l ⩽ s − 1. Then we
obtain the desired graph by simply connecting x1 and xs. □

This completes the proof of Proposition 4.5.

4.3. Proof of Proposition 4.3. In this subsection, we prove Proposition 4.3.
We first construct a free resolution of the augmentation ideal I ⊂ R = Z[Γ] over R

in a similar way as in §4.2. Note that the idea is already used in previous work such
as [1].

For each 1 ⩽ l ⩽ s, we have an exact sequence

Z[∆l]x2
l

νl→ Z[∆l]xl
τl→ Z[∆l]→ Z→ 0,

where xl denotes an indeterminate, the map νl sends x2
l to νlxl, τl sends xl to τl, and

the map Z[∆l]→ Z is the augmentation map.
By taking the tensor product of the complexes [Z[∆l]x2

l
νl→ Z[∆l]xl

τl→ Z[∆l]] over
Z, we obtain an exact sequence

s⊕
l=1

Rx2
l ⊕

⊕
1⩽l<l′⩽s

Rxlxl′
d2→

s⊕
l=1

Rxl
d1→ R

d0→ Z→ 0,

where d0 is the augmentation map, d1 is determined by

d1(xl) = τl (1 ⩽ l ⩽ s),

and d2 is determined by{
d2(x2

l ) = νlxl (1 ⩽ l ⩽ s),
d2(xlxl′) = −τl′xl + τlxl′ (1 ⩽ l < l′ ⩽ s).
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Therefore, the presentation matrix of d2 is of the form

Ms(ν1, . . . , νs, τ1, . . . , τs) =


ν1

. . .
νs

Ns(τ1, . . . , τs)

 .

Here, Ns(τ1, . . . , τs) denotes the matrix obtained by setting Tl = τl in the matrix
Ns(T1, . . . , Ts) constructed in §4.2.

We have constructed a presentation Ms(ν1, . . . , νs, τ1, . . . , τs) of the Z[Γ]-module
I = Ker(d0 : R→ Z). Our next task is to construct a presentation of I/R(#Γ−NΓ).
For that purpose, we define elements b1, · · · , bs ∈ R by

bl = ν1 · · · νl−1 ·Dl · nl+1 · · ·ns

for 1 ⩽ l ⩽ s. This is where the Kolyvagin derivative operators come into play.

Lemma 4.10. We have
s∑

l=1
blτl = #Γ−NΓ.

Proof. By using the identity (4), we can compute
s∑

l=1
blτl =

s∑
l=1

ν1 · · · νl−1 · (nl − νl) · nl+1 · · ·ns

= n1 · · ·ns − ν1 · · · νs

= #Γ−NΓ.

Thus we obtain the lemma. □

Then Lemma 4.10 implies that

d1

(
s∑

l=1
blxl

)
= #Γ−NΓ,

so I/R(#Γ−NΓ) has a presentation matrix

(
Ms(ν1, . . . , νs, τ1, . . . , τs)

b1 · · · bs

)
=


ν1

. . .
νs

Ns(τ1, . . . , τs)
b1 · · · bs


over R.

To compute the Fitting ideal of this matrix, we first observe

Fitt(
(

Ms(ν1, . . . , νs, τ1, . . . , τs)
b1 · · · bs

)
)(5)

=
s∑

j=0

∑
a⊂{1,2,...,s}

#a=j

νa1 · · · νaj
Fitt(

(
Ns−j(τaj+1 , . . . , τas

)
baj+1 · · · bas

)
).

Here, a runs over the subsets of {1, 2, . . . , s} with #a = j and define a1, . . . , as by
requiring

a = {a1, . . . , aj}, {a1, . . . , as} = {1, 2, . . . , s}, a1 < · · · < aj , aj+1 < · · · < as.

We can show (5) directly by using the identity νlτl = 0 (see [1, Proposition 4.7] for a
similar reasoning).
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Let us compute the right hand side of (5) by using Proposition 4.5. When j = s,
we have a = {1, 2, . . . , s}, so the term is

(6) ν1 · · · νs(1) = (NΓ).

When j = s − 1, we have {1, 2, . . . , s} ∖ a = {l} for some 1 ⩽ l ⩽ s, and then the
term is

(7) ν1 · · · νl−1 · νl+1 · · · νs · (bl) = (#Γ) ·
(

ν1 · · · νl−1 ·
Dl

nl
· νl+1 · · · νs

)
.

Finally we consider 0 ⩽ j ⩽ s−2. For each a with #a = j, the term can be computed
as

νa1 · · · νaj

(
baj+1τaj+1 + · · ·+ bas

τas

)
(τaj+1 , . . . , τas

)s−j−2(8)
= νa1 · · · νaj

(ba1τa1 + · · ·+ bas
τas

) (τa1 , . . . , τas
)s−j−2

= νa1 · · · νaj
(#Γ−NΓ)(τ1, . . . , τs)s−j−2,

where the first equality follows from the identity τlνl = 0; the second from
Lemma 4.10.

It is easy to see that the ideal generated by (6), (7), and (8) coincides with the
right hand side of the proposition (observe that, thanks to (6), the NΓ in (8) can be
ignored). This completes the proof of Proposition 4.3.

This also completes the proof of Theorem 1.1.

5. Voltage graphs and derived graphs
To formulate the setup for infinite coverings, it is convenient to use the notion of
voltage graphs and their derived graphs.

5.1. Voltage graphs and derived graphs. See [5, §2.3], [14, §4], or [17, §2.3] for
more details.

Definition 5.1. A voltage graph (X, Γ, α) consists of a graph X, a group Γ, and a
map α : EX → Γ satisfying α(e) = α(e)−1 for any e ∈ EX . We do not assume that Γ
is finite or abelian unless explicitly stated.

Let (X, Γ, α) be a voltage graph.

Definition 5.2. Suppose that Γ is finite. Then we construct a graph X(Γ) (the map
α is implicit), called the derived graph of (X, Γ, α), by

VX(Γ) = Γ× VX , EX(Γ) = Γ× EX ,

and

(γ, e) = (γ · α(e), e), sX(Γ)((γ, e)) = (γ, sX(e)), tX(Γ)((γ, e)) = (γ · α(e), tX(e))

for any (γ, e) ∈ Γ× EX .

The group Γ naturally acts on the graph X(Γ) from the left. Moreover, X(Γ) is
a covering of X via the natural projection and the action of Γ respects this covering
structure.

If X(Γ) is connected (so X is also connected), then X(Γ) is actually a Galois
covering of X whose Galois group is Γ. Conversely, if we are given a Galois covering
Y/X of connected graphs, then there exists a voltage graph structure (X, Γ, α) with Γ
the Galois group such that X(Γ) and Y are isomorphic as coverings of X. In a nutshell,
the notion of derived graphs covers the notion of Galois coverings of connected graphs.
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Definition 5.3. We define Z[Γ]-homomorphisms

AX,Γ,LX,Γ : Z[Γ]⊗Z Div(X)→ Z[Γ]⊗Z Div(X)

by
AX,Γ(1⊗ [v]) =

∑
e∈EX,v

α(e)⊗ [t(e)]

for any v ∈ VX and
LX,Γ = id⊗DX −AX,Γ,

where DX : Div(X) → Div(X) is as in Definition 2.3. Note that when Γ is trivial,
these maps AX,Γ and LX,Γ are naturally identified with the maps AX and LX in
Definition 2.3.

The following lemma is easily proved.

Lemma 5.4. Suppose that Γ is finite. Then we have a commutative diagram of Z[Γ]-
modules

Z[Γ]⊗Z Div(X)
LX,Γ //

≃
��

Z[Γ]⊗Z Div(X)

≃
��

Div(X(Γ))
LX(Γ)

// Div(X(Γ)),

where the vertical isomorphisms are defined by sending γ⊗[v] to [(γ, v)]. In particular,
Pic(X(Γ)) is isomorphic to the cokernel of the homomorphism LX,Γ.

Definition 5.5. Suppose that Γ is abelian. We define

ZX,Γ = det
Z[Γ]

(LX,Γ | Z[Γ]⊗Z Div(X)) ∈ Z[Γ].

Suppose that Γ is finite and abelian and that X(Γ) is connected. Then Definition 2.7
gives us an element ZX(Γ)/X ∈ Z[Γ]. It is related to the element ZX,Γ simply by

ZX(Γ)/X = ZX,Γ,

thanks to Lemma 5.4.

5.2. Profinite coverings. In this subsection, we consider a voltage graph (X, Γ, α)
such that Γ is profinite.

For each open normal subgroup U of Γ, we have the voltage graph (X, Γ/U, α/U ),
where α/U is the composite map of α and the natural projection Γ→ Γ/U . Therefore,
we have the associated derived graph X(Γ/U), on which Γ/U acts.

Even though X(Γ) is not defined unless Γ is finite, let us write X(Γ) to mean the
family {X(Γ/U)}U . Then X(Γ) can be regarded as an infinite covering of X. For
instance, suppose that Γ is isomorphic to Zp = lim←−n

Z/pnZ as a topological group.
Then the open subgroups of Γ, written multiplicatively, are Γpn for each n ⩾ 0. Thus
X∞ = X(Γ) is the collection of Xn = X(Γ/Γpn) for n ⩾ 0 in this case. This family is
illustrated as a tower of coverings

X = X0 ← X1 ← X2 ← · · · .

We call such an X∞/X a Zp-covering. This is regarded as an analogue of Zp-extensions
of number fields in Iwasawa theory; see §8 for more on this theme.

For simplicity, in the rest of this subsection, we will always assume the following:

Assumption 5.6. For any open normal subgroup U of Γ, the derived graph X(Γ/U)
is connected.
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As we will review in the proof of the following lemma, we have an equivalent
condition for the derived graph to be connected, and that imposes a restriction to the
structure of Γ as follows.

Lemma 5.7. If Assumption 5.6 holds, then the group Γ is finitely generated as a profi-
nite group. Indeed, it is generated by #EX−#VX+1 elements (recall #EX = 1

2 ·#EX).

Proof. Let π1(X, v0) denote the fundamental group of X with an arbitrarily fixed
base point v0 ∈ VX . It is known that π1(X, v0) is a free group on #EX − #VX + 1
elements. Moreover, the condition that the derived graph X(Γ/U) is connected is
equivalent to that the group homomorphism π1(X, v0) → Γ/U induced by α/U is
surjective (see [17, Theorem 2.11] for instance). This implies that Assumption 5.6 is
equivalent to that the image of the group homomorphism π1(X, v0) → Γ is dense in
Γ. Therefore, we obtain the lemma. □

In order to guarantee the exactness of inverse limits, we change the coefficient ring
from Z to a compact Z-algebra Λ that is flat over Z (i.e., torsion-free as a Z-module).
Fundamental examples of Λ include Ẑ and Zp for a prime number p, where Ẑ (resp. Zp)
is the profinite (resp. pro-p) completion of Z.

Definition 5.8. We define

JacΛ(X(Γ)) = lim←−
U

(Λ⊗Z Jac(X(Γ/U))) ,

where U runs over the open normal subgroups of Γ. This is a module over the com-
pleted group ring

Λ[[Γ]] = lim←−
U

Λ[Γ/U ].

We also define PicΛ(X(Γ)) in the same way.

Let us observe several propositions about these Jacobian groups and Picard groups.

Proposition 5.9. We have an exact sequence of Λ[[Γ]]-modules

0→ JacΛ(X(Γ))→ PicΛ(X(Γ))→ Λ→ 0.

Proof. For each open normal subgroup U of Γ, we have the exact sequence (2) for
X(Γ/U). Then, as Λ is compact, by taking the limit (after base change from Z to Λ),
we obtain the claimed exact sequence. □

We define an ideal ΓΛ of Λ by

ΓΛ =
⋂
U

[Γ : U ]Λ,

where U runs over all open normal subgroups of Γ. We often have ΓΛ = 0 (see
Remark 5.13).

Recall that we have the endomorphism LX,Γ on Z[Γ] ⊗Z Div(X) (Definition 5.3).
Let the same symbol denote the base change to Λ[[Γ]] ⊗Z Div(X). Also recall that
ZX,Γ ∈ Z[Γ] ⊂ Λ[[Γ]] is defined in Definition 5.5.

Proposition 5.10. We have an exact sequence of Λ[[Γ]]-modules

0→ ΓΛ→ Λ[[Γ]]⊗Z Div(X) LX,Γ→ Λ[[Γ]]⊗Z Div(X)→ PicΛ(X(Γ))→ 0.

In particular, when Γ is abelian, we have

FittΛ[[Γ]](PicΛ(X(Γ))) = (ZX,Γ).
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Proof. For each open normal subgroup U of Γ, we may apply Lemmas 2.6 and 5.4 for
X(Γ/U). Since Λ is flat over Z, we obtain an exact sequence

0→ Λ
ιX,Γ/U→ Λ[Γ/U ]⊗Z Div(X)

LX,Γ/U→ Λ[Γ/U ]⊗Z Div(X)→ PicΛ(X(Γ/U))→ 0,

where ιX,Γ/U denotes the Λ-homomorphism that sends 1 to NΓ/U ⊗
(∑

v∈VX
[v]
)

with
NΓ/U the norm element. When we are given another open normal subgroup V of Γ
such that V ⊂ U , the exact sequences satisfy the following commutative diagram

0 // Λ
ιX,Γ/V //� _

×[U :V ]

��

Λ[Γ/V ] ⊗Z Div(X)
LX,Γ/V//

����

Λ[Γ/V ] ⊗Z Div(X) //

����

PicΛ(X(Γ/V )) //

����

0

0 // Λ
ιX,Γ/U// Λ[Γ/U ] ⊗Z Div(X)

LX,Γ/U// Λ[Γ/U ] ⊗Z Div(X) // PicΛ(X(Γ/U)) // 0.

As Λ is compact, by taking the limit, we obtain the claimed exact sequence. □

Corollary 5.11. Let Γ′ be a closed normal subgroup of Γ and consider the induced
voltage graph (X, Γ/Γ′, α/Γ′), where α/Γ′ denotes the composition of α and the pro-
jection map Γ→ Γ/Γ′. Then we have an isomorphism of Λ[[Γ/Γ′]]-modules

PicΛ(X(Γ))Γ′ ≃ PicΛ(X(Γ/Γ′)).

Proof. This follows immediately by comparing the exact sequences obtained by Propo-
sition 5.10 applied to the voltage graphs (X, Γ, α) and (X, Γ/Γ′, α/Γ′). □

Recall that a module over a commutative ring is said to be torsion if any element
is annihilated by a non-zero-divisor. By Proposition 5.10, taking Lemma A.3 into
account, we immediately obtain the following.

Corollary 5.12. The following are equivalent.
(i) We have ΓΛ = 0.
(ii) The endomorphism LX,Γ on Λ[[Γ]]⊗Z Div(X) is injective.
(iii) The element ZX,Γ of Λ[[Γ]] is a non-zero-divisor.
(iv) The Λ[[Γ]]-module PicΛ(X(Γ)) is torsion.

Remark 5.13. In §6, we basically consider the case where the equivalent conditions
in Corollary 5.12 hold. For instance, when Λ = Ẑ, we have ΓΛ = 0 if and only if the
order of Γ is divisible by any positive integers. Here, in general, we say that the order
of a profinite group Γ is divisible by a positive integer n if there exists an open normal
subgroup U ⊂ Γ such that n | [Γ : U ]. Similarly, when Λ = Zp, we have ΓΛ = 0 if and
only if the order of Γ is divisible by any p-power (i.e., divisible by p∞).

Now let us mention that we can apply our observations so far to naturally reprove
the analogue of the Iwasawa main conjecture for multiple Zp-coverings that is shown
by Kleine–Müller [13], as follows.

Theorem 5.14 (Kleine–Müller [13, Theorem 5.2 and Remark 5.3]). Let us assume
that Λ = Zp and Γ is isomorphic to Zd

p for some d ⩾ 1. Then the characteristic ideal
of JacZp

(X(Γ)) is described as

charZp[[Γ]](JacZp(X(Γ))) =
{

(ZX,Γ) if d ⩾ 2,
I(Γ)−1(ZX,Γ) if d = 1,

where I(Γ) denotes the augmentation ideal of Zp[[Γ]].

Proof. The coefficient ring Zp[[Γ]] is known to be isomorphic to the ring of power series
in d indeterminates Zp[[T1, . . . , Td]]. In particular, Zp[[Γ]] is a regular local ring, so
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we have the notion of characteristic ideals charZp[[Γ]](M) for finitely generated torsion
modules M .

By Corollary 5.12, together with Remark 5.13, the Zp[[Γ]]-module PicZp
(X(Γ)) is

torsion. Since the characteristic ideals satisfy the multiplicativity for exact sequences,
Proposition 5.9 implies

charZp[[Γ]](PicZp(X(Γ))) = charZp[[Γ]](Zp) · charZp[[Γ]](JacZp(X(Γ))).
We have charZp[[Γ]](Zp) = (1) if d ⩾ 2 (since Zp is a pseudo-null module) and
charZp[[Γ]](Zp) = I(Γ) if d = 1. Moreover, Proposition 5.10 implies

charZp[[Γ]](PicZp(X(Γ))) = (ZX,Γ).
Thus we obtain the theorem. □

Remark 5.15. In §6, we will compute the Fitting ideals rather than the characteristic
ideals. Compared to the characteristic ideals, the notion of Fitting ideals has roughly
two advantages. One is that Fitting ideals are defined over any commutative rings.
The other is that, even when the coefficient ring is a regular local ring, Fitting ideals
are more refined than characteristic ideals; indeed, the Fitting ideal determines the
characteristic ideal. Therefore, the main result in §6 (stated as Theorems 6.1 and 6.2)
is a refinement of Theorem 5.14.

5.3. Relation with Ihara zeta functions. In this subsection, we briefly explain
the analytic aspect of Jacobian groups. As illustrated in Theorem 5.14 for instance,
the structure of the Jacobian group is closely related to the element ZX,Γ. The purpose
of this subsection is to explain that ZX,Γ has an interpretation using the (equivariant)
Ihara zeta function. This fact may be regarded as an analogue of the conjectural rela-
tions between algebraic aspects and analytic aspects for various arithmetic objects in
number theory (e.g., the Iwasawa main conjecture, the equivariant Tamagawa number
conjecture, etc.). The results in this subsection are not used in the other parts of this
paper. A nice reference is Terras [19].

Let (X, Γ, α) be a voltage graph such that Γ is abelian. First we define the associ-
ated zeta function (see [19, Chapters 2 and 18]).

Definition 5.16. We define the (equivariant) Ihara zeta function by

ζX,Γ(u) =
∏
[P ]

(1− α(P )uν(P ))−1 ∈ Z[Γ][[u]],

where P runs over primitive paths in X, [P ] denotes the rotation class of P , and ν(P )
denotes the length of P . When the path P consists of edges e1, . . . , en (ei ∈ EX with
n = ν(P )), we define α(P ) = α(e1) · · ·α(en).

Let us define
ZX,Γ(u) = det

Z[Γ]
(1−AX,Γu + (DX − 1)u2 | Z[Γ]⊗Z Div(X)) ∈ Z[Γ][u].

By definition we have ZX,Γ(1) = ZX,Γ. The result is the following.

Theorem 5.17 (Three-term determinant formula). We have
ζX,Γ(u)−1 = (1− u2)#EX −#VX ZX,Γ(u).

In particular, ζX,Γ(u) is a rational function.

Proof. In case Γ is trivial, the theorem is [19, Theorem 2.5]. More generally, the
three-term determinant formula for Artin–Ihara L-functions is proved in [19, Theo-
rem 18.15]. We can prove our theorem by imitating those proofs. Alternatively, it is
possible to deduce our theorem from the formula for Artin–Ihara L-functions. Indeed,
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the general statement can be reduced to the case where Γ is finite and X(Γ) is con-
nected. In that case, the statement follows by combining the formula for Artin–Ihara
L-functions for all the characters of Γ. We omit the details. □

6. Results for profinite coverings
Let (X, Γ, α) be a voltage graph such that Γ is profinite and abelian. We always
suppose Assumption 5.6, so Lemma 5.7 implies Γ is finitely generated.

Let Λ be a compact flat Z-algebra. In this section, we aim at determining
FittΛ[[Γ]](JacΛ(X(Γ))),

assuming the equivalent conditions in Corollary 5.12.
For simplicity, in what follows we assume that Λ = Zp with p a fixed prime number.

This is the case of the most interest. Then the case where Λ = Ẑ would also be
completed because we have Ẑ =

∏
p Zp. Recall that, as we observed in Remark 5.13,

the equivalent conditions in Corollary 5.12 for Λ = Zp says that the order of Γ is
divisible by p∞.

6.1. Statement. First we reduce the question to an algebraic problem.

Theorem 6.1. Suppose that the order of Γ is divisible by p∞. Then we have

FittZp[[Γ]](JacZp(X(Γ))) = ZX,ΓFitt[1]
Zp[[Γ]](Zp).

Proof. By the assumption, Proposition 5.10 implies that PicZp(X(Γ)) is in the cate-
gory PZp[[Γ]] defined in §A.2 and moreover its Fitting ideal is (ZX,Γ). Since Γ is finitely
generated, it is not hard to show that the Zp[[Γ]]-module Zp is finitely presented by
constructing an explicit resolution as in §6.2 below. Therefore, Fitt[1]

Zp[[Γ]](Zp) is well-
defined. Moreover, by Proposition 5.9, we see that JacZp(X(Γ)) is finitely generated
and at the same time the theorem follows from the definition of Fitt[1]

Zp[[Γ]](−). □

Now we are led to computation of Fitt[1]
Zp[[Γ]](Zp). The argument in the rest of this

section is valid for any finitely generated profinite abelian group Γ whose order is
divisible by p∞.

Since Γ is finitely generated, we can decompose Γ as
Γ = ∆1 × · · · ×∆s × Γs+1 × · · · × Γs+t+1,

where ∆l (1 ⩽ l ⩽ s) is a procyclic group whose order is not divisible by p∞ and Γl

(s + 1 ⩽ l ⩽ s + t + 1) is a procyclic group whose order is divisible by p∞. Note that
then the integer t + 1 is equal to the Zp-rank of the pro-p completion of Γ, so by the
assumption we have t ⩾ 0. This decomposition is not unique in general.

For 1 ⩽ l ⩽ s, let σl be a (topological) generator of ∆l and put τl = σl − 1.
Similarly, for s + 1 ⩽ l ⩽ s + t + 1, let σl be a generator of Γl and put Tl = σl − 1.

Let 1 ⩽ l ⩽ s. We also fix an open subgroup Ul ⊂ ∆l such that the order of Ul is
not divisible by p. Put nl = [∆l : Ul]. For each open subgroup U of Ul, put

νl,U = 1
[Ul : U ]N∆l/U ∈ Zp[∆l/U ].

Then νl,U is compatible if we vary U , so the family defines an element
νl = (νl,U )U ∈ Zp[[∆l]].

This element satisfies ν2
l = nlνl and τlνl = 0 since each νl,U satisfies these properties.

Note that though nl and νl depend on the choice of Ul, they are well-defined up to Z×
p .

The following is the main result.
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Theorem 6.2. The fractional ideal Fitt[1]
Zp[[Γ]](Zp) is equal to

(T −1
s+1ν1 · · · νs) +

(
νe1

1 · · · νes
s τf1

1 · · · τfs
s T

fs+1
s+1

∣∣∣∣ 0 ⩽ el ⩽ 1, fl ⩾ 0,
e1 + · · ·+ es + f1 + · · ·+ fs+1 = s− 1

)
if t = 0 and(

νe1
1 · · · νes

s τf1
1 · · · τfs

s T
fs+1
s+1 · · ·T

fs+t+1
s+t+1

∣∣∣∣ 0 ⩽ el ⩽ 1, fl ⩾ 0,
e1 + · · ·+ es + f1 + · · ·+ fs+t+1 = s + t− 1

)
if t ⩾ 1.

6.2. Proof of Theorem 6.2. First we recall a result of Atsuta and the author [1]
that plays a key role in the proof.

Proposition 6.3 ([1, Proposition 4.8]). Let s ⩾ 0 be an integer. Let us consider the
matrix Ns(T1, . . . , Ts) constructed in §4.2 whose components are in the polynomial
ring Z[T1, . . . , Ts]. For each i ⩾ 0, the i-th Fitting ideal of the matrix is described as

Fitti(Ns(T1, . . . , Ts)) =


(1) if i ⩾ s,
0 if s ⩾ 1 and i = 0,
(T1, . . . , Ts)s−i if 1 ⩽ i < s.

Put
Γ0 = ∆1 × · · · ×∆s × Γs+1 × · · · × Γs+t,

so Γ = Γ0×Γs+t+1. Let us begin with constructing a free resolution of Zp over Zp[[Γ0]]
in a similar way as in §§4.2–4.3. Observe that we have an exact sequences

Zp[[∆l]]x2
l

νl→ Zp[[∆l]]xl
τl→ Zp[[∆l]]→ Zp → 0

for 1 ⩽ l ⩽ s and
0→ Zp[[Γl]]xl

Tl→ Zp[[Γl]]→ Zp → 0
for s + 1 ⩽ l ⩽ s + t. Then, by taking the tensor product of complexes, we obtain an
exact sequence

s⊕
l=1

Zp[[Γ0]]x2
l ⊕

⊕
1⩽l<l′⩽s+t

Zp[[Γ0]]xlxl′
d2→

s+t⊕
l=1

Zp[[Γ0]]xl
d1→ Zp[[Γ0]] d0→ Zp → 0,

where d0 is the augmentation map, d1 is determined by

d1(xl) =
{

τl if 1 ⩽ l ⩽ s,
Tl if s + 1 ⩽ l ⩽ s + t,

and d2 is determined by
d2(x2

l ) = νlxl (1 ⩽ l ⩽ s)
and

d2(xlxl′) =


−τl′xl + τlxl′ if 1 ⩽ l < l′ ⩽ s,
−Tl′xl + τlxl′ if 1 ⩽ l ⩽ s < s + 1 ⩽ l′ ⩽ s + t,
−Tl′xl + Tlxl′ if s + 1 ⩽ l < l′ ⩽ s + t.

Therefore, the presentation matrix of d2 is of the form

Ms,t(ν1, . . . , νs, τ1, . . . , τs, Ts+1, . . . , Ts+t) =


ν1

. . .
νs

0

Ns+t(τ1, . . . , τs, Ts+1, . . . , Ts+t)

 .
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Now observe that Zp[[Γ0]] is in PZp[[Γ]] and FittZp[[Γ]](Zp[[Γ0]]) = (Ts+t+1). Since we
have an exact sequence

0→ Cok(d2) d1→ Zp[[Γ0]] d0→ Zp → 0,

we obtain
Fitt[1]

Zp[[Γ]](Zp) = T −1
s+t+1FittZp[[Γ]](Cok(d2))

= T −1
s+t+1Fitt(


Ms,t(ν1, . . . , νs, τ1, . . . , τs, Ts+1, . . . , Ts+t)

Ts+t+1
. . .

Ts+t+1

)

=
s+t∑
i=0

T i−1
s+t+1Fitti(Ms,t(ν1, . . . , νs, τ1, . . . , τs, Ts+1, . . . , Ts+t)).

For each 0 ⩽ i ⩽ s + t, by an analogous consideration as (5), we have

Fitti(Ms,t(ν1, . . . , νs, τ1, . . . , τs, Ts+1, . . . , Ts+t))

(9)

=
min{s,s+t−i}∑

j=0

∑
a⊂{1,2,...,s}

#a=j

νa1 · · · νaj Fitti(Ns+t−j(τaj+1 , . . . , τas , Ts+1, . . . , Ts+t)).

Here, we use the same notation as (5). Let us compute the right hand side of (9) by
using Proposition 6.3.

First we consider i = 0. Then by Proposition 6.3, only j = s + t contributes to the
sum, which is possible only when t = 0. Therefore, the right hand side of (9) vanishes
unless t = 0. If t = 0, the right hand side equals (ν1 · · · νs) (the term for j = s and
a = {1, 2, . . . , s}).

Suppose 1 ⩽ i ⩽ s + t. Then Proposition 6.3 tells us that the right hand side of (9)
is equal to

min{s,s+t−i}∑
j=0

∑
a⊂{1,2,...,s}

#a=j

νa1 · · · νaj
(τaj+1 , . . . , τas

, Ts+1, . . . , Ts+t)s+t−i−j

=
min{s,s+t−i}∑

j=0

∑
a⊂{1,2,...,s}

#a=j

νa1 · · · νaj
(τ1, . . . , τs, Ts+1, . . . , Ts+t)s+t−i−j

=
(

νe1
1 · · · νes

s τf1
1 · · · τfs

s T
fs+1
s+1 · · ·T

fs+t

s+t

∣∣∣∣ 0 ⩽ el ⩽ 1, fl ⩾ 0,
e1 + · · ·+ es + f1 + · · · fs+t = s + t− i

)
.

Therefore, taking the summation for 1 ⩽ i ⩽ s + t gives
s+t∑
i=1

T i−1
s+t+1Fitti(Ms,t(ν1, . . . , νs, τ1, . . . , τs, Ts+1, . . . , Ts+t)) =(

νe1
1 · · · νes

s τf1
1 · · · τfs

s T
fs+1
s+1 · · ·T

fs+t+1
s+t+1

∣∣∣∣ 0 ⩽ el ⩽ 1, fl ⩾ 0,
e1 + · · ·+ es + f1 + · · · fs+t+1 = s + t− 1

)
.
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By combining these formulas, we obtain Theorem 6.2.

6.3. Essentially finite case. Let (X, Γ, α) be a voltage graph such that Γ is profi-
nite abelian and we suppose Assumption 5.6. Let us fix a prime number p

In this section so far, we studied the case where the order of Γ is divisible by p∞.
In case the order of Γ is not divisible by p∞ (but possibly infinite), we can obtain the
following results, which are profinite generalizations of the results in §§3–4. We state
the results without proof because it is essentially the same as in §§3–4.

Let us construct a decomposition
Γ = ∆1 × · · · ×∆s,

where ∆l is a procyclic group (whose order is necessarily not divisible by p∞). We
fix an open subgroup Ul ⊂ ∆l such that the order of Ul is not divisible by p. Then
we introduce τl ∈ Zp[∆l], a positive integer nl, and νl ∈ Zp[[∆l]] in the same way as
in §6.1. We then define νΓ = ν1 · · · νl ∈ Zp[[Γ]].

Then, as an analogue of Theorem 3.4, we have

FittZp[[Γ]]/(νΓ)(JacZp(X(Γ))/νΓJacZp(X(Γ))) = ZX,ΓFitt[1]
Zp[[Γ]]/(νΓ)(Zp/(n1 · · ·ns)Zp).

Moreover, as an analogue of Theorem 4.1, we have

Fitt[1]
Zp[[Γ]]/(νΓ)(Zp/(n1 · · ·ns)Zp)

=
s∑

l=1

(
ν1 · · · νl−1 ·

Dl

nl
· νl+1 · · · νs

)
+
(

νe1
1 · · · νes

s τf1
1 · · · τfs

s

∣∣∣∣ 0 ⩽ el ⩽ 1, fl ⩾ 0,
e1 + · · ·+ es + f1 + · · ·+ fs = s− 2

)
.

Here, Dl ∈ Zp[[∆l]] is any element such that (4) holds.

7. Self-duality of Jacobian groups
The prerequisite for this section is §2. In this section, we observe a self-duality property
of the Jacobian groups. This is in contrast to the corresponding story in number theory
as discussed in Remark 7.3 below.

First we fix our convention about duals. For a finite Z-module M , we define its Pon-
tryagin dual by M∨ = HomZ(M,Q/Z). Note that we have an alternative description
M∨ = Ext1

Z(M,Z). For a finitely generated Z-module M , we also define its Z-linear
dual by M∗ = HomZ(M,Z). Both (−)∨ and (−)∗ are contravariant functors.

If we have a left (resp. right) action of a group Γ on such an M , we introduce a
right (resp. left) action of Γ on M∨ or M∗ by

(ϕγ)(x) = ϕ(γx) (resp. (γϕ)(x) = ϕ(xγ))
for γ ∈ Γ, ϕ ∈ M∨ or ϕ ∈ M∗, and x ∈ M . Let ι be the involution on Γ defined
by ι(γ) = γ−1. If M is a left (resp. right) Γ-module, we define a right (resp. left)
Γ-module M ι by M ι = M as an additive module and the group action is defined by
xγ = γ−1x (resp. γx = xγ−1) for γ ∈ Γ and x ∈M .

Now let Y be a connected graph equipped with a left action of a group Γ. Since
the set of vertices {[w]}w∈VY

is a Z-basis of Div(Y ), we can construct the dual basis
{ϕw}w∈VY

of Div(Y )∗. Namely, ϕw is the homomorphism characterized by ϕw([w]) = 1
and ϕw([w′]) = 0 for any w′ ̸= w. It is easy to check that ϕγw = ϕwγ−1 for any w ∈ VY

and γ ∈ Γ. Therefore, we have a Z-isomorphism of left Z[Γ]-modules
(10) Div(Y ) ≃ Div(Y )∗,ι

by sending [w] to ϕw.
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Now let us consider the following commutative diagram

(11) 0 // Z ιY //

≃
��

Div(Y ) LY //

≃
��

Div(Y )
degY //

≃
��

Z //

≃
��

0

0 // Z∗,ι

deg∗
Y

// Div(Y )∗,ι

L∗
Y

// Div(Y )∗,ι

ι∗
Y

// Z∗,ι // 0.

Here, the upper sequence is the complex constructed in Lemma 2.6, and the lower
is the Z-linear dual of the upper. The middle two vertical isomorphisms are (10).
The left and right vertical isomorphisms are the natural ones. It is straightforward to
prove that this diagram is commutative.

Lemma 7.1. The lower complex in (11) is acyclic except for the right Div(Y )∗,ι, where
the homology group is isomorphic to Jac(Y )∨,ι.

Proof. By Lemma 2.6, the upper complex is quasi-isomorphic to the finite module
Jac(Y ) (located at the appropriate degree). Therefore, its Z-linear dual is quasi-
isomorphic to Ext1

Z(Jac(Y ),Z) ≃ Jac(Y )∨. This proves the assertion. In a more el-
ementary way, it is possible to deduce the assertion by splitting the upper complex
to three short exact sequences and then taking their Z-linear duals (we omit the
details). □

Now we obtain the following.

Proposition 7.2. We have a natural isomorphism

Jac(Y ) ≃ Jac(Y )∨,ι

as left Z[Γ]-modules.

Proof. This follows immediately from Lemma 7.1. □

Remark 7.3. Proposition 7.2 implies

FittZ[Γ](Jac(Y )∨) = ι
(
FittZ[Γ](Jac(Y ))

)
as long as Γ is commutative. This phenomenon is in contrast to the situation in
number theory. As revealed in [1] (see Remark 1.3), the Fitting ideal of ClT,−

L is much
more complicated than that of ClT,−,∨

L .

8. Iwasawa theory for graphs from a module-theoretic viewpoint
The prerequisite for this section is §§2 and 5.

In this section, we discuss Iwasawa theory for graphs. In §8.1 (resp. §8.2), we give
a short proof of an analogue of the Iwasawa class number formula (resp. of Kida’s
formula) for graphs. The results are not new and indeed already obtained by others;
the Iwasawa class number formula is proved independently by Gonet [5] and McGown–
Vallières [14], and Kida’s formula is proved by Ray–Vallières [17]. However, the proofs
in this paper are different from the previous ones to some extent. Our observation is
that those results directly follow from rather general module-theoretic propositions.
An advantage of this is, for instance, that we can avoid separate discussion on the
case where the Euler characteristic of the base graph is zero as in the previous works.
The author thinks that this method is more concise and so it is worth publishing.
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8.1. Iwasawa class number formula for graphs. Let us briefly review the orig-
inal Iwasawa class number formula, proved by Iwasawa [10, Theorem 11]. Let K∞/K
be a Zp-extension of number fields. This means that K∞/K is a Galois extension
whose Galois group Γ is isomorphic to Zp. For each n ⩾ 0, let Kn be the intermediate
field corresponding to Γpn ⊂ Γ. Then Kn/K is a Galois extension whose Galois group
is Γ/Γpn ≃ Z/pnZ and we obtain a tower of number fields

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · .

Now the Iwasawa class number formula states that there exist integers λ ⩾ 0, µ ⩾ 0,
and ν such that

ordp(#Cl(Kn)) = λn + µpn + ν

for n ≫ 0. Here, Cl(Kn) denotes the ideal class group of Kn and ordp denotes the
additive p-adic valuation normalized so that ordp(p) = 1.

The proof of this formula is explained in Washington [20, §13.3]. In general, as-
sociated to a finitely generated torsion Zp[[Γ]]-module M are integers λ(M) ⩾ 0,
µ(M) ⩾ 0 that are respectively called the λ-, µ-invariants of M . The integers λ, µ in
the Iwasawa class number formula are exactly the λ-, µ-invariants of the associated
Iwasawa module.

The invariants λ(M), µ(M) are defined using the structure theorem for mod-
ules over Zp[[Γ]]. We do not review the details in this paper (see, e.g., [20, §13.2]
or [15, (5.1.10)] for the structure theorem and [15, (5.3.9)] for the definitions of λ-,
µ-invariants). Let us just recall that we have µ(M) = 0 if and only if M is finitely
generated over Zp, in which case λ(M) is equal to the Zp-rank of M .

Now we consider the analogue for graphs. Let (X, Γ, α) be a voltage graph such
that Γ is isomorphic to Zp. We suppose Assumption 5.6. Then, as introduced in §5.2,
we have a Zp-covering X∞ = X(Γ) of X. For each n ⩾ 0, we put Xn = X(Γ/Γpn),
which is called the n-th layer of X∞/X.

Theorem 8.1 (Gonet [5, Theorem 1.1], McGown–Vallières [14, Theorem 6.1]). There
exist integers

λ = λ(X∞/X) ⩾ 0, µ = µ(X∞/X) ⩾ 0, ν = ν(X∞/X)
such that we have

ordp(#Jac(Xn)) = λn + µpn + ν

for n≫ 0. Moreover, we have
λ(X∞/X) = λ(JacZp(X∞)) = λ(PicZp(X∞))− 1

and
µ(X∞/X) = µ(JacZp(X∞)) = µ(PicZp(X∞)).

To prove this theorem, we apply the following algebraic proposition.

Proposition 8.2. Let Γ be a profinite group that is isomorphic to Zp. Let M be a
finitely generated torsion Zp[[Γ]]-module. Then there exist integers λ ⩾ 0, µ ⩾ 0, and
ν such that

ordp(#(MΓpn [p∞])) = λn + µpn + ν

for n ≫ 0. Here, MΓpn denotes the coinvariant module and (−)[p∞] denotes the
p-power torsion submodule. Indeed, the integers λ and µ are determined as

λ = λ(M)−max
n⩾0

rankZp
(MΓpn ), µ = µ(M).

Proof. See Greenberg [6, item (4) in page 79]. A key ingredient is the structure theo-
rem for modules over Zp[[Γ]]. □
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Proof of Theorem 8.1. Let us observe the following:
• For any n ⩾ 0, we have rankZp

(PicZp
(Xn)) = 1 and JacZp

(Xn) =
PicZp

(Xn)[p∞] by (2) and Theorem 2.5.
• For any n ⩾ 0, we have PicZp(Xn) ≃ PicZp(X∞)Γpn by Corollary 5.11.
• PicZp(X∞) is a finitely generated torsion Zp[[Γ]]-module by Corollary 5.12.

Then, applying Proposition 8.2 to M = PicZp
(X∞), we find integers λ ⩾ 0, µ ⩾ 0,

and ν such that ordp(#Jac(Xn)) = λn + µpn + ν for n≫ 0. Moreover, we have
λ = λ(PicZp(X∞))−max

n⩾0
rankZp(PicZp(X∞)Γpn )

and µ = µ(PicZp(X∞)). Since we have
rankZp

(PicZp
(X∞)Γpn ) = rankZp

(PicZp
(Xn)) = 1

for any n ⩾ 0, we obtain λ = λ(PicZp(X∞)) − 1. Then Proposition 5.9 implies that
these integers λ, µ coincide respectively with the λ-, µ-invariants of JacZp(X∞). This
completes the proof. □

Remark 8.3. By Proposition 5.10, the characteristic ideal of PicZp
(X∞) is equal to

(ZX,Γ). Therefore, the invariants λ and µ in Theorem 8.1 are determined by ZX,Γ.
Note that, as we observed in §5.3, the three-term determinant formula provides an
analytic interpretation of the element ZX,Γ.

8.2. Kida’s formula for graphs. Let us go on to Kida’s formula for graphs. We
do not review the original Kida’s formula for ideal class groups, proved by Kida [12],
and instead refer to [17] for the literatures.

Let Γ̃ be a profinite group that is decomposed as

Γ̃ = G× Γ,

where G is a finite p-group (that is not necessarily abelian) and Γ is isomorphic to
Zp. Let (X, Γ̃, α) be a voltage graph. We suppose Assumption 5.6 for (X, Γ̃, α).

Now (X, Γ̃, α) induces a voltage graph (X, Γ, α/G), where α/G is the composite
map of α and the natural projection Γ̃ → Γ. Therefore, we obtain a Zp-covering
X∞ = X(Γ) of X and can consider its λ-, µ-invariants λ(X∞/X), µ(X∞/X) as in
Theorem 8.1.

On the other hand, as discussed in [17, §3], we also obtain a Zp-covering
X̃∞ = X(Γ̃) of X̃ = X(G). Therefore, we also have the λ-, µ-invariants λ(X̃∞/X̃),
µ(X̃∞/X̃).

This situation should be roughly regarded as a G-covering of Zp-coverings. Indeed,
the graph X̃ is a G-covering of X, and more generally the n-th layer of X̃∞/X̃ is a
G-covering of the n-th layer of X∞/X. Conversely, any G-covering of Zp-coverings of
connected graphs in this sense can be constructed in this way (see [17, §3] for more
precise discussion).

Now we state the analogue of Kida’s formula.

Theorem 8.4 (Ray–Vallières [17, Theorem 4.1]). We have µ(X̃∞/X̃) = 0 if and only
if µ(X∞/X) = 0. If these equivalent conditions hold, we have

λ(X̃∞/X̃) + 1 = #G · (λ(X∞/X) + 1).

To prove this theorem, we use the following key algebraic proposition.

Proposition 8.5. Let G be a finite p-group. The following hold.
(1) A Zp[G]-module M is finitely generated over Zp if and only if so is the coin-

variant module MG.
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(2) Let Γ̃ = G × Γ with Γ isomorphic to Zp. Let M a finitely generated tor-
sion Zp[[Γ̃]]-module whose projective dimension over Zp[[Γ̃]] is ⩽ 1. Suppose
moreover that the equivalent conditions in (1) hold. Then we have

rankZp
(M) = #G · rankZp

(MG).

Proof. (1) The “only if” part is clear. The “if” part follows from Nakayama’s lemma
since Zp[G] is a local ring.

(2) Let us show that the assumptions imply that M is a free Zp[G]-module of finite
rank. Then the assertion would follow immediately.

It is well-known that pdZp[[Γ]](M) ⩽ 1 is equivalent to that M has no nonzero
finite Zp[[Γ]]-submodules (e.g., [15, (5.3.19)]). Then being finitely generated over Zp

implies that M is a free Zp-module of finite rank. On the other hand, the finiteness of
pdZp[[Γ]][G](M) implies that M is G-cohomologically trivial. These observations show
that M is a free Zp[G]-module of finite rank (e.g., [15, (5.2.21)]), as claimed. □

Proof of Theorem 8.4. Recall that Proposition 5.10 and Corollary 5.12 show that
PicZp(X̃∞) is a finitely generated torsion Zp[[Γ̃]]-module whose projective dimension
is ⩽ 1. We also have PicZp(X∞) ≃ PicZp(X̃∞)G by Corollary 5.11. Therefore, we can
apply Proposition 8.5(1)(2) to PicZp

(X∞). As a result, we have µ(PicZp
(X̃∞)) = 0 if

and only if µ(PicZp
(X∞)) = 0 and, if these equivalent conditions hold, we have

λ(PicZp
(X̃∞)) = #G · λ(PicZp

(X∞)).

Since we have λ(X∞/X) = λ(PicZp(X∞)) − 1 and µ(X∞/X) = µ(PicZp(X∞)), and
similarly for X̃∞/X̃, this proves Theorem 8.4. □

Appendix A. Notes on Fitting ideals
In this section, we briefly review the definition of Fitting ideals and the shift theory
introduced in [11].

Let R be a commutative ring. Note that we do not assume R is noetherian. This is
because the coefficient rings arising from the arithmetic in this paper are not noether-
ian in general (e.g., Ẑ[[Ẑ]]). In [11], the author developed the shift theory only over
noetherian rings. In this section, we observe that the argument can be generalized to
non-noetherian rings by imposing appropriate finiteness properties on modules.

A.1. Fitting ideals. We recall the definition of Fitting ideals. See, e.g., North-
cott [16, §3.1].

Definition A.1. Let I be a finite set and J a (not necessarily finite) set. Let

h : R⊕J → R⊕I

be an R-homomorphism, where R⊕I , R⊕J denote the free modules on the set I, J
respectively.

We define the (initial) Fitting ideal Fitt(h) = FittR(h) as follows. For each subset
J ′ ⊂ J with #J ′ = #I, we write

hJ′ : R⊕J′
→ R⊕I

for the restriction of h. Let det(hJ′) be the determinant of hJ′ with respect to any
choice of bases; inevitably this determinant has ambiguity up to R×, but this does not
matter. Then FittR(h) is defined as the ideal of R generated by det(hJ′) for all J ′ ⊂ J
with #J ′ = #I. Note that if #J < #I, we have FittR(h) = 0 as there is not such
a J ′.

Algebraic Combinatorics, Vol. 7 #3 (2024) 622



Jacobian groups of graphs

More generally, for an integer i ⩾ 0, the i-th Fitting ideal Fitti(h) = Fitti,R(h) is
defined as follows. For subsets I ′ ⊂ I and J ′ ⊂ J with #I ′ = #J ′, we write

hJ′,I′ : R⊕J′
→ R⊕I′

for the map induced by h. If i ⩽ #I, we define Fitti,R(h) as the ideal of R generated
by det(hJ′,I′) for all J ′ ⊂ J , I ′ ⊂ I with #J ′ = #I ′ = #I − i. If i > #I, we set
Fitti,R(h) = R.

Definition A.2. Let M be a finitely generated R-module. We define FittR(M) and
Fitti,R(M) (i ⩾ 0) respectively as FittR(h) and Fitti,R(h), where h is a homomor-
phism as in Definition A.1 such that the cokernel of h is isomorphic to M . It is known
that this definition is independent from the choice of h.

A.2. Shifts of Fitting ideals. We write Frac(R) for the total ring of fractions
of R. An R-module M is said to be torsion if any element is annihilated by a non-
zero-divisor of R; equivalently if Frac(R)⊗R M = 0.

Lemma A.3. Let F be a free R-module of finite rank and h : F → F be an endomor-
phism. Then the following are equivalent.

(i) The map h is injective.
(ii) The determinant det(h) ∈ R is a non-zero-divisor.
(iii) The cokernel Cok(h) is a torsion R-module.

Proof. The fact (i)⇔ (ii) is shown in [3, Chapter III, §8, Proposition 3, p. 524]. Since
Cok(h) is annihilated by det(h), we have (ii) ⇒ (iii). If (iii) holds, the base change of
h from R to Frac(R) is surjective, so it is isomorphic, which implies (i). □

Let us define PR as the category of finitely presented torsion R-module P such
that pdR(P ) ⩽ 1, where pdR(−) denotes the projective dimension. By Lemma A.3,
if a module P satisfies an exact sequence of the form
(12) 0→ F → F → P → 0
with F a free module of finite rank, then P is in PR. Conversely, if R is local, then
every P in PR satisfies an exact sequence of the form (12), since in that case any
projective module is necessarily free.

A fractional ideal I of R is defined as an R-submodule of Frac(R) such that uI ⊂ R
for some non-zero-divisor u ∈ R.

Lemma A.4. The following are true.
(1) For each P ∈ PR, the Fitting ideal FittR(P ) is invertible as a fractional ideal

of R.
(2) Let 0→M ′ →M → P → 0 be an exact sequence of finitely generated torsion

R-modules such that P ∈ PR. Then we have
FittR(M) = FittR(P )FittR(M ′).

Proof. We sketch the proof (see [11, Proposition 2.7] for the details). For both claims
(1) and (2), it is enough to show them after localization at all prime ideals of R,
so we may assume R is local. Then P satisfies an exact sequence of the form (12).
Now claim (1) follows from Lemma A.3 and claim (2) follows by using the horseshoe
lemma. □

Now we introduce the “n-th shift” Fitt[n]
R (−) as in [11, Theorem 2.6]. First we

consider the “once-shift” Fitt[1]
R (−), which actually suffices for the purpose of this

paper. For completeness, in Definition A.6, we will also introduce the general n-th
shift.
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Definition A.5. For a finitely presented torsion R-module M , we define a fractional
ideal Fitt[1]

R (M) as follows. Let us take an exact sequence of R-modules
(13) 0→ N → P →M → 0
with P ∈ PR. For instance, if M is generated by n elements and annihilated by a non-
zero-divisor f ∈ R, we may take P = (R/fR)n. Since M is finitely presented, N is
finitely generated, so its Fitting ideal is defined. Then we define (using Lemma A.4(1))

Fitt[1]
R (M) = FittR(P )−1FittR(N).

This is well-defined, that is, independent from the choice of (13).

Let us sketch the proof of the independency from (13). Let 0→ N ′ → P ′ →M → 0
be another exact sequence with P ′ ∈ PR. Then, by using the pull-back L of the maps
P →M and P ′ →M , we obtain a commutative diagram with exact rows and columns

N ′
� _

��

N ′
� _

��
0 // N // L //

����

P ′ //

����

0

0 // N // P // M // 0.

Since P, P ′ ∈ PR, by Lemma A.4(2), we obtain
FittR(L) = FittR(P ′)FittR(N), FittR(L) = FittR(P )FittR(N ′).

These formulas imply
FittR(P )−1FittR(N) = FittR(P ′)−1FittR(N ′),

as desired.
Finally let us introduce the general n-th shift. See [11, Theorem 2.6] for the proof;

to remove the noetherian hypothesis, we only have to suitably deal with the finiteness
conditions.

Definition A.6. Let n ⩾ 0 be an integer. Let M be a torsion R-module such that
there exists an exact sequence

Ran → Ran−1 → · · · → Ra0 →M → 0
for some integers a0, . . . , an ⩾ 0. For instance, when n = 0 (resp. n = 1), this
condition means that M is finitely generated (resp. finitely presented). For such an
M , we define a fractional ideal Fitt[n]

R (M) as follows. Let us take an exact sequence
of R-modules
(14) 0→ N → P1 → · · · → Pn →M → 0
with P1, . . . , Pn ∈ PR. The existence of such a sequence follows from the assump-
tion on M , and moreover then N is finitely generated. Then we define (using
Lemma A.4(1))

Fitt[n]
R (M) =

(
n∏

i=1
FittR(Pi)(−1)i

)
FittR(N).

This is well-defined, that is, independent from the choice of (14).
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