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Towards a classification of multi-faced
independences: a combinatorial approach

Malte Gerhold & Philipp Varšo

Abstract We determine a set of necessary conditions on a partition-indexed family of com-
plex numbers to be the “highest coefficients” of a positive and symmetric multi-faced universal
product, i.e. the product associated with a multi-faced version of noncommutative stochastic
independence, such as bifreeness. The highest coefficients of a universal product are the weights
of the moment-cumulant relation for its associated independence. We show that these conditions
are almost sufficient, in the sense that whenever the conditions are satisfied, one can associate
a (automatically unique) symmetric universal product with the prescribed highest coefficients.
Furthermore, we give a quite explicit description of such families of coefficients, thereby produc-
ing a list of candidates that must contain all positive symmetric universal products. We discover
in this way four (three up to trivial face-swapping) previously unknown moment-cumulant re-
lations that give rise to symmetric universal products; to decide whether they are positive, and
thus give rise to independences which can be used in an operator algebraic framework, remains
an open problem.

1. Introduction
At the latest with Voiculescu’s invention of freeness [31], it became apparent that the
“obvious” extension of classical stochastic independence, tensor independence, is not
the only and not always the most suitable concept in inherently noncommutative sit-
uations. In fact, Boolean independence (not yet under this name) has already featured
much earlier in the work of von Waldenfels [33, 34]. Those “noncommutative inde-
pendences” share many properties with classical stochastic independence and tensor
independence. In particular, under the assumption of independence, mixed moments
are uniquely determined and can be calculated from marginal moments (also giving
rise to an associated convolution product for probability measures on the real line).
Another interesting independence is monotone independence, which was discovered
by Muraki [20]; this is a non-symmetric independence relation.

An extremely useful tool when dealing with random variables which have all mo-
ments are the corresponding cumulants. The theory of free cumulants, linearizing free
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additive convolution, was developed by Speicher [26], see also the book by Nica and
Speicher [24].(1) Boolean cumulants were formalized by Speicher and Woroudi [28].
Understanding the monotone cumulants took a bit longer, many questions were an-
swered by Hasebe and Saigo [15]. The problem in the monotone case is that inde-
pendence is not in general characterized by vanishing of mixed cumulants. This is
directly related to the non-symmetric nature, as becomes apparent when interpreting
moment-cumulant relations via exponential and logarithm maps, as is done in related
but different settings by Manzel and Schürmann [18] (Hopf algebraic) or Ebrahimi-
Fard and Patras [5] (shuffle-algebraic); non-zero mixed cumulants can appear in the
Campbell-Baker-Hausdorff series.

Since the work of Speicher [27], Ben Ghorbal and Schürmann [1], and Muraki [21,
22], we know that the five independence relations for noncommutative random vari-
ables, tensor, free, Boolean, monotone and antimonotone independence, are indeed
very special. For these independences, the joint distribution of independent random
variables is obtained from the marginal distributions by means of a “universal prod-
uct”, i.e. a product operation which fulfills a number of natural conditions, including
associativity and universality (i.e. in a specific sense not dependent on the concrete re-
alization of the noncommutative random variables) and a “factorization for length 2”-
condition; and they are the only ones with this property.(2) Replacing that “factor-
ization for length 2”-condition by a positivity condition, a decade later, Muraki [23]
proved a similar result with a much simpler proof, while at the same time using a
much better motivated assumption, namely that the product operation restricts to
a product operation for states on augmented ∗-algebras.(3) This kind of positivity
is also the right condition to study quantum Lévy processes on dual groups in the
sense of Ben Ghorbal and Schürmann [2], see also [25], where Schoenberg correspon-
dence between convolution semigroups of states and conditionally positive generators
is proved in this context. In 2014, Voiculescu [32] introduced a new nontrivial ex-
tension of free independence, bifreeness, for sequences of pairs of random variables,
or pairs of faces as Voiculescu called the general underlying framework. Taking up
on this idea, more examples of 2-faced or, more generally, multi-faced independences
have been discovered [17, 16, 14, 13, 9]. The general theory of multi-faced universal
products from which those independences can be obtained was established by Manzel
and Schürmann [18]. It turned out that not all of the examples fulfill the natural
positivity condition. Positivity is still enough to assure Schoenberg correspondence in
this generalized setting, see [8]. In an effort to classify positive multi-faced universal
products, two routes have been taken. In [10], Gerhold, Hasebe, Ulrich completely
classified 2-faced universal products which have a natural representation on the ten-
sor product or the free product Hilbert space of the GNS spaces of the factors. In
Varšo’s PhD thesis [30], he proved that there are at most 12 two-faced universal prod-
ucts which fulfill additional assumptions of symmetry and a “combinatorial” moment
cumulant relation (i.e. determined by a subset of all two-faced partitions, where more

(1)For a single variable, Voiculescu defined free cumulants and proved their uniqueness already in
his seminal paper [31].

(2)Speicher [27] proved that there are only three universal calculation rules for mixed moments
in the symmetric case. Ben Ghorbal and Schürmann [1] axiomatized independences via universal
products and showed equivalence to universal calculation rules. Muraki [21, 22] extended the results
to the non-symmetric setting.

(3)In the purely algebraic context, i.e. without positivity, Muraki’s classification was slightly ex-
tended by Gerhold and Lachs in [11], showing that there is a non-symmetric deformation of Boolean
independence.
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generally weights on two-faced partitions can appear).(4) In this article we present,
simplify, and extend those results of [30].

A single-faced independence can trivially be regarded as a two-faced independence,
and every two-faced independence is a certain kind of mixture of two single-faced in-
dependences. However, neither do those two single-faced independences determine
the two-faced independence, nor is it obvious that any combination of single-faced
independences can be combined in any way to form a two-faced independence.(5) The
main result of this article is to present a family of two-faced symmetric universal
products such that every positive symmetric two-faced universal product must be-
long to that family, we call them candidates. This is achieved in three steps. First,
we prove necessary conditions for a family of weights on ordered partitions to be
the highest coefficients of a positive multi-faced universal product (Theorem 5.3);
second, we determine all permutation invariant weights (= weights on non-ordered
partitions) which fulfill those properties (Corollary 6.11), we call such weights here
admissible; third, we prove that admissible weights are always the highest coefficients
of a (uniquely determined) symmetric multi-faced universal product (Theorem 8.2).
The family of candidates consists of (identifying an independence with its underlying
universal product, and disregarding the difference between a 2-faced independence
and its image under swapping the faces)

• 2-faced continuous 1-parameter deformations of free, tensor and bifree inde-
pendence (positivity is proved in [10]),

• a tensor-free independence (positivity is not known),
• a new free-free and a new tensor-tensor independence, different from the trivial

ones, bifreeness, and their deformations (positivity is not known),
• tensor-Boolean, free-Boolean and Boolean independence; positivity for those

is also covered in [10], for free-Boolean it was first shown by Liu [17] and for
Boolean independence positivity is of course well-known.

We call the independences which are not realized in [10], i.e. those whose positivity
is yet unknown, exceptional.

We prove many of the preliminary results for the general symmetric multi-faced
case. Theorem 5.3, where we find necessary conditions on weights to arise as highest
coefficients of a universal product, is even formulated for not necessarily symmetric
products and could be used as a starting point for a more general classification in-
cluding multi-faced universal products based on monotone independence, such as for
example bimonotone independence (of type II) as defined in [9, 13].

It easily follows from the main result that there are no non-trivial positive and
symmetric trace preserving universal products (Remark 6.12) and that tensor inde-
pendence and bifreeness are the only two positive symmetric 2-faced independences
which allow to define a convolution of probability measures on R2 (Remark 6.13).

Among our additional results, we characterize when a positive symmetric multi-
faced universal product is unit preserving (Theorem 9.7), i.e. when it can be defined
consistently for arbitrary unital algebras (in the other cases, the product operation is
only defined for linear functionals on augmented algebras). This is indeed the case for

(4)In [30], it was also noticed for the first time the possibility that the moment cumulant relation of
a positive universal product might not need to be of combinatorial form, which was indeed confirmed
in [10] (cumulants are not discussed explicitly in [10], but it is apparent that the universal products
obtained as deformations can have non-0-1 highest coefficients).

(5)Note that the study of another kind of mixture of single-faced independences was initiated by
Młotkowski [19] and received again more attention after work Speicher and Wysozcański [29] and
Ebrahimi-Fard, Patras and Speicher [6] on the corresponding cumulants; this approach is closely
related to graph products of groups and the corresponding universal products are not associative
binary operations.
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the three continuous families and the four (three up to swapping the faces) exceptional
cases. Furthermore, we establish a simplified mixed moment formula for the special
combinatorial case where the highest coefficients are only 0 or 1, so that the moment
cumulant relation is simply governed by a specific set of partitions (Theorem 8.4).

The outline of the article is as follows. In Sections 2 to 4, we introduce the basic
concepts, in particular multi-faced universal products and multi-faced partitions. In
Section 5 we prove the necessary conditions for a family of weights to be the highest
coefficients of a positive multi-faced universal product (symmetric or not). In Sec-
tion 6 we show that those necessary conditions allow us to obtain a concrete list of
candidates for symmetric and positive two-faced universal products. In Section 7 we
give an introduction to Manzel and Schürmann’s cumulant theory, adapted to the
relevant special case of symmetric multi-faced independences. In Section 8 we prove,
using cumulants, that in the symmetric case the conditions exhibited in Section 5 are
sufficient to reconstruct a universal product in the algebraic sense (with a simplified
formula in the combinatorial case), but it remains open whether these universal prod-
ucts are automatically positive. Finally, we characterize in Section 9 which universal
products in our list are unit preserving. In Section 10 we name four tasks which have
to be completed in order to achieve a complete classification of positive multi-faced
universal products.

A comparison between this article and corresponding results in Varšo’s PhD the-
sis [30] can be found in Appendix A.

2. Preliminaries and notation
We will have to deal a lot with tuples of all kinds, so we introduce some useful
notation. Let X and Y be arbitrary sets. For any natural number n, denote by [n]
the set {1, . . . , n}. For an n-tuple t =

(
t(1), . . . , t(n)

)
∈ Xn and a subset I = {i1 <

. . . < ik} ⊂ [n], we define the restricted tuple t ↾ I :=
(
t(i1), . . . , t(ik)

)
. Two tuples

t ∈ Xn, s ∈ Y n of the same length may be combined to form the tuple t×s ∈ (X×Y )n

with (t × s)(i) =
(
t(i), s(i)

)
, and conversely, every tuple in (X × Y )n is of that

form. The set of n-tuples of arbitrary length n is denoted X∗ =
⋃

n∈N0
Xn. When a

set X does not carry any multiplicative structure, we might use the word notation,
t(1) · · · t(n) :=

(
t(1), . . . , t(n)

)
∈ Xn. The entries of a tuple t might be written ti

instead of t(i) from time to time; or we might use t as a shorthand for (t1, . . . , tn)
without further comment when the ti have been around before.

An algebra means a complex associative algebra, not necessarily unital. The free
product of algebras A1, A2 is denoted A1 ⊔ A2. Recall that this is the coproduct in
the category of algebras: for arbitrary algebra homomorphisms hi : Ai → B, there is a
unique algebra homomorphism h1⊔h2 : A1⊔A2 → B with h1⊔h2↾Ai = hi. We use the
same symbol ⊔ to denote the canonical homomorphism h1 ⊔ h2 : A1 ⊔A2 → B1 ⊔B2
when hi : Ai → Bi, it should always be clear from the context which codomain is
meant.

For a vector space V , we denote by T0(V ) =
⊕

n∈N V
⊗n the (non-unital) free

algebra over V . We will identify T0(V1 ⊕ V2) = T0(V1) ⊔ T0(V2) without further com-
menting. Furthermore, T0(V1)⊕ T0(V2) is identified with the corresponding subspace
of T0(V1 ⊕ V2) and linear functionals ψ on T0(V1) ⊕ T0(V2) are identified with lin-
ear functionals T0(V1 ⊕ V2) by extending them as the 0-functional to the canonical
complement, i.e.

ψ(v1 ⊗ · · · ⊗ vk) :=
{
ψ(v1 ⊗ · · · ⊗ vk) if ∀i : vi ∈ V1 or ∀i : vi ∈ V2,
0 if ∃i, j : vi ∈ V1, vj ∈ V2.
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In particular, this convention applies to the direct sum of two linear functionals
ψi : T0(Vi) → C, i.e. we identify ψ1 ⊕ ψ2 with the linear functional on T0(V1 ⊕ V2)
given by

ψ1 ⊕ ψ2(v1 ⊗ · · · ⊗ vk) =


ψ1(v1 ⊗ · · · ⊗ vk) if ∀i : vi ∈ V1,
ψ2(v1 ⊗ · · · ⊗ vk) if ∀i : vi ∈ V2,
0 if ∃i, j : vi ∈ V1, vj ∈ V2.

(1)

The unital free algebra is denoted T (V ) =
⊕

n∈N0
V ⊗n, and this unital algebra is the

unitization of T0(V ).
For the rest of this article, if not explicitly mentioned otherwise, F denotes a fixed

finite set, whose elements we call faces or colors. We could of course assume F = [m]
for m ∈ N, but since there will be a lot of integers around, we prefer to use more
abstract symbols. We mostly use squared symbols such as , to denote arbitrary
elements of F . If there are exactly two faces, we assume F = { , }.

A multi-faced (or F-faced(6)) algebra is an algebra A that is freely generated by
given subalgebras A , ∈ F (the faces of A), i.e. the canonical algebra homomorphism⊔

∈F A → A is an isomorphism; this is indicated by writing A =
⊔

∈F A . A multi-
faced algebra homomorphism is an algebra homomorphism h : A→ B between multi-
faced algebras A,B with h(A ) ⊂ B . We consider the free product of multi-faced
algebras again a multi-faced algebra with faces (A ⊔ B) := A ⊔ B . Note that
the free product of multi-faced algebras is the coproduct in the category AlgF of
multi-faced algebras with multi-faced algebra homomorphisms, i.e. for every pair of
multi-faced algebra homomorphisms hi : Ai → B there is a unique multi-faced algebra
homomorphism h1⊔h2 : A1⊔A2 → B restricting to hi on Ai, respectively for i = 1, 2.

A multi-faced ∗-algebra is a multi-faced algebra with an involution such that each
face is a ∗-subalgebra. Of course, the free product of multi-faced ∗-algebras is again
a multi-faced ∗-algebra in the obvious way and the free product of multi-faced ∗-
homomorphisms is a ∗-homomorphism.

We say that a linear functional φ : A → C defined on a multi-faced ∗-algebra is a
restricted state if its unital extension to the unitization of A is a state (or, equivalently,
positive).

3. Universal products
Definition 3.1 (cf. [8, Rem. 3.4]). A multi-faced universal product is a binary product
operation for linear functionals on multi-faced algebras (with an a priori fixed set
of faces F) which associates with functionals φ1, φ2 on multi-faced algebras A1, A2,
respectively, a functional φ1 ⊙ φ2 on A1 ⊔A2 such that

• (φ1 ◦ h1)⊙ (φ2 ◦ h2) = (φ1 ⊙φ2) ◦ (h1 ⊔ h2) for all multi-faced algebra homo-
morphisms hi : Bi → Ai (universality)
• (φ1 ⊙ φ2)⊙ φ3 = φ1 ⊙ (φ2 ⊙ φ3) (associativity)
• (φ1 ⊙ φ2) ↾Ai = φi (restriction property).

The product is called
• symmetric if φ1 ⊙ φ2 = φ2 ⊙ φ1,
• positive if the product of restricted states on multi-faced ∗-algebras is a re-

stricted state on the free product ∗-algebra.

Note that we made several implicit identifications between isomorphic free products
in the last definition. For a more detailed discussion see [8].

(6)We will usually write multi-faced instead of F-faced. Nevertheless, use of the term always refers
to the same fixed set of faces F .
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Universal products have been invented to encode independences. In the single-faced
case, this has been worked out by Ben Ghorbal and Schürmann [1]. The multi-faced
case is covered by [18] together with the categorical considerations from [7] and [12].
In a nutshell, given a universal product ⊙ and a linear functional Φ on an algebra A,
algebra homomorphisms jκ : Bκ → A, κ ∈ [k], defined on multi-faced algebras Bκ,
are called ⊙-independent w.r.t Φ if

Φ ◦ (j1 ⊔ · · · ⊔ jk) = (Φ ◦ j1)⊙ · · · ⊙ (Φ ◦ jk),

or, in other words, if the joint distribution of the noncommutative random variables
jκ coincides with the universal product of their marginal distributions. This induces
the usual definitions of independence for F-tuples of elements or of subalgebras of A.
In the remainder of this article, we will not work with the independences themselves,
but solely with the underlying universal products, so we refrain from giving more
details here.

We will make extensive use of the “Central Structural Theorem” for universal
products [18, Theorem 4.2]. Before we present a simplified version of it adapted to
the special case of positive multi-faced universal products, we introduce some more
notation and give an example.

Let A1, . . . , Ak be multi-faced algebras and A = A1 ⊔ · · · ⊔Ak (i.e. we identify the
Ai with subalgebras of their free product). For s = b× f ∈ ([k]×F)n, we denote

As :=
{
a1 · · · an ∈ A : ai ∈ Af(i)

b(i)

}
.

Note that the As are not necessarily pairwise disjoint.(7) Elements of [k]n are referred
to as block structures and elements of Fn are called face structures.

For s = b×f ∈ ([k]×F)n, put βκ(s) := {ℓ ∈ [n] : b(ℓ) = κ}. We call a set partition
π of [n] adapted to s, and write π ≺ s, if the following two conditions are met:

• each block β ∈ π is contained in some βκ(s); in other words, π is a refinement
of the set partition σ = {β1(s), . . . , βk(s)} (to adhere strictly to the usual
definition of set partition, empty blocks should be removed from σ)
• if s(i) = s(i+ 1), then i, i+ 1 belong to the same block of π.

Note that, obviously, σ is the maximal partition (w.r.t. refinement order) adapted
to s.

Given a multi-faced universal product ⊙, we define its linearized part as

φ1 ⊡ · · ·⊡ φk(a) := ∂k

∂t1 · · · ∂tk
(t1φ1)⊙ · · · ⊙ (tkφk)(a)

∣∣∣∣
t=0

(that this expression is well-defined should be understood as part of the following
theorem).

Example 3.2. The deformed tensor product ⊙ = ⊗
⊗ζ =

1⊗1
ζ⊗ζ according to [10, Propo-

sition 5.10(1) and Example 5.7](8), ζ ∈ T, can be calculated for arbitrary 2-faced al-
gebras Aκ, linear functionals φκ : Aκ → C (κ ∈ {1, 2}), and elements a = a1a2a1a2 ∈

(7)Indeed, if s(i) = s(i + 1), then As ⊆ As↾{1,...,i−1,i+1,...,n} because A
f(i)
b(i) is a subalgebra of A.

A typical way to deal with this is to only consider alternating sequences, i.e. demand s(i) ̸= s(i + 1)
for all i ∈ [n − 1]. However, it does not cause problems to formulate the subsequent statements for
all As, so we decided to do so.

(8)In the notation of [10], is face (1) and is face (2).
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A1212× as follows, abbreviating ⟨b⟩ := φκ(b) for b ∈ Aκ:
φ1 ⊙ φ2(a)

= ⟨a1⟩⟨a2⟩⟨a1⟩⟨a2⟩+
(
⟨a1a1⟩ − ⟨a1⟩⟨a1⟩

)
⟨a2⟩⟨a2⟩+ ⟨a1⟩⟨a1⟩

(
⟨a2a2⟩ − ⟨a2⟩⟨a2⟩

)
+ ζ
(
⟨a1a1⟩ − ⟨a1⟩⟨a1⟩

)(
⟨a2a2⟩ − ⟨a2⟩⟨a2⟩

)
= ζ · ⟨a1a1⟩⟨a2a2⟩+ (1− ζ) · ⟨a1a1⟩⟨a2⟩⟨a2⟩+ (1− ζ) · ⟨a1⟩⟨a1⟩⟨a2a2⟩
− (1− ζ) · ⟨a1⟩⟨a1⟩⟨a2⟩⟨a2⟩

Consequently, the linearized part is given by
φ1 ⊡ φ2(a) = ζ · φ1(a1a1)φ2(a2a2).

Note how the summands in the full expansion in Example 3.2 correspond to parti-
tions adapted to s; the product element a is divided into some sort of “subproducts”
which are then evaluated in the appropriate φκ. This general pattern is made pre-
cise in the following theorem and allows to describe a universal product in terms of
the complex coefficients appearing in each summand, which are independent of the
involved linear functionals, algebras and algebra elements.
Theorem 3.3 (Adjusted and simplified from [18, Th. 4.2, Rem. 4.3, 4.4]).
Let ⊙ be a positive multi-faced universal product and k ∈ N. Then there are unique
coefficients απ

s , s ∈ ([k]×F)∗, π ≺ s, such that , for all linear functionals φκ : Aκ → C
on multi-faced algebras Aκ (κ ∈ [k]) and all a ∈ As,

φ1 ⊙ · · · ⊙ φk(a) =
∑
π≺s

απ
s ·
∏

κ∈[k]

∏
β∈π

β⊂βκ(s)

φκ

−→∏
ℓ∈β

aℓ

 .(2)

(The symbol
−→∏

indicates that the product is to be taken in the same order as the
factors aj appear in the product a = a1 · · · an.)

Putting αs := ασ
s (σ the maximal partition adapted to s), the linearized part is

given by

φ1 ⊡ · · ·⊡ φk(a) = αs · φ1

 −→∏
b(ℓ)=1

aℓ

 · · ·φk

 −→∏
b(ℓ)=k

aℓ

 .(3)

The απ
s are called coefficients of ⊙ and the αs are called highest coefficients of ⊙.

Proof. First assume that s ∈ ([k] × F)n is alternating, i.e. s(i) ̸= s(i + 1) for i =
1, . . . , n−1. By [18, Rem. 4.3], the formula given in [18, Th. 4.2] can be applied. For a
positive universal product, [18, Rem. 4.4] implies that there is only one summand for
each π ≺ s, corresponding to the “right-ordered coefficient” (i.e. the aj are multiplied
in the same order in which they appear as factors in a) associated with π and s,
denoted απ

s in this article.
If s is not alternating, then we define απ

s := απ̃
s̃ , where s̃ is the alternating tuple

obtained from s merging repeating entries into one, and π̃ the set partition adapted
to s̃ induced by π in the obvious way. By universality it follows that (2) extends to
all s ∈ ([k]×F)∗; indeed, if s̃ = b̃× f̃ has length m and

a1, . . . , ar1 ∈ A
f̃(1)
b̃(1), ar1+1, . . . , ar2 ∈ A

f̃(2)
b̃(2), . . . , arm−1+1, . . . , ar1 ∈ A

f̃(m)
b̃(m)

then for the multi-faced algebras Bκ (κ ∈ [k]) which are freely generated by xi ∈ B f̃(i)
b̃(i)

and multi-faced homomorphisms hκ : Bκ → Aκ defined by

B
f̃(i)
b̃(i) ∋ xi 7→ ari−1+1 · · · ari

∈ Af̃(i)
b̃(i) for i = 1, . . . ,m (r0 := 0),
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one finds that, using universality for the first equality,
φ1 ⊙ · · · ⊙ φk(a) = (φ1 ◦ h1)⊙ · · · ⊙ (φk ◦ hk)(x1 · · ·xm)

=
∑
π̃≺s̃

απ̃
s̃ ·
∏

κ∈[k]

∏
β̃∈π̃

β̃⊂βκ(s̃)

(φκ ◦ hκ)

−→∏
ℓ̃∈β̃

xℓ̃



=
∑
π≺s

απ
s ·
∏

κ∈[k]

∏
β∈π

β⊂βκ(s)

φκ

−→∏
ℓ∈β

aℓ

 .

For each ρ ≺ s, one can easily construct multi-faced algebras and linear functionals
φκ : Aκ → C and an element a ∈ As in such a way that

∏
κ∈[k]

∏
β∈π

β⊂βκ(s)

φκ

−→∏
ℓ∈β

aℓ

 = δπ,ρ,

and, thus, αρ
s = (φ1 ⊙ · · · ⊙ φk)(a). This shows uniqueness of the coefficients.

Equation (3) follows from Equation (2) because the summand corresponding to
the maximal partition σ is the only one which is linear in each φκ. □

Obviously, the family of coefficients determines the universal product. In fact, it
follows from the cumulant theory developed in [18] that the highest coefficients alone
are already enough to determine the universal product. We will come back to this in
Section 7.

To end this section, we show that the highest coefficients can be recovered from the
linearized part of a universal product using only linear functionals of a particularly
well-behaved kind.

Definition 3.4. A restricted state φ : A → C on a multi-faced algebra A is called
trivially multi-faced if for all , ∈ F there exists a ∗-isomorphism a 7→ a : A → A
with φ(ab c) = φ(ab c) for all b ∈ A and all a, c in the unitization of A.

Lemma 3.5. For every s = b × f ∈ ([k] × F)∗, there are trivially multi-faced re-
stricted states φκ on multi-faced ∗-algebras Aκ (κ ∈ [k]) and an element a ∈ As with
φκ

(−→∏
b(ℓ)=κ aℓ

)
= 1 for all κ ∈ [k]; in particular, for a positive multi-faced universal

product ⊙ it follows that αs = φ1 ⊡ · · ·⊡ φk(a).

Proof. Define Aκ := C and Aκ :=
⊔

∈F Aκ. Then φκ =
⊔

∈F id : Aκ → C is a state,
in particular a restricted state, and trivially multi-faced. Put aκ := 1 for all κ ∈ [k]
and all ∈ F . Now it is easy to see that φκ(a 1

κ · · · a m
i ) = 1 for all m ∈ N and µ ∈ F

(µ ∈ [m]). With a := a
f(1)
b(1) · · · a

f(n)
b(n) the first claim is obvious and the second claim

follows from Theorem 3.3. □

4. Partitions
In general, a multi-faced set is a set S together with a map f : S → F , the face
structure of S. The subsets S := f−1({ }) are called the faces of S. A multi-faced
subset of S is just a subset of the underlying set viewed as a multi-faced set with
respect to the restricted face structure.

In this article, we only deal with multi-faced sets whose underlying set S is finite
and totally ordered; these properties are implicitly assumed whenever we write about
multi-faced sets in the following.
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Any word f = f(1) · · · f(n) ∈ F∗ defines face structure on [n], k 7→ f(k), (which
we identify with the word f) thus turning [n] into a multi-faced set, denoted by [n]f .
Conversely, we associate with a multi-faced set S =

(
{s1 < . . . < sn}, f

)
the word

|S| := f(s1) · · · f(sn) ∈ F∗. We choose this on first sight odd notation because the
word f plays the same role as the number of elements of a set plays in the single-faced
case in the moment-cumulant formulas we are aiming at.

Let S be a multi-faced set and ∼ an equivalence relation such that
• the equivalence classes are intervals,
• f is constant on equivalence classes.

Then we understand the quotient S/∼ as a multi-faced set with the induced total
order and face map.
Example 4.1. We briefly discuss the two situations that will appear several times in
this article.

(1) Let f ∈ Fn be a face and ∼ the equivalence relation on [n] that identifies two
neighboring points i, i+ 1 in the same face, i.e. f(i) = f(i+ 1). In this case we
write f/(i ∼ i+ 1) for the quotient [n]f/ ∼ and denote its elements ℓ instead
of {ℓ} for the trivial equivalence classes of ℓ ∈ [n]∖ {i, i+ 1} and {i, i+ 1} for
the two-element equivalence class of i and i+ 1.

(2) Let S be a multi-faced set and ∼ the equivalence relation whose equivalence
classes are the maximal intervals on which f is constant. We then call the
quotient Sred := S/∼ the reduction of S. In the reduction, neighboring points
will always have different faces, so that no further quotienting is possible.

A partition of a multi-faced set S is a collection of multi-faced subsets whose
underlying sets form a set partition. The set of all partitions of a multi-faced set S
is denoted P(S). An ordered partition of S is a partition of S together with a total
order between the blocks. The set of all ordered partitions is denoted P<(S).

For a word f ∈ Fn, we put P(f) := P
(
[n]f
)

and P<(f) := P<

(
[n]f
)
. We also denote

P :=
⋃

f∈F∗
P(f), P< :=

⋃
f∈F∗

P<(f).

Example 4.2. Let F = { , } and consider f = ∈ F∗. Then π = {β1, β2} with
β1 = {1, 3, 4}, β2 = {2, 5} is an element of P(f) and we have |β1| = , |β2| = .
This can be nicely drawn as an arc diagram, π = .

In the following we will not distinguish between a partition and its arc diagram.
In this article, we mostly use arc-diagrams to denote partitions in P, i.e. without a
block-order; the height of the blocks is then completely arbitrary. For a partition in
P<, the height of the block corresponds to the order between blocks. If the underlying
set S is not of the form [n]f (typically because it was obtained as a quotient), we draw
the diagram for the corresponding partition of |S|.
P(f) is a partially ordered set by the order of reverse refinement. The maximum

and minimum of P(f) are denoted 1f and 0f , respectively, i.e. 1f is the one-block
partition and in 0f all blocks are singletons.

There is a canonical bijection between P(S/∼) and the set of π ∈ P(S) such that
equivalent points of S lie in the same block of π.

For a multi-faced partition π, consider the equivalence relation ∼ defined on the
underlying multi-faced set S by
s ∼ t :⇐⇒ all r ∈ S with s ⩽ r ⩽ t have the same color and belong to the same

block of π.
In other words,∼ is the equivalence relation whose equivalence classes are the maximal
intervals I of S which fulfill the following two properties:

Algebraic Combinatorics, Vol. 7 #3 (2024) 687



M. Gerhold & P. Varšo

• f is constant on I;
• all elements of I belong to the same block of π.

We define the reduction of π as the induced multi-faced partition πred on S/∼. For
example, ( )

red
= .

Then πred will not have neighboring legs that are in the same face and in the same
block. For π ∈ P<, the block order remains unchanged.

For a multi-faced set S, we define its mirror image S as the set with one element
s for each s ∈ S (so that s 7→ s is a bijection) with the face structure f(s) := f(s)
and reversed order, i.e. s ⩽ t ⇐⇒ s ⩾ t. For π ∈ P(S), we put π ∈ P(S) as the
set partition with a block β = {s1, . . . , sn} for each block β = {s1, . . . , sn} ∈ π. For
example,

= ,
( )

= .

If S = [n]f for f ∈ Fn, so that the underlying set is [n], we use the convention that
k := n − k + 1 (i.e. we identify k with its image under under the unique strictly
increasing map [n] → [n]); this has the effect that [n] is identified with [n] and
[n]f = [n]f for f = f(1) · · · f(n) = f(n) · · · f(1) the mirror image of f . This is clearly in
accordance the diagrammatic representation. If π = {β1 < . . . < βk} ∈ P<, then π is
defined as before together with the (non-reversed!) block order β1 < . . . < βk.

Finally, we introduce a notation for uniting blocks. Let π = {β1 < . . . < βk} ∈
P<(S) with blocks βi, βi+1 that are nearest neighbors for the order on π. Then we
define πβi⌣βi+1 := {β1 < . . . < βi−1 < βi ∪ βi+1 < . . . < βk}. Similarly, for π ∈ P(f)
and arbitrary blocks β1, β2 ∈ π, πβ1⌣β2 := π ∖ {β1, β2} ∪ {β1 ∪ β2}. For example,( )

{1,3}⌣{2,5}
= .

Let fi ∈ Fmi , i ∈ [n], be face structures and f their concatenation, i.e. f(m1 +
· · ·+mi−1 + ℓ) = fi(ℓ) for all i ∈ [n], ℓ ∈ [mi]. Given partitions πi ∈ P(fi), we define
their concatenation as the partition π ∈ P(f) which has for every block β ∈ πi with
i ∈ [n] a block β̃ := {ℓ : ℓ +

∑i−1
j=1 mj ∈ β}. Roughly speaking, π restricts to πi on

the legs corresponding to fi. For example, the concatenation of π1 = and
π2 = is π = . We do not define here the concatenation of
ordered partitions.

5. Highest coefficients: necessary conditions
Definition 5.1. A family of complex numbers α = (απ)π∈P< is called (family of)
weights on ordered partitions, a family α = (απ)π∈P is called (family of) weights
on partitions. Weights on (ordered) partitions are called monic if απ = 1 for every
one-block partition.

For a family of numbers

αs : s ∈
(
[k]×F

)n
, k, n ∈ N

(as it is for example obtained from a universal product by Theorem 3.3) and π =
{β1 < . . . < βk} ∈ P<(f) an ordered multi-faced partition with k blocks, we define
sπ ∈

(
[k]×F

)n via sπ(ℓ) := (κ, ) if ℓ ∈ βκ and f(ℓ) = and put

απ := αsπ
.

Algebraic Combinatorics, Vol. 7 #3 (2024) 688



Classification of multi-faced independences: combinatorial approach

In this way, we associate with each universal product a family of weights on ordered
partitions, and we say that the weights of a universal product are its highest coeffi-
cients. Note that such weights are always monic.

We say that weights on ordered partitions α are invariant under permutation of
blocks if

α{β1<...<βk} = α{β1′ <...<βk′ } for every permutation κ 7→ κ′ of [k].
In this case, define απ for a non-ordered partition π = {β1, . . . , βk} ∈ P(f) simply as
the value α{β1<...<βk} for an arbitrary ordered partition with the same blocks as π.
In this way, we can identify weights on partitions and weights on ordered partitions
which are invariant under block permutation.

Remark 5.2. It is easy to check that the weights α coming from a universal product
according to Theorem 3.3 are invariant under permutation of blocks if and only if the
universal product is symmetric.

The question we wish to answer is the following: under which conditions on the
weights α is there a (positive) universal product ⊙ with highest coefficients α? The
next theorem yields some necessary conditions.

Theorem 5.3. Let ⊙ be a positive multi-faced universal product. Then the highest
coefficients fulfill:

(i) α1f = 1 for all f ∈ F∗.
(ii) α({{1}<{2}},f) = α({{2}<{1}},f) = 1 for every f ∈ F2.
(iii) απ = αred(π).
(iv) Suppose π ∈ P<(f) has blocks β1 < β2 that are nearest neighbors for the order

of π and have neighboring legs in the same face, i.e. there exist i ∈ β1, j ∈ β2,
|i− j| = 1, f(i) = f(j). Then

απ = απβ1⌣β2
· α{β1<β2}

(v) απ = ασ whenever π and σ only differ in the faces of extremal legs.
(vi) απ = απ.

Proof. Recall the definition of sπ ∈ ([k]×F)∗ for π = (β1 < . . . < βk) ∈ P< from the
beginning of this section. By Lemma 3.5, we can express each coefficient απ as

απ = φ1 ⊡ · · ·⊡ φk(a)

with a ∈ Aπ := Asπ and (φ1 ⊗ · · · ⊗ φk)(aπ) = 1, where aπ :=
(−→∏

ℓ∈β1
aℓ

)
⊗ · · · ⊗(−→∏

ℓ∈βk
aℓ

)
. We will freely use this notation in the rest of the proof.

(i) follows from the restriction property in Definition 3.1. (iii) holds by definition of
the non-reduced coefficients in the proof of Theorem 3.3. For (iv) we have to carefully
analyse the linearized universal product. If π has neighboring blocks β1 < β2 with
neighboring legs in face ∈ F , then a ∈ Aπ implies that a = a1 · · · arar+1 · · · an with
ar ∈ Ai , ar+1 ∈ Aj with |i−j| = 1. Without loss of generality, assume j = i+1. Then

απ = φ1 ⊡ · · ·⊡ φk(a)

= ∂k

∂t1 · · · ∂tk

(
(t1φ1)⊙ · · · ⊙

(
(tiφi)⊙ (ti+1φi+1)

)
⊙ · · · ⊙ (tkφk)

)
(a)
∣∣∣∣
t=0

.

Evaluating the full coefficient formula, Equation (2), for the universal product of the
k − 1 functionals

ψℓ :=


tℓφℓ if ℓ < i,
tiφi ⊙ ti+1φi+1 if ℓ = i,
tℓ+1φℓ+1 if ℓ > i
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every summand will contain a factor F = ψi(· · · arar+1 · · · ) because the two factors
ar, ar+1 are from the same block and face and therefore have to be treated as one.
Summands with more factors containing ψi vanish in the linearization procedure.
Therefore, we obtain

∂k

∂t1 · · · ∂tk

(
(t1φ1)⊙ · · · ⊙

(
(tiφi)⊙ (ti+1φi+1)

)
⊙ · · · ⊙ (tkφk)

)
(a)
∣∣∣∣
t=0

= απβ1⌣β2

∂2

∂ti∂ti+1

(
(tiφi)⊙ (ti+1φi+1)

)
(· · · arar+1 · · · )

∣∣∣∣
t=0

= απβ1⌣β2
· α{β1<β2}

as claimed
So far, we have not made significant use of positivity (except that we assumed that

wrong ordered coefficients vanish), but positivity is important to prove the remaining
two properties.

(vi) follows easily from the fact that positive functionals are hermitian and a ∈ Aπ

if and only if a∗ ∈ Aπ. All we have to do is choose some restricted states φ1, . . . , φk

and a ∈ Aπ with φ1⊗· · ·⊗φk(aπ) = 1, then φ1⊗· · ·⊗φk

(
(a∗)π

)
= 1 and we conclude

απ = φ1 ⊡ · · ·⊡ φk(a∗) = απ.
To show (v), assume that απ = φ1 ⊡ · · ·⊡φk(a), a = a1a2 · · · an with a1 ∈ Ai and

trivially multi-faced restricted states φκ, this is always possible by Lemma 3.5. Then
tκφκ is a restricted state for all tκ ⩽ 1, and∣∣t1φ1 ⊙ · · · ⊙ tkφk

(
(a1 − a1)a2 · · · an

)∣∣2
⩽ tiφi

(
(a1 − a1)∗(a1 − a1)

)
(t1φ1 ⊙ · · · ⊙ tkφk)

(
(a2 · · · an)∗(a2 · · · an)

)
= 0

where a1 is the image of a1 under the isomorphism Ai
∼= Ai making φi trivially

multi-faced. From this the statement for the first leg readily follows. For the corre-
sponding statement for the last leg, we can either apply (vi) or perform an analogous
computation.

Finally, let π = ({{1} < {2}}, f) or π = ({{2} < {1}}, f). By (v), we can assume
without loss of generality that f(1) = f(2). Therefore, (ii) follows from the single-faced
case, which is settled in [2, Theorem 2.5](9). □

Remark 5.4. Note that the multi-faced universal products of bi-Boolean indepen-
dence (defined by Gu and Skoufranis [14]) and bi-monotone independence of type I
(defined by Gu, Hasebe and Skoufranis [13]) are not positive. Their associated highest
coefficients do not fulfill (vi).

For the rest of this article, we restrict ourselves to the symmetric case. As noted
before, symmetry of the universal product is equivalent to invariance under block-
permutation of its highest coefficients, and in this case we denote its highest coeffi-
cients απ with π ∈ P.

Definition 5.5. A family α = (απ)π∈P of complex numbers is called admissible
weights if the corresponding block-permutation invariant family α(π,<) := απ fulfills
(i) – (vi) in Theorem 5.3; in particular, it fulfills

(iv’) Suppose π ∈ P(f) has blocks β1 ̸= β2 with neighboring legs i ∈ β1, i+ 1 ∈ β2
of the same face, f(i) = f(i+ 1). Then

απ = απβ1⌣β2
· α{β1,β2}.

(9)In the statement, Ben Ghorbal and Schürmann assume “nondegenerateness”, but the proof
does not use this assumption.
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Definition 5.6. A set of multi-faced partitions Π ⊂ P is called an admissible set of
partitions if

απ :=
{

1 if π ∈ Π,
0 otherwise

defines admissible weights.(10)

Notation 5.7. If π is described by a certain arc-diagram Diag, we will write α(Diag)
instead of απ. Also, we will use a grey square (or circle in the 2-faced case) to indicate
that the color of the extremal legs is arbitrary. For example α

( )
= απ for

π =
({
{1, 6}, {2, 4}, {3, 5}

}
,

)
or any other π with the same set partition and

the same coloring of the non-extremal legs 2,3,4,5.

Observation 5.8. Let (απ)π∈P be admissible weights. Then Πα = {π : απ ̸= 0} is an
admissible set of partitions. There are, however, admissible families with απ /∈ {0, 1}
for some π ∈ P. Indeed, Example 3.2 in particular shows that, for α the highest coeffi-
cients of the deformed tensor product ⊗

⊗ζ with ζ ̸= 1, one finds α( ) = ζ /∈ {0, 1}.

Observation 5.9. A set Π ⊂ P of partitions is admissible if and only if Π contains
the partitions

(P-i) 1f for all f ∈ F∗

(P-ii) for all ∈ F2

and is closed under the following operations used in [30]:
(P-iii) double a leg, including its color
(P-iii)’ merge two neighboring legs of the same color in the same block into one
(P-iv) unite two blocks which have neighboring legs of the same color into one block,

π 7→ πβ1⌣β2

(P-iv)’ remember a two-block partition formed by two blocks with neighboring legs
of the same color, π 7→ {β1, β2}

(P-iv)” replace a block of a partition from Π by a two-block partition from Π (of
the same underlying multi-faced set as the original block) such that the blocks
have neighboring legs of the same color, (πβ1⌣β2 , {β1, β2}) 7→ π

(P-v) mirror a partition, π 7→ π
(P-vi) change color of an extremal leg of a partition from Π

Given any partitions π1, . . . , πn ∈ P, we denote by ⟨π1, . . . , πn⟩ the minimal ad-
missible set of partitions that contains all πi. We say that ⟨π1, . . . , πn⟩ is generated
by π1, . . . , πn; note that ⟨π1, . . . , πn⟩ indeed consists of those partitions in P which
can be obtained in finitely many steps by applying the operations of Observation 5.9
to the partitions 1f (f ∈ F∗), ( ∈ F2), and π1, . . . , πn.

6. Partial classification of symmetric positive independences
In this section we determine all admissible families (απ)π∈P .

Definition 6.1. Let π be a partition.
• A leg ℓ is called inner if there exist legs i < ℓ < j and a block β ∈ π with
i, j ∈ β and ℓ /∈ β. Otherwise it is called outer.

(10)Note that this is closely related to the definition of a universal class of partitions in [30], but
not completely equivalent; the difference is that an admissible set must always contain the partitions

for all ∈ F2.
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• Two legs ℓ, ℓ′ are called connected if they lie in the same block or if there is
a sequence of blocks ℓ ∈ β1, . . . , βn ∋ ℓ′ such that there is a crossing between
βk and βk+1. Roughly speaking, ℓ and ℓ′ are connected if and only if one can
move from ℓ to ℓ′ going only along the lines of the diagram associated with π.

We start by describing some simple consequences of the defining properties of
admissible families of coefficients.

Lemma 6.2. Let (απ)π∈P be admissible weights.
(1) απ = 1 for all interval partitions π.
(2) Let π be the concatenation of π1, . . . , πn. Then απ =

∏
απi

.
(3) απ = ασ when σ is obtained by replacing one leg ℓ by two copies and splitting

the block β ∋ ℓ into β1 and β2, where β1 contains the first copy and all legs
of β smaller than ℓ and β2 contains the second copy and all legs of β larger
than ℓ. We say that σ is obtained by splitting β at ℓ.

(4) απ = ασ when σ is obtained replacing an arbitrary number of connected outer
legs by a single outer leg of arbitrary color. We call this process collapsing the
outer legs.

Proof.
(1) This is easily proved by induction. For a two-block interval partition π, we

can consecutively change color of the extremal legs and merge them with their
neighboring legs until we reach απ = α

( )
= 1. It is worth noting that for

this step we needed to change the color of both extremal legs.
Assume that the statements holds for (n− 1)-block interval partitions and

let π = ({β1, . . . , βn}, f) be an interval partition with n > 2 blocks. Starting
similar as before, we can without loss of generality assume that β1 = {1} and
f(1) = f(2). In that case, we find that απ = απβ1⌣β2

· α{β1,β2} = 1.
(2) Clearly, it is enough to prove the claim for n = 2. We prove the claim by

induction on the number of blocks |π|. If |π| = 2, then |π1| = |π2| = 1 and
the three partitions are interval partitions, in particular απ = 1 = απ1απ2 .
If |π| > 2, then |π1| > 1 or |π2| > 1. In case |π1| > 2, let 1 ∈ β1 ∈ π1.
We can assume without loss of generality that 2 ∈ β2 belongs to a different
block β1 ̸= β2 ∈ π1 and f(1) = f(2); if those conditions are not met, it does
not change the coefficient to change the color of the first leg to match the
color of the second leg and merge them into one until we are in the described
situation. Now we find απ1 = απ1β1⌣β2

·α{β1,β2} and απ = απβ1⌣β2
·α{β1,β2}.

Of course, |πβ1⌣β2 | = |π| − 1, so we may assume that the statement holds for
πβ1⌣β2 which is the concatenation of π1β1⌣β2 and π2. Altogether,

απ = απβ1⌣β2
· α{β1,β2} = απ1β1⌣β2

· απ2 · α{β1,β2} = απ1απ2 .

If |π2| > 1, we argue analogously, but we have to change the color of the
last leg.

(3) We have απ = ασα{β1,β2}, and α{β1,β2} = 1 by (1).
(4) Decompose π into a concatenation of irreducible π1, . . . , πn, i.e. no πi can be

deconcatenated any further. By Item 2, απ =
∏
απi . Note that every outer

leg of π is the outer leg of some πi and that connected outer legs are nec-
essarily in the same block. For each πi, the outer legs can be collapsed by
iteratively changing the face of the first or last leg to match the face of its
successor or predecessor, respectively, and merging the legs using the fact
that the weights don’t change when we reduce the partition (Condition (iii)
in Theorem 5.3). After collapsing the outer legs that way, the faces of the
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outer legs can be changed once more in such a way that the concatena-
tion of the obtained partitions σi is σ. It follows, using again Item 2, that
ασ =

∏
ασi

=
∏
απi

= απ. □

It is worth noting that, in the proof of Item 2, we need invariance of the coefficients
under changing the faces of both extremal legs. For example, the weights associated
with bi-Boolean independence defined in [14] do not share this property.

Lemma 6.3. Two admissible families coincide if and only if they coincide on 2-block
partitions.

Proof. Assume that (απ), (βπ) are admissible families with ασ = βσ for all 2-block
partitions σ. By definition, the value on 1-block partitions is 1. Given an n-block
partition π with n > 2, we alternatingly

• change the color of the first leg to match the color of the second leg, cf. (v),
• combine the first two legs into one if they belong to the same block, cf. (iii),

to obtain a partition π̃ such that the first two legs of π have the same color but belong
to different blocks β1, β2. Then απ = απ̃, βπ = βπ̃ by definition of admissible weights.
Using (iv), we then have απ = απβ1⌣β2

· α{β1,β2} and βπ = βπβ1⌣β2
· β{β1,β2}, where

πβ1⌣β2 is an (n−1)-block partition and {β1, β2} is a 2-block partition. We can iterate
the procedure until we obtain απ, βπ as products of coefficients of the same sequence
of 2-block partitions, thus proving the claim. □

Corollary 6.4. Two admissible families coincide if and only if they coincide on
2-block partitions of at most four legs.

Proof. Suppose that π = {β, γ} has more than 4 legs and that the third leg lies in β.
Without loss of generality, we assume that the first leg and the second leg belong
different blocks but the same face; if they would belong to the same block, they could
be collapsed and the face of the first leg can simply be adapted to that of the second
leg without changing the coefficient. Without loss of generality assume that 1 ∈ β. If
all legs after the third leg belong to γ, they are necessarily outer and can be collapsed
to reach a partition with four legs. If there is at least one leg from β after the third leg,
then splitting β at the third leg yields a partition π̃ = {β1, β2, γ} where β1 = {1, 3}
has two legs and β2 = {3′}∪ (β∖{1, 3}) has exactly one leg less than β; here 3′ is the
copy of 3 obtained from splitting such that 3 < 3′. Now, απ = απ̃ = απ̃β1⌣γ

α{β1,γ}.
Obviously, τ := {β1, γ} has strictly less legs than π. Since the first three legs of π̃β1⌣γ

belong to the same block, after collapsing those three legs, we get a partition σ with
ασ = απ̃β1⌣γ

which has one leg less than π (one leg more from the splitting are
overcompensated by two legs less from collapsing). All in all, απ = ατασ, where both,
τ and σ are two-block partitions with a strictly smaller number of legs than π. This
procedure can be iterated until απ is expressed as a product of only 2-block partitions
with at most 4 legs. □

Definition 6.5. We introduce shorthand notations for the basic coefficients, where
, ∈ F :

ν := α
( )

, ξ := α
( )

, ν := α
( )

, ξ := α
( )

(Note that ξ = ξ , obviously, and ν = ν , because we can merge neighboring legs of
the same face.)

Corollary 6.6. Two admissible families coincide if and only if they have the same
basic coefficients.
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Proof. A two-block partition with at most four legs is either an interval partition (in
which case its coefficient is 1) or it can be reduced by changing color and combining
legs to one of the partitions that define the basic coefficients. □

Lemma 6.7. For all , ∈ F , we have the following relations between the basic coeffi-
cients:

(1) ν2 = ν , ξ2 = ξ , i.e. ν , ξ ∈ {0, 1},
(2) tν = t for t ∈ {ν , ξ , ξ }, i.e. ν = 0 =⇒ ν = ξ = ξ = 0,
(3) |t|2t = t for t ∈ {ν , ξ }, i.e. ν , ξ ∈ {0} ∪ T,
(4) ν ξ = ξ ξ , i.e. ξ = 1 =⇒ ν = ξ ,
(5) ν ξ = ν ξ ξ , i.e. ξ = 0 =⇒ ν = 0 or ξ = 0.

Proof.
(1) This follows as in the single-faced case, see [27]. Alternatively, this follows

easily as a special case = from the items below.
(2) Consider . Split the inner -leg and merge it’s copy with the outer block

to obtain α
( )

= α
( )

α
( )

. The other cases work analo-
gously.

(3) First note that α
( )

= α
( )

= |ν |2. This leads to

|ν |2ν = α
( )

ν = α
( )

= ν ν = ν .

Similarly, α
( )

= α
( )

= |ξ |2 and hence

|ξ |2ξ = α
( )

ξ = α
( )

= ξ ν = ξ .

(4) This follows from

ν ξ = α
( )

= α
( )

ν = α
( )

ν = ξ ξ ν = ξ ξ .

(5) Reusing parts of the calculation above, we find

ν ξ = α
( )

= α
( )

ν = ν ξ ξ . □

Corollary 6.8. Two admissible sets of partitions coincide if and only if they have
the same intersection with

{
, , , , , : , ∈ F

}
.

Furthermore, for an admissible set Π we have the following implications:
(1) If Π contains at least one of the partitions , , , then it

contains .
(2) If Π contains at least one of the partitions , , , then it

contains .
(3) If Π contains two of the basic partitions , , , then Π contains

all partitions with faces from { , }.
(4) If Π contains two of the basic partitions , , , then Π contains

all partitions with faces from { , }.

Definition 6.9. A 2-faced partition π is called
• interval partition if all legs are outer or, equivalently, if all its blocks are

intervals; I denotes the set of all interval partitions,
• noncrossing if for all i < j < k < ℓ and blocks β, γ ∈ π,

i, k ∈ β, j, ℓ ∈ γ =⇒ β = γ;
NC denotes the set of all noncrossing partitions,
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• binoncrossing if for all i < j < k < ℓ and blocks β ̸= γ ∈ π,

i, k ∈ β, j, ℓ ∈ γ =⇒ f(j) ̸= f(k),
i, ℓ ∈ β, j, k ∈ γ =⇒ f(j) = f(k);

• interval-noncrossing if it is noncrossing and all -legs are outer; I NC denotes
the set of all interval-noncrossing partitions,

• noncrossing-interval if it is interval-noncrossing after swapping the colors
and ; NC I denotes the set of all noncrossing-interval partitions,

• interval-arbitrary if all -legs are outer; I A denotes the set of all interval-
arbitrary partitions,

• arbitrary-interval if it is interval-arbitrary after swapping the colors and ;
A I denotes the set of all arbitrary-interval partitions,

• noncrossing-arbitrary if every block that contains an inner -leg is mono-
chrome and does not cross any other block, i.e. for all legs i, j, k, ℓ and all
blocks β ̸= γ ∈ π,

j, k ∈ β, i, ℓ ∈ γ, i < k < ℓ, f(k) = =⇒ i < j < ℓ, f(j) = ;

NC A denotes the set of all noncrossing-arbitrary partitions,
• arbitrary-noncrossing if it is noncrossing-arbitrary after swapping the colors

and ; A NC denotes the set of all arbitrary-interval partitions,
• pure noncrossing if it is noncrossing and all inner blocks are monochrome;

pNC denotes the set of all pure noncrossing partitions,
• pure crossing if connected inner legs have the same color; pC denotes the

set of all pure noncrossing partitions,
• arbitrary without any conditions; the set of all bipartitions is also denoted A .

Theorem 6.10. There are exactly 12 admissible sets of 2-faced partitions (9 if we
identify a set with the one obtained by simply swapping the two colors), namely those
given in Definition 6.9. Figure 1 displays their respective containment by means of a
Hasse diagram and gives minimal generating sets of 2-block partitions.

Proof. We know that a set obtained from a positive symmetric 2-faced universal
product is automatically admissible. Of course, swapping the two colors turns an
admissible set into an admissible set. This helps to settle admissibility of a large
number of sets in the diagram:

• The sets I ,NC ,A are the sets of interval, noncrossing, and all partitions
(ignoring the colors), and thus are known to come from the trivially two-faced
Boolean, free and tensor universal product, respectively. Swapping the colors
does not change these sets of partitions.

• The set NC I is the set of noncrossing-interval partitions, which originates
from free-Boolean independence [17]. Swapping the colors leads to the
set I NC .

• The set A I comes from tensor-Boolean independence [10]. Swapping the
colors leads to the set I A .

• The set biNC is the set of binoncrossing partitions, it comes from bifree in-
dependence [3, 32]. Swapping the colors does not change the set.

We are left with the sets of pure crossing and pure noncrossing partitions and with
the sets of noncrossing-arbitrary and arbitrary-noncrossing partitions, where again
by swapping the colors it is enough to deal with the noncrossing-arbitrary ones. All
properties are easily verified.
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A◦•
=〈

,
〉

=
〈

,
〉

NC◦•
=〈 〉 pC◦•

=〈
,

〉 biNC◦•
=〈 〉

NC◦A•
=〈
,

〉 A◦NC•
=〈
,

〉
I◦A•

=〈 〉 pNC◦•
=〈
,

〉 A◦I•
=〈 〉

I◦NC•
=〈 〉 NC◦I•

=〈 〉
I◦•
=〈〉

Figure 1. Hasse diagram of all two-colored admissible sets of partitions.

The theorem now follows from the fact that each admissible set is uniquely de-
termined by which basic two-block partitions have nonzero coefficients, and from the
implications in Corollary 6.8. □

Corollary 6.11. Let ⊙ be a positive symmetric 2-faced universal product. Then the
admissible set of partitions

Π⊙ := {π ∈ P : απ ̸= 0}

is one of the 12 given in Definition 6.9. Furthermore:
• If Π⊙ ∈ {NC A ,A NC ,pNC ,pC }, then the highest coefficients of ⊙ are

given by the indicator function of Π⊙, and ⊙ does not coincide with any of the
positive symmetric two-faced universal product given in [10, Propositions 5.13
and 6.19].

• In all other cases, ⊙ does coincide with one of the positive symmetric two-faced
universal product given in [10, Propositions 5.13 and 6.19]; more concretely,

– if Π⊙ = A , then ⊙ = ⊗
⊗ζ with ζ = ξ = ν is a deformed tensor

product,

– if Π⊙ = NC , then ⊙ = −→∗
−→∗ ζ with ζ = ν is a deformed free product,

– if Π⊙ = biNC , then ⊙ = ←−∗
−→∗ ζ with ζ = ν is a deformed bifree product,

– if Π⊙ = I A , then ⊙ = ⊗
⋄ is the Boolean-tensor product,

– if Π⊙ = A I , then ⊙ = ⋄⊗ is the tensor-Boolean product,
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– if Π⊙ = I NC , then ⊙ = ∗⋄ is the Boolean-free product,

– if Π⊙ = NC I , then ⊙ = ⋄∗ is the free-Boolean product,

– if Π⊙ = I , then ⊙ = ⋄⋄ is the Boolean product.

Proof. If ⊙ is a positive symmetric universal product, then its highest coefficients
form an admissible family of weights. If all the basic coefficients are 0 or 1, the family
must be given by the indicator function of one of the admissible sets of partitions and
all except the mentioned four are identified as positive products in [10]:

• A corresponds to the tensor product
• NC corresponds to the free product
• biNC corresponds to the bifree product
• I A and A I corresponds to the Boolean-tensor and tensor-Boolean product,

respectively
• I NC and NC I corresponds to the Boolean-free and free-Boolean product,

respectively
• I corresponds to the Boolean product

If one of the basic coefficients is not 0 or 1, Lemma 6.7 leaves only three possibilities,
in each of which the universal product has been found to be positive in [10]:

• ν = ξ = q ∈ T ∖ {1}, in this case all other basic coefficients are forced
to be equal to 1; by comparison of the basic coefficients, the corresponding
universal product is the deformed tensor product with ζ = q,

• ν = q ∈ T ∖ {1}, ξ = 0; in this case, the product must coincide with the
deformed free product with ζ = q,

• ν = 0, ξ = q ∈ T ∖ {1}; in this case, the product must coincide with the
deformed bifree product with ζ = q. □

Remark 6.12. A remarkable property of freeness is that the free product of traces
is again a trace. We cannot expect such a behaviour for any non-trivial multi-faced
independence. Indeed, this would force the highest coefficients to be invariant under
cyclic permutations, and since we may change the color of the first leg, we could
change the color of every leg without changing the coefficient.

Remark 6.13. Bifreeness allows to define a convolution for probability measures
on R2. This comes from the fact that for bifree pairs (a1, a2), (b1, b2) one always
has commutativity of a1 with b2 and of a2 with b1. Consequently, a1 + b1 commutes
with a2 + b2 whenever a1, a2 commute and b1, b2 commute. If independent variables
in different faces commute, one must have ξ = 1, which is only the case for tensor
and bifree independence.

Remark 6.14. There are other interesting symmetric two-faced universal products
which are not positive, for example the bi-Boolean product. It seems very well pos-
sible to do a classification under slightly relaxed conditions, only assuming that one
is allowed to change the color of the first leg and not assuming any mirror symmetry
(recall that we used changing the color on both sides to show that highest coefficients
for all interval partitions are 1). However, it is not clear how to motivate those proper-
ties when one does not aim for positivity. For the construction of a universal product
in the algebraic sense (see Section 8), Conditions (v) and (vi) of Theorem 5.3 are not
necessary at all.
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7. Moment-cumulant relations
A key tool in the proofs of the subsequent sections are cumulants. In this section,
we adapt the theory of cumulants developed in [18] to our special case of symmetric
multi-faced independences.

Observation 7.1. Let α be a family of weights such that απ is invertible for every
one-block partition. For every family of moments, m = (mf )f∈F∗ ∈ CF∗ , there is a
unique family of α-cumulants, c = (cf )f∈F∗ ∈ CF∗ such that

mf =
∑

π∈P<(f)

1
|π|!απ

∏
β∈π

c|β|;(4)

indeed, existence and uniqueness of the cf follows by a standard induction argument.
Obviously, the cumulants also determine the moments.

If α is invariant under permutation of blocks, then the formula simplifies to

mf =
∑

π∈P(f)

απ

∏
β∈π

c|β|.(5)

There is no problem extending formulas (4) and (5) to a multivariate situation. To
this end, we think of the (multivariate) moments and cumulants as linear functionals
m, c : A → C, where A = C⟨xi : ∈ F , i ∈ I ⟩ is a multi-faced polynomial algebra
with (possibly) several indeterminates xi , i ∈ I , for each face ∈ F . For a monomial
X = x

f(1)
i(1) · · ·x

f(n)
i(n) and a subset β = {ℓ1 < . . . < ℓr} ⊂ [n], let X ↾ β denote the

monomial xf(ℓ1)
i(ℓ1) · · ·x

f(ℓn)
i(ℓn) . Cumulants are then defined by the relations

m(X) =
∑

π∈P<(f)

1
|π|!απ

∏
β∈π

c(X ↾ β),(6)

m(X) =
∑

π∈P(f)

απ

∏
β∈π

c(X ↾ β),(7)

respectively. In case each I is a one-element set, writing x for the indeterminates,
formulas (6) and (7) are recovered by setting mf := m(xf(1) · · ·xf(n)) and cf :=
c(xf(1) · · ·xf(n)) for f ∈ Fn.

Definition 7.2. An algebraic probability space is a pair (A,Φ), where A is an algebra
and Φ: A → C is a linear functional.

Definition 7.3. Let (A,Φ) be an algebraic probability space and α = (απ)π∈P(<) a
family of weights on (ordered) multi-faced partitions. For a family a = (ai : ∈ F , i ∈
I ) ⊂ A, put ja : C⟨xi : ∈ F , i ∈ I ⟩ → A, xi 7→ ai . We define its moments by

ma(X) := Φ
(
ja(X)

)
and its α-cumulants ca(X) according to the moment-cumulant relations (6) or (7),
respectively.

Definition 7.4. Fix monic weights (απ)π∈P . Let V =
⊕

∈F V be a vector space
with a direct sum decomposition into subspaces according to the faces. Recall that
T0(V ) =

⊕
n∈N V

⊗n =
⊔

∈F T0(V ) denotes the (non-unital) free algebra over V and
T (V ) :=

⊕
n∈N0

V ⊗n = C1⊕T0(V ) its unitization, the free unital algebra over V . On
the dual space T0(V )′ = {φ : T0(V )→ C linear} we define for xi ∈ V f(i)

expα(ψ)(x1 · · ·xn) :=
∑

π∈P(f)

απψ
⊗|π|(xπ)
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where for π = {β1, . . . , βn} we put xβk
:=
−→∏

i∈βk
xi and xπ := xβ1 ⊗ · · · ⊗ xβn

. Then
expα is a bijection. We denote the inverse simply as logα, which can be calculated
recursively,

logα(φ)(x1 · · ·xn) = φ(x1 · · ·xn)−
∑

π∈P(f)
|π|>1

απ logα(φ)⊗|π|(xπ).

Note that often expα and logα are interpreted as bijections between linear functionals
on T (V ) vanishing on 1 and unital linear functionals on T (V ) by extending the lin-
ear functionals from T0(V ) to T (V ) accordingly (i.e. ψ and logα(φ) are extended by
annihilating the unit, while expα(ψ) and φ are extended as unital maps).

We use the following conventions.
• If the weights α come from a universal product ⊙, we write exp⊙ := expα and

log⊙ := logα.
• If (xi)i∈I form a basis of V , we identify T (V ) and T0(V ) with the noncom-

mutative (unital or non-unital) polynomial algebras C⟨xi : i ∈ I , ∈ F⟩ and
C⟨xi : i ∈ I , ∈ F⟩0, respectively.

Definition 7.5. Let A be a multi-faced algebra and φ : A → C a linear functional.
We define Â := T0

(⊕
∈F A

)
and φ̂ := φ ◦ µ, where µ : T0

(⊕
∈F A

)
→ A is the

canonical homomorphism.
Observation 7.6. Let α be monic weights. Let furthermore φ : A → C be a linear
functional on a multi-faced algebra A and a = (ai ∈ A : i ∈ I , ∈ F) a family of
elements. With the notations from the previous definitions, for X = x 1

i1
⊗ · · · ⊗ x n

in
,

it holds that
φ̂(a 1

i1
⊗· · ·⊗a n

in
) = ma(x 1

i1
⊗· · ·⊗x n

in
) and logα φ̂(a 1

i1
⊗· · ·⊗a n

in
) = ca(x 1

i1
⊗· · ·⊗x n

in
).

Observation 7.7. Let h : B → A be an F-faced homomorphism between F-faced
algebras B,A and define ĥ : B̂ → Â as the unique algebra homomorphism with ĥ(b) =
h(b) for all b ∈ B , ∈ F . Automatically, ĥ is an F-faced homomorphism and fulfills
µA ◦ ĥ = h ◦ µB. For φ : A→ C a linear functional, it follows that

φ̂ ◦ h = φ ◦ h ◦ µB = φ ◦ µA ◦ ĥ = φ̂ ◦ ĥ.
Therefore, given monic weights (απ)π∈P , one finds that

expα(φ̂ ◦ h) = (expα φ̂) ◦ ĥ, logα(φ̂ ◦ h) = (logα φ̂) ◦ ĥ.
Theorem 7.8 (Adjusted and simplified from [18, Th. 7.2]).
A positive and symmetric universal product is uniquely determined by its highest co-
efficients. More precisely, for a = a1 · · · an with aℓ ∈ Af(ℓ)

b(ℓ) so that a1 ⊗ · · · ⊗ an ∈

T0

(⊕
κ∈[2], ∈F Aκ

)
= Â1 ⊔ Â2,

φ1 ⊙ φ2(a1 · · · an) = exp⊙
(
log⊙(φ̂1)⊕ log⊙(φ̂2)

)
(a1 ⊗ · · · ⊗ an);

here we use the direct sum as a shorthand notation for the corresponding linear func-
tional on T0

(⊕
κ∈[2], ∈F Ai

)
= Â1 ⊔ Â2 as described by Equation (1).

Proof. We only explain why this is a special case of [18, Th. 7.2] and refer the reader
to [30, Theorems 2.4.12 and 2.5.13] for a detailed discussion. Since ⊙ is positive, their
are no wrong-ordered highest coefficients. In the symmetric case, the exponential and
logarithm map used in [18] coincide with the maps of Definition 7.4 and are therefore
determined by the highest coefficients. Since ⊙ is symmetric, the second ingredient
which is in general needed to determine the universal product, namely the nth order
cumulant Lie algebra, is trivial for all n. □
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8. Reconstruction of universal products from highest
coefficients

In this section we prove that every admissible family leads to a unique universal
product. In particular, we can associate universal products with the admissible sets
NC A ,A NC ,pNC ,pC . However, it remains an open problem at the moment to
decide whether or not those universal products are positive.

Lemma 8.1. Suppose that the weights (απ)π∈P are admissible. Fix a family of elements
a = (aℓ : ∈ F , ℓ ∈ I ) ⊂ A in an algebraic probability space (A,Φ) such that [n] is the
disjoint union of the I . Put f(ℓ) := if ℓ ∈ I and assume that f(i) = f(i+1) = ∈ F
for a certain index i ∈ [n]. We define a modified family ã = (aℓ : ∈ F , ℓ ∈ Ĩ ) where
Ĩ := I ∖ {i, i + 1} ∪ {{i, i + 1}} and a{i,i+1} := aiai+1. For X := x

f(1)
1 · · ·xf(n)

n ,
X̃ := x

f(i)
1 · · ·xf(i−1)

i−1 x{i,i+1}x
f(i+2)
i+2 · · ·xf(n)

n the moments and cumulants according to
Definition 7.3 fulfill mã(X̃) = ma(X) and

cã(X̃) = ca(X) +
∑

σ={β1,β2}∈P(f)
i∈β1 ̸=β2∋i+1

ασca(X ↾ β1)ca(X ↾ β2).

Proof. The claimed equality for the moments is obvious. The claim for the cumulants
is proved by induction on n. For n = 2, i.e. X = x1x2, we have

cã(x{1,2}) = mã(x{1,2}) = ma(x1x2) = ca(x1x2) + α
( )

ca(x1)ca(x2).

For general n, we can use the moment-cumulant relations for ma(X) = mã(X̃) and
obtain

ma(X) =
∑

π∈P(f)

απ

∏
β∈π

ca(X ↾ β)

=
∑

π∈P(f)
i,i+1∈β̂∈π

απca(X ↾ β̂)
∏

β∈π∖{β̂}

ca(X ↾ β)

+
∑

ρ∈P(f)
β1,β2∈ρ

i∈β1 ̸=β2∋i+1

αρca(X ↾ β1)ca(X ↾ β2)
∏

β∈ρ∖{β1,β2}

ca(X ↾ β)

=
∑

π∈P(f)
i,i+1∈β̂∈π

απ

(
ca(X ↾ β̂) +

∑
{β1,β2}∈P(β̂)
i∈β1 ̸=β2∋i+1

α{β1,β2}ca(X ↾ β1)ca(X ↾ β2)
)

·
∏

β∈π∖{β̂}

ca(X ↾ β)

= ca(X) +
∑

{β1,β2}∈P(f)
i∈β1 ̸=β2∋i+1

α{β1,β2}ca(X ↾ β1)ca(X ↾ β2)

+
∑

1f ̸=π∈P(f)
i,i+1∈β̂∈π

απ

(
ca(X ↾ β̂) +

∑
{β1,β2}∈P(β̂)
i∈β1,i+1∈β2

α{β1,β2}ca(X ↾ β1)ca(X ↾ β2)
)

·
∏

β∈π∖{β̂}

ca(X ↾ β)
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where we used αρ = απα{β1,β2} for π = ρβ1⌣β2 . On the other hand, with f̃ ∈
F [n]/(i∼i+1), f̃({i, i+ 1}) := f(i) = f(i+ 1) and f̃(ℓ) := f(ℓ) for ℓ ̸= {i, i+ 1},

mã(X̃) =
∑

σ∈P(f̃)

ασ

∏
β∈σ

cã(X̃ ↾ β)

=
∑

σ∈P(f̃)
{i,i+1}∈β̃

ασcã(X̃ ↾ β̃)
∏

β∈σ∖{β̃}

ca(X ↾ β)

= cã(X̃) +
∑

1f̃ ̸=σ∈P(f̃)
{i,i+1}∈β̃

ασcã(X̃ ↾ β̃)
∏

β∈σ∖{β̃}

ca(X ↾ β).

Recall that there is a canonical bijection between partitions σ ∈ P(f̃) and partitions
π ∈ P(f) with i, i + 1 in the same block β̂ ∈ π. Also, the highest coefficients ασ and
απ agree under this bijection by Theorem 5.3 (iii). Using the induction hypothesis on
ca(X ↾ β̂) finishes the proof. □

Theorem 8.2. Suppose that the weights (απ)π∈P are admissible. Then there exists a
unique symmetric universal product with highest coefficients (απ)π∈P .

Proof. The uniqueness statement is proved in [18, Th. 7.2], see Theorem 7.8.
Let φκ : Aκ → C be linear functionals on 2-faced algebras (κ ∈ {1, 2}). Recall

Definition 7.4 of expα and logα and Definition 7.5, which sets the notation for lifting
φk to linear functionals φ̂κ = φκ ◦µκ on the tensor algebras T0(

⊕
∈F Aκ). We simply

write exp := expα and log := logα in the following. We define

φ1 ⊙̃ φ2 := exp
(
log(φ̂1)⊕ log(φ̂2)

)
∈ T0

(⊕
∈F

(A1 ⊕A2)
)′

.(8)

The main task is now to prove that φ1 ⊙̃φ2 vanishes on the ideal I := ker(µ1⊔µ2) in

T0

(⊕
∈F

(A1 ⊕A2)
)

=
⊔
∈F

(
T0(A1) ⊔ T0(A2)

)
(i.e. the ideal generated by the relations a ⊗ b = ab for a, b ∈ Aκ), so that φ1 ⊙̃ φ2
descends to a functional φ1⊙φ2 with (φ1⊙φ2)◦(µ1⊔µ2) = (φ1 ⊙̃φ2) on the quotient

A1 ⊔A2 = T0

(⊕
∈F

(A1 ⊕A2)
)
/I.

Let s = f×b ∈ ([2]×F)n with s(i) = s(i+1) = (j, ) for some i ∈ [n−1], j ∈ [2], ∈ F .
Let a1 · · · an ∈ As ⊂ A1⊔A2 with aℓ ∈ Af(ℓ)

b(ℓ), in particular, ai and ai+1 lie in the same
direct summand Aj of the free product A1⊔A2. Define f̃ ∈ F [n]/(i∼i+1), f̃({i, i+1}) =
f(i) = f(i + 1) and f̃(ℓ) = f(ℓ) for ℓ ̸= {i, i + 1}. Analogously, we define b̃ and s̃.
With a := (a1, . . . , an), X := x1 · · ·xn ∈ C⟨x1, . . . , xn⟩, ã := (a1, . . . , aiai+1, . . . an),
and X̃ := x1 · · ·x{i,i+1}xn ∈ C⟨x1, . . . , x{i,i+1}, xn⟩, we have

• for β ⊂ {1, . . . , i, i+ 1, . . . , n} with aℓ ∈ Aκ for all ℓ ∈ β
log φ̂κ(a ↾ β) = ca(X ↾ β),

• for β ⊂ {1, . . . , {i, i+ 1}, . . . , n} with aℓ ∈ Aκ for all ℓ ∈ β
log φ̂κ(ã ↾ β) = cã(X̃ ↾ β).

Let us say that a partition π is adapted to b, and write π ≺ b, if b is constant on
blocks of π (this is the first condition of π being adapted to s). Note that (log φ̂1 ⊕
log φ̂2)⊗|π|(aπ) = 0 when π is not adapted to b; indeed, this follows directly from the
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way we identify the direct sum of linear functionals with a linear functional on the
tensor algebra in Equation (1). With this in hand, we calculate

(9) exp(log φ̂1 ⊕ log φ̂2)(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

=
∑

π∈P(f̃)

απ(log φ̂1 ⊕ log φ̂2)⊗|π|(aπ) =
∑
π≺b̃

{i,i+1}∈β̃∈π

απcã(X̃ ↾ β̃)
∏

β∈π∖{β̃}

cã(X̃ ↾ β).

On the other hand, if the two legs i and i + 1 are not identified, then there are
partitions adapted to b for which i, i + 1 lie in the same block as well as ones for
which i, i+ 1 lie in different blocks. This leads to

exp(log φ̂1 ⊕ log φ̂2)(a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an)(10)

=
∑

π∈P(f)

απ(log φ̂1 ⊕ log φ̂2)⊗|π|(aπ)

=
∑
π≺b

i,i+1∈β̂∈π

απca(X ↾ β̂)
∏

β∈π∖{β̂}

ca(X ↾ β)

+
∑
σ≺b

β1,β2∈σ
i∈β1 ̸=β2∋i+1

ασca(X ↾ β1)ca(X ↾ β2)
∏

β∈σ∖{β1,β2}

ca(X ↾ β)

=
∑
π≺b

i,i+1∈β̂∈π

απ

ca(X ↾ β̂) +
∑

β1∪̇β2=β̂

α{β1,β2}ca(X ↾ β1)ca(X ↾ β2)


·

∏
β∈π∖{β̂}

ca(X ↾ β),

using απα{β1,β2} = ασ when σ = π ∖ {β̂} ∪ {β1, β2}, i.e. π = σβ1⌣β2 . The two
expressions derived in (9) and (10) agree by Lemma 8.1 and, therefore, we have a
well-defined map φ1⊙φ2(a1 · · · an) = φ1⊙φ2(a1⊗· · ·⊗an+I) := φ1⊙̃φ2(a1⊗· · ·⊗an).

Let us verify that ⊙ is indeed a symmetric universal product. To prove universality,
recall Observation 7.7. Let hκ : Bκ → Aκ be F-faced algebra homomorphisms and
φκ : Aκ → C linear functionals. Then, for b = b1 · · · bn ∈ B1⊔B2 and b̂ = b1⊗· · ·⊗bn ∈
B̂1 ⊔ B̂2,

(φ1 ◦ h1)⊙ (φ2 ◦ h2)(b) = exp
(
log(φ̂1 ◦ h1)⊕ log(φ̂2 ◦ h2)

)
(b̂)

= exp
(
(log φ̂1 ◦ ĥ1)⊕ (log φ̂2 ◦ ĥ2)

)
(b̂)

= exp
(
(log φ̂1 ⊕ log φ̂2) ◦ (ĥ1 ⊔ ĥ2)

)
(b̂)

= exp(log φ̂1 ⊕ log φ̂2) ◦ (ĥ1 ⊔ ĥ2)(b̂)
=
(
(φ1 ⊙ φ2) ◦ (h1 ⊔ h2)

)
(b).

Symmetry and unitality are immediate for ⊙̃ and therefore descend to ⊙. To prove
associativity is slightly more involved. We write b ∈ A1 ⊔A2 ⊔A3 as (µ1 ⊔µ2 ⊔µ3)(b̂)
with

b̂ ∈ T0

(⊕
∈F

(A1 ⊕A2 ⊕A3)
)

=
⊔
∈F

T0(A1) ⊔ T0(A2) ⊔ T0(A3)

and claim that(
(φ1 ⊙ φ2)⊙ φ3

)
(b) =

(
φ1 ⊙ (φ2 ⊙ φ3)

)
(b) = exp(log φ̂1 ⊕ log φ̂2 ⊕ log φ̂3)(b̂).
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The crucial observation is that log φ̂1 ⊙ φ2 = (log φ̂1 ⊕ log φ̂2) ◦ λ12 with

λ12 : T0

(⊕
∈F

(A1 ⊔A2)
)

=
⊔
∈F

T0(A1 ⊔A2)

→ T0

(⊕
∈F

(A1 ⊕A2)
)

=
⊔
∈F

(
T0(A1) ⊔ T0(A2)

)
the unique algebra homomorphism extending the canonical embeddings A1 ⊔ A2 ↪→
T0(A1) ⊔ T0(A2). Indeed, φ̂1 ⊙ φ2 = (φ1 ⊙ φ2) ◦ µ12 for the canonical map

µ12 : T0

(⊕
∈F

(A1 ⊔A2)
)
→ A1 ⊔A2,

which factorizes as µ12 = (µ1 ⊔ µ2) ◦ λ12. From (φ1 ⊙ φ2) ◦ (µ1 ⊔ µ2) = φ1 ⊙̃ φ2, we
conclude that

φ̂1 ⊙ φ2 = (φ1 ⊙ φ2) ◦ µ12 = (φ1 ⊙ φ2) ◦ (µ1 ⊔ µ2) ◦ λ12 = (φ1 ⊙̃ φ2) ◦ λ12.

From Definition 7.4 it is obvious that exp(ψ ◦ λ12) = exp(ψ) ◦ λ12 for all ψ ∈
T0
(⊕

∈F (A1 ⊕A2)
)′, therefore log φ̂1 ⊙ φ2 = (log φ̂1 ⊕ log φ̂2) ◦ λ12 as claimed. The

rest is easy:(
(φ1 ⊙ φ2)⊙ φ3

)
(b) = exp

(
log(φ̂1 ⊙ φ2)⊕ log φ̂3

)
(b̂)

= exp
(
log(φ̂1)⊕ log(φ̂2)⊕ log(φ̂3)

)(
(λ12 ⊔ id)(b̂)

)
= exp

(
log(φ̂1)⊕ log(φ̂2)⊕ log(φ̂3)

)
(b̂);

note that λ12 is actually a projection onto a subalgebra, so we can safely identify
b̂ with the corresponding element in the domain of λ12 ⊔ id instead of introducing
yet another symbol for its preimage. The other direction, i.e.

(
φ1 ⊙ (φ2 ⊙ φ3)

)
(b) =

exp
(
log(φ̂1)⊕ log(φ̂2)⊕ log(φ̂3)

)
(b̂), follows by symmetry.

To check that the highest coefficients of ⊙ are indeed given by α, it is enough to
consider products of two functionals φ1, φ2. For a = a1 · · · an ∈ As, s = b × f ∈
([2]×F)∗, and σ ∈ P(f) the partition with blocks βκ = {ℓ : b(ℓ) = κ}, we find

∂2

∂t1∂t2
(t1φ1)⊙ (t2φ2)(a1 · · · an)

∣∣∣∣
t=0

=
∑

π∈P(f)

∂2

∂t1∂t2
απ · (log t1φ̂1 ⊕ log t2φ̂2)⊗|π|(aπ)

∣∣∣∣
t=0

= ∂2

∂t1∂t2
ασ · log t1φ̂1(aβ1) log t2φ̂2(aβ2)

∣∣∣∣
t=0

= ασ · φ1(aβ1)φ2(aβ2)

as needed.(11) □

The formula to compute mixed moments can be considerably simplified in the
special case where the the highest coefficients are only 0 or 1.

Definition 8.3. We say a symmetric universal product is combinatorial with parti-
tion set Π if its highest coefficients are all either 0 or 1 and Π = {π ∈ P : απ = 1}.

(11)The notation aβ =
−→∏

i∈β
ai, aπ =

⊗
β∈π

aβ refers to a1 ⊗ · · · ⊗ an, but note that by well-
definedness the choice of decomposition of a1 · · · an ∈ A1 ⊔ A2 as a tensor in T0(

⊕
∈F A1 ⊕ A2)

does not influence the result!
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Theorem 8.4. Let ⊙ be a combinatorial universal product with admissible partition
set Π one of the 12 sets of Theorem 6.10 (in particular, F = { , } a two element
set). Furthermore, let φκ be a linear functional on a multi-faced algebra Aκ (κ ∈ [k]),
and a = a1 · · · an ∈ As for s = b× f ∈ ([k]×F)n. Denote

• π ∈ P(f) the multi-faced partition with blocks βκ := {i : b(i) = κ} (whenever
non-empty),

• Π⩽π := {σ ∈ Π : σ ⩽ π} the set of refinements of π inside Π ∩ P(f),
• S the set of maximal elements of Π⩽π (i.e. coarsest refinements of π inside Π),
• ∧R is the maximal common refinement of partitions in R ⊂ Π ∩ P(f),
∧∅ := 1f ,

• Φ := φ1 ⊙ · · · ⊙ φk,
• Φ̂ the lift of Φ to T0

( ⊕
ℓ∈[k], ∈F

Aℓ

)
.

Then
Φ(a) =

∑
∅̸=R⊆S

(−1)#R−1Φ̂⊗|∧R|(a∧R).

Proof. Put Ψ := log Φ̂ = log φ̂1⊕· · ·⊕log φ̂k. The key observation is that a refinement
σ of a partition ρ ∈ Π belongs to Π if and only if σ↾β ∈ Π for all blocks β ∈ ρ; this can
be easily seen for each of the 12 admissible sets of partitions individually. Using the
moment cumulant formula on each block of ∧R and the observation on refinements
just made, we find∑

R⊆S

(−1)#RΦ̂⊗|∧R|(a∧R) =
∑
R⊆S

∑
σ⩽∧R
σ∈Π

(−1)#RΨ⊗|σ|(aσ)(11)

(equality of the summands for R = ∅ will be discussed below.) Now, the same
partition σ ∈ Π can of course be a refinement of ∧R for different R ⊆ S. Denote
T (σ) := {ρ ∈ S : σ ⩽ ρ} and n(σ) := #T (σ). Then σ ⩽ ∧R if and only if R ⊆ T (σ),
and for every k ∈ {0, 1, . . . , n(σ)} there are

(
n(σ)

k

)
many such R with #R = k. If

n(σ) = 0, i.e. if σ is not a refinement of π, then Ψ⊗|σ|(aσ) = 0 because mixed cumu-
lants vanish. This leads to

RHS of (11) =
∑

σ∈Π⩽π

n(σ)∑
k=0

(−1)k

(
n(σ)
k

)
︸ ︷︷ ︸

=0

Ψ⊗|σ|(aσ) = 0.

Recall that we defined ∧∅ := 1f , so that

Φ(a) = Φ̂(a1f ) =
∑

σ∈P(f)∩Π

Ψ⊗|σ|(aσ) =
∑

σ⩽1f
σ∈Π

Ψ⊗|σ|(aσ);

this confirms that the choice is consistent with Equation (11), and it also shows that
the statement of the theorem is equivalent to LHS of (11) = 0. □

Example 8.5. Let ⊙ be the universal product associated with NC A . Then
has set of coarsest refinements S = { , } in NC A with ∧S = ,
leading to

φ⊙ ψ(a1b1a2a3b2)
= φ(a1a2)φ(a3)ψ(b1b2) + φ(a1a2a3)ψ(b1)ψ(b2)− φ(a1a2)φ(a3)ψ(b1)ψ(b2)

for all φ ∈ A′, ψ ∈ B′, a•
i ∈ A• (i = 1, 2, 3), and b•

j ∈ B• (j = 1, 2).
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9. Unit preserving universal products
In [4], Diaz-Aguilera, Gaxiola, Santos, and Vargas characterize when the moment cu-
mulant relation associated with weights on partitions leads to independent constants,
finding this to be the case if and only if the weights do not change when remov-
ing or inserting a singleton from or to the partition. Manzel and Schürmann discuss
in [18, Rem. 3.1] the relation between universal products in the category of multi-
faced algebras and in the category of multi-faced unital algebras and observe that
while a product for the unital category always gives rise to a product for the non-
unital category, the other way round requires a condition, namely that the universal
product respects the units or is unit preserving as we prefer to write in this article. In
this section we briefly review universal products in the category of multi-faced unital
algebras, define what exactly it means to be unit preserving, generalize the defini-
tion of singleton inductive weights to the multi-faced setting, and finally characterize
unit preserving symmetric universal product as those whose highest coefficients are
singleton inductive.

In the category of unital algebras with unital algebra homomorphisms, the coprod-
uct is given by the unital free product, which can be constructed from the non-unital
free product as

A1 ⊔1 A2 := (A1 ⊔ A2)/⟨1A1 − 1A2⟩;
here ⟨·⟩ denotes the generated two-sided ideal.

Definition 9.1.
• A multi-faced unital algebra is a unital algebra A with unital subalgebras A ,
∈ F , such that the canonical unital algebra homomorphism

⊔
1 ∈F A → A

is an isomorphism, in which case we write A =
⊔
1 ∈F A .

• A multi-faced unital algebra homomorphism is a unital algebra homomor-
phism which maps face into face.

• The unital free product of multi-faced unital algebras A1,A2 is a multi-faced
unital algebra with (A1 ⊔1 A2) := A1 ⊔1 A2.

• A linear functional ϕ : A → C on a multi-faced unital algebra is unital if
ϕ(1A) = 1.

Multi-faced unital algebras with multi-faced unital algebra homomorphisms form
a category, in which ⊔1 is a coproduct. One can adapt Definition 3.1 to the unital
situation and obtains the following.

Definition 9.2. A universal product in the category of multi-faced unital algebras is
a binary product operation for unital linear functionals on multi-faced unital algebras
which associates with unital functionals ϕ1, ϕ2 on multi-faced unital algebras A1,A2,
respectively, a unital functional ϕ1 ⊙ ϕ2 on A1 ⊔1 A2 such that

• (ϕ1 ◦ h1)⊙ (ϕ2 ◦ h2) = (ϕ1 ⊙ ϕ2) ◦ (h1 ⊔1 h2) for all multi-faced unital algebra
homomorphisms hi : Bi → Ai (universality)
• (ϕ1 ⊙ ϕ2)⊙ ϕ3 = ϕ1 ⊙ (ϕ2 ⊙ ϕ3) (associativity)
• (ϕ1 ⊙ ϕ2) ↾Ai = ϕi (restriction property).

As Manzel and Schürmann noticed in [18, Rem. 3.1], every universal product ⊙̃
in the category of multi-faced unital algebras gives rise to a universal product in the
sense of Definition 3.1, simply putting

φ1 ⊙ φ2 := φ̃1 ⊙̃ φ̃2 ↾A1 ⊔A2 ⊂ Ã1 ⊔1 Ã2

where Ãi denotes the unitization of a multi-faced algebra and φ̃i the unital extension
of a linear functional.
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Conversely, if a universal product ⊙ in the non-unital case is given, one would like
to define

ϕ1 ⊙̃ ϕ2
(
p(a)

)
:= φ1 ⊙ φ2(a)(12)

with the following conventions:
• Aκ :=

⊔
∈F Aκ, so that Aκ

∼= Aκ/IAκ
with IAκ

:= ⟨1 − 1 : , ∈ F⟩ ⊂ Aκ,
• pAκ : Aκ → Aκ denotes the canonical homomorphism,
• φκ := ϕκ ◦ pAκ : Aκ → C, i.e. φκ(a) := ϕκ(a+ IAκ),
• p : A1 ⊔A2 → A1 ⊔1 A2 denotes the canonical homomorphism.

Definition 9.3. A universal product is unit preserving (or respects units) if, when-
ever A1, A2 are multi-faced algebras with each Ai unital and φi a linear functional on
Ai which vanishes on the ideal ⟨1i−1i : , ∈ F⟩ ⊂ Ai and such that φi↾Ai is unital for
every ∈ F , then φ1⊙φ2 vanishes on the ideal ⟨1i−1j : i, j ∈ [2], , ∈ F⟩ ⊂ A1⊔A2
and φ1 ⊙ φ2 ↾Ai is unital for every i ∈ [2], ∈ F .

Remark 9.4. A multi-faced universal product is unit preserving if and only if (12) is
well-defined, in which case it yields a universal product in the category of multi-faced
unital algebras [18, Rem. 3.1]. Since Manzel and Schürmann do not give a definition
of “respecting units”, let us briefly check that Definition 9.3 captures what they mean.

Assume that ⊙ is unit preserving. The φi = ϕi ◦ pAi
in (12) are linear functionals

on Ai, vanish on ker pAi
= IAi

= ⟨1i − 1i : , ∈ F⟩ ⊂ Ai and fulfill φi(1i) =
ϕi(1i) = 1. Therefore, we may conclude that φ1 ⊙ φ2 vanishes on the ideal ⟨1i − 1j :
i, j ∈ [2], , ∈ F⟩ ⊂ A1 ⊔ A2, which coincides with the kernel of the canonical
homomorphism p : A1 ⊔A2 → A1 ⊔1 A2. This means that there is a well-defined linear
functional ϕ1 ⊙̃ϕ2 with φ1⊙φ2 = (ϕ1 ⊙̃ϕ2) ◦ p. This functional is also unital because
ϕ1 ⊙̃ ϕ2(1) = ϕ1 ⊙̃ ϕ2

(
p(1i)

)
= φi(1i) = 1.

We leave the rest of the simple, but notationally cumbersome proof of the claim
(in particular universality and associativity of ⊙̃) to the interested reader.

In the following we will need often remove a singleton block β = {s} from a partition
π ∋ β. While consistent use of notation would dictate to write π ∖ {β} = π ∖ {{s}},
we will prefer to write π ∖ {s} for better legibility.

Definition 9.5 (multi-faced version of [4, Def. 3.2]). A family of weights (απ)π∈P is
singleton inductive if απ = απ∖{s} for every singleton block {s} ∈ π.

Lemma 9.6 (multi-faced version of [4, Th. 3.2]). Let α be monic, singleton inductive
weights. Suppose that A =

⊔
∈F A is a multi-faced algebra such that each face A

is unital (with unit 1 ) and that φ fulfills φ(1 ) = 1 and φ vanishes on the ideal
⟨1 − 1 : , ∈ F⟩ ⊂ A. Then

logα φ̂(a1 ⊗ · · · ⊗ an) = 0 whenever n > 1 and as = 1 for some s ∈ [n], ∈ F ;

here φ̂ is the lift of φ to a T0
(⊕

∈F A
)
.

Proof. We prove the claim by induction. For n = 2 and arbitrary , ∈ F ,

logα φ̂(1 ⊗ a ) = φ(1 a )− φ(1 )φ(a ) = φ(1 a )− φ(a ) = 0

and analogously logα φ̂(a ⊗1 ) = 0. Now assume the statement holds for all 1 < m <
n and consider a = a1 ⊗ · · · ⊗ an with ai ∈ Af(i), as = 1f(s). Note that φ(a1 · · · an) =
φ(a1 · · · ǎs · · · an) (here ǎs means omission of the factor) and logα φ̂(as) = logα φ̂(1 ) =
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φ(1 ) = 1. We find

logα φ̂(a1 ⊗ · · · ⊗ an) = φ(a1 · · · an)−
∑

π∈P(f)∖{1f }

απ(logα φ̂)⊗|π|(aπ)

= φ(a1 · · · an)−
∑

{s}∈π∈P(f)

απ(logα φ̂)⊗|π|(aπ)

−
∑

{s}/∈π∈P(f)∖{1f }

απ(logα φ̂)⊗|π|(aπ)

︸ ︷︷ ︸
=0 by induction hypothesis

= φ(a1 · · · ǎs · · · an)−
∑

{s}∈π∈P(f)

απ∖{s}(logα φ̂)⊗|π|−1(aπ∖{s}) logα φ̂(as)

= φ(a1 · · · ǎs · · · an)−
∑

σ∈P(f↾[n]∖{s})

ασ(logα φ̂)⊗|σ|(aσ) = 0,

where we used that the weights are singleton inductive as well as the moment cumulant
relation for a1 · · · ǎs · · · an. □

Theorem 9.7. For a multi-faced positive symmetric universal product ⊙, the following
are equivalent.

(1) ⊙ is unit preserving,
(2) ν = 1 for all ∈ F ,
(3) the highest coefficients of ⊙ are singleton inductive.

Proof. Let ⊙ be unit preserving. To calculate ν = α
( )

, we can assume that also
the extremal legs are -legs. We can therefore ignore the faces and calculate, as in the
single-faced case,

φ1 ⊙ φ2(aba′) = ν · φ1(aa′)φ2(b) + γ · φ1(a)φ1(a′)φ2(b)

for all a, a′ ∈ A1, b ∈ A2, with some universal constant γ ∈ C. Suppose that φ1, φ2
are as in Definition 9.3 and furthermore b = 12, φ1(a) = φ1(a′) = 0, φ1(aa′) = 1, then

φ1 ⊙ φ2(a12a
′) = φ1 ⊙ φ2(a11a

′) = φ1 ⊙ φ2(aa′) = φ1(aa′) = 1

because ⊙ preserves units. We also have φ2(b) = φ2(12) = 1. Putting everything
together, ν = 1.

A simple induction on the number of blocks shows that απ = ν ·απ∖{s} whenever
π ∈ P has a singleton block {s} ∈ π of color . Therefore, ν = 1 for all ∈ F implies
that the highest coefficients are singleton inductive.

Now assume that the highest coefficients of a positive symmetric universal product
are singleton inductive. Let A1, A2 be multi-faced algebras with unital faces, s =
b× f ∈ ([2]×F)n, aℓ ∈ Af(ℓ)

b(ℓ) for ℓ ∈ [n], â = a1⊗ · · · ⊗ an, a = a1 · · · an and as = 1i .
Then, with log := log⊙,

φ1 ⊙ φ2(a) =
∑

π∈P(f)

απ(log φ̂1 ⊕ log φ̂2)⊗|π|(âπ)

=
∑

{s}∈π∈P(f)

απ(log φ̂1 ⊕ log φ̂2)⊗|π|(âπ)

by Lemma 9.6. Because α is singleton inductive, απ = απ∖{s}. Also, for any π with
{s} ∈ π, we have

(log φ̂1 ⊕ log φ̂2)⊗|π|(âπ) = (log φ̂1 ⊕ log φ̂2)⊗|π∖{s}|(âπ∖{s}) log φ̂b(s)(as)︸ ︷︷ ︸
=1

.
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Therefore, φ1 ⊙ φ2(a1 · · · an) = φ1 ⊙ φ2(a1 · · · ǎs · · · an). This calculation works for
any i ∈ [2] and any ∈ F , so the statement follows. □

Corollary 9.8. A 2-faced positive symmetric universal product is unit preserving if
and only if its associated set of partitions contains pNC .

10. Summary and outlook
We found conditions on weights that are necessarily satisfied by the highest coefficients
of a positive two-faced universal product. In the symmetric case, we showed that
weights which fulfill these conditions are always the highest coefficients of a uniquely
determined universal product. We could also determine all families of weights which
fulfill these conditions, thereby providing a list of candidates for positive symmetric
universal products.

We hope that the methods developed in this work will eventually lead to a complete
classification of positive multi-faced universal products. To that end, the following
problems will have to be overcome:

• Prove or disprove positivity of the “exceptional cases” which do not admit a
representation on free or tensor product.

• Extend the classification of admissible weights to more than two faces.
• Extend the classification of admissible weights to the non-symmetric case.
• Extend the reconstruction theorem to the non-symmetric case. This might be

significantly more difficult because the cumulants have to be combined using
the Campbell-Baker-Hausdorff formula instead of just the direct sum.

Appendix A. Comparison with [30]
Most ideas behind the proofs in Sections 5, 6 and 8 go more or less back to [30].
A crucial difference between this article and the exposition in [30] is that our main
results are consistently formulated and proved for families of weights on partitions,
while Varšo often works with sets of partitions instead, which means that in [30]
several results are only proved in the combinatorial case in the sense of Definition 8.3.
The weight-based approach often helped us to streamline proofs. Another difference
is that we decided to focus on positive universal products here.

In the following we give a more detailed comparison of the results.
• Theorem 5.3 (iv) is basically [30, Corollary 5.2.6]. The remaining claims of

Theorem 5.3 generalize [30, Theorem 5.2.17] to possibly non-symmetric uni-
versal products. Because we put more emphasis on positive products, for ease
of reading, we only formulated Theorem 5.3 for positive products while Varšo
formulates his results more generally for products with the “right ordered
monomials property”, i.e. those products for which the conclusion of Theo-
rem 3.3 holds; however, we mention in the proof where exactly the positivity
condition is used and where the right-ordered monomials property is enough.

• Lemma 6.3 is closely related to [30, Theorem 5.2.20] (since admissible families
of weights are not defined in [30], the statement is formulated for families of
highest coefficients of certain universal products). Lemma 6.7 has overlap
with [30, Lemma 5.2.23]; however, from Lemma 6.7 (3) it follows that all
coefficients have absolute value in {0, 1}, which goes beyond what was found
in [30]. Regarding the main classification results, Theorem 6.10 corresponds
to [30, Theorem 4.2.44] and Corollary 6.11 strengthens [30, Remark 5.2.28].

• Observation 5.9 draws the connection between the admissible sets of parti-
tions as defined from admissible weights in Definitions 5.5 and 5.6 and Varšo’s
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(m-colored) universal classes of partitions [30, Definition 3.4.9]. The only dif-
ference is that admissible sets are assumed to contain the interval partitions,
while a universal class of partitions is also allowed to consist of the 1-block
partitions alone.

• Our reconstruction theorem, Theorem 8.2, also covers universal products with
non-0-1 highest coefficients, in contrast to [30, Theorem 3.4.32]. The crucial
Lemma 8.1 corresponds to [30, Lemma 3.4.24] (formulated and proved for
admissible weights instead of universal classes of partitions).

Theorem 8.4 and the results of Section 9 have no counterpart in [30].
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